Please wait while the formulary information is being retrieved.
Drug overview for ATENOLOL-CHLORTHALIDONE (atenolol/chlorthalidone):
Generic name: atenolol/chlorthalidone (a-TEN-oh-lol/klor-THAL-i-done)
Drug class: Diuretics
Therapeutic class: Cardiovascular Therapy Agents
Atenolol is a beta1-selective adrenergic blocking agent (beta-blocker). Chlorthalidone, which is structurally and pharmacologically similar to the thiazides, is a diuretic and antihypertensive agent.
Atenolol is used for the management of hypertension, angina, and acute myocardial infarction (MI). The drug also has been used for the management of supraventricular and ventricular tachyarrhythmias+, management of acute alcohol withdrawal (in conjunction with a benzodiazepine)+, and prophylaxis of migraine headache+. The choice of a beta-adrenergic blocking agent (beta-blocker) depends on numerous factors, including pharmacologic properties (e.g., relative beta-selectivity, intrinsic sympathomimetic activity, membrane-stabilizing activity, lipophilicity), pharmacokinetics, intended use, and adverse effect profile, as well as the patient's coexisting disease states or conditions, response, and tolerance.
While specific pharmacologic properties and other factors may appropriately influence the choice of a beta-blocker in individual patients, evidence of clinically important differences among the agents in terms of overall efficacy and/or safety is limited. Patients who do not respond to or cannot tolerate one beta-blocker may be successfully treated with a different agent. In the management of hypertension or chronic stable angina pectoris in patients with chronic obstructive pulmonary disease (COPD) or type 1 diabetes mellitus, many clinicians prefer to use low dosages of a beta1-selective adrenergic blocking agent (e.g., atenolol, metoprolol), rather than a nonselective agent (e.g., nadolol, pindolol, propranolol, timolol).
However, selectivity of these agents is relative and dose dependent. Some clinicians also will recommend using a beta1-selective agent or an agent with intrinsic sympathomimetic activity (ISA) (e.g., pindolol), rather than a nonselective agent, for the management of hypertension or angina pectoris in patients with peripheral vascular disease, but there is no evidence that the choice of beta-blocker substantially affects efficacy.
Generic name: atenolol/chlorthalidone (a-TEN-oh-lol/klor-THAL-i-done)
Drug class: Diuretics
Therapeutic class: Cardiovascular Therapy Agents
Atenolol is a beta1-selective adrenergic blocking agent (beta-blocker). Chlorthalidone, which is structurally and pharmacologically similar to the thiazides, is a diuretic and antihypertensive agent.
Atenolol is used for the management of hypertension, angina, and acute myocardial infarction (MI). The drug also has been used for the management of supraventricular and ventricular tachyarrhythmias+, management of acute alcohol withdrawal (in conjunction with a benzodiazepine)+, and prophylaxis of migraine headache+. The choice of a beta-adrenergic blocking agent (beta-blocker) depends on numerous factors, including pharmacologic properties (e.g., relative beta-selectivity, intrinsic sympathomimetic activity, membrane-stabilizing activity, lipophilicity), pharmacokinetics, intended use, and adverse effect profile, as well as the patient's coexisting disease states or conditions, response, and tolerance.
While specific pharmacologic properties and other factors may appropriately influence the choice of a beta-blocker in individual patients, evidence of clinically important differences among the agents in terms of overall efficacy and/or safety is limited. Patients who do not respond to or cannot tolerate one beta-blocker may be successfully treated with a different agent. In the management of hypertension or chronic stable angina pectoris in patients with chronic obstructive pulmonary disease (COPD) or type 1 diabetes mellitus, many clinicians prefer to use low dosages of a beta1-selective adrenergic blocking agent (e.g., atenolol, metoprolol), rather than a nonselective agent (e.g., nadolol, pindolol, propranolol, timolol).
However, selectivity of these agents is relative and dose dependent. Some clinicians also will recommend using a beta1-selective agent or an agent with intrinsic sympathomimetic activity (ISA) (e.g., pindolol), rather than a nonselective agent, for the management of hypertension or angina pectoris in patients with peripheral vascular disease, but there is no evidence that the choice of beta-blocker substantially affects efficacy.
DRUG IMAGES
- ATENOLOL-CHLORTHALIDONE 50-25
- ATENOLOL-CHLORTHALIDONE 100-25
The following indications for ATENOLOL-CHLORTHALIDONE (atenolol/chlorthalidone) have been approved by the FDA:
Indications:
Hypertension
Professional Synonyms:
Elevated blood pressure
Essential hypertension
Hyperpiesia
Hyperpiesis
Hypertensive disorder
Systemic arterial hypertension
Indications:
Hypertension
Professional Synonyms:
Elevated blood pressure
Essential hypertension
Hyperpiesia
Hyperpiesis
Hypertensive disorder
Systemic arterial hypertension
The following dosing information is available for ATENOLOL-CHLORTHALIDONE (atenolol/chlorthalidone):
Dosage of chlorthalidone should be individualized according to the patient's requirements and response. If chlorthalidone is added to the regimen of a patient stabilized on a potent hypotensive agent, the dosage of the hypotensive agent should initially be reduced to avoid the possibility of severe hypotension.
For the management of hypertension in children+, some experts recommend an initial dosage of 0.3 mg/kg once daily. Experts state that the dosage should be increased every 2-4 weeks until blood pressure is controlled, the maximum dosage is reached (2 mg/kg (up to 50 mg) daily), or adverse effects occur.
For information on overall principles and expert recommendations for treatment of hypertension in pediatric patients, see Uses: Hypertension in Pediatric Patients, in the Thiazides General Statement 40:28.20.
Dosage of atenolol must be individualized and adjusted according to the patient's response and tolerance. If atenolol therapy is to be discontinued, dosage of the drug should be reduced gradually over a period of about 2 weeks. (See Cautions: Precautions and Contraindications.)
In patients with impaired renal function, doses and/or frequency of administration of atenolol must be modified in response to the degree of renal impairment. Because decreased renal function is a physiologic consequence of aging, the possibility that modification of atenolol dosage may be necessary in geriatric patients should be considered. Initiation of oral atenolol therapy at 25 mg daily may be necessary in some renally impaired or geriatric patients being treated for hypertension; if this dosage is employed, measurement of blood pressure just prior to a dose is recommended to ensure persistence of adequate blood pressure reduction.
Although similar, low-dose initial therapy may be warranted for other conditions, data currently are not available.
A maximum oral atenolol dosage of 50 mg daily is recommended for patients with creatinine clearances of 15-35 mL/minute per 1.73 m2; 25 mg daily or 50 mg every other day is recommended when creatinine clearance is less than 15 mL/minute per 1.73 m2. In patients undergoing hemodialysis, a 25- or 50-mg oral dose of atenolol may be administered after each dialysis; since marked reductions in blood pressure may occur, it is recommended that the supplemental dose be given under careful supervision.
For the management of hypertension in children+, some experts recommend an initial dosage of 0.3 mg/kg once daily. Experts state that the dosage should be increased every 2-4 weeks until blood pressure is controlled, the maximum dosage is reached (2 mg/kg (up to 50 mg) daily), or adverse effects occur.
For information on overall principles and expert recommendations for treatment of hypertension in pediatric patients, see Uses: Hypertension in Pediatric Patients, in the Thiazides General Statement 40:28.20.
Dosage of atenolol must be individualized and adjusted according to the patient's response and tolerance. If atenolol therapy is to be discontinued, dosage of the drug should be reduced gradually over a period of about 2 weeks. (See Cautions: Precautions and Contraindications.)
In patients with impaired renal function, doses and/or frequency of administration of atenolol must be modified in response to the degree of renal impairment. Because decreased renal function is a physiologic consequence of aging, the possibility that modification of atenolol dosage may be necessary in geriatric patients should be considered. Initiation of oral atenolol therapy at 25 mg daily may be necessary in some renally impaired or geriatric patients being treated for hypertension; if this dosage is employed, measurement of blood pressure just prior to a dose is recommended to ensure persistence of adequate blood pressure reduction.
Although similar, low-dose initial therapy may be warranted for other conditions, data currently are not available.
A maximum oral atenolol dosage of 50 mg daily is recommended for patients with creatinine clearances of 15-35 mL/minute per 1.73 m2; 25 mg daily or 50 mg every other day is recommended when creatinine clearance is less than 15 mL/minute per 1.73 m2. In patients undergoing hemodialysis, a 25- or 50-mg oral dose of atenolol may be administered after each dialysis; since marked reductions in blood pressure may occur, it is recommended that the supplemental dose be given under careful supervision.
Chlorthalidone is administered orally. Atenolol is administered orally; the drug also has been administered by IV injection, however a parenteral preparation no longer is commercially available in the US. Oral administration of atenolol more frequently than once daily for the management of hypertension usually is not necessary. If atenolol is used in patients with bronchospastic disorders, therapy should be initiated cautiously; concomitant administration of a beta2-adrenergic agonist and twice-daily dosing of atenolol may minimize the risk of bronchospasm in some patients.
DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
---|---|---|
ATENOLOL-CHLORTHALIDONE 50-25 | Maintenance | Adults take 1 tablet by oral route once daily |
ATENOLOL-CHLORTHALIDONE 100-25 | Maintenance | Adults take 1 tablet by oral route once daily |
DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
---|---|---|
ATENOLOL-CHLORTHALIDONE 50-25 | Maintenance | Adults take 1 tablet by oral route once daily |
ATENOLOL-CHLORTHALIDONE 100-25 | Maintenance | Adults take 1 tablet by oral route once daily |
The following drug interaction information is available for ATENOLOL-CHLORTHALIDONE (atenolol/chlorthalidone):
There are 1 contraindications.
These drug combinations generally should not be dispensed or administered to the same patient. A manufacturer label warning that indicates the contraindication warrants inclusion of a drug combination in this category, regardless of clinical evidence or lack of clinical evidence to support the contraindication.
Drug Interaction | Drug Names |
---|---|
Dofetilide/Thiazide Diuretics SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Thiazide diuretics may decrease the excretion of dofetilide and may decrease potassium levels.(1) CLINICAL EFFECTS: Concurrent use of dofetilide with a thiazide diuretic may result in elevated levels and clinical effects of dofetilide, as well as prolongation of the QT interval.(1) PREDISPOSING FACTORS: Renal impairment may increase risk for excessive QTc prolongation as dofetilide is primarily renally eliminated. To prevent increased serum levels and risk for ventricular arrhythmias, dofetilide must be dose adjusted for creatinine clearance < or = to 60 mL/min.(1) The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, and advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of dofetilide states that the concurrent use of dofetilide with hydrochlorothiazide, alone or in combination with triamterene, is contraindicated.(1) Other thiazides should also be considered contraindicated as well. If concurrent therapy is deemed medically necessary, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a study, hydrochlorothiazide (50 mg daily) alone or hydrochlorothiazide/triamterene (50 mg/100 mg daily) was administered with dofetilide (500 mcg twice daily) for 5 days following 2 days of diuretic use at half-dose. In patients receiving hydrochlorothiazide alone, the area-under-curve (AUC) and maximum concentration (Cmax) of dofetilide increased by 27% and by 21%, respectively. The pharmacodynamic effects of dofetilide increased by 197% (QTc increase over time) and by 95% (maximum QTc increase). In patients on combination hydrochlorothiazide/triamterene, dofetilide AUC and Cmax increased by 30% and by 16%, respectively. The pharmacodynamic effects of dofetilide increased by 190% (QTc increase over time) and by 84% (maximum QTc increase).(1) Dofetilide clearance was 16% lower in patients receiving thiazide diuretics.(1) |
DOFETILIDE, TIKOSYN |
There are 12 severe interactions.
These drug interactions can produce serious consequences in most patients. Actions required for severe interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration scheduling, and providing additional patient monitoring. Review the full interaction monograph for more information.
Drug Interaction | Drug Names |
---|---|
Lithium/Thiazide Diuretics SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Lithium is eliminated unchanged by the kidney; thiazide induced sodium elimination may lead to decreased renal clearance of lithium. CLINICAL EFFECTS: Lithium has a narrow therapeutic range; even modest, unintended increases in lithium concentration may result in lithium toxicity. Early symptoms of lithium toxicity may include: lethargy, muscle weakness or stiffness, new onset or coarsening of hand tremor, vomiting, diarrhea, confusion, ataxia, blurred vision, tinnitus and nystagmus. Severe toxicity may produce multiple organ dysfunction (e.g. seizures, coma, renal failure, cardiac arrhythmias, cardiovascular collapse) and may be fatal. PREDISPOSING FACTORS: Risk factors for lithium toxicity include: renal impairment or worsening of existing renal disease, dehydration, low sodium diet, and concomitant use of multiple medications which may impair renal elimination of lithium (e.g. ARBs, ACE Inhibitors, NSAIDs, diuretics). Patients who require higher therapeutic lithium levels to maintain symptom control are particularly susceptible to these factors. PATIENT MANAGEMENT: If concurrent therapy cannot be avoided, monitor closely to decrease the risk for lithium toxicity. Evaluate renal function and most recent lithium levels. If renal function is not stable, it would be prudent to withhold combination therapy until renal function is stable. If a thiazide diuretic is started, or if the dose is increased in a patient stabilized on lithium therapy, consider empirically lowering the lithium dose, and recheck lithium levels 5 to 7 days after diuretic initiation. Adjust lithium or thiazide dose as required and continue frequent (e.g. weekly) monitoring of lithium until levels have stabilized. If lithium is to be started in a patient stabilized on a thiazide diuretic, consider starting with a lower lithium dose and titrate slowly as half-life may be prolonged. Monitor lithium concentrations until stabilized on the combination. Counsel patient to assure they know signs and symptoms of lithium toxicity and understand the importance of follow-up laboratory testing. DISCUSSION: This interaction is well documented.(1-15) |
LITHIUM CARBONATE, LITHIUM CARBONATE ER, LITHIUM CITRATE, LITHIUM CITRATE TETRAHYDRATE, LITHOBID |
Clonidine/Beta-Blockers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Withdrawal of clonidine triggers increased catecholamine release. Beta-blockers inhibit the vasodilation mediated by the beta 2 receptor, leaving the vasoconstriction mediated by the alpha 2 receptor unopposed. In addition, concurrent use is expected to produce additive effects on blood pressure and heart rate requiring standard monitoring precautions. CLINICAL EFFECTS: Severe hypertension may occur upon abrupt discontinuation of clonidine in patients receiving both clonidine and beta-blockers. In addition, concurrent use is expected to produce additive effects on blood pressure and heart rate requiring standard monitoring precautions. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: In a patient receiving both drugs, discontinuation of the beta-blocker prior to clonidine may decrease the occurrence of rebound hypertension. If clonidine is discontinued first, rebound hypertension can be treated by restarting the clonidine or by the IV administration of phentolamine, phenoxybenzamine or prazosin. When adding either of these agents to the drug regimen of the patient, monitor blood pressure. Since labetalol has both alpha and beta activity, administration of labetalol may prevent rebound hypertension in patients undergoing clonidine withdrawal, although conflicting reports exist. In addition, concurrent use is expected to produce additive effects on blood pressure and heart rate requiring standard monitoring precautions. DISCUSSION: Increased blood pressure has been observed in patients following: 1) the discontinuation of clonidine in patients receiving beta-blockers, 2) the replacement of clonidine therapy with beta-blockers, 3) the simultaneous discontinuation of both drugs. Conflicting reports exist on the development of increased blood pressure after clonidine withdrawal in patients receiving labetalol. Patients receiving labetalol who are being withdrawn from clonidine should still be closely monitored. |
CATAPRES-TTS 1, CATAPRES-TTS 2, CATAPRES-TTS 3, CLONIDINE, CLONIDINE HCL, CLONIDINE HCL ER, DURACLON, NEXICLON XR, ONYDA XR, R.E.C.K.(ROPIV-EPI-CLON-KETOR), ROPIVACAINE-CLONIDINE-KETOROLC |
Sodium Phosphate Bowel Cleanser/Diuretics SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Bowel cleansing with sodium phosphate causes dehydration, decreased intravascular volume and hyperphosphatemia, which increases phosphate levels in the renal tubules. Abnormally high levels of calcium and phosphate in the renal tubules may precipitate out, resulting in renal injury.(1) CLINICAL EFFECTS: Use of sodium phosphate for bowel cleansing in patients maintained on diuretics may increase the risk of acute phosphate nephropathy, which is an acute kidney injury associated with deposits of calcium phosphate crystal in the renal tubules that may result in permanent renal function impairment. Acute phosphate nephropathy presents as acute kidney injury with minimal proteinuria and a bland urine sediment.(2) Use of oral sodium phosphate products at laxative doses has not been associated with acute kidney injury.(3) PREDISPOSING FACTORS: Patients who may be at an increased risk of acute phosphate nephropathy include those who are over age 55; are hypovolemic or have decreased intravascular volume; have baseline kidney disease, bowel obstruction, or active colitis; and who are using medications that affect renal perfusion or function (such as diuretics, angiotensin converting enzyme (ACE) inhibitors, angiotension receptor blockers (ARBs) and possibly nonsteroidal anti-inflammatory drugs (NSAIDs).(2) PATIENT MANAGEMENT: If possible, use an alternative agent for bowel cleansing.(1) Use sodium phosphate products with caution in patients taking medications that affect kidney function or perfusion, such as diuretics. Obtain baseline and post-procedure labs (electrolytes, calcium, phosphate, BUN, creatinine, and [in smaller, frail individuals] glomerular filtration rate). Instruct patients to drink sufficient quantities of clear fluids before, during, and after bowel cleansing and to avoid other laxatives that contain sodium phosphate. Consider hospitalization and intravenous hydration during bowel cleansing to support frail patients who may be unable to drink an appropriate volume of fluid or who may be without assistance at home.(2) Use of an electrolyte solution for rehydration may decrease the risk of acute phosphate nephropathy.(4,5) DISCUSSION: Since May 2006, the FDA has received 20 reports of acute phosphate nephropathy associated with the use of Osmo Prep. Concomitant medications included ACE inhibitors or ARBs (11), diuretics (6), and NSAIDs (4).(2) In a retrospective review of colonoscopy patients, simultaneous use of ACE inhibitors or ARBs significantly increased the risk of acute kidney injury from oral sodium phosphate. Diuretic use was also a risk factor.(6) In a case series study of 21 cases of acute phosphate nephropathy in patients who had used oral sodium phosphate, 14 patients received an ACE inhibitor or ARB, 4 used a diuretic, and 3 used an NSAID.(7) Cases have also been reported with rectal products.(8) |
MB CAPS, SODIUM PHOSPHATE DIBASIC, URIMAR-T, URNEVA |
Fingolimod/Beta-Blockers; AV Node Blockers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Initiation of fingolimod has a negative chronotropic effect leading to a mean decrease in heart rate of 13 beats per minute (bpm) after the first dose. The first dose has also been associated with heart block. Beta-blockers or agents which slow AV node conduction further increase the risk for symptomatic bradycardia or heart block. CLINICAL EFFECTS: The heart rate lowering effect of fingolimod is biphasic with an initial decrease usually within 6 hours, followed by a second decrease 12 to 24 hours after the first dose. Symptomatic bradycardia and heart block have been observed. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsade de pointes. The cause of death in a patient who died within 24 hour after taking the first dose of fingolimod was not conclusive; however a link to fingolimod or a drug interaction with fingolimod could not be ruled out. Beta-Blockers linked to this monograph are: atenolol, betaxolol, bisoprolol, carvedilol, esmolol, landiolol, labetalol, metoprolol, nadolol, nebivolol, propranolol and timolol. AV Node Blocking agents are:digoxin, diltiazem, flecainide, ivabradine, propafenone and verapamil. PREDISPOSING FACTORS: Pre-existing cardiovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, history of torsades de pointes, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to fingolimod initiation, or factors associated with QTc prolongation (e.g. hypokalemia, hypomagnesemia, bradycardia, female gender, or advanced age) may increase risk for cardiovascular toxicity due to fingolimod. Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(5) PATIENT MANAGEMENT: Fingolimod is contraindicated in patients with Class III/IV heart failure or in patients who have experienced myocardial infarction, unstable angina, stroke, transient ischemic attack (TIA) or decompensated heart failure within the past six months.(1) Patients with pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, or a prolonged QTc interval prior to fingolimod initiation should receive cardiologist consultation to evaluate the risks of fingolimod therapy. Patients receiving agents linked to this monograph should have their physician evaluate the possibility of a switch to agents which do not slow heart rate or cardiac conduction. If fingolimod is initiated, the patient should stay overnight in a medical facility with continuous ECG monitoring after the first dose. Correct hypokalemia or hypomagnesemia prior to starting fingolimod. US monitoring recommendations in addition to continuous ECG with overnight monitoring: Check blood pressure hourly. If heart rate (HR) is < 45 beats per minute (BPM) or if the ECG shows new onset of second degree or higher AV block at the end of the monitoring period, then monitoring should continue until the finding has resolved. If patient requires treatment for symptomatic bradycardia, the first dose monitoring strategy should be repeated for the second dose of fingolimod. If, within the first two weeks of treatment one or more fingolimod doses is missed, then first dose procedures are recommended upon resumption. If during weeks 3 and 4 of fingolimod treatment dose is interrupted more than 7 days, then first dose procedures are recommended upon resumption. United Kingdom recommendations(3): Obtain a 12-lead ECG prior to initiating fingolimod therapy. Consult a cardiologist for pretreatment risk-benefit assessment if patient has a resting heart rate less than 55 bpm, history of syncope, second degree or greater AV block, sick-sinus syndrome, concurrent therapy with beta-blockers, Class Ia, or Class III antiarrhythmics, heart failure or other significant cardiovascular disease. Perform continuous ECG monitoring, measure blood pressure and heart rate every hour, and perform a 12-lead ECG 6 hours after the first dose. Monitoring should be extended beyond 6 hours if symptomatic bradycardia or new onset of second degree AV block, Mobitz Type II or third degree AV block has occurred at any time during the monitoring period. If heart rate 6 hours after the first dose is less than 40 bpm, has decreased more than 20 bpm compared with baseline, or if a new onset second degree AV block, Mobitz Type I (Wenckebach) persists, then monitoring should also be continued. If fingolimod treatment is discontinued for more than two weeks, the effects on heart rate and conduction could recur. Thus, first dose monitoring precautions should be followed upon reintroduction of fingolimod. DISCUSSION: After the first dose of fingolimod, heart rate decrease may begin within an hour. Decline is usually maximal at approximately 6 hours followed by a second decrease 12 to 24 hours after the first dose. The second dose may further decrease heart rate, but the magnitude of change is smaller than the first dose. With continued, chronic dosing, heart rate gradually returns to baseline in about one month.(1,2) Diurnal variation in heart rate and response to exercise are not affected by fingolimod treatment.(2) In a manufacturer sponsored study, fingolimod and atenolol 50 mg daily lowered heart rate 15% more than fingolimod alone. However, additional heart rate lowering was not seen with the combination of extended release diltiazem and fingolimod compared with fingolimod alone.(1) |
FINGOLIMOD, GILENYA, TASCENSO ODT |
Allergen Immunotherapy/Beta-Blockers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Beta-blockers may mask early signs and symptoms of anaphylaxis, make the treatment of anaphylaxis more difficult, and increase the severity of the reaction. CLINICAL EFFECTS: Beta-blockers may reduce a patient's ability to survive a systemic allergic reaction to allergen immunotherapy. Signs and symptoms of anaphylaxis may be masked. PREDISPOSING FACTORS: Concurrent use of epinephrine with beta-blockers may result in hypertension with reflex bradycardia. Epinephrine resistance in patients with anaphylaxis has been reported. PATIENT MANAGEMENT: Avoid concomitant administration of immunotherapy and beta-blockers if possible. If patients cannot safely discontinue beta-blockers but have a history of moderate to severe sting-induced anaphylaxis, venom immunotherapy is indicated because the risk of anaphylaxis related to a venom sting is greater than the risk of an immunotherapy-related systemic reaction. In patients taking beta-blockers for whom an acceptable alternative is not available, withholding allergen immunotherapy may be the best option. If both drugs are administered, monitor closely for signs and symptoms of anaphylaxis. Use caution when treating anaphylaxis with epinephrine since response may be poor. Epinephrine administration may worsen anaphylaxis because beta-blockers block the beta effects of epinephrine, which results in predomination of alpha effects. The plasma clearance of epinephrine is decreased. Glucagon may help in the treatment of refractory anaphylaxis in patients receiving beta-blockers. DISCUSSION: In a case report, a patient taking propranolol was administered pollen extract immunotherapy and immediately developed anaphylaxis. Treatment with epinephrine did not improve symptoms and patient was subsequently intubated.(2) In another case report, a patient taking propranolol was given pollen immunotherapy and developed anaphylaxis. Difficulty in maintaining an adequate blood pressure and pulse continued for several hours despite epinephrine and other supportive measures.(3) There are other case reports of patients taking propranolol with venom immunotherapy that were refractory to treatment.(6-7) |
9 TREE MIX EXTRACT, ACACIA, ALDER, ALFALFA EXTRACT, ALTERNARIA ALTERNATA, AMERICAN BEECH, AMERICAN COCKROACH EXTRACT, AMERICAN ELM, AMERICAN SYCAMORE, ARIZONA CYPRESS, ASPERGILLUS FUMIGATUS, AUREOBASIDIUM PULLULANS, BAHIA, BALD CYPRESS, BAYBERRY, BLACK WALNUT POLLEN, BOTRYTIS CINEREA, BOX ELDER, BROME, CALIFORNIA PEPPER TREE, CANDIDA ALBICANS, CARELESSWEED, CATTLE EPITHELIUM, CEDAR ELM, CLADOSPORIUM CLADOSPORIOIDES, COCKLEBUR, CORN POLLEN, CORN SMUT, D.FARINAE MITE EXTRACT, D.PTERONYSSINUS MITE EXTRACT, DOG EPITHELIUM EXTRACT, DOG FENNEL, EASTERN COTTONWOOD, ENGLISH PLANTAIN, EPICOCCUM NIGRUM, FIRE ANT, GERMAN COCKROACH, GOLDENROD, GRASTEK, GUINEA PIG EPITHELIUM EXTRACT, HACKBERRY, HONEY BEE VENOM PROTEIN, HORSE EPITHELIUM, JOHNSON GRASS, KOCHIA, LAMB'S QUARTERS, MELALEUCA, MESQUITE, MIXED COCKROACH, MIXED FEATHERS, MIXED RAGWEED EXTRACT, MIXED VESPID VENOM PROTEIN, MOSQUITO, MOUNTAIN CEDAR, MOUSE EPITHELIUM, MUCOR PLUMBEUS, MUGWORT, ODACTRA, OLIVE TREE, ORALAIR, PALFORZIA, PECAN POLLEN, PENICILLIUM NOTATUM, PRIVET, QUACK GRASS, QUEEN PALM, RABBIT EPITHELIUM, RAGWITEK, RED BIRCH, RED CEDAR, RED MAPLE, RED MULBERRY, RED OAK, ROUGH MARSH ELDER, ROUGH PIGWEED, RUSSIAN THISTLE, SACCHAROMYCES CEREVISIAE, SAGEBRUSH, SAROCLADIUM STRICTUM, SHAGBARK HICKORY, SHEEP SORREL, SHEEP SORREL-YELLOW DOCK, SHORT RAGWEED, SPINY PIGWEED, STANDARD BERMUDA GRASS POLLEN, STANDARD MIXED GRASS POLLEN, STANDARD MIXED MITE EXTRACT, STANDARD RYE GRASS POLLEN, STANDARD SWEET VERNAL GRASS, STANDARDIZED CAT HAIR, STANDARDIZED JUNE GRASS POLLEN, STANDARDIZED MEADOW FESCUE, STANDARDIZED ORCHARD GRASS, STANDARDIZED RED TOP GRASS, STANDARDIZED TIMOTHY GRASS, SWEETGUM, TALL RAGWEED, TRICHOPHYTON MENTAGROPHYTES, VIRGINIA LIVE OAK, WASP VENOM PROTEIN, WEED MIX NO.7B EXTRACT, WESTERN JUNIPER, WESTERN RAGWEED, WHITE ASH, WHITE BIRCH, WHITE MULBERRY, WHITE OAK EXTRACT, WHITE PINE, WHITE-FACED HORNET VENOM, YELLOW DOCK, YELLOW HORNET VENOM PROTEIN, YELLOW JACKET VENOM PROTEIN |
Aminolevulinic Acid/Selected Photosensitizers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Aminolevulinic acid, anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides are all known photosensitizers.(1) CLINICAL EFFECTS: Concurrent use of aminolevulinic acid in patients taking anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides may increase the risk of phototoxicity.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer states that aminolevulinic acid should be avoided in patients receiving photosensitizers including anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides for 24 hours before and after administration of aminolevulinic acid.(1) DISCUSSION: Because of the risk of increased photosensitivity, the US manufacturer states that aminolevulinic acid should be avoided in patients receiving photosensitizers including anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides for 24 hours before and after administration of aminolevulinic acid.(1) |
AMINOLEVULINIC ACID HCL, GLEOLAN |
Siponimod/Beta-Blockers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Initiation of siponimod has caused transient decreases in heart rate and atrioventricular conduction delays after the first dose. Decreases in heart rate start within the first hour and maximal decrease in heart rate was seen at approximately 3-4 hours. The first dose has also been associated with heart block. Beta-blockers further increase the risk for symptomatic bradycardia or heart block.(1) CLINICAL EFFECTS: The heart rate lowering effect of siponimod is transient and is usually seen with the first dose. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsade de pointes.(1) PREDISPOSING FACTORS: Pre-existing cardiovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, history of torsades de pointes, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to siponimod initiation, or factors associated with QTc prolongation (e.g. hypokalemia, hypomagnesemia, bradycardia, female gender, or advanced age) may increase risk for cardiovascular toxicity due to siponimod. Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The prescribing information states temporary interruption in beta-blocker therapy may be needed before initiation of siponimod. Beta-blocker therapy can be initiated in patients receiving stable doses of siponimod.(1) Treatment initiation recommendations include: - Obtain an ECG in all patients to determine whether preexisting conduction abnormalities are present. - In all patients, a dose titration is recommended for initiation of siponimod treatment to help reduce cardiac effects. - In patients with sinus bradycardia (HR less than 55 bpm), first- or second-degree [Mobitz type I] AV block, or a history of myocardial infarction or heart failure with onset > 6 months prior to initiation, ECG testing and first dose monitoring is recommended. - Since significant bradycardia may be poorly tolerated in patients with history of cardiac arrest, cerebrovascular disease, uncontrolled hypertension, or severe untreated sleep apnea, siponimod is not recommended in these patients. If treatment is considered, advice from a cardiologist should be sought prior to initiation of treatment in order to determine the most appropriate monitoring strategy. - Use of siponimod in patients with a history of recurrent syncope or symptomatic bradycardia should be based on an overall benefit-risk assessment. If treatment is considered, advice from a cardiologist should be sought prior to initiation of treatment in order to determine the most appropriate monitoring. - For patients receiving a stable dose of a beta-blocker, the resting heart rate should be considered before introducing siponimod treatment. If the resting heart rate is greater than 50 bpm under chronic beta-blocker treatment, siponimod can be introduced. If resting heart rate is less than or equal to 50 bpm, beta-blocker treatment should be interrupted until the baseline heart-rate is greater than 50 bpm. Treatment with siponimod can then be initiated and treatment with a beta-blocker can be reinitiated after siponimod has been up-titrated to the target maintenance dosage. - If a titration dose is missed or if 4 or more consecutive daily doses are missed during maintenance treatment, reinitiate Day 1 of the dose titration and follow titration monitoring recommendations.(1) DISCUSSION: After the first titration dose of siponimod, the heart rate decrease starts within an hour, and the Day 1 decline is maximal at approximately 3-4 hours. With continued up-titration, further heart rate decreases are seen on subsequent days, with maximal decrease from Day 1-baseline reached on Day 5-6. The highest daily post-dose decrease in absolute hourly mean heart rate is observed on Day 1, with the pulse declining on average 5-6 bpm. Post-dose declines on the following days are less pronounced. With continued dosing, heart rate starts increasing after Day 6 and reaches placebo levels within 10 days after treatment initiation. In Study 1, bradycardia occurred in 4.4% of siponimod-treated patients compared to 2.9% of patients receiving placebo. Patients who experienced bradycardia were generally asymptomatic. Few patients experienced symptoms, including dizziness or fatigue, and these symptoms resolved within 24 hours without intervention.(1) Beta-Blockers linked to this monograph are: atenolol, betaxolol, bisoprolol, carvedilol, esmolol, landiolol, labetalol, metoprolol, nadolol, nebivolol, propranolol and timolol. |
MAYZENT |
Crizotinib/Agents That Cause Bradycardia SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Crizotinib may cause symptomatic bradycardia. Additional agents that cause bradycardia further increase the risk for symptomatic bradycardia.(1) CLINICAL EFFECTS: Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsade de pointes.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of crizotinib recommends avoiding concurrent use of crizotinib and other agents known to cause bradycardia to the extent possible. If combination therapy is required, monitor heart rate and blood pressure regularly. If bradycardia occurs, withhold crizotinib until heart rate recovers to 60 bpm or above, or patient is asymptomatic. Re-evaluate the use of the concomitant medication. If the concomitant medication is discontinued or its dose is reduced, resume crizotinib at the previous dose upon patient's recovery. If the concomitant medication is not discontinued or dose adjusted, resume crizotinib at a reduced dose upon patient's recovery. If life-threatening bradycardia occurs, discontinue or reduce the dose of the concomitant medication. Upon the patient's recovery, lower the dose of crizotinib to 250 mg daily. Monitor blood pressure and heart rate frequently.(1) DISCUSSION: Across clinical trials, bradycardia occurred in 13 % of patients on crizotinib, and grade 3 syncope occurred in 2.4 % of patients on crizotinib compared with 0.6 % on chemotherapy.(1) Agents that may cause bradycardia and linked to this monograph include: beta-blockers, non-dihydropyridine calcium channel blockers, clonidine, and digoxin.(1) |
XALKORI |
Porfimer/Selected Photosensitizers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Porfimer causes photosensitivity due to residual drug which is present in all parts of the skin. Anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides are other known photosensitizers.(1) CLINICAL EFFECTS: Concurrent use of porfimer in patients taking anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides may increase the risk of phototoxicity.(1) PREDISPOSING FACTORS: Patients with any hepatic impairment and patients with severe renal impairment have reduced drug elimination and may remain photosensitive for 90 days or longer.(1) PATIENT MANAGEMENT: The US manufacturer of porfimer states that concurrent use of porfimer with photosensitizers including anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides should be avoided.(1) Since the photosensitive effect of porfimer may persist for at least 30 days (and for 90 days in some patients), it would be prudent to avoid other photosensitizing agents for at least 30 days after administration of porfimer. DISCUSSION: All patients who have received porfimer become photosensitive. It is unknown what the risk of photosensitivity reactions is when porfimer is used concurrently with other photosensitizing agents. When porfimer was used in clinical trials, photosensitivity reactions occurred in about 20% of cancer patients and in 69% of high-grade dysplasia in Barretts esophagus patients. Most of the reactions were mild to moderate erythema, but they also included swelling, pruritus, burning sensation, feeling hot, or blisters. The majority of reactions occurred within 90 days of porfimer administration.(1) |
PHOTOFRIN |
Ponesimod/Beta-Blockers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Initiation of ponesimod has caused transient decreases in heart rate and atrioventricular conduction delays after the first dose. Decreases in heart rate start within the first hour and maximal decrease in heart rate was seen at approximately 2-4 hours. The first dose has also been associated with heart block. Beta-blockers further increase the risk for symptomatic bradycardia or heart block.(1) CLINICAL EFFECTS: The heart rate lowering effect of ponesimod is transient and is usually seen with the first dose. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsade de pointes.(1) PREDISPOSING FACTORS: Pre-existing cardiovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, history of torsades de pointes, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to siponimod initiation, or factors associated with QTc prolongation (e.g. hypokalemia, hypomagnesemia, bradycardia, female gender, or advanced age) may increase risk for cardiovascular toxicity due to siponimod. Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The prescribing information states temporary interruption in beta-blocker therapy may be needed before initiation of ponesimod. Beta-blocker therapy can be initiated in patients receiving stable doses of ponesimod.(1) Treatment initiation recommendations include: - Obtain an ECG in all patients to determine whether preexisting conduction abnormalities are present. - In all patients, a dose titration is recommended for initiation of ponesimod treatment to help reduce cardiac effects. - In patients with sinus bradycardia (HR less than 55 bpm), first- or second-degree [Mobitz type I] AV block, or a history of myocardial infarction or heart failure with onset > 6 months prior to initiation, ECG testing and first dose monitoring is recommended. - Since significant bradycardia may be poorly tolerated in patients with history of cardiac arrest, cerebrovascular disease, uncontrolled hypertension, or severe untreated sleep apnea, ponesimod is not recommended in these patients. If treatment is considered, advice from a cardiologist should be sought prior to initiation of treatment in order to determine the most appropriate monitoring strategy. - Use of ponesimod in patients with a history of recurrent syncope or symptomatic bradycardia should be based on an overall benefit-risk assessment. If treatment is considered, advice from a cardiologist should be sought prior to initiation of treatment in order to determine the most appropriate monitoring. - For patients receiving a stable dose of a beta-blocker, the resting heart rate should be considered before introducing ponesimod treatment. If the resting heart rate is greater than 55 bpm under chronic beta-blocker treatment, ponesimod can be introduced. If resting heart rate is less than or equal to 55 bpm, beta-blocker treatment should be interrupted until the baseline heart-rate is greater than 55 bpm. Treatment with ponesimod can then be initiated and treatment with a beta-blocker can be reinitiated after ponesimod has been up-titrated to the target maintenance dosage. - If a titration dose is missed or if 4 or more consecutive daily doses are missed during maintenance treatment, reinitiate Day 1 of the dose titration and follow titration monitoring recommendations.(1) DISCUSSION: After the first titration dose of ponesimod the heart rate decrease starts within an hour, and the Day 1 decline is maximal at approximately 2-4 hours. With continued up-titration, further heart rate decreases are seen on subsequent days, with maximal decrease from Day 1-baseline reached on Day 4-5. The highest daily post-dose decrease in absolute hourly mean heart rate is observed on Day 1, with the pulse declining on average 6 bpm. Post-dose declines on the following days are less pronounced. With continued dosing, heart rate starts increasing after Day 6 and reaches placebo levels within 10 days after treatment initiation. In a study, bradycardia occurred in 5.8% of ponesimod-treated patients compared to 1.6% of patients receiving placebo. Patients who experienced bradycardia were generally asymptomatic. Few patients experienced symptoms, including dizziness or fatigue, and these symptoms resolved within 24 hours without intervention.(1) Beta-Blockers linked to this monograph are: atenolol, betaxolol, bisoprolol, carvedilol, esmolol, landiolol, labetalol, metoprolol, nadolol, nebivolol, propranolol and timolol. |
PONVORY |
Methoxsalen/Selected Photosensitizers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Methoxsalen causes photosensitivity due to residual drug which is present in all parts of the skin from photopheresis. Anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides are other known photosensitizers.(1) CLINICAL EFFECTS: Concurrent use of methoxsalen in patients taking anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides may increase the risk of phototoxicity.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of methoxsalen states that concurrent use of methoxsalen with anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides should be avoided.(1) DISCUSSION: All patients who have received methoxsalen become photosensitive. It is unknown what the risk of photosensitivity reactions is when methoxsalen is used concurrently with other photosensitizing agents.(1) |
METHOXSALEN, UVADEX |
Etrasimod/Beta-Blockers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Initiation of etrasimod has caused transient decreases in heart rate and atrioventricular conduction delays after the first dose. The first dose has also been associated with heart block. Beta-blockers further increase the risk for symptomatic bradycardia or heart block.(1) CLINICAL EFFECTS: The heart rate lowering effect of etrasimod is transient and is usually seen with the first dose. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsade de pointes.(1) PREDISPOSING FACTORS: Pre-existing cardiovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, history of torsades de pointes, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to etrasimod initiation, or factors associated with QTc prolongation (e.g. hypokalemia, hypomagnesemia, bradycardia, female gender, or advanced age) may increase risk for cardiovascular toxicity due to etrasimod. Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The prescribing information states etrasimod therapy can be initiated in patients receiving stable doses of beta blocker therapy. Cardiology consultation is recommended before initiating a beta blocker in a patient receiving stable etrasimod treatment.(1) DISCUSSION: Initiation of etrasimod may result in a transient decrease in heart rate and AV conduction delays. In two studies, after the first dose of etrasimod 2 mg, ulcerative colitis patients saw a mean decrease from baseline in heart rate of 7.2 bpm at hour 3 in UC-1 an hour 2 in UC-2.(1) In UC-1, bradycardia was reported on Day 1 in 1% of etrasimod patients, 0.3% on Day 2 compared to no patients receiving placebo.In UC-2 and UC-3, bradycardia was reported on Day 1 in 2.9% of etrasimod patients, 0.3% on Day 2 compared to no patients receiving placebo. Patients experiencing bradycardia were generally asymptomatic. The few patients with symptomatic bradycardia reported dizziness that resolved without intervention.(1) Beta-Blockers linked to this monograph are: atenolol, betaxolol, bisoprolol, carvedilol, esmolol, labetalol, landiolol, metoprolol, nadolol, nebivolol, propranolol and timolol. |
VELSIPITY |
There are 17 moderate interactions.
The clinician should assess the patient’s characteristics and take action as needed. Actions required for moderate interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration.
Drug Interaction | Drug Names |
---|---|
Digitalis Glycosides/Kaluretics SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Potassium-losing diuretics may result in potassium depletion which can predispose patients to digitalis toxicity. CLINICAL EFFECTS: May observe increased arrhythmias, resulting from an increase in the cardiac response to digitalis. Symptoms of digoxin toxicity can include anorexia, nausea, vomiting, headache, fatigue, malaise, drowsiness, generalized muscle weakness, disorientation, hallucinations, visual disturbances, and arrhythmias. PREDISPOSING FACTORS: Low body weight, advanced age, impaired renal function, hypokalemia, hypercalcemia, and/or hypomagnesemia may increase the risk of digoxin toxicity. PATIENT MANAGEMENT: Monitor serum potassium status and give potassium replacements as needed. DISCUSSION: This interaction is well documented. Most patients taking diuretics do not develop significant potassium depletion if they are on low doses of diuretics and have adequate potassium intake. |
DIGITEK, DIGOXIN, DIGOXIN MICRONIZED, LANOXIN, LANOXIN PEDIATRIC |
Thiazide & Related Diuretics/Cholestyramine; Colestipol SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Cholestyramine and colestipol, anionic exchange resins, bind thiazides and furosemide, preventing their absorption. CLINICAL EFFECTS: Concurrent administration may result in decreased absorption of the diuretic, as well as decreased clinical effects. Decreased absorption of furosemide by 80-90% has been reported. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Available data suggest that colestipol may be preferable to cholestyramine. Separating administration times lessens the the extent of this interaction but still remains significant. Separate the administration of cholestyramine and the thiazide by at least four hours and that of colestipol by at least two hours. Separate the administration of furosemide and cholestyramine or colestipol by two to three hours. DISCUSSION: Administration of cholestyramine or colestipol decreased total urinary excretion of hydrochlorothiazide by 85% and 43% respectively. These studies indicate that no dosing schedule will eliminate this interaction. Even four hours of separation reduces the absorption of hydrochlorothiazide by 35%. Similar reductions occurred to serum hydrochlorothiazide concentrations. In a study in six subjects, the concurrent administration of cholestyramine and furosemide resulted in a decrease in furosemide area-under-curve (AUC) by 90% and a decrease in furosemide's diuretic effects. Concurrent administration of furosemide and colestipol resulted in a decrease in furosemide AUC by 80% and a decrease in furosemide's diuretic effects. |
CHOLESTYRAMINE, CHOLESTYRAMINE LIGHT, CHOLESTYRAMINE RESIN, COLESTID, COLESTIPOL HCL, PREVALITE, QUESTRAN, QUESTRAN LIGHT |
Selected Beta-blockers/Selected Calcium Channel Blockers SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Synergistic pharmacologic activity. CLINICAL EFFECTS: May see an increase in the therapeutic and toxic effects of both drugs. Concurrent use in patients with low heart rates may unmask sick sinus syndrome. PREDISPOSING FACTORS: Preexisting left ventricular dysfunction and high doses of the beta-blocking agent may predispose patients to adverse responses to this drug combination. Other possible factors include parenteral administration and concurrent administration of other cardio-depressant drugs such as antiarrhythmics. PATIENT MANAGEMENT: Monitor the patient for signs of increased cardio-depressant effects and hypotension. Adjust the dose accordingly. DISCUSSION: Coadministration of these classes of drugs may be effective in the treatment of angina pectoris and hypertension. Patients should be screened in order to determine who should receive this combination of agents. The concurrent use of mibefradil and beta-blockers in patients with low heart rates may unmask underlying sick sinus syndrome. One or more of the drug pairs linked to this monograph have been included in a list of interactions that could be considered for classification as "non-interruptive" in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
CARDIZEM, CARDIZEM CD, CARDIZEM LA, CARTIA XT, DILT-XR, DILTIAZEM 12HR ER, DILTIAZEM 24HR ER, DILTIAZEM 24HR ER (CD), DILTIAZEM 24HR ER (LA), DILTIAZEM 24HR ER (XR), DILTIAZEM HCL, DILTIAZEM HCL-0.7% NACL, DILTIAZEM HCL-0.9% NACL, DILTIAZEM HCL-NACL, DILTIAZEM-D5W, MATZIM LA, NIFEDIPINE, NIFEDIPINE ER, NIFEDIPINE MICRONIZED, PROCARDIA XL, TIADYLT ER, TIAZAC, TRANDOLAPRIL-VERAPAMIL ER, VERAPAMIL ER, VERAPAMIL ER PM, VERAPAMIL HCL, VERAPAMIL SR |
Thiazides/Antidiabetics SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Thiazides antagonize hypoglycemic effects of antidiabetics due to intrinsic hyperglycemic activity. CLINICAL EFFECTS: Impaired glucose tolerance and diminished hypoglycemic effects of antidiabetics may occur. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Caution when starting or stopping thiazides in diabetic patients. Adjust the antidiabetic dose as needed based on blood glucose levels. DISCUSSION: This interaction is likely to occur based upon well documented properties of the interacting drugs. However, there is individual variability in its occurrence. A cross-sectional study of 425 outpatients found 46 patients with 86 suspected drug interactions resulting in uncontrolled glycemia. Recorded drug interactions included hydrochlorothiazide-gliclazide (22.1%), hydrochlorothiazide-insulins (2.3%), and chlorothiazide-gliclazide (1.2%). Using the drug interaction probability scale (DIPS), these drug interactions were categorized as possible.(2) |
ACARBOSE, ADMELOG, ADMELOG SOLOSTAR, AFREZZA, APIDRA, APIDRA SOLOSTAR, BASAGLAR KWIKPEN U-100, BASAGLAR TEMPO PEN U-100, DUETACT, FIASP, FIASP FLEXTOUCH, FIASP PENFILL, FIASP PUMPCART, GLIMEPIRIDE, GLIPIZIDE, GLIPIZIDE ER, GLIPIZIDE XL, GLIPIZIDE-METFORMIN, GLUCOTROL XL, GLYBURIDE, GLYBURIDE MICRONIZED, GLYBURIDE-METFORMIN HCL, HUMALOG, HUMALOG JUNIOR KWIKPEN, HUMALOG KWIKPEN U-100, HUMALOG KWIKPEN U-200, HUMALOG MIX 50-50 KWIKPEN, HUMALOG MIX 75-25, HUMALOG MIX 75-25 KWIKPEN, HUMALOG TEMPO PEN U-100, HUMULIN R U-500, HUMULIN R U-500 KWIKPEN, INSULIN ASPART, INSULIN ASPART FLEXPEN, INSULIN ASPART PENFILL, INSULIN ASPART PROT MIX 70-30, INSULIN DEGLUDEC, INSULIN DEGLUDEC PEN (U-100), INSULIN DEGLUDEC PEN (U-200), INSULIN GLARGINE MAX SOLOSTAR, INSULIN GLARGINE SOLOSTAR, INSULIN GLARGINE-YFGN, INSULIN LISPRO, INSULIN LISPRO JUNIOR KWIKPEN, INSULIN LISPRO KWIKPEN U-100, INSULIN LISPRO PROTAMINE MIX, LANTUS, LANTUS SOLOSTAR, LYUMJEV, LYUMJEV KWIKPEN U-100, LYUMJEV KWIKPEN U-200, LYUMJEV TEMPO PEN U-100, MIGLITOL, MYXREDLIN, NATEGLINIDE, NOVOLOG, NOVOLOG FLEXPEN, NOVOLOG MIX 70-30, NOVOLOG MIX 70-30 FLEXPEN, NOVOLOG PENFILL, PIOGLITAZONE-GLIMEPIRIDE, PRECOSE, REZVOGLAR KWIKPEN, SEMGLEE (YFGN), SEMGLEE (YFGN) PEN, SOLIQUA 100-33, TOUJEO MAX SOLOSTAR, TOUJEO SOLOSTAR, TRESIBA, TRESIBA FLEXTOUCH U-100, TRESIBA FLEXTOUCH U-200, XULTOPHY 100-3.6 |
NSAIDs; Aspirin (Non-Cardioprotective)/Beta-Blockers SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Unknown; however, possibly related to inhibition of prostaglandin by NSAIDs. CLINICAL EFFECTS: The antihypertensive action of beta-blockers may be decreased. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Monitor patient's blood pressure and adjust the dose of the beta-blocker as needed. DISCUSSION: Concurrent administration of beta-blockers and NSAIDs has been associated with a clinically significant loss in antihypertensive response. The magnitude of the effect of NSAIDs on control of blood pressure by beta-blockers needs to be determined for each anti-inflammatory agent. One or more of the drug pairs linked to this monograph have been included in a list of interactions that could be considered for classification as "non-interruptive" in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
ACETYL SALICYLIC ACID, ANAPROX DS, ANJESO, ARTHROTEC 50, ARTHROTEC 75, ASA-BUTALB-CAFFEINE-CODEINE, ASCOMP WITH CODEINE, ASPIRIN, BISMUTH SUBSALICYLATE, BROMFENAC SODIUM, BUPIVACAINE-KETOROLAC-KETAMINE, BUTALBITAL-ASPIRIN-CAFFEINE, CALDOLOR, CAMBIA, CARISOPRODOL-ASPIRIN, CARISOPRODOL-ASPIRIN-CODEINE, CELEBREX, CELECOXIB, CHOLINE MAGNESIUM TRISALICYLAT, COMBOGESIC, COMBOGESIC IV, CONSENSI, COXANTO, DAYPRO, DICLOFENAC, DICLOFENAC POTASSIUM, DICLOFENAC SODIUM, DICLOFENAC SODIUM ER, DICLOFENAC SODIUM MICRONIZED, DICLOFENAC SODIUM-MISOPROSTOL, DIFLUNISAL, DISALCID, DOLOBID, EC-NAPROSYN, ELYXYB, ETODOLAC, ETODOLAC ER, FELDENE, FENOPROFEN CALCIUM, FENOPRON, FLURBIPROFEN, HYDROCODONE-IBUPROFEN, IBU, IBUPAK, IBUPROFEN, IBUPROFEN LYSINE, IBUPROFEN-FAMOTIDINE, INDOCIN, INDOMETHACIN, INDOMETHACIN ER, INFLAMMACIN, INFLATHERM(DICLOFENAC-MENTHOL), KETOPROFEN, KETOPROFEN MICRONIZED, KETOROLAC TROMETHAMINE, KIPROFEN, LODINE, LOFENA, LURBIPR, MB CAPS, MECLOFENAMATE SODIUM, MEFENAMIC ACID, MELOXICAM, NABUMETONE, NABUMETONE MICRONIZED, NALFON, NAPRELAN, NAPROSYN, NAPROTIN, NAPROXEN, NAPROXEN SODIUM, NAPROXEN SODIUM CR, NAPROXEN SODIUM ER, NAPROXEN-ESOMEPRAZOLE MAG, NEOPROFEN, NORGESIC, NORGESIC FORTE, ORPHENADRINE-ASPIRIN-CAFFEINE, ORPHENGESIC FORTE, OXAPROZIN, PHENYL SALICYLATE, PHENYLBUTAZONE, PIROXICAM, R.E.C.K.(ROPIV-EPI-CLON-KETOR), RELAFEN DS, ROPIVACAINE-CLONIDINE-KETOROLC, ROPIVACAINE-KETOROLAC-KETAMINE, SALSALATE, SODIUM SALICYLATE, SPRIX, SULINDAC, SUMATRIPTAN SUCC-NAPROXEN SOD, SYMBRAVO, TOLECTIN 600, TOLMETIN SODIUM, TORONOVA II SUIK, TORONOVA SUIK, TOXICOLOGY SALIVA COLLECTION, TRESNI, TREXIMET, URIMAR-T, URNEVA, VIMOVO, VIVLODEX, ZIPSOR, ZORVOLEX, ZYNRELEF |
Selected Beta-Blockers/Selected Alpha-Blockers SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Alpha-blockers may cause syncope with sudden loss of consciousness secondary to excessive postural hypotension. Following the first dose of an alpha-blocker, compensatory tachycardia helps to prevent or limit syncope. Beta-blockers may inhibit this tachycardia, thereby worsening alpha-blocker induced hypotension. CLINICAL EFFECTS: The hypotensive effects of an alpha-blocker may be increased in patients on concurrent beta-blocker therapy. PREDISPOSING FACTORS: Patients may be at increased risk of postural hypotension with concurrent diuretic therapy and those on low-sodium diets. PATIENT MANAGEMENT: When starting alpha-blocker therapy in patients receiving beta-blockers, consider initiating treatment with a reduced dose of the alpha-blocker. If syncope occurs, provide supportive treatment as necessary. The adverse effect is self limiting and in most cases does not recur after the initial period of therapy or during subsequent dose titration with the alpha-blocker. DISCUSSION: Beta-blockers increase the acute postural hypotension that frequently follows the first dose of an alpha-blocker. Initiation of beta-blocker therapy in patients that have started taking an alpha-blocker would not be expected to produce acute postural hypotension. Alpha-blockers linked to this interaction include alfuzosin, doxazosin, prazosin, and terazosin. Beta-blockers linked to this interaction include acebutolol, atenolol, betaxolol, bevantolol, levobunolol, metoprolol, nadolol, pindolol, pronethalol, propranolol, and timolol. |
ALFUZOSIN HCL ER, CARDURA, CARDURA XL, DOXAZOSIN MESYLATE, PRAZOSIN HCL, TERAZOSIN HCL, TEZRULY, UROXATRAL |
Mefloquine; Quinidine/Beta-Blockers SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Quinidine may inhibit the oxidative metabolism of beta-blockers. In addition, beta-blockers and quinidine exert a negative inotropic action on the heart. Mefloquine is a chemical analogue of quinine which possess 20% of the antifibrillatory action of quinidine. Alterations in electrocardiograms have been observed during mefloquine therapy. CLINICAL EFFECTS: The pharmacologic effects of certain beta-blockers may be increased during concurrent therapy with quinidine. During concurrent therapy with mefloquine, electrocardiographic abnormalities or cardiac arrest may occur. PREDISPOSING FACTORS: Cardiac disease. PATIENT MANAGEMENT: Monitor the response of the patient and adjust the dose of the beta-blocker as needed. The benefits of mefloquine therapy in patients with preexisting cardiac disease should be weighed carefully. DISCUSSION: Quinidine and beta-blockers have been used therapeutically to treat cardiac arrhythmias; however, they should be used cautiously since quinidine and beta-blockers exert a negative inotropic action on the heart. Quinidine has been associated with an increase in serum metoprolol levels. A reduction in propranolol clearance has been demonstrated in one study, although others have failed to show an interaction between propranolol and quinidine. A patient using timolol eyedrops developed bradycardia following administration of quinidine. There is one report of cardiac arrest, which was successfully treated, in a patient receiving concurrent mefloquine and propranolol. The manufacturer of mefloquine states that concurrent use may produce electrocardiographic abnormalities and cardiac arrest. The manufacturer also recommends weighing the benefits of mefloquine therapy against the risk of adverse effects in patients with cardiac disease. |
MEFLOQUINE HCL, NUEDEXTA, QUINIDINE GLUCONATE, QUINIDINE SULFATE |
Zoledronic Acid/Diuretics SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of zoledronic acid and a diuretic may have adverse effects on the renal system.(1,2) CLINICAL EFFECTS: Concurrent use of zoledronic acid and a diuretic may result in renal dysfunction. Deterioration in renal function, acute renal failure requiring dialysis, and death have been reported.(1) PREDISPOSING FACTORS: The interaction may be more likely in elderly patients, patients who are taking other drugs that impact renal function, patients with pre-existing renal compromise, and patients who are dehydrated.(1) PATIENT MANAGEMENT: Patients should be adequately hydrated with 500 ml (2 glasses of water) before and after zoledronic acid administration.(1) Creatinine clearance should be monitored before and after therapy and zoledronic acid should not be administered in patients with a creatinine clearance less than 35 ml/min.(1,3) DISCUSSION: Zoledronic acid has been associated with renal dysfunction, including deterioration in renal function, acute renal failure requiring dialysis, and death. Risk factors include advanced age, concomitant nephrotoxic agents, and dehydration.(1) The FDA has received 16 reports of fatal acute renal failure and 9 reports of renal injury requiring dialysis following the administration of Reclast (zoledronic acid).(3) |
RECLAST, ZOLEDRONIC ACID |
Selected MAOIs/Selected Antihypertensive Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Both MAOIs and antihypertensive agents may increase the risk of postural hypotension.(1,2) CLINICAL EFFECTS: Postural hypotension may occur with concurrent therapy of MAOIs and antihypertensive agents.(1,2) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of phenelzine states all patients should be followed closely for symptoms of postural hypotension. Hypotensive side effects have occurred in patients who have been hypertensive and normotensive, as well as hypotensive at initiation of phenelzine.(1) The manufacturer of tranylcypromine states hypotension has been observed most commonly but not exclusively in patients with pre-existing hypertension. Tranylcypromine doses greater than 30 mg daily have a major side effect of postural hypotension and can lead to syncope. Gradual dose titration is recommended to decrease risk of postural hypotension. Combined use with other agents known to cause hypotension have shown to have additive side effects and should be monitored closely.(2) Monitor the patient for signs and symptoms of postural hypotension including dizziness, lightheadedness, or weakness, especially upon standing. Monitor blood pressure as well as orthostatic vitals and adjust antihypertensive therapy, including decreasing the dose, dividing doses, or scheduling doses at bedtime, as needed to maintain goal blood pressure. If blood pressure remains hypotensive, consider decreasing the dose of phenelzine or tranylcypromine. In some cases, discontinuation of one or both agents may be necessary.(3) Normotensive patients on stable antihypertensive therapy who are started on either phenelzine or tranylcypromine may be at increased risk for hypotension. Hypertensive patients on stable phenelzine or tranylcypromine who require antihypertensive therapy would be at decreased risk for hypotension. DISCUSSION: A review article describes the pharmacology of phenelzine and tranylcypromine as non-selective MAOIs which inhibit both type A and type B substrates. Orthostatic hypotension is described as the most common MAOI side effect and usually occurs between initiation and the first 3-4 weeks of therapy.(3) In a double-blind study, 71 patients were randomized to receive a 4-week trial of either tranylcypromine, amitriptyline, or the combination. The number of patients reporting dizziness at 4 weeks was not different between the three treatment groups (tranylcypromine 52.4%; amitriptyline 65%; combination 66.7%). Blood pressure (BP) assessment noted a significant drop in standing BP in the tranylcypromine group compared to baseline (systolic BP change = -10 mmHg; p<0.02 and diastolic BP change = -9 mmHg; p<0.02). Combination therapy also had a significant drop in standing BP compared to baseline (systolic BP change = -9 mmHg; p<0.02). Patients receiving amitriptyline had no significant change in BP from baseline at 4 weeks. All three groups had a trend toward increasing orthostatic hypotension in BP changes from lying to standing. The change in orthostatic hypotension was significant in the amitriptyline group with an average systolic BP orthostatic drop of -9 mmHg (p<0.05).(4) A randomized, double-blind study of 16 inpatients with major depressive disorder were treated with either phenelzine or tranylcypromine. Cardiovascular assessments were completed at baseline and after 6 weeks of treatment. After 6 weeks, 5/7 patients (71%) who received phenelzine had a decrease in standing systolic BP greater than 20 mmHg from baseline. Head-up tilt systolic and diastolic BP decreased from baseline in patients on phenelzine (98/61 mmHg v. 127/65 mmHg, respectively; systolic change p=0.02 and diastolic change p=0.02). After 6 weeks, 6/9 patients (67%) who received tranylcypromine had a decrease in standing systolic BP greater than 20 mmHg from baseline. Head-up tilt systolic and diastolic BP decreased from baseline in patients on tranylcypromine (113/71 mmHg v. 133/69 mmHg, respectively; systolic change p=0.09 and diastolic change p=0.07).(5) Selected MAOIs linked to this monograph include: phenelzine and tranylcypromine. Selected antihypertensive agents include: ACE inhibitors, alpha blockers, ARBs, beta blockers, calcium channel blockers, aprocitentan, clonidine, hydralazine and sparsentan. |
NARDIL, PARNATE, PHENELZINE SULFATE, TRANYLCYPROMINE SULFATE |
Tizanidine/Selected Antihypertensives SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Tizanidine is an alpha-2 agonist. Concurrent use with antihypertensive agents may result in additive effects on blood pressure.(1) CLINICAL EFFECTS: Concurrent use of antihypertensives and tizanidine may result in hypotension.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Patients receiving concurrent therapy should be monitored for hypotension. The risk of hypotension may be decreased by careful titration of tizanidine dosages and monitoring for hypotension prior to dose advancement. Counsel patients about the risk of orthostatic hypotension.(1) DISCUSSION: Severe hypotension has been reported following the addition of tizanidine to existing lisinopril therapy.(2-4) |
TIZANIDINE HCL, ZANAFLEX |
Desmopressin/Agents with Hyponatremia Risk SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Carbamazepine, chlorpromazine, lamotrigine, NSAIDs, opioids, SSRIs, thiazide diuretics, and/or tricyclic antidepressants increase the risk of hyponatremia.(1-3) CLINICAL EFFECTS: Concurrent use may increase the risk of hyponatremia with desmopressin.(1-3) PREDISPOSING FACTORS: Predisposing factors for hyponatremia include: polydipsia, renal impairment (eGFR < 50 ml/min/1.73m2), illnesses that can cause fluid/electrolyte imbalances, age >=65, medications that cause water retention and/or increase the risk of hyponatremia (glucocorticoids, loop diuretics). PATIENT MANAGEMENT: The concurrent use of agents with a risk of hyponatremia with desmopressin may increase the risk of hyponatremia. If concurrent use is deemed medically necessary, make sure serum sodium levels are normal before beginning therapy and consider using the desmopressin nasal 0.83 mcg dose. Consider measuring serum sodium levels more frequently than the recommended intervals of: within 7 days of concurrent therapy initiation, one month after concurrent therapy initiation and periodically during treatment. Counsel patients to report symptoms of hyponatremia, which may include: headache, nausea/vomiting, feeling restless, fatigue, drowsiness, dizziness, muscle cramps, changes in mental state (confusion, decreased awareness/alertness), seizures, coma, and trouble breathing. Counsel patients to limit the amount of fluids they drink in the evening and night-time and to stop taking desmopressin if they develop a stomach/intestinal virus with nausea/vomiting or any nose problems (blockage, stuffy/runny nose, drainage).(1) DISCUSSION: In clinical trials of desmopressin for the treatment of nocturia, 4 of 5 patients who developed severe hyponatremia (serum sodium <= 125 mmol/L) were taking systemic or inhaled glucocorticoids. Three of these patients were also taking NSAIDs and one was receiving a thiazide diuretic.(2) Drugs associated with hyponatremia may increase the risk, including loop diuretics, carbamazepine, chlorpromazine, glucocorticoids, lamotrigine, NSAIDs, opioids, SSRIs, thiazide diuretics, and/or tricyclic antidepressants.(1,3-4) |
DDAVP, DESMOPRESSIN ACETATE, NOCDURNA |
Lacosamide/Beta-Blockers; Calcium Channel Blockers SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Lacosamide may enhance the slow inactivation of voltage-gated sodium channels and may cause dose-dependent bradycardia, prolongation of the PR interval, atrioventricular (AV) block, or ventricular tachyarrhythmia.(1) CLINICAL EFFECTS: Concurrent use of lacosamide and agents that affect cardiac conduction (beta-blockers, calcium channel blockers) may increase the risk of bradycardia, prolongation of the PR interval, atrioventricular (AV) block, or ventricular tachyarrhythmia.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Lacosamide should be used with caution in patients on concomitant medications that affect cardiac conduction, including beta-blockers and calcium channel blockers.(1) If concurrent use is needed, obtain an ECG before lacosamide therapy and after lacosamide dose is titrated to steady-state.(1) Patients should be monitored closely when lacosamide is given intravenously.(1) DISCUSSION: In a clinical trial in patients with partial-onset seizures, asymptomatic first-degree atrioventricular (AV) block occurred in 4/944 (0.4%) of patient who received lacosamide compared to 0/364 (0%) with placebo.(1) In a clinical trial in patients with diabetic neuropathy, asymptomatic first-degree AV block occurred in 5/1023 (0.5%) of patients who received lacosamide compared to 0/291 (0%) with placebo.(1) Second-degree and complete AV block have been reported in patients with seizures.(1) One case of profound bradycardia was observed in a patient during a 15-minute infusion of 150 mg of lacosamide.(1) Two postmarketing reports of third-degree AV block in patients with significant cardiac history and also receiving metoprolol and amlodipine during infusion of lacosamide injection at doses higher than recommended have been reported.(1) A case report of an 88 year old female taking bisoprolol documented complete AV block after initiation of lacosamide. The patient required pacemaker implementation.(2) |
LACOSAMIDE, MOTPOLY XR, VIMPAT |
Anticholinesterases/Beta-Blockers SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Anticholinesterases inhibit plasma cholinesterases and increase cholinergic activity. Use of anticholinesterases may have vagotonic effects on heart rate (e.g. bradycardia). Concurrent use of anticholinesterases and beta-blockers may have additive effects on bradycardia.(1) CLINICAL EFFECTS: Concurrent use of anticholinesterases and beta-blockers may have additive effects on bradycardia.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Concurrent use of anticholinesterases and beta-blockers is not recommended. Additive effects may be increased with cardioselective beta-blockers (e.g. atenolol). Monitor patients closely if concurrent use is warranted.(1) DISCUSSION: Concurrent use of anticholinesterases and beta-blockers may have additive effects on cardiac conduction and increase the risk of bradycardia.(1) A case report of a 65 year old African American female had a witnessed a presyncopal episode followed by a true syncopal episode with concurrent use of rivastigmine and atenolol. On day 2 of the hospital stay, the patient developed bradycardia with a heart rate in the 40s and sinus pauses greater than 2 seconds. Atenolol was discontinued yet bradycardia persisted. Following discontinuation of rivastigmine, sinus pauses resolved and heart rate returned to normal.(2) A population-based cohort study in Ontario, Canada reviewed the relationship between cholinesterase inhibitor use and syncope-related outcomes over a two year period. Hospital visits for syncope were more frequent in patients receiving cholinesterase inhibitors than controls (31.5 vs 18.6 events per 1000 person-years; adjusted hazard ratio (HR) 1.76; 95% confidence interval (CI) 1.57-1.98). Other syncope-related events were also more common in patients receiving cholinesterase inhibitors than controls: hospital visits for bradycardia (6.9 vs 4.4 events per 1000 person-years; HR 1.69; 95% CI 1.32-2.15); permanent pacemaker insertion (4.7 vs 3.3 events per 1000 person-years; HR 1.49; 95% CI 1.12-2.00); and hip fracture (22.4 vs 19.8 events per 1000 person-years; HR 1.18; 95% CI 1.04-1.34).(3) A population based case-time-control study of 1,009 patients hospitalized for bradycardia within 9 months of using a cholinesterase inhibitor were reviewed for outcomes. Of these patients, 11% required pacemaker insertion during hospitalization and 4% died prior to discharge. With adjustment for temporal changes in drug utilization, hospitalization for bradycardia was associated with recent initiation of a cholinesterase inhibitor drug (adjusted odds ratio (OR) 2.13; 95% CI 1.29-3.51). Risk was similar in patients with pre-existing cardiac disease (adjusted OR 2.25; 95% CI 1.18-4.28) and those receiving negative chronotropic drugs (adjusted OR 2.34; 95% CI 1.16-4.71).(4) |
ANTICHOLIUM, BLOXIVERZ, DEMECARIUM BROMIDE, EDROPHONIUM CHLORIDE, EXELON, MESTINON, NEOSTIGMINE METHYLSULFATE, NEOSTIGMINE-STERILE WATER, PREVDUO, PYRIDOSTIGMINE BROMIDE, PYRIDOSTIGMINE BROMIDE ER, REGONOL, RIVASTIGMINE |
Apomorphine/Selected Antihypertensives and Vasodilators SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Apomorphine causes dose-dependent decreases in blood pressure. Concurrent use with antihypertensive agents may result in additive effects on blood pressure.(1) CLINICAL EFFECTS: Concurrent use of antihypertensives and apomorphine may result in orthostatic hypotension with or without dizziness, nausea, or syncope.(1) PREDISPOSING FACTORS: The risk of orthostatic hypotension may be increased during dose escalation of apomorphine and in patients with renal or hepatic impairment.(1) PATIENT MANAGEMENT: Patients receiving concurrent therapy should be monitored for hypotension. Counsel patients about the risk of orthostatic hypotension.(1) DISCUSSION: Healthy volunteers who took sublingual nitroglycerin (0.4 mg) concomitantly with apomorphine experienced a mean largest decrease in supine systolic blood pressure (SBP) of 9.7 mm Hg and in supine diastolic blood pressure (DBP) of 9.3 mm Hg, and a mean largest decrease in standing SBP and DBP of 14.3 mm Hg and 13.5 mm Hg, respectively. The maximum decrease in SBP and DBP was 65 mm Hg and 43 mm Hg, respectively. When apomorphine was taken alone, the mean largest decrease in supine SBP and DBP was 6.1 mm Hg and 7.3 mm Hg, respectively, and in standing SBP and DBP was 6.7 mm Hg and 8.4 mm Hg, respectively.(1) |
APOKYN, APOMORPHINE HCL, ONAPGO |
Donepezil; Galantamine/Beta-Blockers SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Anticholinesterases like donepezil and galantamine inhibit plasma cholinesterases and increase cholinergic activity. Use of anticholinesterases may have vagotonic effects on heart rate (e.g. bradycardia). Concurrent use of anticholinesterases and beta-blockers may have additive effects on bradycardia.(1,2) CLINICAL EFFECTS: Concurrent use of donepezil or galantamine with beta-blockers may have additive effects on bradycardia.(1,2) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Concurrent use of anticholinesterases like donepezil or galantamine with beta-blockers is not recommended. Additive effects may be increased with cardioselective beta-blockers (e.g. atenolol). Monitor patients closely if concurrent use is warranted.(1,2) DISCUSSION: Concurrent use of anticholinesterases and beta-blockers may have additive effects on cardiac conduction and increase the risk of bradycardia.(1,2) A case report of a 65 year old African American female had a witnessed a presyncopal episode followed by a true syncopal episode with concurrent use of rivastigmine and atenolol. On day 2 of the hospital stay, the patient developed bradycardia with a heart rate in the 40s and sinus pauses greater than 2 seconds. Atenolol was discontinued yet bradycardia persisted. Following discontinuation of rivastigmine, sinus pauses resolved and heart rate returned to normal.(3) A population-based cohort study in Ontario, Canada reviewed the relationship between cholinesterase inhibitor use and syncope-related outcomes over a two year period. Hospital visits for syncope were more frequent in patients receiving cholinesterase inhibitors than controls (31.5 vs 18.6 events per 1000 person-years; adjusted hazard ratio (HR) 1.76; 95% confidence interval (CI) 1.57-1.98). Other syncope-related events were also more common in patients receiving cholinesterase inhibitors than controls: hospital visits for bradycardia (6.9 vs 4.4 events per 1000 person-years; HR 1.69; 95% CI 1.32-2.15); permanent pacemaker insertion (4.7 vs 3.3 events per 1000 person-years; HR 1.49; 95% CI 1.12-2.00); and hip fracture (22.4 vs 19.8 events per 1000 person-years; HR 1.18; 95% CI 1.04-1.34).(4) A population based case-time-control study of 1,009 patients hospitalized for bradycardia within 9 months of using a cholinesterase inhibitor were reviewed for outcomes. Of these patients, 11% required pacemaker insertion during hospitalization and 4% died prior to discharge. With adjustment for temporal changes in drug utilization, hospitalization for bradycardia was associated with recent initiation of a cholinesterase inhibitor drug (adjusted odds ratio (OR) 2.13; 95% CI 1.29-3.51). Risk was similar in patients with pre-existing cardiac disease (adjusted OR 2.25; 95% CI 1.18-4.28) and those receiving negative chronotropic drugs (adjusted OR 2.34; 95% CI 1.16-4.71).(5) |
ADLARITY, ARICEPT, DONEPEZIL HCL, DONEPEZIL HCL ODT, GALANTAMINE ER, GALANTAMINE HBR, GALANTAMINE HYDROBROMIDE, MEMANTINE HCL-DONEPEZIL HCL ER, NAMZARIC, ZUNVEYL |
Epinephrine/Cardioselective Beta-Blockers SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of beta-blockers also block the beta effects of epinephrine, which results in predomination of alpha effects. The plasma clearance of epinephrine is decreased. CLINICAL EFFECTS: Concurrent use of epinephrine with beta-blockers may result in hypertension with reflex bradycardia. Epinephrine resistance in patients with anaphylaxis has been reported. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Hypertension and bradycardia are less likely to occur with cardioselective beta-blockers. If both drugs are administered, monitor blood pressure carefully. Use caution when treating anaphylaxis with epinephrine since response may be poor. DISCUSSION: A 29-year-old male undergoing elective nasal septoplasty developed severe hypertension with a blood pressure of 207/123 mmHg after topical epinephrine (1:1000) was applied to the nasal mucosa. Intravenous metoprolol was administered but the patient went into cardiogenic shock thought to be a result of unopposed alpha stimulation by the combination of epinephrine and metoprolol.(1) A study observed the differences in cardiovascular responses to subcutaneous epinephrine (given to provide hemostasis during scalp incision for craniotomy) between patients who received propranolol vs. metoprolol vs. no pretreatment. While metoprolol prevented the cardiovascular effects of epinephrine infiltration, propranolol pretreatment was associated with a highly significant increase (P less than 0.01) in mean arterial pressure and a significant decrease (P less than 0.05) in heart rate.(2) A double-blind cross-over trial studied the effects of epinephrine infusion during treatment with propranolol vs. metoprolol in 8 hypertensive patients. Patients on propranolol experienced significant increases in blood pressure and systemic vascular resistance (SVR), whereas patients on metoprolol had less increase in systolic blood pressure while the diastolic pressure remained unchanged and SVR decreased.(3) In spontaneously hypertensive rats, epinephrine in combination with pindolol induced remarkable hemodynamic changes (in particular, increase in diastolic blood pressure), which were prevented by phentolamine pretreatment, whereas epinephrine with acebutolol pretreatment induced no significant hemodynamic changes.(4) |
ADRENALIN, ARTICADENT DENTAL, ARTICAINE-EPINEPHRINE, ARTICAINE-EPINEPHRINE BIT, BUFFERED LIDOCAINE-EPINEPHRINE, BUPIVACAINE HCL-EPINEPHRINE, BUPIVACAINE-DEXAMETH-EPINEPHRN, CITANEST FORTE DENTAL, EPINEPHRINE, EPINEPHRINE BITARTR-0.9% NACL, EPINEPHRINE BITARTRATE, EPINEPHRINE BITARTRATE-NACL, EPINEPHRINE CONVENIENCE KIT, EPINEPHRINE HCL-0.9% NACL, EPINEPHRINE HCL-D5W, EPINEPHRINE-0.9% NACL, EPINEPHRINE-D5W, EPINEPHRINE-NACL, L.E.T. (LIDO-EPINEPH-TETRA), LIDOCAINE HCL-EPINEPHRINE, LIDOCAINE HCL-EPINEPHRINE-NACL, LIDOCAINE-EPINEPHRINE, LIGNOSPAN STANDARD, MARCAINE-EPINEPHRINE, ORABLOC, R.E.C.K.(ROPIV-EPI-CLON-KETOR), RACEPINEPHRINE HCL, SENSORCAINE-EPINEPHRINE, SENSORCAINE-MPF EPINEPHRINE, SEPTOCAINE, VIVACAINE, XYLOCAINE DENTAL-EPINEPHRINE, XYLOCAINE WITH EPINEPHRINE, XYLOCAINE-MPF WITH EPINEPHRINE |
Allopurinol/Thiazide Diuretics SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The exact mechanism is unknown. Allopurinol has been documented to cause Stevens-Johnson syndrome (SJS), Toxic epidermal necrolysis (TEN), and Drug reaction with eosinophilia and systemic symptoms (DRESS).(1) CLINICAL EFFECTS: Concurrent administration of allopurinol with thiazides may result in an increased incidence of rash which may be severe. PREDISPOSING FACTORS: Patients who are HLA-B*58:01 positive or have impaired renal function may be at increased risk. PATIENT MANAGEMENT: The manufacturer of allopurinol recommends monitoring renal function and reducing the dose of allopurinol in patients with concomitant thiazide diuretic use and impaired renal function. Discontinue allopurinol at the first appearance of skin rash or other signs which may indicate a hypersensitivity reaction when used with thiazide diuretics. Instruct patients to seek medical attention for any peeling skin rash or blisters.(1) DISCUSSION: There are case reports of patients on concurrent thiazide diuretics and allopurinol developing SJS, TEN, or DRESS.(1,2) |
ALLOPURINOL, ALLOPURINOL SODIUM, ALOPRIM, DUZALLO, ZYLOPRIM |
The following contraindication information is available for ATENOLOL-CHLORTHALIDONE (atenolol/chlorthalidone):
Drug contraindication overview.
No enhanced Contraindications information available for this drug.
No enhanced Contraindications information available for this drug.
There are 6 contraindications.
Absolute contraindication.
Contraindication List |
---|
Acutely decompensated HF requiring parenteral inotropic therapy |
Anuria |
Cardiogenic shock |
Complete atrioventricular block |
Pregnancy |
Second degree atrioventricular heart block |
There are 6 severe contraindications.
Adequate patient monitoring is recommended for safer drug use.
Severe List |
---|
Chronic kidney disease stage 3B (moderate) GFR 30-44 ml/min |
Chronic kidney disease stage 4 (severe) GFR 15-29 ml/min |
Chronic kidney disease stage 5 (failure) GFr<15 ml/min |
Hypotension |
Kidney disease with reduction in glomerular filtration rate (GFr) |
Sinus bradycardia |
There are 18 moderate contraindications.
Clinically significant contraindication, where the condition can be managed or treated before the drug may be given safely.
Moderate List |
---|
Asthma |
Chronic obstructive pulmonary disease |
Depression |
Gout |
Hypercalcemia |
Hypercholesterolemia |
Hyperuricemia |
Hypochloremic alkalosis |
Hypokalemia |
Hypomagnesemia |
Hyponatremia |
Kidney disease with likely reduction in glomerular filtration rate (GFr) |
Myasthenia gravis |
Psoriasis |
Raynaud's phenomenon |
Sympathectomy |
Type 1 diabetes mellitus |
Type 2 diabetes mellitus |
The following adverse reaction information is available for ATENOLOL-CHLORTHALIDONE (atenolol/chlorthalidone):
Adverse reaction overview.
No enhanced Common Adverse Effects information available for this drug.
No enhanced Common Adverse Effects information available for this drug.
There are 57 severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Depression Hypochloremic alkalosis Hypokalemia Hyponatremia Hypotension |
Asthma exacerbation Bradycardia Bronchospastic pulmonary disease Hyperglycemia Hypomagnesemia Hypotension Kidney disease with reduction in glomerular filtration rate (GFr) Nephrotoxicity Orthostatic hypotension Peripheral vasoconstriction |
Rare/Very Rare |
---|
Abnormal hepatic function tests Acute pancreatitis Acute respiratory distress syndrome Agranulocytosis Anaphylaxis Aplastic anemia Cardiac arrhythmia Choroidal effusion Chronic heart failure Erythema multiforme Exfoliative dermatitis Gout Hallucinations Heart block Hemolytic anemia Hepatitis Hypercalcemia Hyperparathyroidism Hypersensitivity angiitis Hyperuricemia Interstitial nephritis Interstitial pneumonitis Ischemic colitis Jaundice Laryngismus Leukopenia Lupus-like syndrome Mesenteric artery thrombosis Myopia Obstructive hyperbilirubinemia Peyronie's disease Psoriasiform eruption Pulmonary edema Purpura Secondary angle-closure glaucoma Sick sinus syndrome Squamous cell carcinoma of skin Stevens-johnson syndrome Systemic lupus erythematosus Thrombocytopenic disorder Toxic epidermal necrolysis Vasculitis |
There are 54 less severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Abnormal sexual function Dizziness Fatigue |
Abdominal pain with cramps Abnormal sexual function Anorexia Diarrhea Dizziness Dream disorder Drowsy Dyspnea Fatigue Leg pain Lethargy Nausea Orthostatic hypotension Vertigo Vomiting Wheezing |
Rare/Very Rare |
---|
Acute abdominal pain Acute cognitive impairment Alopecia Basal cell carcinoma of skin Blurred vision Constipation Cough Dry eye Edema Erectile dysfunction Erythema Fever Flushing Gastrointestinal irritation General weakness Headache disorder Hypercholesterolemia Hyperhidrosis Hypertriglyceridemia Hypoglycemic disorder Insomnia Libido changes Memory impairment Mood changes Muscle spasm Nervousness Paresthesia Raynaud's phenomenon Sialoadenitis Skin rash Sore throat Urticaria Vertigo Xanthopsia Xerostomia |
The following precautions are available for ATENOLOL-CHLORTHALIDONE (atenolol/chlorthalidone):
No enhanced Pediatric Use information available for this drug.
Contraindicated
Severe Precaution
Management or Monitoring Precaution
Contraindicated
None |
Severe Precaution
None |
Management or Monitoring Precaution
None |
Atenolol has been shown to cause a dose-related increase in embryonal and fetal resorptions in rats when given at dosages 25 or more times the maximum human antihypertensive dosage; similar effects were not observed in rabbits receiving atenolol dosages up to 12.5 times the maximum human antihypertensive dosage. Atenolol crosses the placenta and has been detected in cord blood.
Atenolol can cause fetal harm when administered to pregnant women. There are no studies on use of the drug during the first trimester of pregnancy and the possibility of fetal injury cannot be excluded. Atenolol therapy initiated in the second trimester of pregnancy has been associated with birth of infants who were small for gestational age.
Atenolol has been used effectively under close supervision for the management of hypertension during the third trimester in a limited number of women and was well tolerated, and apparently did not adversely affect the fetus. However, use of the drug for longer periods of time for the management of mild to moderate hypertension in pregnant women has been associated with intrauterine growth retardation. Neonates born to mothers who receive atenolol at parturition may be at risk for developing hypoglycemia and bradycardia.
Caution is recommended when atenolol is administered during pregnancy. If atenolol is administered during pregnancy or if the patient becomes pregnant while receiving the drug, the patient should be informed of the potential hazard to the fetus.
Atenolol can cause fetal harm when administered to pregnant women. There are no studies on use of the drug during the first trimester of pregnancy and the possibility of fetal injury cannot be excluded. Atenolol therapy initiated in the second trimester of pregnancy has been associated with birth of infants who were small for gestational age.
Atenolol has been used effectively under close supervision for the management of hypertension during the third trimester in a limited number of women and was well tolerated, and apparently did not adversely affect the fetus. However, use of the drug for longer periods of time for the management of mild to moderate hypertension in pregnant women has been associated with intrauterine growth retardation. Neonates born to mothers who receive atenolol at parturition may be at risk for developing hypoglycemia and bradycardia.
Caution is recommended when atenolol is administered during pregnancy. If atenolol is administered during pregnancy or if the patient becomes pregnant while receiving the drug, the patient should be informed of the potential hazard to the fetus.
Atenolol is distributed into milk. The drug distributes into milk in concentrations 1.5-6.8
times those in maternal serum. In at least one infant, potentially toxic serum atenolol concentrations (2 mcg/mL) have been reported 48 hours after discontinuance of breast-feeding. Neonates of mothers who receive atenolol during breast-feeding may be at risk of developing hypoglycemia and adverse beta-adrenergic effects (e.g., bradycardia).
Therefore, the manufacturers state that atenolol should be used cautiously in nursing women. Because clearance of the drug may be substantially impaired, premature neonates, and infants with impaired renal function, may be at increased risk of developing adverse effects from ingested atenolol during breast-feeding. If a woman receiving atenolol breast-feeds, the infant should be monitored closely for potential systemic effects of the drug.
Alternatively, beta-blockers that distribute less extensively into milk (e.g., propranolol) can be considered, although caution still must be exercised.
times those in maternal serum. In at least one infant, potentially toxic serum atenolol concentrations (2 mcg/mL) have been reported 48 hours after discontinuance of breast-feeding. Neonates of mothers who receive atenolol during breast-feeding may be at risk of developing hypoglycemia and adverse beta-adrenergic effects (e.g., bradycardia).
Therefore, the manufacturers state that atenolol should be used cautiously in nursing women. Because clearance of the drug may be substantially impaired, premature neonates, and infants with impaired renal function, may be at increased risk of developing adverse effects from ingested atenolol during breast-feeding. If a woman receiving atenolol breast-feeds, the infant should be monitored closely for potential systemic effects of the drug.
Alternatively, beta-blockers that distribute less extensively into milk (e.g., propranolol) can be considered, although caution still must be exercised.
No enhanced Geriatric Use information available for this drug.
The following prioritized warning is available for ATENOLOL-CHLORTHALIDONE (atenolol/chlorthalidone):
WARNING: Do not stop taking this medication without consulting your doctor. Some conditions may become worse when you suddenly stop this drug. Some people who have suddenly stopped taking similar drugs have had chest pain, heart attack, and irregular heartbeat.
If your doctor decides you should no longer use this drug, your doctor may direct you to gradually decrease your dose over 1 to 2 weeks. When gradually stopping this medication, it is recommended that you temporarily limit physical activity to decrease strain on the heart. Get medical help right away if you develop chest pain/tightness/pressure, chest pain spreading to the jaw/neck/arm, unusual sweating, trouble breathing, or fast/irregular heartbeat.
WARNING: Do not stop taking this medication without consulting your doctor. Some conditions may become worse when you suddenly stop this drug. Some people who have suddenly stopped taking similar drugs have had chest pain, heart attack, and irregular heartbeat.
If your doctor decides you should no longer use this drug, your doctor may direct you to gradually decrease your dose over 1 to 2 weeks. When gradually stopping this medication, it is recommended that you temporarily limit physical activity to decrease strain on the heart. Get medical help right away if you develop chest pain/tightness/pressure, chest pain spreading to the jaw/neck/arm, unusual sweating, trouble breathing, or fast/irregular heartbeat.
The following icd codes are available for ATENOLOL-CHLORTHALIDONE (atenolol/chlorthalidone)'s list of indications:
Hypertension | |
I10 | Essential (primary) hypertension |
I11 | Hypertensive heart disease |
I11.0 | Hypertensive heart disease with heart failure |
I11.9 | Hypertensive heart disease without heart failure |
I12 | Hypertensive chronic kidney disease |
I12.0 | Hypertensive chronic kidney disease with stage 5 chronic kidney disease or end stage renal disease |
I12.9 | Hypertensive chronic kidney disease with stage 1 through stage 4 chronic kidney disease, or unspecified chronic kidney disease |
I13 | Hypertensive heart and chronic kidney disease |
I13.0 | Hypertensive heart and chronic kidney disease with heart failure and stage 1 through stage 4 chronic kidney disease, or unspecified chronic kidney disease |
I13.1 | Hypertensive heart and chronic kidney disease without heart failure |
I13.10 | Hypertensive heart and chronic kidney disease without heart failure, with stage 1 through stage 4 chronic kidney disease, or unspecified chronic kidney disease |
I13.11 | Hypertensive heart and chronic kidney disease without heart failure, with stage 5 chronic kidney disease, or end stage renal disease |
I13.2 | Hypertensive heart and chronic kidney disease with heart failure and with stage 5 chronic kidney disease, or end stage renal disease |
I15.1 | Hypertension secondary to other renal disorders |
Formulary Reference Tool