Please wait while the formulary information is being retrieved.
Drug overview for PROMETHAZINE-DM (promethazine hcl/dextromethorphan hbr):
Generic name: PROMETHAZINE HCL/DEXTROMETHORPHAN HBR (pro-METH-uh-zeen/dex-trow-meth-OR-fan)
Drug class: Antiemetic
Therapeutic class: Respiratory Therapy Agents
Dextromethorphan, a derivative of levorphanol, is an antitussive agent. Promethazine is a phenothiazine derivative with potent first generation antihistaminic properties.
Dextromethorphan is used for the temporary relief of coughs caused by minor Promethazine shares the uses of the antihistaminic drugs. (See Uses in the Antihistamines General Statement 4:00.) Promethazine's pronounced sedative throat and bronchial irritation such as may occur with common colds or with effect limits the usefulness of the drug as an antihistamine in many inhaled irritants. Dextromethorphan is most effective in the treatment of ambulatory patients.
In contrast to most other phenothiazines, promethazine chronic, nonproductive cough. The drug is a common ingredient in commercial cough mixtures available without prescription. is effective in the management of motion sickness.
Although cough and cold preparations that contain cough suppressants For the use of promethazine as a sedative and antiemetic, see Promethazine (including dextromethorphan), nasal decongestants, antihistamines, and/or Hydrochloride 28:24.92 and also see the Phenothiazines General Statement 28:16.08.24.
expectorants commonly are used in pediatric patients younger than 2 years of age, systematic reviews of controlled trials have concluded that nonprescription (over-the-counter, OTC) cough and cold preparations are not more effective than placebo in reducing acute cough and other symptoms of upper respiratory tract infection in these patients. Furthermore, adverse events, including deaths, have been (and continue to be) reported in pediatric patients younger than 2 years of age receiving these preparations. (See Cautions: Pediatric Precautions and see Acute Toxicity: Manifestations.) For information on abuse of dextromethorphan, see Cautions. For use of dextromethorphan hydrobromide in fixed combination with quinidine sulfate in the treatment of pseudobulbar affect (PBA), see Dextromethorphan Hydrobromide and Quinidine Sulfate 28:92.
Generic name: PROMETHAZINE HCL/DEXTROMETHORPHAN HBR (pro-METH-uh-zeen/dex-trow-meth-OR-fan)
Drug class: Antiemetic
Therapeutic class: Respiratory Therapy Agents
Dextromethorphan, a derivative of levorphanol, is an antitussive agent. Promethazine is a phenothiazine derivative with potent first generation antihistaminic properties.
Dextromethorphan is used for the temporary relief of coughs caused by minor Promethazine shares the uses of the antihistaminic drugs. (See Uses in the Antihistamines General Statement 4:00.) Promethazine's pronounced sedative throat and bronchial irritation such as may occur with common colds or with effect limits the usefulness of the drug as an antihistamine in many inhaled irritants. Dextromethorphan is most effective in the treatment of ambulatory patients.
In contrast to most other phenothiazines, promethazine chronic, nonproductive cough. The drug is a common ingredient in commercial cough mixtures available without prescription. is effective in the management of motion sickness.
Although cough and cold preparations that contain cough suppressants For the use of promethazine as a sedative and antiemetic, see Promethazine (including dextromethorphan), nasal decongestants, antihistamines, and/or Hydrochloride 28:24.92 and also see the Phenothiazines General Statement 28:16.08.24.
expectorants commonly are used in pediatric patients younger than 2 years of age, systematic reviews of controlled trials have concluded that nonprescription (over-the-counter, OTC) cough and cold preparations are not more effective than placebo in reducing acute cough and other symptoms of upper respiratory tract infection in these patients. Furthermore, adverse events, including deaths, have been (and continue to be) reported in pediatric patients younger than 2 years of age receiving these preparations. (See Cautions: Pediatric Precautions and see Acute Toxicity: Manifestations.) For information on abuse of dextromethorphan, see Cautions. For use of dextromethorphan hydrobromide in fixed combination with quinidine sulfate in the treatment of pseudobulbar affect (PBA), see Dextromethorphan Hydrobromide and Quinidine Sulfate 28:92.
DRUG IMAGES
- No Image Available
The following indications for PROMETHAZINE-DM (promethazine hcl/dextromethorphan hbr) have been approved by the FDA:
Indications:
Allergic rhinitis
Cold symptoms
Cough
Nasal congestion
Rhinorrhea
Professional Synonyms:
Nasal stuffiness
Indications:
Allergic rhinitis
Cold symptoms
Cough
Nasal congestion
Rhinorrhea
Professional Synonyms:
Nasal stuffiness
The following dosing information is available for PROMETHAZINE-DM (promethazine hcl/dextromethorphan hbr):
Dosages of dextromethorphan hydrobromide and dextromethorphan polistirex Dosages of promethazine hydrochloride by the various routes of administration are identical. are expressed in terms of dextromethorphan hydrobromide.
Because of the risk of potentially fatal respiratory depression, The usual dosage of dextromethorphan hydrobromide for adults and children 12 years of age or older is 10-20 mg every 4 hours or 30 mg every 6-8 promethazine hydrochloride should not be used in children younger than 2 hours, not to exceed 120 mg daily, or as directed by a clinician. The usual years of age. The drug should be used cautiously and at the lowest dosage for children 6 to younger than 12 years of age is 5-10 mg every 4 effective dosage in older children (See Cautions: Pediatric Precautions.)
hours or 15 mg every 6-8 hours, not to exceed 60 mg daily, or as directed by a clinician. Children 2 to younger than 6 years of age may receive 2.5-5 mg every 4 hours or 7.5
mg every 6-8 hours, not to exceed 30 mg daily, or as directed by a clinician. Dosage in children younger than 2 years of age must be individualized. Suggested dosages for children younger than 2 years of age+ for some cough and cold preparations have been published in various references for prescribing and parenting.
Using recommended dosages for adults and older children, some clinicians have extrapolated dosages for these preparations based on the weight or age of children younger than 2 years of age. However, these extrapolations were based on assumptions that pathology of the disease and pharmacology of the drugs are similar in adults and pediatric patients. There currently are no specific dosage recommendations (i.e., approved by the US Food and Drug Administration (FDA)) for cough and cold preparations for this patient population.
(See Cautions: Pediatric Precautions.)
The usual dosage of dextromethorphan hydrobromide as the extended-release oral suspension containing the polistirex for adults and children 12 years of age or older is 60 mg twice daily. The usual dosage as the extended-release oral suspension for children 6 to younger than 12 years of age is 30 mg twice daily; children 2 to younger than 6 years of age may receive 15 mg twice daily.
Because of the risk of potentially fatal respiratory depression, The usual dosage of dextromethorphan hydrobromide for adults and children 12 years of age or older is 10-20 mg every 4 hours or 30 mg every 6-8 promethazine hydrochloride should not be used in children younger than 2 hours, not to exceed 120 mg daily, or as directed by a clinician. The usual years of age. The drug should be used cautiously and at the lowest dosage for children 6 to younger than 12 years of age is 5-10 mg every 4 effective dosage in older children (See Cautions: Pediatric Precautions.)
hours or 15 mg every 6-8 hours, not to exceed 60 mg daily, or as directed by a clinician. Children 2 to younger than 6 years of age may receive 2.5-5 mg every 4 hours or 7.5
mg every 6-8 hours, not to exceed 30 mg daily, or as directed by a clinician. Dosage in children younger than 2 years of age must be individualized. Suggested dosages for children younger than 2 years of age+ for some cough and cold preparations have been published in various references for prescribing and parenting.
Using recommended dosages for adults and older children, some clinicians have extrapolated dosages for these preparations based on the weight or age of children younger than 2 years of age. However, these extrapolations were based on assumptions that pathology of the disease and pharmacology of the drugs are similar in adults and pediatric patients. There currently are no specific dosage recommendations (i.e., approved by the US Food and Drug Administration (FDA)) for cough and cold preparations for this patient population.
(See Cautions: Pediatric Precautions.)
The usual dosage of dextromethorphan hydrobromide as the extended-release oral suspension containing the polistirex for adults and children 12 years of age or older is 60 mg twice daily. The usual dosage as the extended-release oral suspension for children 6 to younger than 12 years of age is 30 mg twice daily; children 2 to younger than 6 years of age may receive 15 mg twice daily.
Dextromethorphan preparations are administered orally. Lozenges containing Promethazine hydrochloride may be administered orally, rectally, or by deep dextromethorphan hydrobromide should not be used in children younger than 6 IM injection. Promethazine hydrochloride also is administered by IV injection.
However, because IV administration of the drug has been years of age and liquid-filled capsules containing the drug should not be associated with severe tissue injury, including gangrene requiring used in children younger than 12 years of age, unless otherwise directed by a clinician. amputation, the US Food and Drug Administration (FDA) states that deep IM injection is the preferred method for administration of promethazine hydrochloride injections. (See Cautions: Precautions and Contraindications.) If IV administration of promethazine hydrochloride is required, FDA states that the drug should be administered through the tubing of an IV infusion set that is known to be correctly functioning; FDA also states that the maximum rate of IV administration is 25 mg/minute, and the maximum concentration of the injection is 25 mg/mL.
If the patient complains of pain at the injection site during presumed IV injection of the drug, the injection should immediately be stopped, and the possibility of intra-arterial placement of the needle or perivascular extravasation should be evaluated. Promethazine hydrochloride injection is commercially available in 2 strengths: 25 mg/mL and 50 mg/mL. FDA states that the preparation containing 50 mg/mL is for IM injection only; the preparation containing 25 mg/mL may be administered by IM or IV injection.
Because of the risk of severe tissue injury and amputations if promethazine hydrochloride is inadvertently administered intra-arterially or if extravasation were to occur, some medication safety experts (e.g., the Institute for Safe Medication Practices (ISMP)) recommend that parenteral administration of the drug be avoided and replaced by safer alternative therapies. Subcutaneous or intra-arterial injection of promethazine hydrochloride is contraindicated. Promethazine hydrochloride injection should be inspected visually for particulate matter and discoloration prior to administration whenever solution and container permit. The injection should be discarded if the solution is discolored or contains a precipitate.
However, because IV administration of the drug has been years of age and liquid-filled capsules containing the drug should not be associated with severe tissue injury, including gangrene requiring used in children younger than 12 years of age, unless otherwise directed by a clinician. amputation, the US Food and Drug Administration (FDA) states that deep IM injection is the preferred method for administration of promethazine hydrochloride injections. (See Cautions: Precautions and Contraindications.) If IV administration of promethazine hydrochloride is required, FDA states that the drug should be administered through the tubing of an IV infusion set that is known to be correctly functioning; FDA also states that the maximum rate of IV administration is 25 mg/minute, and the maximum concentration of the injection is 25 mg/mL.
If the patient complains of pain at the injection site during presumed IV injection of the drug, the injection should immediately be stopped, and the possibility of intra-arterial placement of the needle or perivascular extravasation should be evaluated. Promethazine hydrochloride injection is commercially available in 2 strengths: 25 mg/mL and 50 mg/mL. FDA states that the preparation containing 50 mg/mL is for IM injection only; the preparation containing 25 mg/mL may be administered by IM or IV injection.
Because of the risk of severe tissue injury and amputations if promethazine hydrochloride is inadvertently administered intra-arterially or if extravasation were to occur, some medication safety experts (e.g., the Institute for Safe Medication Practices (ISMP)) recommend that parenteral administration of the drug be avoided and replaced by safer alternative therapies. Subcutaneous or intra-arterial injection of promethazine hydrochloride is contraindicated. Promethazine hydrochloride injection should be inspected visually for particulate matter and discoloration prior to administration whenever solution and container permit. The injection should be discarded if the solution is discolored or contains a precipitate.
DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
---|---|---|
PROMETHAZINE-DM 6.25-15 MG/5ML | Maintenance | Adults take 5 milliliters by oral route every 4-6 hours as needed, not to exceed 30 mL in 24 hours |
DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
---|---|---|
PROMETHAZINE-DM 6.25-15 MG/5ML | Maintenance | Adults take 5 milliliters by oral route every 4-6 hours as needed, not to exceed 30 mL in 24 hours |
The following drug interaction information is available for PROMETHAZINE-DM (promethazine hcl/dextromethorphan hbr):
There are 4 contraindications.
These drug combinations generally should not be dispensed or administered to the same patient. A manufacturer label warning that indicates the contraindication warrants inclusion of a drug combination in this category, regardless of clinical evidence or lack of clinical evidence to support the contraindication.
Drug Interaction | Drug Names |
---|---|
Selected Opioids; Dextromethorphan/Selected MAOIs SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Selected opioids inhibit neural reuptake of serotonin. MAOIs may increase neuronal serotonin concentrations via inhibition of MAO-A.(26) CLINICAL EFFECTS: The concurrent use of selected opioids with MAOIs has resulted in hypotension, hyperpyrexia, sedation, somnolence, and death. Symptoms of serotonin syndrome may include tremor, agitation, diaphoresis, hyperreflexia, clonus, tachycardia, hyperthermia, and muscle rigidity.(26) PREDISPOSING FACTORS: Higher opioid concentrations as may occur due to inhibition of opioid clearance, patient specific genomic factors (e.g. poor metabolizer status for a P450 enzyme), or high opioid dosage may increase the risk for a severe interaction. PATIENT MANAGEMENT: Dextromethorphan, diamorphine, meperidine, and tapentadol should not be used in patients taking MAOIs. Use alternative agents for cough or pain. The US manufacturer of Nuedexta(dextromethorphan-quinidine) states Nuedexta is contraindicated within 14 days of MAOI administration.(28) Quinidine increases systemic dextromethorphan concentrations 10 to 20-fold. Other strong CYP2D6 inhibitors such as bupropion, fluoxetine and paroxetine could similarly increase dextromethorphan levels. The US manufacturer of selegiline states that concurrent use with dextromethorphan or meperidine is contraindicated. The US manufacturers of meperidine and tapentadol and the UK manufacturer of diamorphine state that they should not be used concurrently with or within 14 days of taking an MAOI. DISCUSSION: The interaction between meperidine and MAOIs has been well documented. There are at least two reports of potential interactions between MAOIs and dextromethorphan. Concomitant use of quinidine, a strong CYP2D6 inhibitor, increases systemic dextromethorphan concentrations 10 to 20-fold. Other strong CYP2D6 inhibitors such as bupropion, fluoxetine and paroxetine could similarly increase dextromethorphan levels and risk for serotonin toxicity in patients also receiving MAOIs. Furazolidone is known to be a monoamine oxidase inhibitor. Methylene blue, when administered intravenously, has been shown to reach sufficient concentrations to be a potent inhibitor of MAO-A. One or more of the drug pairs linked to this monograph have been included in a list of interactions that should be considered "high-priority" for inclusion and should not be inactivated in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
AZILECT, EMSAM, FURAZOLIDONE, MARPLAN, MATULANE, METHYLENE BLUE, NARDIL, PARNATE, PHENELZINE SULFATE, PROCARBAZINE HCL, PROVAYBLUE, RASAGILINE MESYLATE, SELEGILINE HCL, TRANYLCYPROMINE SULFATE, XADAGO, ZELAPAR |
Iomeprol/Neuroleptics SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Neuroleptics may lower seizure threshold.(1) CLINICAL EFFECTS: Use of iomeprol in a patient receiving a neuroleptic may increase the risk of seizure.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of iomeprol states that neuroleptics should be discontinued 48 hours before iomeprol use. Treatment with a neuroleptic should not be resumed until 24 hours post-procedure.(1) DISCUSSION: Because neuroleptics may lower seizure threshold, neuroleptics should be discontinued 48 hours before iomeprol use. Treatment with a neuroleptic should not be resumed until 24 hours post-procedure.(1) |
IOMERON 350 |
Dextromethorphan/Metaxalone SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Dextromethorphan inhibits neural reuptake of serotonin. Metaxalone, a weak inhibitor of MAO, may increase neuronal serotonin concentrations.(1) CLINICAL EFFECTS: The concurrent use of dextromethorphan with MAOIs may result in hypotension, hyperpyrexia, sedation, somnolence, and death. Symptoms of serotonin syndrome may include tremor, agitation, diaphoresis, hyperreflexia, clonus, tachycardia, hyperthermia, and muscle rigidity.(1) PREDISPOSING FACTORS: Higher opioid concentrations as may occur due to inhibition of opioid clearance, patient specific genomic factors (e.g. poor metabolizer status for a P450 enzyme), or high opioid dosage may increase the risk for a severe interaction. PATIENT MANAGEMENT: Dextromethorphan should not be used in patients taking MAOIs such as metaxalone. Use alternative agents for cough. The US manufacturer of Nuedexta (dextromethorphan-quinidine) states Nuedexta is contraindicated within 14 days of MAOI administration.(1) Quinidine increases systemic dextromethorphan concentrations 10 to 20-fold. DISCUSSION: Metaxalone is a weak inhibitor of MAO.(2,3) There are at least two reports of potential interactions between MAOIs and dextromethorphan. Concomitant use of quinidine, a strong CYP2D6 inhibitor, increases systemic dextromethorphan concentrations 10 to 20-fold. Other strong CYP2D6 inhibitors such as bupropion, fluoxetine and paroxetine could similarly increase dextromethorphan levels and risk for serotonin toxicity in patients also receiving MAOIs.(4,5) |
METAXALONE |
Selected CYP2D6 Substrates/Mavorixafor SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Mavorixafor is a strong inhibitor of CYP2D6 and is expected to inhibit the metabolism of agents through this pathway.(1) CLINICAL EFFECTS: Concurrent use of mavorixafor may result in elevated levels of and toxicity from agents metabolized by CYP2D6.(1) PREDISPOSING FACTORS: With tricyclic antidepressants, the risk of seizures may be increased in patients with a history of head trauma or prior seizure; CNS tumor; severe hepatic cirrhosis; excessive use of alcohol or sedatives; addiction to opiates, cocaine, or stimulants; use of over-the-counter stimulants and anorectics; diabetics treated with oral hypoglycemics or insulin; or with concomitant medications known to lower seizure threshold (antipsychotics, theophylline, systemic steroids). With anticholinergic agents, the risk of anticholinergic toxicities including cognitive decline, delirium, falls and fractures is increased in geriatric patients using more than one medicine with anticholinergic properties.(2) PATIENT MANAGEMENT: The US manufacturer of mavorixafor states concurrent use with CYP2D6 substrate that are highly dependent on CYP2D6 metabolism is contraindicated.(1) DISCUSSION: Mavorixafor (400 mg) increased dextromethorphan (CYP2D6 substrate) maximum concentration (Cmax) and area-under-curve (AUC) by 6-fold and 9-fold, respectively.(1) Selected CYP2D6 substrates linked to this monograph include: aripiprazole, brexpiprazole, desipramine, deutetrabenazine, dextromethorphan, doxepin, encainide, fenfluramine, metoclopramide, methoxyphenamine, metoprolol, mexiletine, nebivolol, paroxetine, perphenazine, risperidone, tetrabenazine, trimipramine, venlafaxine, and yohimbine. |
XOLREMDI |
There are 14 severe interactions.
These drug interactions can produce serious consequences in most patients. Actions required for severe interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration scheduling, and providing additional patient monitoring. Review the full interaction monograph for more information.
Drug Interaction | Drug Names |
---|---|
Solid Oral Potassium Tablets/Anticholinergics SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concentrated potassium may damage the lining of the GI tract. Anticholinergics delay gastric emptying, resulting in the potassium product remaining in the gastrointestinal tract for a longer period of time.(1-16) CLINICAL EFFECTS: Use of solid oral dosage forms of potassium in patients treated with anticholinergics may result in gastrointestinal erosions, ulcers, stenosis and bleeding.(1-16) PREDISPOSING FACTORS: Diseases or conditions which may increase risk for GI damage include: preexisting dysphagia, strictures, cardiomegaly, diabetic gastroparesis, elderly status, or insufficient oral intake to allow dilution of potassium.(1-10,21) Other drugs which may add to risk for GI damage include: nonsteroidal anti-inflammatory drugs (NSAIDs), bisphosphonates, or tetracyclines.(21) PATIENT MANAGEMENT: Regulatory agency and manufacturer recommendations regarding this interaction: - In the US, all solid oral dosage forms (including tablets and extended release capsules) of potassium are contraindicated in patients receiving anticholinergics at sufficient dosages to result in systemic effects.(2-8) Patients receiving such anticholinergic therapy should use a liquid form of potassium chloride.(2) - In Canada, solid oral potassium is contraindicated in any patient with a cause for arrest or delay in tablet/capsule passage through the gastrointestinal tract and the manufacturers recommend caution with concurrent anticholinergic medications.(1,9-10) Evaluate each patient for predisposing factors which may increase risk for GI damage. In patients with multiple risk factors for harm, consider use of liquid potassium supplements, if tolerated. For patients receiving concomitant therapy, assure any potassium dose form is taken after meals with a large glass of water or other fluid. To decrease potassium concentration in the GI tract, limit each dose to 20 meq; if more than 20 meq daily is required, give in divided doses.(2) If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. Patients should be instructed to immediately report any difficulty swallowing, abdominal pain, distention, severe vomiting, or gastrointestinal bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. DISCUSSION: In clinical trials, there was a higher incidence of gastric and duodenal lesions in patients receiving a high dose of a wax-matrix controlled-release formulation with a concurrent anticholinergic agent. Some lesions were asymptomatic and not accompanied by bleeding, as shown by a lack of positive Hemoccult tests.(1-17) Several studies suggest that the incidence of gastric and duodenal lesions may be less with the microencapsulated formulation of potassium chloride.(14-17) |
KLOR-CON 10, KLOR-CON 8, KLOR-CON M10, KLOR-CON M15, KLOR-CON M20, POTASSIUM CHLORIDE, POTASSIUM CITRATE ER, UROCIT-K |
Solid Oral Potassium Capsules/Anticholinergics SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concentrated potassium may damage the lining of the GI tract. Anticholinergics delay gastric emptying, resulting in the potassium product remaining in the gastrointestinal tract for a longer period of time.(1-16)) CLINICAL EFFECTS: Use of solid oral dosage forms of potassium in patients treated with anticholinergics may result in gastrointestinal erosions, ulcers, stenosis and bleeding.(1-16) PREDISPOSING FACTORS: Diseases or conditions which may increase risk for GI damage include: preexisting dysphagia, strictures, cardiomegaly, diabetic gastroparesis, elderly status, or insufficient oral intake to allow dilution of potassium.(1-10,21) Other drugs which may add to risk for GI damage include: nonsteroidal anti-inflammatory drugs (NSAIDs), bisphosphonates, or tetracyclines.(21) PATIENT MANAGEMENT: Regulatory agency and manufacturer recommendations regarding this interaction: - In the US, all solid oral dosage forms (including tablets and extended release capsules) of potassium are contraindicated in patients receiving anticholinergics at sufficient dosages to result in systemic effects.(2-8) Patients receiving such anticholinergic therapy should use a liquid form of potassium chloride.(2) - In Canada, solid oral potassium is contraindicated in any patient with a cause for arrest or delay in tablet/capsule passage through the gastrointestinal tract and the manufacturers recommend caution with concurrent anticholinergic medications.(1,9-10) Evaluate each patient for predisposing factors which may increase risk for GI damage. In patients with multiple risk factors for harm, consider use of liquid potassium supplements, if tolerated. For patients receiving concomitant therapy, assure any potassium dose form is taken after meals with a large glass of water or other fluid. To decrease potassium concentration in the GI tract, limit each dose to 20 meq; if more than 20 meq daily is required, give in divided doses.(2) If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. Patients should be instructed to immediately report any difficulty swallowing, abdominal pain, distention, severe vomiting, or gastrointestinal bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. DISCUSSION: In clinical trials, there was a higher incidence of gastric and duodenal lesions in patients receiving a high dose of a wax-matrix controlled-release formulation with a concurrent anticholinergic agent. The lesions were asymptomatic and not accompanied by bleeding, as shown by a lack of positive Hemoccult tests.(1-17) Several studies suggest that the incidence of gastric and duodenal lesions may be less with the microencapsulated formulation of potassium chloride.(14-17) |
POTASSIUM CHLORIDE |
Radioactive Iodide/Agents that Affect Iodide SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Many compounds can affect iodide protein binding and alter iodide pharmacokinetics and pharmacodynamics.(1) CLINICAL EFFECTS: Compounds that affect iodide pharmacokinetics and pharmacodynamics may impact the effectiveness of radioactive iodide.(1) PREDISPOSING FACTORS: Compounds that affect iodide pharmacokinetics and pharmacodynamics are expected to have the most impact during therapy using radioactive iodide. Diagnostic procedures would be expected to be impacted less. PATIENT MANAGEMENT: Discuss the use of agents that affect iodide pharmacokinetics and pharmacodynamics with the patient's oncologist.(1) Because indocyanine green contains sodium iodide, the iodine-binding capacity of thyroid tissue may be reduced for at least one week following administration. Do not perform radioactive iodine uptake studies for at least one week following administration of indocyanine green.(2) The manufacturer of iopamidol states administration may interfere with thyroid uptake of radioactive iodine and decrease therapeutic and diagnostic efficacy. Avoid thyroid therapy or testing for up to 6 weeks post administration of iopamidol.(3) DISCUSSION: Many agents interact with radioactive iodine. The average duration of effect is: anticoagulants - 1 week antihistamines - 1 week anti-thyroid drugs, e.g: carbimazole, methimazole, propylthiouracil - 3-5 days corticosteroids - 1 week iodide-containing medications, e.g: amiodarone - 1-6 months expectorants - 2 weeks Lugol solution - 3 weeks saturated solution of potassium iodine - 3 weeks vitamins - 10-14 days iodide-containing X-ray contrast agents - up to 1 year lithium - 4 weeks phenylbutazone - 1-2 weeks sulfonamides - 1 week thyroid hormones (natural or synthetic), e.g.: thyroxine - 4 weeks tri-iodothyronine - 2 weeks tolbutamide - 1 week topical iodide - 1-9 months (1) |
ADREVIEW, JEANATOPE, MEGATOPE, SODIUM IODIDE I-123 |
Sodium Oxybate/Agents that May Cause Respiratory Depression SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Oxybate by itself may be associated with severe somnolence or respiratory depression. Concurrent use with other CNS depressants may further increase the risk for respiratory depression or loss of consciousness.(1-3) CLINICAL EFFECTS: Concurrent use of sodium oxybate and sedative hypnotics or alcohol may further increase the risk for profound sedation, respiratory depression, coma, and/or death.(1,2) Fatalities have been reported.(3) PREDISPOSING FACTORS: Based upon FDA evaluation of deaths in patients taking sodium oxybate, risk factors may include: use of multiple drugs which depress the CNS, more rapid than recommended oxybate dose titration, exceeding the maximum recommended oxybate dose, and prescribing for unapproved uses such as fibromyalgia, insomnia or migraine. Note that in oxybate clinical trials for narcolepsy 78% - 85% of patients were also receiving concomitant CNS stimulants.(1-3) PATIENT MANAGEMENT: Avoid use of concomitant opioids, benzodiazepines, sedating antidepressants, sedating antipsychotics, general anesthetics, or muscle relaxants, particularly when predisposing risk factors are present. If combination use is required, dose reduction or discontinuation of one or more CNS depressants should be considered. If short term use of an opioid or general anesthetic is required, consider interruption of sodium oxybate treatment.(1,2) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(4) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(5) DISCUSSION: The FDA evaluated sodium oxybate postmarket fatal adverse event reports from the FDA Adverse Event Reporting System(AERS)and from the manufacturer. Although report documentation was not always optimal or complete, useful information was obtained. Factors which may have contributed to fatal outcome: concomitant use of one or more drugs which depress the CNS, more rapid than recommended oxybate dose titration, exceeding the maximum recommended oxybate dose, and prescribing for unapproved uses such as fibromyalgia, insomnia or migraine. Many deaths occurred in patients with serious psychiatric disorders such as depression and substance abuse. Other concomitant diseases may have also contributed to respiratory and CNS depressant effects of oxybate.(3) |
LUMRYZ, LUMRYZ STARTER PACK, SODIUM OXYBATE, XYREM, XYWAV |
Metoclopramide/Promethazine SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Both metoclopramide and promethazine block dopamine (D2) receptors. D2 blockade can cause extrapyramidal reactions, such acute dystonic reactions, pseudoparkinsonian tremors, akathisia, or tardive dyskinesia. Neuroleptic malignant syndrome may also occur in patients receiving D2 blockers. The risk of these adverse effects may be increased by concurrent use.(1-3) CLINICAL EFFECTS: Concurrent use may increase the risk of extrapyramidal reactions (e.g. acute dystonic reactions, pseudoparkinsonian tremors, akathisia, or tardive dyskinesia) and neuroleptic malignant syndrome. Tardive dyskinesia, which may be permanent, typically affects the facial muscles and may result in uncontrollable lip smacking, chewing, puckering of the mouth, frowning or scowling, sticking out the tongue, blinking and moving the eyes, and shaking of the arms and/or legs.(1-3) Symptoms of neuroleptic malignant syndrome include hyperpyrexia, muscle rigidity, altered mental status, an autonomic instability (irregular pulse or blood pressure, tachycardia, diaphoresis, and cardiac arrhythmias), elevated creatine phosphokinase, myoglobinuria (rhabdomyolysis), and acute renal failure.(1) PREDISPOSING FACTORS: Patients with Parkinson's or Lewy Body Disease may be more likely to have extrapyramidal reactions or unmasking of their primary disease symptoms. The risk of extrapyramidal symptoms is also increased in patients on metoclopramide for longer than 12 weeks. Elderly patients, especially elderly women, and diabetics are at higher risk of developing tardive dyskinesia. Other extrapyramidal symptoms, like acute dystonia, have occurred more frequently in patients younger than 30 years old.(1) PATIENT MANAGEMENT: The concurrent use of metoclopramide and agents likely to cause extrapyramidal reactions should be avoided.(1) If concurrent use is warranted, monitor patients closely for extrapyramidal reactions and neuroleptic malignant syndrome. The manufacturer of metoclopramide says to avoid treatment with metoclopramide for longer than 12 weeks, and to use the lowest possible dose.(1) Discontinue therapy if symptoms occur. Instruct patients to seek immediate medical attention if symptoms develop. Symptoms of extrapyramidal reactions, including tardive dyskinesia, include involuntary movements of limbs and facial grimacing, torticollis, oculogyric crisis, rhythmic protrusion of the tongue, bulbar type of speech, trismus, and/or dystonic reactions resembling tetanus/stridor/dyspnea. DISCUSSION: Both metoclopramide and phenothiazines can cause extrapyramidal reactions, such as tardive dyskinesia, and neuroleptic malignant syndrome. The risk may be increased by concurrent use.(1,2) Extrapyramidal symptoms have been reported with concurrent metoclopramide and neuroleptics, prochlorperazine, and chlorpromazine.(3-5) |
GIMOTI, METOCLOPRAMIDE HCL, REGLAN |
Opioids (Cough and Cold)/Antipsychotics; Phenothiazines SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of opioids and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Avoid prescribing opioid-including cough medications for patients taking CNS depressants such as antipsychotics, including phenothiazine derivatives.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) If concurrent use is necessary, monitor patients for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
HYCODAN, HYDROCODONE-CHLORPHENIRAMNE ER, HYDROCODONE-HOMATROPINE MBR, HYDROMET, PROMETHAZINE-CODEINE, TUXARIN ER |
Aminolevulinic Acid/Selected Photosensitizers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Aminolevulinic acid, anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides are all known photosensitizers.(1) CLINICAL EFFECTS: Concurrent use of aminolevulinic acid in patients taking anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides may increase the risk of phototoxicity.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer states that aminolevulinic acid should be avoided in patients receiving photosensitizers including anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides for 24 hours before and after administration of aminolevulinic acid.(1) DISCUSSION: Because of the risk of increased photosensitivity, the US manufacturer states that aminolevulinic acid should be avoided in patients receiving photosensitizers including anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides for 24 hours before and after administration of aminolevulinic acid.(1) |
AMINOLEVULINIC ACID HCL, GLEOLAN |
Selected CYP2D6 Substrates/Panobinostat SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Panobinostat is a moderate inhibitor of CYP2D6 and is expected to inhibit the metabolism of agents through this pathway.(1) CLINICAL EFFECTS: Concurrent use of panobinostat may result in elevated levels of and toxicity from agents metabolized by CYP2D6.(1) PREDISPOSING FACTORS: With tricyclic antidepressants, the risk of seizures may be increased in patients with a history of head trauma or prior seizure; CNS tumor; severe hepatic cirrhosis; excessive use of alcohol or sedatives; addiction to opiates, cocaine, or stimulants; use of over-the-counter stimulants and anorectics; diabetics treated with oral hypoglycemics or insulin; or with concomitant medications known to lower seizure threshold (antipsychotics, theophylline, systemic steroids). With anticholinergic agents, the risk of anticholinergic toxicities including cognitive decline, delirium, falls and fractures is increased in geriatric patients using more than one medicine with anticholinergic properties.(4) PATIENT MANAGEMENT: Avoid the concurrent use of panobinostat with agents that are sensitive CYP2D6 or CYP2D6 substrates with a narrow therapeutic index. If concurrent use is warranted, monitor patients for toxicity.(1) DISCUSSION: In a study in 14 subjects with advanced cancer, panobinostat (20 mg daily on Days 3, 5, and 8) increased the maximum concentration (Cmax) and area-under-curve (AUC) of a single dose of dextromethorphan (60 mg) by 20-200% and 20-130%, respectively. Dextromethorphan exposures were extremely variable.(1) Selected CYP2D6 substrates linked to this monograph include: desipramine, deutetrabenazine, dextromethorphan, doxepin, encainide, methoxyphenamine, metoprolol, nebivolol, paroxetine, perphenazine, risperidone, tetrabenazine, trimipramine, venlafaxine, and yohimbine. |
FARYDAK |
Selected CYP1A2 or CYP2D6 Substrates/Givosiran SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Givosiran interferes with the first and rate-limiting step in hepatic heme biosynthesis, which may lower hepatic heme levels and decrease production and/or activity of cytochrome P450 enzymes.(1,2) CLINICAL EFFECTS: Concurrent use of givosiran may result in elevated levels of and toxicity from agents metabolized by CYP1A2 or CYP2D6.(1) PREDISPOSING FACTORS: With tricyclic antidepressants, the risk of seizures may be increased in patients with a history of head trauma or prior seizure; CNS tumor; severe hepatic cirrhosis; excessive use of alcohol or sedatives; addiction to opiates, cocaine, or stimulants; use of over-the-counter stimulants and anorectics; diabetics treated with oral hypoglycemics or insulin; or with concomitant medications known to lower seizure threshold (antipsychotics, theophylline, systemic steroids). With anticholinergic agents, the risk of anticholinergic toxicities including cognitive decline, delirium, falls and fractures is increased in geriatric patients using more than one medicine with anticholinergic properties.(3) PATIENT MANAGEMENT: Avoid the concurrent use of givosiran with agents that are sensitive substrates of CYP1A2 or CYP2D6, or CYP1A2 or CYP2D6 substrates with a narrow therapeutic index. If concurrent use is unavoidable, decrease the dose of the CYP1A2 or CYP2D6 substrate and monitor patients for toxicity. DISCUSSION: A study of 9 patients with acute intermittent porphyria found that givosiran decreased the maximum concentration (Cmax) and area-under-curve (AUC) of caffeine (a CYP1A2 substrate) by 1.3- and 3.1-fold, respectively, compared to caffeine alone. Givosiran also decreased the Cmax and AUC of dextromethorphan (a CYP2D6 substrate) by 2- and 2.4-fold, respectively, compared to dextromethorphan alone.(1,2) Selected CYP2D6 substrates linked to this monograph include: desipramine, deutetrabenazine, dextromethorphan, doxepin, encainide, methoxyphenamine, metoprolol, nebivolol, nefazodone, paroxetine, perphenazine, risperidone, tetrabenazine, trimipramine, and venlafaxine. Selected CYP1A2 substrates linked to this monograph include: agomelatine, aminophylline, rasagiline, tacrine, theophylline, tizanidine, and yohimbine. |
GIVLAARI |
Porfimer/Selected Photosensitizers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Porfimer causes photosensitivity due to residual drug which is present in all parts of the skin. Anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides are other known photosensitizers.(1) CLINICAL EFFECTS: Concurrent use of porfimer in patients taking anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides may increase the risk of phototoxicity.(1) PREDISPOSING FACTORS: Patients with any hepatic impairment and patients with severe renal impairment have reduced drug elimination and may remain photosensitive for 90 days or longer.(1) PATIENT MANAGEMENT: The US manufacturer of porfimer states that concurrent use of porfimer with photosensitizers including anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides should be avoided.(1) Since the photosensitive effect of porfimer may persist for at least 30 days (and for 90 days in some patients), it would be prudent to avoid other photosensitizing agents for at least 30 days after administration of porfimer. DISCUSSION: All patients who have received porfimer become photosensitive. It is unknown what the risk of photosensitivity reactions is when porfimer is used concurrently with other photosensitizing agents. When porfimer was used in clinical trials, photosensitivity reactions occurred in about 20% of cancer patients and in 69% of high-grade dysplasia in Barretts esophagus patients. Most of the reactions were mild to moderate erythema, but they also included swelling, pruritus, burning sensation, feeling hot, or blisters. The majority of reactions occurred within 90 days of porfimer administration.(1) |
PHOTOFRIN |
Clozapine/Anticholinergics SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Clozapine has potent anticholinergic properties and inhibits serotonin receptors, including 5-HT3.(1-4) Both of these properties may cause inhibition of gastrointestinal (GI) smooth muscle contraction, resulting in decreased peristalsis.(3,4) These effects may be compounded by concurrent use of anticholinergic agents.(1-6) CLINICAL EFFECTS: Concurrent use of clozapine with other anticholinergic agents may increase the risk of constipation (common) and serious bowel complications (uncommon), including complete bowel obstruction, fecal impaction, paralytic ileus and intestinal ischemia or infarction.(1-6) PREDISPOSING FACTORS: The risk for serious bowel complications is higher with increasing age, higher frequency of constipation, and in patients on higher doses of clozapine or multiple anticholinergic agents.(1,5) PATIENT MANAGEMENT: Avoid the use of other anticholinergic agents with clozapine.(1-6) If concurrent use is necessary, evaluate the patient's bowel function regularly. Monitor for symptoms of constipation and GI hypomotility, including having bowel movements less than three times weekly or less than usual, difficulty having a bowel movement or passing gas, nausea, vomiting, and abdominal pain or distention.(2) Consider a prophylactic laxative in those with a history of constipation or bowel obstruction.(2) Review patient medication list for other anticholinergic agents. When possible, decrease the dosage or number of prescribed anticholinergic agents, particularly in the elderly. Counsel the patient about the importance of maintaining adequate hydration. Encourage regular exercise and eating a high-fiber diet.(2) DISCUSSION: In a prospective cohort study of 26,720 schizophrenic patients in the Danish Central Psychiatric Research Registry, the odds ratio (OR) for ileus was 1.99 with clozapine and 1.48 with anticholinergics. The OR for fatal ileus was 6.73 with clozapine and 5.88 with anticholinergics. Use of anticholinergics with 1st generation antipsychotics (FGA) increased the risk of ileus compare to FGA alone, but this analysis was not done with clozapine.(5) A retrospective cohort study of 24,970 schizophrenic patients from the Taiwanese National Health Insurance Research Database found that the hazard ratio (HR) for clozapine-induced constipation increased from 1.64 when clozapine is used alone, to 2.15 when used concomitantly with anticholinergics. However, there was no significant difference in the HR for ileus when clozapine is used with and without anticholinergics (1.95 and 2.02, respectively).(6) In the French Pharmacovigilance Database, 7 of 38 cases of antipsychotic-associated ischemic colitis or intestinal necrosis involved clozapine, and 5 of these cases involved use of concomitant anticholinergic agents. Three patients died, one of whom was on concomitant anticholinergics.(3) In a case series, 4 of 9 cases of fatal clozapine-associated GI dysfunction involved concurrent anticholinergic agents.(4) |
CLOZAPINE, CLOZAPINE ODT, CLOZARIL, VERSACLOZ |
Eluxadoline/Anticholinergics; Opioids SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Eluxadoline is a mixed mu-opioid and kappa-opioid agonist and delta-opioid antagonist and may alter or slow down gastrointestinal transit.(1) CLINICAL EFFECTS: Constipation related adverse events that sometimes required hospitalization have been reported, including the development of intestinal obstruction, intestinal perforation, and fecal impaction.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid use with other drugs that may cause constipation. If concurrent use is necessary, evaluate the patient's bowel function regularly. Monitor for symptoms of constipation and GI hypomotility, including having bowel movements less than three times weekly or less than usual, difficulty having a bowel movement or passing gas, nausea, vomiting, and abdominal pain or distention.(1) Instruct patients to stop eluxadoline and immediately contact their healthcare provider if they experience severe constipation. Loperamide may be used occasionally for acute management of severe diarrhea, but must be discontinued if constipation develops.(1) DISCUSSION: In phase 3 clinical trials, constipation was the most commonly reported adverse reaction (8%). Approximately 50% of constipation events occurred within the first 2 weeks of treatment while the majority occurred within the first 3 months of therapy. Rates of severe constipation were less than 1% in patients receiving eluxadoline doses of 75 mg and 100 mg.(1) |
VIBERZI |
Methoxsalen/Selected Photosensitizers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Methoxsalen causes photosensitivity due to residual drug which is present in all parts of the skin from photopheresis. Anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides are other known photosensitizers.(1) CLINICAL EFFECTS: Concurrent use of methoxsalen in patients taking anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides may increase the risk of phototoxicity.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of methoxsalen states that concurrent use of methoxsalen with anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides should be avoided.(1) DISCUSSION: All patients who have received methoxsalen become photosensitive. It is unknown what the risk of photosensitivity reactions is when methoxsalen is used concurrently with other photosensitizing agents.(1) |
METHOXSALEN, UVADEX |
Sodium Iodide I 131/Agents that Affect Iodide SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Many compounds can affect iodide protein binding and alter iodide pharmacokinetics and pharmacodynamics.(1,2) CLINICAL EFFECTS: Compounds that affect iodide pharmacokinetics and pharmacodynamics may impact the effectiveness of radioactive iodide.(1,2) PREDISPOSING FACTORS: Compounds that affect iodide pharmacokinetics and pharmacodynamics are expected to have the most impact during therapy using radioactive iodide. Diagnostic procedures would be expected to be impacted less. PATIENT MANAGEMENT: Discuss the use of agents that affect iodide pharmacokinetics and pharmacodynamics with the patient's oncologist.(1,2) Because indocyanine green contains sodium iodide, the iodine-binding capacity of thyroid tissue may be reduced for at least one week following administration. Do not perform radioactive iodine uptake studies for at least one week following administration of indocyanine green.(3) The manufacturer of iopamidol states administration may interfere with thyroid uptake of radioactive iodine and decrease therapeutic and diagnostic efficacy. Avoid thyroid therapy or testing for up to 6 weeks post administration of iopamidol.(4) DISCUSSION: Many agents interact with radioactive iodine. The average duration of effect is: anticoagulants - 1 week antihistamines - 1 week anti-thyroid drugs, e.g: carbimazole, methimazole, propylthiouracil - 3-5 days corticosteroids - 1 week iodide-containing medications, e.g: amiodarone - 1-6 months expectorants - 2 weeks Lugol solution - 3 weeks saturated solution of potassium iodine - 3 weeks vitamins - 10-14 days iodide-containing X-ray contrast agents - up to 1 year lithium - 4 weeks phenylbutazone - 1-2 weeks sulfonamides - 1 week thyroid hormones (natural or synthetic), e.g.: thyroxine - 4 weeks tri-iodothyronine - 2 weeks tolbutamide - 1 week topical iodide - 1-9 months (1,2) |
HICON, SODIUM IODIDE I-131 |
There are 17 moderate interactions.
The clinician should assess the patient’s characteristics and take action as needed. Actions required for moderate interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration.
Drug Interaction | Drug Names |
---|---|
Guanethidine; Guanadrel/Phenothiazines SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Phenothiazines may inhibit uptake of guanethidine at the adrenergic neuron. CLINICAL EFFECTS: Decreased antihypertensive effectiveness. Effects may be seen for several days after discontinuation of the phenothiazine. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid concomitant administration of these drugs. If both drugs are administered, adjust the guanethidine dose as needed based on blood pressure. Consider giving molindone in place of the phenothiazine. Available data indicate that hydralazine or minoxidil do not interact with phenothiazines. Severe hypertension was reported in one patient during concurrent use of methyldopa and the phenothiazine trifluoperazine. However, this interaction was not substantiated in animals. DISCUSSION: Documentation supports routine monitoring of this interaction. The antihypertensive effect of guanethidine/guanadrel usually reverses over several days to more than one week after starting concurrent phenothiazine and guanethidine therapy. When the phenothiazine is stopped, an initial rebound increase in blood pressure may occur. |
GUANETHIDINE HEMISULFATE |
Select Antipsychotics;Select Phenothiazines/Anticholinergics SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Multiple mechanisms may be involved: 1. additive peripheral and CNS blockade of muscarinic receptors. 2. anticholinergic-induced inhibition of gastrointestinal absorption of phenothiazines. 3. antagonism of the dopamine blocking effects of selected antipsychotics and phenothiazines. CLINICAL EFFECTS: The dopamine blocking effects of selected antipsychotic agents or phenothiazines may be decreased while anticholinergic adverse effects may be increased. PREDISPOSING FACTORS: The risk for severe anticholinergic toxicities, e.g. delirium, hyperthermia, paralytic ileus is increased in the elderly and in patients on multiple anticholinergic agents. PATIENT MANAGEMENT: Anticholinergic agents may be required to treat or prevent antipsychotic induced extrapyramidal symptoms. When other indications lead to co-prescribing of the combination, assess patient response to the combination. Review patient medication list for other anticholinergic agents. When needed, decrease the dosage or number of prescribed anticholinergic agents, particularly in the elderly. DISCUSSION: Although numerous studies have been published regarding a possible interaction between phenothiazines and anticholinergics, the earlier reports were not double-blind or placebo controlled and patients may have received other drugs concomitantly. These earlier investigations reported increased side effects as well as increased, decreased and no effect on the therapeutic outcome. Double-blind studies have also reported conflicting results. Anticholinergic therapy varied from having no effect on phenothiazine concentration or patient outcome, to increasing phenothiazine levels. The discrepancies reported may be due to interpatient variability including age of the patient, type and duration of illness and treatment setting. |
ANASPAZ, ATROPEN, ATROPINE SULFATE, BELLADONNA, BELLADONNA LEAF POWDER, BELLADONNA-OPIUM, BENTYL, BENZTROPINE MESYLATE, BEVESPI AEROSPHERE, BREZTRI AEROSPHERE, CHLORDIAZEPOXIDE-CLIDINIUM, CLIDINIUM BROMIDE, CUVPOSA, CYCLOPENTOLATE HCL, DARTISLA, DICYCLOMINE HCL, DIPHENOXYLATE-ATROPINE, DONNATAL, DUODOTE, ED-SPAZ, FLAVOXATE HCL, GLYCATE, GLYCOPYRROLATE, GLYCOPYRROLATE-STERILE WATER, GLYCOPYRROLATE-WATER, GLYRX-PF, HOMATROPINE METHYLBROMIDE, HYCODAN, HYDROCODONE-HOMATROPINE MBR, HYDROMET, HYOSCYAMINE SULFATE, HYOSCYAMINE SULFATE ER, HYOSCYAMINE SULFATE SR, HYOSYNE, ISOPROPAMIDE IODIDE, LEVBID, LEVSIN, LEVSIN-SL, LIBRAX, LOMOTIL, MB CAPS, ME-NAPHOS-MB-HYO 1, METHSCOPOLAMINE BROMIDE, MOTOFEN, NULEV, OSCIMIN, OSCIMIN SL, OXYBUTYNIN CHLORIDE, OXYBUTYNIN CHLORIDE ER, OXYTROL, PHENOBARBITAL-BELLADONNA, PHENOBARBITAL-HYOSC-ATROP-SCOP, PHENOHYTRO, PREVDUO, PROPANTHELINE BROMIDE, RESPA A.R., ROBINUL, ROBINUL FORTE, SCOPOLAMINE, SCOPOLAMINE HYDROBROMIDE, SCOPOLAMINE METHYL NITRATE, SYMAX, SYMAX DUOTAB, SYMAX-SL, SYMAX-SR, TRANSDERM-SCOP, TRIHEXYPHENIDYL HCL, TROPICAMIDE, URELLE, URETRON D-S, URIBEL TABS, URIMAR-T, URNEVA, URO-MP, URO-SP, UROGESIC-BLUE, URYL, YUPELRI |
Bupropion/Antipsychotics SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Both bupropion and the antipsychotics are known to lower the seizure threshold.(1,2) Bupropion is also a strong inhibitor of CYP2D6.(3) CLINICAL EFFECTS: Concurrent use of bupropion and an antipsychotic may result in additive effects on the seizure threshold, increasing the risk of seizures.(1,2) PREDISPOSING FACTORS: The risk of seizures may be increased in patients with a history of head trauma or prior seizure; CNS tumor; severe hepatic cirrhosis; excessive use of alcohol or sedatives; addiction to opiates, cocaine, or stimulants; use of over-the-counter stimulants an anorectics; a total daily dose of bupropion greater than 450 mg or single doses greater than 150 mg; rapid escalation of bupropion dosage; diabetics treated with oral hypoglycemics or insulin; or with concomitant medications known to lower seizure threshold (antidepressants, theophylline, systemic steroids).(1,2) The risk of anticholinergic toxicities including cognitive decline, delirium, falls and fractures is increased in geriatric patients using more than one medicine with anticholinergic properties.(3) PATIENT MANAGEMENT: The concurrent use of bupropion and antipsychotics should be undertaken only with extreme caution and with low initial bupropion dosing and small gradual dosage increases.(1,2) Single doses should not exceed 150 mg.(1,2) The maximum daily dose of bupropion should not exceed 300 mg for smoking cessation(2) or 450 mg for depression.(1) DISCUSSION: Because of the risk of seizure from concurrent bupropion and other agents that lower seizure threshold, the manufacturer of bupropion states that the concurrent use of bupropion and antipsychotics should be undertaken only with extreme caution and with low initial bupropion dosing and small gradual dosage increases.(1) |
APLENZIN, AUVELITY, BUPROPION HCL, BUPROPION HCL SR, BUPROPION XL, CONTRAVE, FORFIVO XL, WELLBUTRIN SR, WELLBUTRIN XL |
Barbiturates/Phenothiazines SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The concurrent administration of phenothiazines and barbiturates may result in additive CNS depressant effects. Some barbiturates may induce the metabolism of phenothiazines. Primidone is metabolized to phenobarbital. CLINICAL EFFECTS: Concurrent use of phenothiazines without barbiturate dosage adjustment may result in potentiation of CNS depression, which may result in hypotension, increased sedation, and respiratory depression. Phenothiazines do not intensify the anti-convulsant effects of barbiturates. Some barbiturates may reduce the effectiveness of phenothiazines. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Respiration and blood pressure should be closely monitored in patients receiving concurrent barbiturate and phenothiazine therapy. The dosage of the barbiturate may need to be adjusted in patients receiving barbiturates for indications other than anticonvulsant use. One US manufacturer of chlorpromazine recommends a barbiturate dosage reduction of one-fourth to one-half in patients receiving barbiturates for indications other than as an anticonvulsant. In patients taking barbiturates as an anticonvulsant, start chlorpromazine at a low dose and increase as needed. One US manufacturer of promethazine recommends a barbiturate dosage reduction by at least one one-half. DISCUSSION: A study in rats found increased sleeping time with concurrent chlorpromazine and pentobarbital. Another study in rats found an increase in pentobarbital concentrations with concurrent chlorpromazine. In a study in 10 subjects, the addition of phenobarbital to chlorpromazine therapy increased chlorpromazine excretion by 37%. In another study, the addition of phenobarbital decreased chlorpromazine levels. In a case report, the addition of phenobarbital to a patient maintained on chlorpromazine resulted in decreased chlorpromazine levels and effectiveness. In a study in patients, phenobarbital decreased thioridazine levels. In contrast, another study found increased thioridazine levels following the addition of phenobarbital and another found no affect on thioridazine levels but decreased mesoridazine levels. |
ASA-BUTALB-CAFFEINE-CODEINE, ASCOMP WITH CODEINE, BUTALB-ACETAMINOPH-CAFF-CODEIN, BUTALBITAL, BUTALBITAL-ACETAMINOPHEN, BUTALBITAL-ACETAMINOPHEN-CAFFE, BUTALBITAL-ASPIRIN-CAFFEINE, DONNATAL, FIORICET, FIORICET WITH CODEINE, MYSOLINE, PENTOBARBITAL SODIUM, PHENOBARBITAL, PHENOBARBITAL SODIUM, PHENOBARBITAL-BELLADONNA, PHENOBARBITAL-HYOSC-ATROP-SCOP, PHENOHYTRO, PRIMIDONE, SEZABY, TENCON |
Dextromethorphan/Selected SSRIs that Inhibit CYP2D6 SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Fluoxetine and paroxetine, strong inhibitors of CYP2D6, may inhibit the metabolism of dextromethorphan.(1-4) CLINICAL EFFECTS: Patients may experience increased adverse effects of dextromethorphan due to elevated systemic concentrations. Concomitant use of two or more serotonergic agents increases the risk for serotonin syndrome. Serotonin syndrome constitutes a range of toxicities from mild to life threatening.(5) Mild serotonin symptoms may include: shivering, diaphoresis, mydriasis, intermittent tremor, and/or myoclonus.(5) Moderate serotonin symptoms may include: tachycardia, hypertension, hyperthermia, mydriasis, diaphoresis, hyperactive bowel sounds, hyperreflexia, and/OR clonus.(5) Severe serotonin symptoms may include: severe hypertension and tachycardia, shock, agitated delirium, muscular rigidity, and/or hypertonicity.(5) PREDISPOSING FACTORS: Concurrent use of additional drugs which increase CNS serotonin levels would be expected to further increase risk for serotonin syndrome.(5) PATIENT MANAGEMENT: Monitor patients on multiple serotonergic agents for symptoms of serotonin toxicity. Patients in whom serotonin syndrome is suspected should receive immediate medical attention. If the interacting agents are prescribed by different providers, it would be prudent to assure that both are aware of concomitant therapy and monitoring the patient for serotonin toxicities. Advise patients not to exceed recommended dosages of dextromethorphan. If concurrent therapy is warranted, patients should be monitored for signs and symptoms of serotonin syndrome. Instruct patients to report muscle twitching, tremors, shivering and stiffness, fever, heavy sweating, heart palpitations, restlessness, confusion, agitation, trouble with coordination, or severe diarrhea. DISCUSSION: An open label parallel group trial evaluated the interaction between dextromethorphan-quinidine 30 mg-30 mg (higher than marketed strength of 20 mg-10 mg) and paroxetine 20 mg in 27 healthy volunteers with a mean age of 33.6 years. Subjects were randomly divided into 2 groups: - Group 1 received paroxetine 20 mg once daily for 12 days, followed by the addition of dextromethorphan-quinidine twice daily for 8 days. - Group 2 received dextromethorphan-quinidine twice daily for 8 days, followed by paroxetine 20 mg daily for 12 days. Results: overall, adverse effects were reported in 19 of 26 subjects who received combination therapy (73%) and 15 of 27 subjects who received monotherapy (56%). Adverse effects from the combination differed somewhat between groups and were more closely associated with the second drug product administered. Group 1 reported dizziness, headache, somnolence, euphoria, nausea, and vomiting after the addition of dextromethorphan-quinidine to paroxetine. Group 2 adverse events were dizziness, headache, nausea, vomiting, insomnia, anxiety, and hyperhidrosis after the addition of paroxetine to dextromethorphan.(1) Two weeks of fluoxetine therapy increased the area-under-curve (AUC) of dextromethorphan by 27-fold.(4) Serotonin syndrome has been reported in patients following the addition of dextromethorphan containing cough syrups to fluoxetine(6,7) and paroxetine.(8) |
FLUOXETINE DR, FLUOXETINE HCL, OLANZAPINE-FLUOXETINE HCL, PAROXETINE CR, PAROXETINE ER, PAROXETINE HCL, PAROXETINE MESYLATE, PAXIL, PAXIL CR, PROZAC |
Opioids (Extended Release)/Antipsychotics; Phenothiazines SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics with CNS depressants such as antipsychotics, including phenothiazine derivatives, to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
BUPRENORPHINE, BUTRANS, CONZIP, FENTANYL, HYDROCODONE BITARTRATE ER, HYDROMORPHONE ER, HYSINGLA ER, MORPHINE SULFATE ER, MS CONTIN, NUCYNTA ER, OXYCODONE HCL ER, OXYCONTIN, OXYMORPHONE HCL ER, TRAMADOL HCL ER, XTAMPZA ER |
Slt Opioids (Immediate Release)/Antipsychotics;Phenothiazine SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics with CNS depressants such as antipsychotics, including phenothiazine derivatives, to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
APADAZ, BELBUCA, BELLADONNA-OPIUM, BENZHYDROCODONE-ACETAMINOPHEN, BUPRENORPHINE HCL, BUTORPHANOL TARTRATE, DILAUDID, DSUVIA, DURAMORPH, ENDOCET, FENTANYL CITRATE, FENTANYL CITRATE-0.9% NACL, FENTANYL CITRATE-D5W, FENTANYL CITRATE-STERILE WATER, FENTANYL CITRATE-WATER, FENTANYL-BUPIVACAINE-0.9% NACL, FENTANYL-BUPIVACAINE-NACL, FENTANYL-ROPIVACAINE-0.9% NACL, FENTANYL-ROPIVACAINE-NACL, HYDROCODONE BITARTRATE, HYDROCODONE-ACETAMINOPHEN, HYDROCODONE-IBUPROFEN, HYDROMORPHONE HCL, HYDROMORPHONE HCL-0.9% NACL, HYDROMORPHONE HCL-D5W, HYDROMORPHONE HCL-NACL, HYDROMORPHONE HCL-WATER, INFUMORPH, MITIGO, MORPHINE SULFATE, MORPHINE SULFATE-0.9% NACL, MORPHINE SULFATE-NACL, NALBUPHINE HCL, NALOCET, NUCYNTA, OLINVYK, OPIUM TINCTURE, OXYCODONE HCL, OXYCODONE HYDROCHLORIDE, OXYCODONE-ACETAMINOPHEN, OXYMORPHONE HCL, PENTAZOCINE-NALOXONE HCL, PERCOCET, PRIMLEV, PROLATE, REMIFENTANIL HCL, ROXICODONE, ROXYBOND, SUFENTANIL CITRATE, ULTIVA |
Selected CYP2D6 Substrates/Desvenlafaxine SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Desvenlafaxine is considered a weak inhibitor of CYP2D6.(1) CLINICAL EFFECTS: Concurrent use of desvenlafaxine may lead to increased serum levels and adverse effects of drugs sensitive to inhibition of the CYP2D6 pathway.(1) Agents linked to this monograph are: atomoxetine, dapoxetine, deutetrabenazine, dextromethorphan, metoprolol, nebivolol, perphenazine, tolterodine, and yohimbine. PREDISPOSING FACTORS: With perphenazine and tolterodine, the risk of anticholinergic toxicities including cognitive decline, delirium, falls and fractures is increased in geriatric patients using more than one medicine with anticholinergic properties.(2) PATIENT MANAGEMENT: Reduce the dose of CYP2D6 substrates by up to one-half when coadministered with desvenlafaxine 400 mg.(1) Studies have shown that desvenlafaxine does not have a clinically relevant effect on CYP2D6 metabolism at the dose of 100 mg daily. CYP2D6 substrates should be dosed at the original level when coadministered with desvenlafaxine 100 mg or lower or when desvenlafaxine is discontinued.(1) DISCUSSION: In a study, coadministration of desvenlafaxine 100 mg daily with desipramine (single dose 50 mg) increased desipramine's maximum concentration (Cmax) and area-under-the-curve (AUC)by 25% and 17%.(1) In a study, coadministration of desvenlafaxine 400 mg daily with desipramine (single dose 50 mg) increased desipramine's maximum concentration (Cmax) and area-under-the-curve (AUC)by 50% and 90%.(1) Selected CYP2D6 substrates linked to this monograph are: atomoxetine, dapoxetine, deutetrabenazine, dextromethorphan, metoprolol, nebivolol, perphenazine, tolterodine, and yohimbine. |
DESVENLAFAXINE ER, DESVENLAFAXINE SUCCINATE ER, PRISTIQ |
Selected Opioids for MAT/Antipsychotics SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids and antipsychotics may result in additive CNS depression.(1-3) Levomethadone is an enantiomer of methadone.(4) CLINICAL EFFECTS: Concurrent use of opioids and other CNS depressants, such as antipsychotics, may result in profound sedation, respiratory depression, coma, and/or death.(1-3) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Medication assisted treatment (MAT) with buprenorphine, diacetylmorphine, or methadone is not contraindicated in patients taking CNS depressants; however, gradual tapering or decreasing to the lowest effective dose of the CNS depressant may be appropriate. Ensure that other health care providers prescribing other CNS depressants are aware of the patient's buprenorphine, diacetylmorphine, or methadone treatment.(2) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(5) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(6) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(7) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(8) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(9) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(10) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(11) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(12) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(13) |
BRIXADI, BUPRENORPHINE HCL, BUPRENORPHINE-NALOXONE, DISKETS, METHADONE HCL, METHADONE INTENSOL, METHADOSE, SUBLOCADE, SUBOXONE, ZUBSOLV |
Meperidine (Immediate Release)/Chlorpromazine; Promethazine SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids such as meperidine and antipsychotics such as chlorpromazine or phenothiazine derivatives such as promethazine may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids such as meperidine and antipsychotics such as chlorpromazine or phenothiazine derivatives such as promethazine may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics such as meperidine with CNS depressants such as chlorpromazine or promethazine to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
DEMEROL, MEPERIDINE HCL, MEPERIDINE HCL-0.9% NACL |
Codeine; Levorphanol (IR)/Slt Antipsychotics; Phenothiazines SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids such as codeine and levorphanol and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids such as codeine and levorphanol and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics such as codeine and levorphanol with CNS depressants such as antipsychotics, including phenothiazine derivatives, to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
ACETAMIN-CAFF-DIHYDROCODEINE, ACETAMINOPHEN-CODEINE, ASA-BUTALB-CAFFEINE-CODEINE, ASCOMP WITH CODEINE, BUTALB-ACETAMINOPH-CAFF-CODEIN, CARISOPRODOL-ASPIRIN-CODEINE, CODEINE PHOSPHATE, CODEINE SULFATE, DIHYDROCODEINE BITARTRATE, FIORICET WITH CODEINE, HYDROCODONE BITARTRATE, LEVORPHANOL TARTRATE, TREZIX |
Methadone (non MAT)/Selected Antipsychotics; Phenothiazines SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids such as methadone and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids such as methadone and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics such as methadone with CNS depressants such as antipsychotics, including phenothiazine derivatives, to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
METHADONE HCL, METHADONE HCL-0.9% NACL, METHADONE HCL-NACL |
Tramadol (IR)/Selected Antipsychotics; Phenothiazines SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids such as tramadol and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids such as tramadol and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics such as tramadol with CNS depressants such as antipsychotics, including phenothiazine derivatives, to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
QDOLO, TRAMADOL HCL, TRAMADOL HCL-ACETAMINOPHEN |
Apomorphine/Promethazine SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Apomorphine is used to treat Parkinson Disease (PD) by increasing dopamine concentrations at dopamine-2 (D2) receptors in the central nervous system (CNS). Antiemetic agents which block CNS D2 receptors, like promethazine, may counteract this effect.(1-2) CLINICAL EFFECTS: The efficacy of apomorphine may be decreased, leading to exacerbation of the disease being treated. In patients with Parkinson disease motor symptoms may worsen, increasing the risk for falls, dysphagia or aspiration.(2) PREDISPOSING FACTORS: Patients with Parkinson or Diffuse Lewy Body (DLB) disease are particularly susceptible to adverse effects of dopamine blockade by antipsychotics. PATIENT MANAGEMENT: The US manufacturer of apomorphine states that anti-emetics with anti-dopaminergic actions may worsen the symptoms of PD and should be avoided.(1) Reassess antiemetic therapy and use an antiemetic without dopamine (D2) blocking effects if possible. If clinically appropriate and available, consider the use of a 5-HT3 blocker (e.g., palonosetron).(1,2) If concomitant treatment is needed, monitor for loss of efficacy for PD and adjust medication(s) or dosage if needed.(1) Counsel patients to report symptoms of disease exacerbation. DISCUSSION: Patients with Parkinson or Diffuse Lewy Body(DLB) disease are particularly susceptible to adverse effects of dopamine blockade. Palonosetron may be used for nausea and vomiting.(2) Prescribing information for apomorphine warns of the risk for disease exacerbation when dopamine blocking agents are co-prescribed.(1) |
APOKYN, APOMORPHINE HCL, ONAPGO |
Dextromethorphan/Selected Serotonergic Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Dextromethorphan inhibits neuronal reuptake of serotonin. Concurrent administration with one or more serotonergic agents may increase serotonin effects, leading to serotonin toxicity.(1-11) CLINICAL EFFECTS: The concurrent use of dextromethorphan with serotonergic agents may increase the risk for serotonin syndrome. Serotonin syndrome constitutes a range of toxicities from mild to life threatening.(3) Mild serotonin symptoms may include: shivering, diaphoresis, mydriasis, intermittent tremor, and/or myoclonus.(3) Moderate serotonin symptoms may include: tachycardia, hypertension, hyperthermia, mydriasis, diaphoresis, hyperactive bowel sounds, hyperreflexia, and/OR clonus.(3) Severe serotonin symptoms may include: severe hypertension and tachycardia, shock, agitated delirium, muscular rigidity, and/or hypertonicity.(3) PREDISPOSING FACTORS: Concurrent use of additional drugs which increase CNS serotonin levels would be expected to further increase risk for serotonin syndrome.(1-11) PATIENT MANAGEMENT: Monitor patients on multiple serotonergic agents for symptoms of serotonin toxicity. Patients in whom serotonin syndrome is suspected should receive immediate medical attention. If the interacting agents are prescribed by different providers, it would be prudent to assure that both are aware of concomitant therapy and monitoring the patient for serotonin toxicities. Advise patients not to exceed recommended dosages of dextromethorphan. If concurrent therapy is warranted, patients should be monitored for signs and symptoms of serotonin syndrome. Instruct patients to report muscle twitching, tremors, shivering and stiffness, fever, heavy sweating, heart palpitations, restlessness, confusion, agitation, trouble with coordination, or severe diarrhea. DISCUSSION: Dextromethorphan inhibits neuronal reuptake of serotonin and may potentially precipitate dose-dependant serotonin toxicity in conjunction with other serotonergic agents.(4,5) Serotonin syndrome has been reported in patients following the addition of dextromethorphan containing cough syrups to duloxetine,(6) escitalopram,(7) fluoxetine,(8,9) paroxetine,(10) and sertraline.(11) Selected serotonergic agents linked to this monograph include: citalopram, clomipramine, duloxetine, escitalopram, fluvoxamine, imipramine, levomilnacipran, milnacipran, sertraline, venlafaxine, vilazodone and vortioxetine. |
ANAFRANIL, CELEXA, CITALOPRAM HBR, CLOMIPRAMINE HCL, CYMBALTA, DRIZALMA SPRINKLE, DULOXETINE HCL, DULOXICAINE, EFFEXOR XR, ESCITALOPRAM OXALATE, FETZIMA, FLUVOXAMINE MALEATE, FLUVOXAMINE MALEATE ER, IMIPRAMINE HCL, IMIPRAMINE PAMOATE, LEXAPRO, SAVELLA, SERTRALINE HCL, TRINTELLIX, VENLAFAXINE BESYLATE ER, VENLAFAXINE HCL, VENLAFAXINE HCL ER, VIIBRYD, VILAZODONE HCL, ZOLOFT |
Dextromethorphan/Selected Strong CYP2D6 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Strong inhibitors of CYP2D6 may inhibit the metabolism of dextromethorphan.(1-4) CLINICAL EFFECTS: Patients may experience increased adverse effects of dextromethorphan due to elevated systemic concentrations. Elevated levels of dextromethorphan or concomitant use of two or more serotonergic agents increases the risk for serotonin syndrome. Serotonin syndrome constitutes a range of toxicities from mild to life threatening.(5) Mild serotonin symptoms may include: shivering, diaphoresis, mydriasis, intermittent tremor, and/or myoclonus.(5) Moderate serotonin symptoms may include: tachycardia, hypertension, hyperthermia, mydriasis, diaphoresis, hyperactive bowel sounds, hyperreflexia, and/OR clonus.(5) Severe serotonin symptoms may include: severe hypertension and tachycardia, shock, agitated delirium, muscular rigidity, and/or hypertonicity.(5) PREDISPOSING FACTORS: Concurrent use of additional drugs which increase CNS serotonin levels would be expected to further increase risk for serotonin syndrome.(5) PATIENT MANAGEMENT: Monitor patients for elevated dextromethorphan levels or on multiple serotonergic agents for symptoms of serotonin toxicity. Patients in whom serotonin syndrome is suspected should receive immediate medical attention. If the interacting agents are prescribed by different providers, it would be prudent to assure that both are aware of concomitant therapy and monitoring the patient for serotonin toxicities. Advise patients not to exceed recommended dosages of dextromethorphan. If concurrent therapy is warranted, patients should be monitored for signs and symptoms of serotonin syndrome. Instruct patients to report muscle twitching, tremors, shivering and stiffness, fever, heavy sweating, heart palpitations, restlessness, confusion, agitation, trouble with coordination, or severe diarrhea. DISCUSSION: An open label parallel group trial evaluated the interaction between dextromethorphan-quinidine 30 mg-30 mg (higher than marketed strength of 20 mg-10 mg) and paroxetine 20 mg in 27 healthy volunteers with a mean age of 33.6 years. Subjects were randomly divided into 2 groups: - Group 1 received paroxetine 20 mg once daily for 12 days, followed by the addition of dextromethorphan-quinidine twice daily for 8 days. - Group 2 received dextromethorphan-quinidine twice daily for 8 days, followed by paroxetine 20 mg daily for 12 days. Results: overall, adverse effects were reported in 19 of 26 subjects who received combination therapy (73%) and 15 of 27 subjects who received monotherapy (56%). Adverse effects from the combination differed somewhat between groups and were more closely associated with the second drug product administered. Group 1 reported dizziness, headache, somnolence, euphoria, nausea, and vomiting after the addition of dextromethorphan-quinidine to paroxetine. Group 2 adverse events were dizziness, headache, nausea, vomiting, insomnia, anxiety, and hyperhidrosis after the addition of paroxetine to dextromethorphan.(1) Two weeks of fluoxetine therapy increased the area-under-curve (AUC) of dextromethorphan by 27-fold.(4) Serotonin syndrome has been reported in patients following the addition of dextromethorphan containing cough syrups to fluoxetine(6,7) and paroxetine.(8) Selected strong CYP2D6 inhibitors linked to this monograph include: bupropion, dacomitinib, hydroquinidine, quinidine, and terbinafine.(8) |
APLENZIN, AUVELITY, BUPROPION HCL, BUPROPION HCL SR, BUPROPION XL, CONTRAVE, FORFIVO XL, NUEDEXTA, QUINIDINE GLUCONATE, QUINIDINE SULFATE, TERBINAFINE HCL, VIZIMPRO, WELLBUTRIN SR, WELLBUTRIN XL |
Ziprasidone/Serotonergic Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Ziprasidone is a 5-HT1A agonist and serotonin and norepinephrine reuptake inhibitor. Concurrent administration with one or more serotonergic agents may increase serotonin effects, resulting in serotonin toxicity.(1,2) CLINICAL EFFECTS: Concurrent use of ziprasidone and other serotonergic agents may result in serotonin syndrome, a potentially life-threatening condition with symptoms including altered mental status, hypertension, restlessness, myoclonus, hyperthermia, hyperreflexia, diaphoresis, shivering, and tremor.(1) PREDISPOSING FACTORS: Serotonin syndrome risk is dose-related. Higher systemic concentrations of either drug would be predicted to increase risk for serotonin toxicity.(2) Concomitant therapy with multiple agents which increase brain serotonin concentrations may also increase risk for serotonin syndrome.(2) PATIENT MANAGEMENT: Caution patients about the risk of serotonin syndrome with the concomitant use of ziprasidone with other serotonergic drugs. Instruct patients to contact their healthcare provider, or report to the emergency room, should they experience signs or symptoms of serotonin syndrome.(1) DISCUSSION: Several cases of serotonin syndrome have been reported in patients receiving ziprasidone.(4-6) |
GEODON, ZIPRASIDONE HCL, ZIPRASIDONE MESYLATE |
The following contraindication information is available for PROMETHAZINE-DM (promethazine hcl/dextromethorphan hbr):
Drug contraindication overview.
No enhanced Contraindications information available for this drug.
No enhanced Contraindications information available for this drug.
There are 3 contraindications.
Absolute contraindication.
Contraindication List |
---|
Coma |
Neuroleptic malignant syndrome |
Parkinsonism |
There are 10 severe contraindications.
Adequate patient monitoring is recommended for safer drug use.
Severe List |
---|
Angle-closure glaucoma |
Benign prostatic hyperplasia |
Bladder outflow obstruction |
Chronic idiopathic constipation |
Chronic obstructive pulmonary disease |
Pyloroduodenal obstruction |
Respiratory depression |
Sleep apnea |
Stenosing peptic ulcer |
Systemic mastocytosis |
There are 6 moderate contraindications.
Clinically significant contraindication, where the condition can be managed or treated before the drug may be given safely.
Moderate List |
---|
Bone marrow depression |
Disease of liver |
Gastrointestinal obstruction |
Hyperbilirubinemia |
Lower seizure threshold |
Seizure disorder |
The following adverse reaction information is available for PROMETHAZINE-DM (promethazine hcl/dextromethorphan hbr):
Adverse reaction overview.
No enhanced Common Adverse Effects information available for this drug.
No enhanced Common Adverse Effects information available for this drug.
There are 28 severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Hypotension Tachycardia |
None. |
Rare/Very Rare |
---|
Agranulocytosis Anaphylaxis Angioedema Anticholinergic toxicity Apnea Asthma Bradycardia Delirium Dissociation Extrapyramidal disease Hallucinations Hypertension Jaundice Leukopenia Neuroleptic malignant syndrome Obstructive hyperbilirubinemia Oculogyric crisis Paralytic ileus Prolonged QT interval Respiratory depression Seizure disorder Thrombocytopenic disorder Thrombotic thrombocytopenic purpura Urinary retention Urticaria Vomiting |
There are 39 less severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Acute cognitive impairment Blurred vision Dizziness Drowsy Excitement Irritability Nervousness Nightmares Skin photosensitivity Skin rash Thick bronchial secretions Tinnitus Visual changes Xerostomia |
Hyperhidrosis Nasal congestion Sedation Syncope |
Rare/Very Rare |
---|
Abdominal pain with cramps Accidental fall Acquired dystonia Anorexia Anticholinergic toxicity Ataxia Constipation Diplopia Dizziness Drowsy Dysuria Euphoria Fatigue Headache disorder Insomnia Muscle spasm Nausea Restless leg syndrome Skin inflammation Tremor Vomiting |
The following precautions are available for PROMETHAZINE-DM (promethazine hcl/dextromethorphan hbr):
No enhanced Pediatric Use information available for this drug.
Contraindicated
Severe Precaution
Management or Monitoring Precaution
Contraindicated
None |
Severe Precaution
None |
Management or Monitoring Precaution
None |
Safe use of promethazine during pregnancy (except during labor) with respect to possible adverse effects on fetal development has not been established. Although there are no adequate and controlled studies to date in humans, promethazine has not been shown to be teratogenic in rats receiving oral dosages of 6.25-12.5
mg/kg daily (about 2.1-4.2 times the maximum recommended human dosage, depending on the use of the drug). The drug has been shown to produce fetal mortality in rats receiving intraperitoneal dosages of 25 mg/kg daily. Antihistamines, including promethazine, have been fetocidal in rodents, but the pharmacologic effects of histamine in rodents differ from those in humans.
Promethazine has been reported to possibly ameliorate the effects of hemolytic disease of the newborn+ (erythroblastosis fetalis) when administered during pregnancy in Rh-sensitized women, but the safety and efficacy of the drug for this use have not been clearly established; other methods of management are preferred. Promethazine should be used during pregnancy only when the potential benefits justify the possible risks to the fetus.
mg/kg daily (about 2.1-4.2 times the maximum recommended human dosage, depending on the use of the drug). The drug has been shown to produce fetal mortality in rats receiving intraperitoneal dosages of 25 mg/kg daily. Antihistamines, including promethazine, have been fetocidal in rodents, but the pharmacologic effects of histamine in rodents differ from those in humans.
Promethazine has been reported to possibly ameliorate the effects of hemolytic disease of the newborn+ (erythroblastosis fetalis) when administered during pregnancy in Rh-sensitized women, but the safety and efficacy of the drug for this use have not been clearly established; other methods of management are preferred. Promethazine should be used during pregnancy only when the potential benefits justify the possible risks to the fetus.
It is not known whether promethazine is distributed into milk. Because many drugs are distributed in human milk and because of the potential for serious adverse reactions to promethazine in nursing infants if it were distributed, a decision should be made whether to discontinue nursing or the drug, taking into account the importance of the drug to the woman.
No enhanced Geriatric Use information available for this drug.
The following prioritized warning is available for PROMETHAZINE-DM (promethazine hcl/dextromethorphan hbr):
WARNING: Promethazine should not be used by children younger than 2 years since it might cause serious (possibly fatal) slow/shallow breathing. This problem has occurred even with normal doses in this age group. The lowest effective dosage should be used, and other drugs that affect breathing should be avoided.
Get medical help right away in the unlikely event that slow/shallow breathing occurs. Promethazine should not be used by children with liver disease (including possible Reyes syndrome).
WARNING: Promethazine should not be used by children younger than 2 years since it might cause serious (possibly fatal) slow/shallow breathing. This problem has occurred even with normal doses in this age group. The lowest effective dosage should be used, and other drugs that affect breathing should be avoided.
Get medical help right away in the unlikely event that slow/shallow breathing occurs. Promethazine should not be used by children with liver disease (including possible Reyes syndrome).
The following icd codes are available for PROMETHAZINE-DM (promethazine hcl/dextromethorphan hbr)'s list of indications:
Allergic rhinitis | |
J30.1 | Allergic rhinitis due to pollen |
J30.2 | Other seasonal allergic rhinitis |
J30.5 | Allergic rhinitis due to food |
J30.8 | Other allergic rhinitis |
J30.81 | Allergic rhinitis due to animal (cat) (dog) hair and dander |
J30.89 | Other allergic rhinitis |
J30.9 | Allergic rhinitis, unspecified |
Cold symptoms | |
J00 | Acute nasopharyngitis [common cold] |
Cough | |
R05 | Cough |
R05.1 | Acute cough |
R05.2 | Subacute cough |
R05.3 | Chronic cough |
R05.9 | Cough, unspecified |
Nasal congestion | |
R09.81 | Nasal congestion |
Rhinorrhea | |
R09.82 | Postnasal drip |
Formulary Reference Tool