Please wait while the formulary information is being retrieved.
Drug overview for QUETIAPINE FUMARATE ER (quetiapine fumarate):
Generic name: QUETIAPINE FUMARATE (kweh-TIE-ah-peen)
Drug class: Antipsychotics
Therapeutic class: Central Nervous System Agents
Quetiapine fumarate is considered an atypical or second-generation antipsychotic agent.
No enhanced Uses information available for this drug.
Generic name: QUETIAPINE FUMARATE (kweh-TIE-ah-peen)
Drug class: Antipsychotics
Therapeutic class: Central Nervous System Agents
Quetiapine fumarate is considered an atypical or second-generation antipsychotic agent.
No enhanced Uses information available for this drug.
DRUG IMAGES
- QUETIAPINE ER 150 MG TABLET
- QUETIAPINE ER 200 MG TABLET
- QUETIAPINE ER 300 MG TABLET
- QUETIAPINE ER 400 MG TABLET
- QUETIAPINE ER 50 MG TABLET
The following indications for QUETIAPINE FUMARATE ER (quetiapine fumarate) have been approved by the FDA:
Indications:
Bipolar disorder
Depression associated with bipolar disorder
Major depressive disorder treatment adjunct
Schizophrenia
Professional Synonyms:
Adjunctive treatment of major depressive disorder
Augmentation therapy for major depressive disorder
Bipolar affective disorder
Bipolar affective illness
Bipolar mood disorder
Dementia praecox
Depression associated with bipolar affective disorder
Depression associated with manic depressive disorder
Depressive episode associated with bipolar disorder
Depressive phase of bipolar disorder
Major depressive disorder treatment augmentation
Manic-depressive illness
Parergasia
Indications:
Bipolar disorder
Depression associated with bipolar disorder
Major depressive disorder treatment adjunct
Schizophrenia
Professional Synonyms:
Adjunctive treatment of major depressive disorder
Augmentation therapy for major depressive disorder
Bipolar affective disorder
Bipolar affective illness
Bipolar mood disorder
Dementia praecox
Depression associated with bipolar affective disorder
Depression associated with manic depressive disorder
Depressive episode associated with bipolar disorder
Depressive phase of bipolar disorder
Major depressive disorder treatment augmentation
Manic-depressive illness
Parergasia
The following dosing information is available for QUETIAPINE FUMARATE ER (quetiapine fumarate):
Dosage of quetiapine fumarate is expressed in terms of quetiapine and must be carefully adjusted according to individual requirements and response, using the lowest possible effective dosage.
Higher maintenance dosages of quetiapine may be required in patients receiving the antipsychotic drug concomitantly with phenytoin or other hepatic enzyme-inducing agents (e.g., carbamazepine, barbiturates, rifampin, glucocorticoids), and an increase in the maintenance dosage of quetiapine may be required to reestablish efficacy in patients receiving such concomitant therapy. (See Drug Interactions: Drugs Affecting Hepatic Microsomal Enzymes and also Phenytoin.)
Patients receiving quetiapine should be monitored for possible worsening of depression, suicidality, or unusual changes in behavior, especially at the beginning of therapy or during periods of dosage adjustments. (See Worsening of Depression and Suicidality Risk under Warnings/Precautions: Warnings, in Cautions.)
The manufacturer states that if quetiapine therapy is reinitiated after a drug-free period of less than 1 week, dosage titration is not necessary. However, if quetiapine therapy is reinitiated after a drug-free period exceeding 1 week, dosage generally should be titrated as with initial therapy.
Higher maintenance dosages of quetiapine may be required in patients receiving the antipsychotic drug concomitantly with phenytoin or other hepatic enzyme-inducing agents (e.g., carbamazepine, barbiturates, rifampin, glucocorticoids), and an increase in the maintenance dosage of quetiapine may be required to reestablish efficacy in patients receiving such concomitant therapy. (See Drug Interactions: Drugs Affecting Hepatic Microsomal Enzymes and also Phenytoin.)
Patients receiving quetiapine should be monitored for possible worsening of depression, suicidality, or unusual changes in behavior, especially at the beginning of therapy or during periods of dosage adjustments. (See Worsening of Depression and Suicidality Risk under Warnings/Precautions: Warnings, in Cautions.)
The manufacturer states that if quetiapine therapy is reinitiated after a drug-free period of less than 1 week, dosage titration is not necessary. However, if quetiapine therapy is reinitiated after a drug-free period exceeding 1 week, dosage generally should be titrated as with initial therapy.
Quetiapine fumarate is administered orally. While food reportedly can marginally increase the peak concentration and oral bioavailability of quetiapine, the drug generally can be administered without regard to meals.
DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
---|---|---|
QUETIAPINE ER 50 MG TABLET | Maintenance | Adults take 1 tablet (50 mg) by oral route once daily in the evening without food or with a light meal |
QUETIAPINE ER 150 MG TABLET | Maintenance | Adults take 1 tablet (150 mg) by oral route once daily in the evening without food or with a light meal |
QUETIAPINE ER 200 MG TABLET | Maintenance | Adults take 1 tablet (200 mg) by oral route once daily in the evening without food or with a light meal |
QUETIAPINE ER 300 MG TABLET | Maintenance | Adults take 1 tablet (300 mg) by oral route once daily in the evening without food or with a light meal |
QUETIAPINE ER 400 MG TABLET | Maintenance | Adults take 1 tablet (400 mg) by oral route once daily in the evening without food or with a light meal |
DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
---|---|---|
QUETIAPINE ER 50 MG TABLET | Maintenance | Adults take 1 tablet (50 mg) by oral route once daily in the evening withoutfood or with a light meal |
QUETIAPINE ER 150 MG TABLET | Maintenance | Adults take 1 tablet (150 mg) by oral route once daily in the evening without food or with a light meal |
QUETIAPINE ER 200 MG TABLET | Maintenance | Adults take 1 tablet (200 mg) by oral route once daily in the evening without food or with a light meal |
QUETIAPINE ER 300 MG TABLET | Maintenance | Adults take 1 tablet (300 mg) by oral route once daily in the evening without food or with a light meal |
QUETIAPINE ER 400 MG TABLET | Maintenance | Adults take 1 tablet (400 mg) by oral route once daily in the evening without food or with a light meal |
The following drug interaction information is available for QUETIAPINE FUMARATE ER (quetiapine fumarate):
There are 2 contraindications.
These drug combinations generally should not be dispensed or administered to the same patient. A manufacturer label warning that indicates the contraindication warrants inclusion of a drug combination in this category, regardless of clinical evidence or lack of clinical evidence to support the contraindication.
Drug Interaction | Drug Names |
---|---|
Iomeprol/Neuroleptics SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Neuroleptics may lower seizure threshold.(1) CLINICAL EFFECTS: Use of iomeprol in a patient receiving a neuroleptic may increase the risk of seizure.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of iomeprol states that neuroleptics should be discontinued 48 hours before iomeprol use. Treatment with a neuroleptic should not be resumed until 24 hours post-procedure.(1) DISCUSSION: Because neuroleptics may lower seizure threshold, neuroleptics should be discontinued 48 hours before iomeprol use. Treatment with a neuroleptic should not be resumed until 24 hours post-procedure.(1) |
IOMERON 350 |
Sensitive CYP3A4 Substrates that Prolong QT/Oral Lefamulin SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Oral lefamulin is a moderate CYP3A4 inhibitor and may inhibit the metabolism of CYP3A4 substrates. Also, concurrent use of lefamulin with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: Concurrent use of oral lefamulin with drugs sensitive to inhibition of the CYP3A4 pathway may lead to increased serum levels and adverse effects, including potentially life-threatening cardiac arrhythmias like torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) With pimozide, the risk of anticholinergic toxicities including cognitive decline, delirium, falls and fractures is increased in geriatric patients using more than one medicine with anticholinergic properties.(3) PATIENT MANAGEMENT: The combination of oral lefamulin with sensitive CYP3A4 substrates that prolong the QTc interval is contraindicated.(1) When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy. Correct any electrolyte abnormalities.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a thorough QT study, intravenous lefamulin increased the QTcF 13.6 msec (90% CI = 15.5 msec) and oral lefamulin increased the QTcF by 9.3 msec (90% CI = 10.9 msec).(1) In a study, oral lefamulin tablets administered concomitantly with and at 2 or 4 hours before oral midazolam (a CYP3A4 substrate) increased the area-under-curve (AUC) and maximum concentration (Cmax) of midazolam by 200% and 100%, respectively. No clinically significant effect on midazolam pharmacokinetics was observed when co-administered with lefamulin injection.(1) Sensitive CYP3A4 substrates that prolong the QTc interval linked to this monograph include: bosutinib, dasatinib, dronedarone, eliglustat, entrectinib, gepirone, ivabradine, levomethadyl, lumefantrine, midostaurin, mobocertinib, pimozide, quetiapine, saquinavir, tacrolimus, and terfenadine.(4-6) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(6) |
XENLETA |
There are 20 severe interactions.
These drug interactions can produce serious consequences in most patients. Actions required for severe interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration scheduling, and providing additional patient monitoring. Review the full interaction monograph for more information.
Drug Interaction | Drug Names |
---|---|
Cabergoline/Selected Dopamine Blockers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Dopamine (D2) blockers such as the phenothiazines, butyrophenones, thioxanthenes and atypical antipsychotics may decrease the effects of cabergoline, a dopamine agonist.(1) CLINICAL EFFECTS: Concurrent administration of cabergoline with dopamine blockers (e.g. phenothiazines, butyrophenones, or thio xanthines) may decrease the effectiveness of cabergoline.(1) Cabergoline may decrease the effectiveness of antipsychotic treatment. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of cabergoline states cabergoline(1) should not be administered concurrently with dopamine antagonists. Avoid concurrent use when possible. If cabergoline is started in a patient receiving long term antipsychotic treatment, monitor closely for loss of antipsychotic efficacy. If an antipsychotic is required for a patient on long term cabergoline therapy, consider use of a shorter half-life, less potent dopamine (D2) blocking atypical antipsychotic (e.g. clozapine, quetiapine) and monitor closely. DISCUSSION: The manufacturer of cabergoline state that it should not be administered concurrently with dopamine antagonists. |
CABERGOLINE |
Pimozide/Possible QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Pimozide has shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of pimozide with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The manufacturer of pimozide states that the use of pimozide is contraindicated in patients taking other drugs which prolong the QT interval.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have been associated with torsades de pointes and/or QT prolongation but at this time lack substantial evidence for causing torsades de pointes.(2) One or more of the drug pairs linked to this monograph have been included in a list of interactions that should be considered "high-priority" for inclusion and should not be inactivated in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
PIMOZIDE |
Droperidol/Possible QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Droperidol has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of droperidol with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: Congestive heart failure, bradycardia, use of a diuretic, cardiac hypertrophy, hypokalemia, hypomagnesemia, age over 65 years, alcohol abuse, and the use of agents such as benzodiazepines, volatile anesthetics, and intravenous opiates may predispose patients to the development of prolonged QT syndrome.(1) The risk of QT prolongation or torsade de pointes may also be increased in patients with cardiovascular disease (e.g. myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypocalcemia, or female gender.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The manufacturer of droperidol states under precautions/drug interactions that drugs known to have the potential to prolong the QT interval should not be used together with droperidol.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have been associated with torsades de pointes and/or QT prolongation but at this time lack substantial evidence for causing torsades de pointes.(2) One or more of the drug pairs linked to this monograph have been included in a list of interactions that should be considered "high-priority" for inclusion and should not be inactivated in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
DROPERIDOL |
Ziprasidone/Selected QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ziprasidone has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of ziprasidone with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(1,3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The manufacturer of ziprasidone states under contraindications that ziprasidone should not be used with other drugs that prolong the QT interval such as dofetilide, sotalol, quinidine, other Class Ia and III anti-arrhythmics, mesoridazine, thioridazine, chlorpromazine, droperidol, pimozide, sparfloxacin, gatifloxacin, moxifloxacin, halofantrine, mefloquine, pentamidine, arsenic trioxide, levomethadyl acetate, dolasetron mesylate, probucol or tacrolimus.(1) It would be prudent to avoid the use of ziprasidone with medicines suspected of prolonging the QT interval. If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
GEODON, ZIPRASIDONE HCL, ZIPRASIDONE MESYLATE |
Disopyramide/Possible QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of disopyramide and agents known to prolong the QT interval may result in additive or synergistic effects on the QTc interval.(1) CLINICAL EFFECTS: Concurrent administration may result in prolongation of the QTc interval and life-threatening cardiac arrhythmias, including torsades de pointes. PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The Australian manufacturer of disopyramide states that concurrent use with agents liable to produce torsades de pointes, including tricyclic or tetracyclic antidepressants, erythromycin, vincamine, and sultopride, is contraindicated.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have been associated with torsades de pointes and/or QT prolongation but at this time lack substantial evidence for causing torsades de pointes.(3) One or more of the drug pairs linked to this monograph have been included in a list of interactions that should be considered "high-priority" for inclusion and should not be inactivated in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
DISOPYRAMIDE PHOSPHATE, NORPACE, NORPACE CR |
Artemether-Lumefantrine/Possible QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of artemether-lumefantrine and agents known to prolong the QT interval may result in additive or synergistic effects on the QTc interval.(1) CLINICAL EFFECTS: Concurrent administration may result in prolongation of the QTc interval and life-threatening cardiac arrhythmias, including torsades de pointes. PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: The UK manufacturer of artemether-lumefantrine states that the use of artemether-lumefantrine in patients taking drugs that are known to prolong the QTc interval is contraindicated. These agents include class IA and III antiarrhythmics; neuroleptics; antidepressive agents; some macrolides, fluoroquinolones, imidazole and triazole antifungals; terfenadine; astemizole; and cisapride.(1) The US manufacturer of artemether-lumefantrine states that the use of artemether-lumefantrine should be avoided in patients taking drugs that are known to prolong the QTc interval. These agents include class IA and III antiarrhythmics; neuroleptics; antidepressive agents; some macrolides, fluoroquinolones, imidazole and triazole antifungals; terfenadine; astemizole; and cisapride.(2) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
COARTEM |
Metoclopramide/Antipsychotics; Phenothiazines; Rivastigmine SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: These agents block dopamine (D2) receptors. D2 blockade can cause extrapyramidal reactions, such acute dystonic reactions, pseudoparkinsonian tremors, akathisia, or tardive dyskinesia. Neuroleptic malignant syndrome may also occur in patients receiving D2 blockers. The risk of these adverse effects may be increased by concurrent use.(1-3) CLINICAL EFFECTS: Concurrent use may increase the risk of extrapyramidal reactions (e.g. acute dystonic reactions, pseudoparkinsonian tremors, akathisia, or tardive dyskinesia) and neuroleptic malignant syndrome. Tardive dyskinesia, which may be permanent, typically affects the facial muscles and may result in uncontrollable lip smacking, chewing, puckering of the mouth, frowning or scowling, sticking out the tongue, blinking and moving the eyes, and shaking of the arms and/or legs.(1-3) Symptoms of neuroleptic malignant syndrome include hyperpyrexia, muscle rigidity, altered mental status, an autonomic instability (irregular pulse or blood pressure, tachycardia, diaphoresis, and cardiac arrhythmias), elevated creatine phosphokinase, myoglobinuria (rhabdomyolysis), and acute renal failure.(1) PREDISPOSING FACTORS: Patients with Parkinson's or Lewy Body Disease may be more likely to have extrapyramidal reactions or unmasking of their primary disease symptoms. The risk of extrapyramidal symptoms is also increased in patients on metoclopramide for longer than 12 weeks. Elderly patients, especially elderly women, and diabetics are at higher risk of developing tardive dyskinesia. Other extrapyramidal symptoms, like acute dystonia, have occurred more frequently in patients younger than 30 years old.(1) PATIENT MANAGEMENT: The concurrent use of metoclopramide and agents likely to cause extrapyramidal reactions should be avoided.(1) If concurrent use is warranted, monitor patients closely for extrapyramidal reactions and neuroleptic malignant syndrome. The manufacturer of metoclopramide says to avoid treatment with metoclopramide for longer than 12 weeks, and to use the lowest possible dose.(1) Discontinue therapy if symptoms occur. Instruct patients to seek immediate medical attention if symptoms develop. Symptoms of extrapyramidal reactions, including tardive dyskinesia, include involuntary movements of limbs and facial grimacing, torticollis, oculogyric crisis, rhythmic protrusion of the tongue, bulbar type of speech, trismus, and/or dystonic reactions resembling tetanus/stridor/dyspnea.(3) DISCUSSION: Both metoclopramide and phenothiazines can cause extrapyramidal reactions, such as tardive dyskinesia, and neuroleptic malignant syndrome. The risk may be increased by concurrent use.(1,2) Extrapyramidal symptoms have been reported with concurrent metoclopramide and neuroleptics, prochlorperazine, and chlorpromazine.(4-6) |
GIMOTI, METOCLOPRAMIDE HCL, REGLAN |
Quetiapine/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The use of quetiapine in patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The US manufacturer of quetiapine states that concurrent use with agents known to prolong the QT interval should be avoided.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Although quetiapine was not associated with QT or QTc changes in clinical trials, QT prolongation has been reported in post-marketing reports in conjunction with the use of other agents known to prolong the QT interval.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(2) |
ADLARITY, AMIODARONE HCL, AMIODARONE HCL-D5W, ARICEPT, ARSENIC TRIOXIDE, AVELOX IV, AZITHROMYCIN, BETAPACE, BETAPACE AF, CAPRELSA, CELEXA, CESIUM CHLORIDE, CHLOROQUINE PHOSPHATE, CHLORPROMAZINE HCL, CILOSTAZOL, CIPRO, CIPROFLOXACIN, CIPROFLOXACIN HCL, CIPROFLOXACIN-D5W, CITALOPRAM HBR, CORVERT, DIPRIVAN, DOFETILIDE, DONEPEZIL HCL, DONEPEZIL HCL ODT, ESCITALOPRAM OXALATE, FLECAINIDE ACETATE, GATIFLOXACIN SESQUIHYDRATE, HYDROXYCHLOROQUINE SULFATE, IBUTILIDE FUMARATE, LEVOFLOXACIN, LEVOFLOXACIN HEMIHYDRATE, LEVOFLOXACIN-D5W, LEXAPRO, MEMANTINE HCL-DONEPEZIL HCL ER, MOXIFLOXACIN, MOXIFLOXACIN HCL, NAMZARIC, NEXTERONE, NUEDEXTA, OXALIPLATIN, PACERONE, PENTAM 300, PENTAMIDINE ISETHIONATE, PLAQUENIL, PROCAINAMIDE HCL, PROPOFOL, QUINIDINE GLUCONATE, QUINIDINE SULFATE, REVUFORJ, SEVOFLURANE, SOTALOL, SOTALOL AF, SOTALOL HCL, SOTYLIZE, SOVUNA, THIORIDAZINE HCL, THIORIDAZINE HYDROCHLORIDE, TIKOSYN, TRISENOX, ULTANE, VANFLYTA, ZITHROMAX, ZITHROMAX TRI-PAK |
Sodium Oxybate/Agents that May Cause Respiratory Depression SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Oxybate by itself may be associated with severe somnolence or respiratory depression. Concurrent use with other CNS depressants may further increase the risk for respiratory depression or loss of consciousness.(1-3) CLINICAL EFFECTS: Concurrent use of sodium oxybate and sedative hypnotics or alcohol may further increase the risk for profound sedation, respiratory depression, coma, and/or death.(1,2) Fatalities have been reported.(3) PREDISPOSING FACTORS: Based upon FDA evaluation of deaths in patients taking sodium oxybate, risk factors may include: use of multiple drugs which depress the CNS, more rapid than recommended oxybate dose titration, exceeding the maximum recommended oxybate dose, and prescribing for unapproved uses such as fibromyalgia, insomnia or migraine. Note that in oxybate clinical trials for narcolepsy 78% - 85% of patients were also receiving concomitant CNS stimulants.(1-3) PATIENT MANAGEMENT: Avoid use of concomitant opioids, benzodiazepines, sedating antidepressants, sedating antipsychotics, general anesthetics, or muscle relaxants, particularly when predisposing risk factors are present. If combination use is required, dose reduction or discontinuation of one or more CNS depressants should be considered. If short term use of an opioid or general anesthetic is required, consider interruption of sodium oxybate treatment.(1,2) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(4) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(5) DISCUSSION: The FDA evaluated sodium oxybate postmarket fatal adverse event reports from the FDA Adverse Event Reporting System(AERS)and from the manufacturer. Although report documentation was not always optimal or complete, useful information was obtained. Factors which may have contributed to fatal outcome: concomitant use of one or more drugs which depress the CNS, more rapid than recommended oxybate dose titration, exceeding the maximum recommended oxybate dose, and prescribing for unapproved uses such as fibromyalgia, insomnia or migraine. Many deaths occurred in patients with serious psychiatric disorders such as depression and substance abuse. Other concomitant diseases may have also contributed to respiratory and CNS depressant effects of oxybate.(3) |
LUMRYZ, LUMRYZ STARTER PACK, SODIUM OXYBATE, XYREM, XYWAV |
Quetiapine/Strong CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Strong CYP3A4 inhibitors may inhibit the metabolism of quetiapine. Quetiapine is a sensitive substrate for CYP3A4 and so an approximately 5-fold or higher increase in exposure (AUC, area-under-curve) can be anticipated when it is given with a strong CYP3A4 inhibitor.(1-4) CLINICAL EFFECTS: Concurrent use of a strong CYP3A4 inhibitor may result in elevated levels of and toxicity from quetiapine, including potentially life-threatening cardiac arrhythmias, such as torsades de pointes.(2-4) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(5) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(5) PATIENT MANAGEMENT: If possible, avoid the use of strong CYP3A4 inhibitors with quetiapine.(2-4) If addition of concomitant therapy with a strong CYP3A4 inhibitor is required, US manufacturers state the quetiapine dose should be reduced to 1/6th of the original dose. When the inhibitor is discontinued, return to the original quetiapine dose.(2,4) The UK manufacturer states the concurrent use of quetiapine with strong CYP3A4 inhibitors is contraindicated.(4) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, fainting, excessive drowsiness, rapid pulse/hypotension, weakness, fatigue, dizziness, or muscle stiffness/tremors (EPS). Monitor patients when strong inhibitors of CYP3A4 are co-prescribed with quetiapine as the magnitude of the interaction is highly variable between patients. Use of higher doses of either the CYP3A4 inhibitor or quetiapine are other factors which may affect the magnitude of this interaction. Decrease the quetiapine dose if needed. DISCUSSION: In a study, concurrent use of ketoconazole (200 mg daily for 4 days, a strong inhibitor of CYP3A4) and quetiapine resulted in an increase in quetiapine Cmax and AUC by 3.35-fold and 6.2-fold, respectively. Ketoconazole also decreased the mean apparent oral clearance of quetiapine by 84%, and increased quetiapine mean elimination half-life by 2.6-fold.(2,6) Although quetiapine was not associated with QT or QTc changes in clinical trials, QT prolongation has been reported in post-marketing reports in conjunction with the use of other agents known to prolong the QT interval.(2) Strong inhibitors of CYP3A4 include: boceprevir, cobicistat, idelalisib, itraconazole, josamycin, ketoconazole, mibefradil, mifepristone, nefazodone, telaprevir, troleandomycin, and tucatinib.(7) |
GENVOYA, ITRACONAZOLE, ITRACONAZOLE MICRONIZED, KETOCONAZOLE, KORLYM, MIFEPREX, MIFEPRISTONE, NEFAZODONE HCL, SPORANOX, STRIBILD, TOLSURA, TUKYSA, ZYDELIG |
Quetiapine (Greater Than 150 mg)/Strong CYP3A4 Inducers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Quetiapine and its active metabolite are metabolized by CYP3A4.(1) In addition, FDA describes quetiapine as a sensitive CYP3A4 substrate: a drug which can have large changes in systemic exposure due to induction (or inhibition) of the CYP3A4 pathway.(2) CLINICAL EFFECTS: Concurrent use of strong CYP3A4 inducers and quetiapine will result in decreased systemic concentrations of quetiapine and may lead to therapeutic failure.(1) PREDISPOSING FACTORS: Induction effects may be more likely with regular use of the inducer for longer than 1-2 weeks. PATIENT MANAGEMENT: In patients on quetiapine receiving chronic treatment (i.e., greater than 7-14 days) of inducers of CYP3A4, titrate the dose of quetiapine based on the patient's clinical response and tolerance, up to 5-fold of the original dose. The onset of induction is gradual but may begin within one week for potent agents (e.g. rifampin). The time to maximal induction may be 2 or more weeks depending upon the half-life and dose of the inducer. If the CYP3A4 inducer is discontinued, the dose of quetiapine should be reduced to the original level within 7-14 days.(1) DISCUSSION: In an interaction study, 18 stable patients with schizophrenia, schizoaffective or bipolar disorder started treatment with quetiapine, achieving the target dose of 300 mg twice daily on day five. On day 9 carbamazepine was started, gradually increasing to the target dose of 200 mg three times a day on day 13. Patients continued on the combination through day 33 to assure maximal enzyme induction was achieved. Carbamazepine decreased quetiapine AUC 87%, decreased steady-state maximum concentration (Cmax) by 80%, and increased clearance approximately 7-fold.(3) In a review of 2111 quetiapine levels from 1179 patients, quetiapine levels were 86% lower in patients receiving concurrent carbamazepine.(4) In a review of 62 psychiatric patients, patients receiving carbamazepine had significantly lower quetiapine concentration-to-dose ratios.(5) A case report described a newly hospitalized patient admitted on carbamazepine 600 mg daily and risperidone 8 mg daily for schizoaffective disorder. She was then converted from risperidone to quetiapine. After 7 days of treatment at the target quetiapine dose of 700 mg daily, serum quetiapine concentrations were undetectable. A repeat level 7 days later was also undetectable. The decision was then made to discontinue carbamazepine and continue quetiapine without dose adjustment. Quetiapine concentrations increased over the following days to weeks and were accompanied by clinical improvement sufficient for discharge. The authors also briefly described 2 additional patients, each receiving carbamazepine for a seizure disorder who were subsequently treated with quetiapine 600 mg or 700 mg daily for more than two weeks. As with the first case, quetiapine serum concentrations with concurrent carbamazepine therapy were below the limit of detection for each patient (lower limit of detection was 25 mcg/mL).(6) Concurrent use of phenytoin (100 mg three times daily), a strong CYP3A4 inducer, and quetiapine increased oral clearance of quetiapine by 5-fold.(7) FDA defines strong CYP inducers as agents which cause at least an 80% decrease in systemic exposure (area-under-curve or AUC) of a drug metabolized by a specific CYP enzyme.(2) Strong CYP3A4 inducers linked to this monograph include: apalutamide, barbiturates, carbamazepine, enzalutamide, fosphenytoin, lumacaftor, mitotane, natisedine, phenytoin, primidone, rifampin, rifapentine and St. John's Wort.(8) |
ASA-BUTALB-CAFFEINE-CODEINE, ASCOMP WITH CODEINE, BUTALB-ACETAMINOPH-CAFF-CODEIN, BUTALBITAL, BUTALBITAL-ACETAMINOPHEN, BUTALBITAL-ACETAMINOPHEN-CAFFE, BUTALBITAL-ASPIRIN-CAFFEINE, CARBAMAZEPINE, CARBAMAZEPINE ER, CARBATROL, CEREBYX, DILANTIN, DILANTIN-125, DONNATAL, EPITOL, EQUETRO, ERLEADA, FIORICET, FIORICET WITH CODEINE, FOSPHENYTOIN SODIUM, LYSODREN, MITOTANE, MYSOLINE, ORKAMBI, PENTOBARBITAL SODIUM, PHENOBARBITAL, PHENOBARBITAL SODIUM, PHENOBARBITAL-BELLADONNA, PHENOBARBITAL-HYOSC-ATROP-SCOP, PHENOHYTRO, PHENYTEK, PHENYTOIN, PHENYTOIN SODIUM, PHENYTOIN SODIUM EXTENDED, PRIFTIN, PRIMIDONE, RIFADIN, RIFAMPIN, SEZABY, TEGRETOL, TEGRETOL XR, TENCON, XTANDI |
Anagrelide/Possible QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of anagrelide with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of anagrelide with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of anagrelide states that anagrelide should not be used in patients taking medications known to prolong the QT interval.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a thorough QT study, dose-related QT changes were observed with anagrelide. The maximum mean change in QTcI (95% CI) in comparison to placebo was 7.0 (9.8) ms and 13.0 (15.7) msec following doses of 0.5 mg and 2.5mg, respectively.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) One or more of the drug pairs linked to this monograph have been included in a list of interactions that should be considered "high-priority" for inclusion and should not be inactivated in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
AGRYLIN, ANAGRELIDE HCL |
Opioids (Cough and Cold)/Antipsychotics; Phenothiazines SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of opioids and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Avoid prescribing opioid-including cough medications for patients taking CNS depressants such as antipsychotics, including phenothiazine derivatives.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) If concurrent use is necessary, monitor patients for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
HYCODAN, HYDROCODONE-CHLORPHENIRAMNE ER, HYDROCODONE-HOMATROPINE MBR, HYDROMET, PROMETHAZINE-CODEINE, TUXARIN ER |
Quetiapine/Moderate CYP3A4 Inhibitors that Prolong QT SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may inhibit the metabolism of quetiapine.(1) Quetiapine is a sensitive substrate for CYP3A4 and so an approximately 2-fold or higher increase in exposure (AUC, area-under-curve) is possible when quetiapine is given with a moderate CYP3A4 inhibitor.(2) In addition, concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: Concurrent use of a moderate CYP3A4 inhibitor that also prolongs the QT interval may result in elevated levels of and toxicity from quetiapine,(1-3) including potentially life-threatening cardiac arrhythmias, such as torsades de pointes.(1,3) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: The US manufacturer of quetiapine states that concurrent use with agents known to prolong the QT interval should be avoided.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, fainting, excessive drowsiness, rapid pulse/hypotension, weakness, fatigue, dizziness, or muscle stiffness/tremors (EPS). Monitor patients when moderate inhibitors of CYP3A4 are co-prescribed with quetiapine as the magnitude of the interaction is highly variable between patients.(6) Use of higher doses of either the CYP3A4 inhibitor or quetiapine are other factors which may affect the magnitude of this interaction. Decrease the quetiapine dose if needed. DISCUSSION: Although quetiapine was not associated with QT or QTc changes in clinical trials, QT prolongation has been reported in post-marketing reports in conjunction with the use of other agents known to prolong the QT interval.(1) In a study in 19 Chinese patients with schizophrenia, patients received quetiapine (200 mg twice daily) alone and with erythromycin (500 mg 3 times daily, a moderate inhibitor of CYP3A4). Erythromycin increased the quetiapine maximum concentration (Cmax)by 68%(range approximately 20-130%), area-under-curve (AUC) 129% (range approximately 20-300%), and half-life by 92% (range approximately 0-250%). Quetiapine clearance decreased 52% (range approximately -15 to -80%).(5) Moderate inhibitors of CYP3A4 that also are known QT prolonging agents include: dronedarone, erythromycin, and fluconazole.(2,6,7) These agents may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(7) |
DIFLUCAN, E.E.S. 200, E.E.S. 400, ERY-TAB, ERYPED 200, ERYPED 400, ERYTHROCIN LACTOBIONATE, ERYTHROCIN STEARATE, ERYTHROMYCIN, ERYTHROMYCIN ESTOLATE, ERYTHROMYCIN ETHYLSUCCINATE, ERYTHROMYCIN LACTOBIONATE, FLUCONAZOLE, FLUCONAZOLE-NACL, MULTAQ |
Quetiapine/Protease Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Protease inhibitors may inhibit the metabolism of quetiapine. Quetiapine is a sensitive substrate for CYP3A4 and so an approximately 5-fold or higher increase in exposure (AUC, area-under-curve) can be anticipated when it is given with a protease inhibitor.(1) CLINICAL EFFECTS: Concurrent use of a protease inhibitor may result in elevated levels of and toxicity from quetiapine, including life-threatening arrhythmias such as torsades de pointes.(2-4) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(5) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(5) PATIENT MANAGEMENT: If possible, avoid the use of protease inhibitors with quetiapine. If addition of concomitant therapy with a protease inhibitor is required, US manufacturers state the quetiapine dose should be reduced to 1/6th of the original dose.(2,3) The UK manufacturer states the concurrent use of quetiapine with strong CYP3A4 inhibitors is contraindicated.(4) When the inhibitor is discontinued, return to the original quetiapine dose.(2) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, fainting, excessive drowsiness, rapid pulse/hypotension, weakness, fatigue, dizziness, or muscle stiffness/tremors (EPS). DISCUSSION: In a study, concurrent use of ketoconazole (200 mg daily for 4 days, a strong inhibitor of CYP3A4) and quetiapine resulted in an increase in quetiapine Cmax and AUC by 3.35-fold and 6.2-fold, respectively. Ketoconazole also decreased the mean apparent oral clearance of quetiapine by 84%, and increased quetiapine mean elimination half-life by 2.6-fold.(2,6) Protease inhibitors would be expected to cause similar changes to quetiapine levels and elimination. |
APTIVUS, ATAZANAVIR SULFATE, DARUNAVIR, EVOTAZ, FOSAMPRENAVIR CALCIUM, PAXLOVID, PREZCOBIX, PREZISTA, REYATAZ, SYMTUZA, VIRACEPT |
Methadone for MAT/Selected Antipsychotics that Prolong QT SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Methadone has been shown to prolong the QTc interval. Concurrent use with selected antipsychotics may result in additive effects on the QTc interval.(1-3) Concurrent use of methadone and antipsychotics may result in additive CNS depression.(1-3) CLINICAL EFFECTS: The concurrent use of methadone with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1,2) Concurrent use of opioids and other CNS depressants such as antipsychotics may result in profound sedation, respiratory depression, coma, and/or death.(1-3) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Concurrent use of methadone with other agents known to prolong the QT interval should be approached with extreme caution.(1,2) Limit prescribing methadone with CNS depressants such as antipsychotics to patients for whom alternatives are inadequate.(3) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. Medication assisted treatment (MAT) with methadone is not contraindicated in patients taking CNS depressants; however, gradual tapering or decreasing to the lowest effective dose of antipsychotics may be appropriate. Ensure that other health care providers prescribing other CNS depressants are aware of the patient's methadone treatment.(5) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(3) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(6) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(3) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(7) DISCUSSION: Most cases of methadone-induced QT prolongation are associated with, but not limited to, higher dose treatment (greater than 200 mg daily) and most involve patients being treated for pain with large, multiple daily doses. Cases have been reported in patients treated with doses commonly used for maintenance treatment of opioid addiction.(2) Levomethadone should be used with caution in patients with a history of QT prolongation, advanced heart disease, concomitant CYP3A4 inhibitors, or electrolyte abnormalities. Cases of QT prolongation and torsades de pointes have been reported, most commonly with high doses.(1) A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(8) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(9) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(10) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(11) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(12) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(13) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(14) Selected antipsychotics that prolong QT include: amsulpride, chlorpromazine, chlorprothixene, clozapine, haloperidol, iloperidone, mesoridazine, paliperidone, pimavanserin, pipamperone, promethazine, quetiapine, sulpiride, sultopride, thioridazine, ziprasidone, and zuclopenthixol. |
DISKETS, METHADONE HCL, METHADONE INTENSOL, METHADOSE |
Methadone (non MAT)/Selected Antipsychotics that Prolong QT SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Methadone has been shown to prolong the QTc interval. Concurrent use with selected antipsychotics may result in additive effects on the QTc interval. Concurrent use of methadone and antipsychotics may result in additive CNS depression.(1,2) CLINICAL EFFECTS: Concurrent use of methadone with antipsychotics may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) Concurrent use of methadone and other CNS depressants such as antipsychotics may result in profound sedation, respiratory depression, coma, and/or death.(1,2) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Concurrent use of methadone with agents known to prolong the QT interval should be approached with extreme caution.(1) Limit prescribing methadone with CNS depressants such as antipsychotics to patients for whom alternatives are inadequate.(2) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(2) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(4) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(5) DISCUSSION: Most cases of methadone-induced QT prolongation are associated with, but not limited to, higher dose treatment (greater than 200 mg daily) and most involve patients being treated for pain with large, multiple daily doses. Cases have been reported in patients treated with doses commonly used for maintenance treatment of opioid addiction.(1) A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(6) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(7) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(8) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(9) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(10) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(11) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(12) Selected antipsychotics linked include: amsulpride, chlorpromazine, chlorprothixene, clozapine, iloperidone, mesoridazine, paliperidone, perphenazine, pimavanserin, pipamperone, promethazine, quetiapine, sulpiride, sultopride, thioridazine, ziprasidone, and zuclopenthixol. |
METHADONE HCL, METHADONE HCL-0.9% NACL, METHADONE HCL-NACL |
Quetiapine/Strong CYP3A4 Inhibitors that Prolong QT SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Strong CYP3A4 inhibitors may inhibit the metabolism of quetiapine.(1) Quetiapine is a sensitive substrate for CYP3A4 and so an approximately 5-fold or higher increase in exposure (AUC, area-under-curve) is possible when quetiapine is given with a strong CYP3A4 inhibitor.(2) In addition, concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: Concurrent use of a strong CYP3A4 inhibitor that also prolongs the QT interval may result in elevated levels of and toxicity from quetiapine,(1-4) including potentially life-threatening cardiac arrhythmias, such as torsades de pointes.(1,5) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(5) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(5) PATIENT MANAGEMENT: The US manufacturer of quetiapine states that concurrent use with agents known to prolong the QT interval should be avoided.(1) If addition of concomitant therapy with a strong CYP3A4 inhibitor is required, US manufacturers state the quetiapine dose should be reduced to 1/6th of the original dose. When the inhibitor is discontinued, return to the original quetiapine dose.(1) The UK manufacturer states the concurrent use of quetiapine with strong CYP3A4 inhibitors is contraindicated.(5) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, fainting, excessive drowsiness, rapid pulse/hypotension, weakness, fatigue, dizziness, or muscle stiffness/tremors (EPS). Monitor patients when strong inhibitors of CYP3A4 are co-prescribed with quetiapine as the magnitude of the interaction is highly variable between patients. Use of higher doses of either the CYP3A4 inhibitor or quetiapine are other factors which may affect the magnitude of this interaction. Decrease the quetiapine dose if needed. DISCUSSION: In a study, concurrent use of ketoconazole (200 mg daily for 4 days, a strong inhibitor of CYP3A4) and quetiapine resulted in an increase in quetiapine Cmax and AUC by 3.35-fold and 6.2-fold, respectively. Ketoconazole also decreased the mean apparent oral clearance of quetiapine by 84%, and increased quetiapine mean elimination half-life by 2.6-fold.(1,6) Although quetiapine was not associated with QT or QTc changes in clinical trials, QT prolongation has been reported in post-marketing reports in conjunction with the use of other agents known to prolong the QT interval.(1) Strong inhibitors of CYP3A4 that also are known QT prolonging agents include: adagrasib, ceritinib, clarithromycin, levoketoconazole, lonafarnib, lopinavir, posaconazole, ribociclib, saquinavir, telithromycin, and voriconazole.(7,8) These agents may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(8) |
CLARITHROMYCIN, CLARITHROMYCIN ER, KALETRA, KISQALI, KRAZATI, LANSOPRAZOL-AMOXICIL-CLARITHRO, LOPINAVIR-RITONAVIR, NOXAFIL, OMECLAMOX-PAK, POSACONAZOLE, RECORLEV, VFEND, VFEND IV, VOQUEZNA TRIPLE PAK, VORICONAZOLE, ZOKINVY, ZYKADIA |
Apomorphine/Selected Atypical Antipsychotics that Prolong QT SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of apomorphine and certain atypical antipsychotics may have additive effects on the QTc interval.(1-4) In addition, apomorphine is a dopamine agonist. Antipsychotics may decrease apomorphine's effectiveness by blocking dopamine activity at CNS D2 receptors.(1) CLINICAL EFFECTS: The concurrent use of apomorphine with certain atypical antipsychotics may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) The efficacy of either agent may be decreased, leading to exacerbation of the disease being treated, e.g. Parkinson disease or a psychotic disorder. PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age. Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(5) Patients with Parkinson or Diffuse Lewy Body(DLB) disease are particularly susceptible to adverse effects of dopamine blockade by antipsychotics. PATIENT MANAGEMENT: Concurrent use of iloperidone, paliperidone, or quetiapine with other agents known to prolong the QT interval, like apomorphine, should be avoided.(2-4) The US manufacturer of apomorphine states that patients with major psychotic disorders treated with neuroleptics should be treated with dopamine agonists only if the potential benefits outweigh the risks.(1) Reassess the need for antipsychotic therapy. If psychosis or hallucinations are due to an antiparkinson agent, when possible consider reducing the dose or changing the antiparkinson agent before initiating antipsychotic therapy. In patients with PD and dementia, addition of a cholinesterase inhibitor (e.g. rivastigmine) may improve psychosis. If an antipsychotic is required, then an atypical antipsychotic should be used.(6,7) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: An epidemiologic study evaluated 21,043 elderly patients with Parkinson disease to determine if recent initiation of a typical or atypical antipsychotic was associated with increased mortality. They found an adjusted odds ratio of 2.0 for death associated with atypical antipsychotics versus no antipsychotic. They found an adjusted odds ratio of 2.4 for death associated with typical versus atypical antipsychotics. The authors noted the increased mortality found with typical antipsychotics supports current treatment recommendations to use atypical antipsychotic agents in patients with Parkinson disease.(6,7) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(8) Coadministration of ketoconazole (200 mg twice daily, an inhibitor of CYP3A4) and iloperidone (12 mg twice daily) was associated with a mean QTcF increase of 19 msec from baseline, compared with an increase of 9 msec with iloperidone alone.(2) Coadministration of paroxetine (20 mg daily, an inhibitor of CYP2D6) and iloperidone (12 mg twice daily) was associated with a mean QTcF increase of 19 msec from baseline, compared with an increase of 9 msec with iloperidone alone.(2) Although quetiapine was not associated with QT or QTc changes in clinical trials, QT prolongation has been reported in post-marketing reports in conjunction with the use of other agents known to prolong the QT interval.(4) |
APOKYN, APOMORPHINE HCL, ONAPGO |
Quetiapine (Greater Than 150 mg)/Strong CYP3A4 Inducers that Prolong QT SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Strong CYP3A4 inducers may increase the metabolic clearance of quetiapine.(1) Quetiapine may prolong the QTc interval. Concomitant use with other QT prolonging agents may result in an additive risk of QT prolongation.(1) CLINICAL EFFECTS: Concurrent use of strong CYP3A4 inducers that prolong QT with quetiapine may decrease the levels and effectiveness of quetiapine and cause additive effects on the QTc interval, which may result in life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) Induction effects may be more likely with regular use of the inducer for longer than 1-2 weeks. PATIENT MANAGEMENT: In patients on quetiapine receiving chronic treatment (i.e., greater than 7-14 days) of inducers of CYP3A4, titrate the dose of quetiapine based on the patient's clinical response and tolerance, up to 5-fold of the original dose. The onset of induction is gradual but may begin within one week for potent agents (e.g. rifampin). The time to maximal induction may be 2 or more weeks depending upon the half-life and dose of the inducer. If the CYP3A4 inducer is discontinued, the dose of quetiapine should be reduced to the original level within 7-14 days.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In an interaction study, 18 stable patients with schizophrenia, schizoaffective or bipolar disorder started treatment with quetiapine, achieving the target dose of 300 mg twice daily on day five. On day 9 carbamazepine was started, gradually increasing to the target dose of 200 mg three times a day on day 13. Patients continued on the combination through day 33 to assure maximal enzyme induction was achieved. Carbamazepine decreased quetiapine AUC 87%, decreased steady-state maximum concentration (Cmax) by 80%, and increased clearance approximately 7-fold.(3) In a review of 2111 quetiapine levels from 1179 patients, quetiapine levels were 86% lower in patients receiving concurrent carbamazepine.(4) In a review of 62 psychiatric patients, patients receiving carbamazepine had significantly lower quetiapine concentration-to-dose ratios.(5) A case report described a newly hospitalized patient admitted on carbamazepine 600 mg daily and risperidone 8 mg daily for schizoaffective disorder. She was then converted from risperidone to quetiapine. After 7 days of treatment at the target quetiapine dose of 700 mg daily, serum quetiapine concentrations were undetectable. A repeat level 7 days later was also undetectable. The decision was then made to discontinue carbamazepine and continue quetiapine without dose adjustment. Quetiapine concentrations increased over the following days to weeks and were accompanied by clinical improvement sufficient for discharge. The authors also briefly described 2 additional patients, each receiving carbamazepine for a seizure disorder who were subsequently treated with quetiapine 600 mg or 700 mg daily for more than two weeks. As with the first case, quetiapine serum concentrations with concurrent carbamazepine therapy were below the limit of detection for each patient (lower limit of detection was 25 mcg/mL).(6) Concurrent use of phenytoin (100 mg three times daily), a strong CYP3A4 inducer, and quetiapine increased oral clearance of quetiapine by 5-fold.(7) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(8) Strong CYP3A4 inducers that prolong QT linked to this monograph include: encorafenib and ivosidenib.(9) |
BRAFTOVI, TIBSOVO |
There are 50 moderate interactions.
The clinician should assess the patient’s characteristics and take action as needed. Actions required for moderate interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration.
Drug Interaction | Drug Names |
---|---|
Bupropion/Antipsychotics SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Both bupropion and the antipsychotics are known to lower the seizure threshold.(1,2) Bupropion is also a strong inhibitor of CYP2D6.(3) CLINICAL EFFECTS: Concurrent use of bupropion and an antipsychotic may result in additive effects on the seizure threshold, increasing the risk of seizures.(1,2) PREDISPOSING FACTORS: The risk of seizures may be increased in patients with a history of head trauma or prior seizure; CNS tumor; severe hepatic cirrhosis; excessive use of alcohol or sedatives; addiction to opiates, cocaine, or stimulants; use of over-the-counter stimulants an anorectics; a total daily dose of bupropion greater than 450 mg or single doses greater than 150 mg; rapid escalation of bupropion dosage; diabetics treated with oral hypoglycemics or insulin; or with concomitant medications known to lower seizure threshold (antidepressants, theophylline, systemic steroids).(1,2) The risk of anticholinergic toxicities including cognitive decline, delirium, falls and fractures is increased in geriatric patients using more than one medicine with anticholinergic properties.(3) PATIENT MANAGEMENT: The concurrent use of bupropion and antipsychotics should be undertaken only with extreme caution and with low initial bupropion dosing and small gradual dosage increases.(1,2) Single doses should not exceed 150 mg.(1,2) The maximum daily dose of bupropion should not exceed 300 mg for smoking cessation(2) or 450 mg for depression.(1) DISCUSSION: Because of the risk of seizure from concurrent bupropion and other agents that lower seizure threshold, the manufacturer of bupropion states that the concurrent use of bupropion and antipsychotics should be undertaken only with extreme caution and with low initial bupropion dosing and small gradual dosage increases.(1) |
APLENZIN, AUVELITY, BUPROPION HCL, BUPROPION HCL SR, BUPROPION XL, CONTRAVE, FORFIVO XL, WELLBUTRIN SR, WELLBUTRIN XL |
Propafenone/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Propafenone has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of propafenone with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The manufacturer of propafenone states that the use of propafenone with other agents known to prolong the QT interval should be avoided.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
PROPAFENONE HCL, PROPAFENONE HCL ER |
Haloperidol/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Torsades de pointes has been reported with haloperidol. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1-3) CLINICAL EFFECTS: The concurrent use of haloperidol with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1-3) PREDISPOSING FACTORS: The risk of QT prolongation may be increased by: hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, use of multiple medications, intravenous haloperidol, or higher than recommended dosages of haloperidol. The risk of QT prolongation or torsade de pointes may also be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), bradycardia, or advanced age.(5) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(5) PATIENT MANAGEMENT: The Australian,(1) UK(2) and US(3) manufacturers of haloperidol state that haloperidol should be used with caution when given with other agents known to prolong the QT interval. If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Sudden death, QT-prolongation, and torsades de pointes have been reported with haloperidol.(3) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(4) One or more of the drug pairs linked to this monograph have been included in a list of interactions that should be considered "high-priority" for inclusion and should not be inactivated in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
HALDOL DECANOATE 100, HALDOL DECANOATE 50, HALOPERIDOL, HALOPERIDOL DECANOATE, HALOPERIDOL DECANOATE 100, HALOPERIDOL LACTATE |
Ivabradine/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: QT prolongation may be exacerbated by ivabradine-induced reduction in heart rate.(1) CLINICAL EFFECTS: Concurrent use of ivabradine and agents known to prolong the QT interval may exacerbate QT prolongation.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The UK, AU, and Canadian manufacturer of ivabradine states that concurrent use with cardiovascular and non-cardiovascular QT prolonging agents should be avoided.(1) The Canadian manufacturer states that if concurrent therapy is deemed necessary, close cardiac monitoring (12-lead ECG) is required. Depending on the ECG results, ivabradine dosing may need to be decreased or stopped.(4) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have been associated with torsades de pointes and/or QT prolongation but at this time lack substantial evidence for causing torsades de pointes.(2) |
CORLANOR, IVABRADINE HCL |
Ranolazine/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Ranolazine prolongs the QTc interval in a dose-related manner. Use with other agents that prolong the QTc interval may result in additive effects.(1) CLINICAL EFFECTS: Concurrent use of ranolazine and agents known to prolong the QTc interval may result in prolongation of the QTc interval and life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: The UK manufacturer of ranolazine states that concurrent use with agents known to prolong the QT interval should be approached with caution.(1) Patients should be instructed to inform their physician if they are receiving any drugs that prolong the QTc interval.(2) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Ranolazine has been shown to prolong the QTc interval in a dose-related manner.(1,2) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
ASPRUZYO SPRINKLE, RANOLAZINE ER |
Dasatinib/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of dasatinib and agents known to prolong the QT interval may result in additive or synergistic effects on the QTc interval.(1) CLINICAL EFFECTS: Concurrent administration may result in prolongation of the QTc interval and life-threatening cardiac arrhythmias, including torsades de pointes. PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The US manufacturer of dasatinib states that dasatinib should be used with caution when given with other agents known to prolong the QT interval.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: A retrospective review of 618 cancer patients treated with 902 administrations of tyrosine kinase inhibitors were evaluated for rate and incidence of QTc prolongation. In patients who received dasatinib, QTc prolongation was identified in 48 (41.7%) with 8 (16.7%) having Grade 1 (QTc 450-480 ms) and 15 (31.3%) having Grade 2 (QTc 480-500 ms). Grade 3 events occurred in 8 (16.7%) having QTc greater than or equal to 500 ms and 14 (29.2%) having QTc change greater than or equal to 60 ms. Ventricular tachycardia was seen in 2 (4.2%) of patients and 1 (2.1%) patient experienced TdP.(4) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
DASATINIB, SPRYCEL |
Paliperidone/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Paliperidone has been shown to cause a modest increase in the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1,2) CLINICAL EFFECTS: The concurrent use of paliperidone with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1,2) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: The US manufacturer of paliperidone states that the use of paliperidone should be avoided with other drugs that are known to prolong the QTc interval, including Class IA and Class III antiarrhythmics, antipsychotics, antibiotics such as gatifloxacin and moxifloxacin, or any other class of medications known to prolong the QTc interval.(1,2) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have been associated with torsades de pointes and/or QT prolongation but at this time lack substantial evidence for causing torsades de pointes.(3) |
ERZOFRI, INVEGA, INVEGA HAFYERA, INVEGA SUSTENNA, INVEGA TRINZA, PALIPERIDONE ER |
Lapatinib/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of lapatinib and agents known to prolong the QT interval may result in additive or synergistic effects on the QTc interval.(1) CLINICAL EFFECTS: Concurrent administration may result in prolongation of the QTc interval and life-threatening cardiac arrhythmias, including torsades de pointes. PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The US manufacturer of lapatinib states that lapatinib should be used with caution when given with other agents known to prolong the QT interval.(1) If concurrent therapy is warranted, obtain serum calcium, magnesium, and potassium levels and monitor ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Lapatinib is associated with concentration-dependent QTc interval prolongation. In a single-blind, placebo-controlled crossover study with lapatinib 2,000 mg every 12 hours for 3 doses, a maximum mean double delta QTcF of 8.75 ms was observed. Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
LAPATINIB, TYKERB |
Quinine/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Quinine has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of quinine with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The US manufacturer of quinine states that concurrent use with agents known to prolong the QT interval should be avoided.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports. |
QUALAQUIN, QUININE HCL, QUININE SULFATE |
Toremifene/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Toremifene has been shown to prolong the QTc interval in a dose-related and concentration-related manner.(1) Concurrent use of toremifene and agents known to prolong the QT interval may result in additive or synergistic effects on the QTc interval.(1,2) CLINICAL EFFECTS: Concurrent administration may result in prolongation of the QTc interval and life-threatening cardiac arrhythmias, including torsades de pointes.(1,2) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: The US manufacturer of toremifene states that concurrent use should be avoided. If treatment with an agent known to prolong the QT interval is required, toremifene therapy should be interrupted. If it is not possible to interrupt toremifene therapy, electrocardiograms (ECGs) should be obtained and patients should be closely monitored for QT prolongation.(1) Additional monitoring when concurrent therapy is warranted: consider obtaining serum calcium, magnesium, and potassium levels at baseline and regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. The UK manufacturer of toremifene states that the use of other drugs that are known to prolong the QTc interval is contraindicated. These agents include class IA and III antiarrhythmics, astemizole, bepridil, cisapride, diphemanil, erythromycin IV, halofantrine, haloperidol, mizolastine, moxifloxacin, pentamidine, phenothiazines, pimozide, sertindole, terfenadine, and vincamine IV.(2) DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
FARESTON, TOREMIFENE CITRATE |
Telavancin/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Telavancin has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of telavancin with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of telavancin recommends against the use of telavancin with other drugs known to cause QT prolongation.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a randomized, double-blind, multiple-dose, positive-controlled, placebo-controlled, parallel study in healthy subjects, the mean maximum baseline-corrected, placebo-corrected QTc prolongation was 11.6 msec and 15.1 msec for telavancin at dosages of 7.5 mg/kg and 15 mg/kg, respectively. The estimated mean maximum baseline-corrected, placebo-corrected QTc prolongation for a telavancin dosage of 10 mg/kg is 12-15 msec.(1) In studies in patients, 21% of patients receiving telavancin (214 of 1029, 10 mg/kg) and 16% of patients receiving vancomycin (164 of 1033) received concurrent QT prolonging agents. The rate of QTc prolongation greater than 60 msec was 1.5% (15 patients) in the telavancin group and 0.6% (6 patients) in the vancomycin group. Nine of the 15 telavancin subjects with QTc prolongation received concurrent QT prolongers, compared with 1 of the vancomycin patients.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
VIBATIV |
Pazopanib/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Pazopanib has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of pazopanib with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The US manufacturer of pazopanib states that pazopanib should be avoided in patients receiving other drugs known to cause QT prolongation.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In clinical studies, 2% (11/558) of patients receiving pazopanib experienced QT prolongation. Torsades de pointes occurred in less than 1% (2/977) of patients who received pazopanib in monotherapy studies. In a randomized clinical trial, 3 of 290 patients who received pazopanib had post-baseline QTc values between 500 and 549 msec. None of the patients receiving placebo had post-baseline QTc values greater than or equal to 500 msec.(1) A retrospective review of 618 cancer patients treated with 902 administrations of tyrosine kinase inhibitors were evaluated for rate and incidence of QTc prolongation. In patients who received pazopanib, QTc prolongation was identified in 32 (19.4%) with 18 (56.3%) having Grade 1 (QTc 450-480 ms) and 4 (12.5%) having Grade 2 (QTc 480-500 ms). Grade 3 events occurred in 3 (9.3%) having QTc greater than or equal to 500 ms and 4 (12.5%) having QTc change greater than or equal to 60 ms. Ventricular tachycardia was seen in 2 (6.3%) of patients and 1 (3.1%) patient experienced sudden cardiac death.(4) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(2) |
PAZOPANIB HCL, VOTRIENT |
Iloperidone/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Iloperidone has been shown to prolong the QTc interval by 9 msec at dosages of 12 mg twice daily. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of iloperidone with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, advanced age or with concurrent use of inhibitors of CYP3A4 or CYP2D6, which metabolize iloperidone.(1,3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. co-administration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The US manufacturer of iloperidone states that the concurrent administration of other drugs that are known to prolong the QTc interval should be avoided.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) Coadministration of ketoconazole (200 mg twice daily, an inhibitor of CYP P-450-3A4) and iloperidone (12 mg twice daily) was associated with a mean QTcF increase of 19 msec from baseline, compared with an increase of 9 msec with iloperidone alone.(1) Coadministration of paroxetine (20 mg daily, an inhibitor of CYP P-450-2D6) and iloperidone (12 mg twice daily) was associated with a mean QTcF increase of 19 msec from baseline, compared with an increase of 9 msec with iloperidone alone.(1) |
FANAPT |
Romidepsin/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Romidepsin has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of romidepsin with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of romidepsin states that appropriate cardiovascular monitoring, such as baseline and regular monitoring of ECG and obtaining serum calcium, magnesium, and potassium levels, should be performed if concurrent therapy with agents known to prolong the ECG is warranted.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In two clinical trials, discontinuation of romidepsin secondary to QT prolongation occurred in at least 2% of patients.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
ISTODAX, ROMIDEPSIN |
Eribulin/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Eribulin has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of eribulin with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of eribulin states that patients receiving concurrent therapy with eribulin and other agents known to prolong the QT interval should receive ECG monitoring.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: QT prolongation, independent of eribulin concentration, was observed on Day 8 of therapy but not on Day 1 in an uncontrolled open-label ECG study in 26 patients.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
ERIBULIN MESYLATE, HALAVEN |
Vemurafenib/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The use of vemurafenib in patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Vemurafenib should not be initiated in patients taking medications known to prolong the QT interval, patients with a baseline QTc greater than 500 msec, uncorrectable electrolyte abnormalities, or known long QT syndrome is not recommended.(1) All patients receiving vemurafenib should undergo ECG testing at baseline, after 15 days of treatment, monthly during the first 3 months of treatment, and then every 3 months. If a patient's QTc exceeds 500 msec during treatment, vemurafenib should be discontinued and cardiac risk factors for QT prolongation should be controlled. Consider discontinuing other medications known to prolong the QT interval at this time. If the patient's QTc decreases below 500 msec, vemurafenib may be introduced at a lower dosage according to the current labeling recommendations. If the patient's QTc remains greater than 500 msec and increased >60 msec from pre-treatment values after controlling cardiac risk factors for prolongation, permanently discontinue vemurafenib.(1) Consider obtaining serum calcium, magnesium, and potassium levels at baseline and regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Vemurafenib is associated with concentration-dependent QTc interval prolongation. In the first month of treatment, the largest mean QTc change was 12.8 msec (upper boundary of 90% CI: 14.9 msec). In the first 6 months of treatment, the largest mean QTc change was 15.1 msec (upper boundary of 90% CI: 17.7 msec).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
ZELBORAF |
Quetiapine/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The use of quetiapine in patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The US manufacturer of quetiapine states that concurrent use with agents known to prolong the QT interval should be avoided.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Although quetiapine was not associated with QT or QTc changes in clinical trials, QT prolongation has been reported in post-marketing reports in conjunction with the use of other agents known to prolong the QT interval.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(2) |
ADVAIR DISKUS, ADVAIR HFA, AIRDUO DIGIHALER, AIRDUO RESPICLICK, ALFUZOSIN HCL ER, ASTAGRAF XL, ATOMOXETINE HCL, BESPONSA, CLOZAPINE, CLOZAPINE ODT, CLOZARIL, DAURISMO, EFAVIRENZ, EFAVIRENZ-EMTRIC-TENOFOV DISOP, EFAVIRENZ-LAMIVU-TENOFOV DISOP, ELLENCE, ENVARSUS XR, EPIRUBICIN HCL, FARYDAK, FLUTICASONE-SALMETEROL, FLUTICASONE-SALMETEROL HFA, GRANISETRON HCL, ISRADIPINE, LOFEXIDINE HCL, LUCEMYRA, NUPLAZID, OFLOXACIN, ONDANSETRON HCL, ONDANSETRON HCL-0.9% NACL, PROGRAF, ROZLYTREK, RUBRACA, RYDAPT, SANCUSO, SEREVENT DISKUS, SIGNIFOR, SIGNIFOR LAR, STRATTERA, SUNITINIB MALATE, SUSTOL, SUTENT, SYMFI, SYMFI LO, TACROLIMUS, TACROLIMUS XL, TAGRISSO, UROXATRAL, VERSACLOZ, WAKIX, WIXELA INHUB, XOSPATA |
Selected Dopamine Agonists/Select Atypical Antipsychotics SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Selected dopamine agonists are used to treat neurologic conditions such as Parkinson Disease (PD) or restless legs syndrome, and endocrine disorders such as hyperprolactinemia by directly or indirectly increasing dopamine concentrations at D2 receptors in the central nervous system (CNS). Antipsychotic agents counteract this effect by blocking dopamine activity at CNS D2 receptors.(1-5) CLINICAL EFFECTS: The efficacy of either agent may be decreased, leading to exacerbation of the disease being treated, e.g. Parkinson disease or a psychotic disorder. Dopamine agonists linked to this monograph are: bromocriptine, entacapone, levodopa, pergolide, pramipexole, ropinirole and rotigotine. Atypical antipsychotics linked to this monograph are: aripiprazole, asenapine, iloperidone, lumateperone, lurasidone, paliperidone, quetiapine, risperidone, ziprasidone and zotepine. PREDISPOSING FACTORS: Patients with Parkinson or Diffuse Lewy Body (DLB) disease are particularly susceptible to adverse effects of dopamine blockade by antipsychotics. PATIENT MANAGEMENT: Reassess the need for antipsychotic therapy. If psychosis or hallucinations are due to an antiparkinson agent, when possible consider reducing the dose or changing the antiparkinson agent before initiating antipsychotic therapy. In patients with PD and dementia, addition of a cholinesterase inhibitor (e.g. rivastigmine) may improve psychosis. If an antipsychotic is required, then an atypical antipsychotic should be used.(6,7) In patients with major psychotic disorders, consider reducing the dose, changing, or stopping the dopamine agonist. The US manufacturer of ropinirole recommends treatment with dopamine agonists only if potential benefits outweigh risks.(1) The US manufacturer of entacapone states it should not ordinarily be used in patients with major psychotic disorders as entacapone may lead to an exacerbation of psychosis.(4) DISCUSSION: An epidemiologic study evaluated 21,043 elderly patients with Parkinson disease to determine if recent initiation of a typical or atypical antipsychotic was associated with increased mortality. They found an adjusted odds ratio of 2.0 for death associated with atypical antipsychotics versus no antipsychotic. They found an adjusted odds ratio of 2.4 for death associated with typical versus atypical antipsychotics. The authors noted the increased mortality found with typical antipsychotics supports current treatment recommendations to use atypical antipsychotic agents in patients with Parkinson disease.(6,7) Two clozapine trials showed significant improvement in psychosis without worsening of motor symptoms. In contrast, two olanzapine trials were associated with unacceptable worsening of motor symptoms. Risperidone has also been associated with motor worsening in case reports. Quetiapine evaluations have been conflicting with several small studies showing improvement in psychotic symptoms while a more rigorous trial showed no improvement.(6) |
BROMOCRIPTINE MESYLATE, CARBIDOPA-LEVODOPA, CARBIDOPA-LEVODOPA ER, CARBIDOPA-LEVODOPA-ENTACAPONE, CREXONT, CYCLOSET, DHIVY, DUOPA, INBRIJA, LEVODOPA, MIRAPEX ER, NEUPRO, PRAMIPEXOLE DIHYDROCHLORIDE, PRAMIPEXOLE ER, ROPINIROLE ER, ROPINIROLE HCL, RYTARY, SINEMET, VYALEV |
Fingolimod/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Fingolimod is a sphingosine 1-phosphate (S1P) receptor modulator. Initiation of fingolimod has a negative chronotropic effect leading to a mean decrease in heart rate of 13 beats per minute (bpm) after the first dose. The first dose has also been associated with heart block.(1-3) Fingolimod blocks the capacity of lymphocytes to egress from lymph nodes, reducing the number of lymphocytes in peripheral blood. The mechanism by which fingolimod exerts therapeutic effects in multiple sclerosis is unknown but may involve the reduction of lymphocyte migration into the central nervous system.(1-3) CLINICAL EFFECTS: The heart rate lowering effect of fingolimod is biphasic with an initial decrease usually within 6 hours, followed by a second decrease 12 to 24 hours after the first dose. Symptomatic bradycardia and heart block, including third degree block, have been observed. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes. There is no consistent signal of increased incidence of QTc outliers, either absolute or change from baseline, associated with fingolimod treatment.(1-3) PREDISPOSING FACTORS: Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to fingolimod initiation, factors associated with QTc prolongation (e.g. hypokalemia, hypomagnesemia), or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to fingolimod. The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: Patients with a baseline QTc interval greater than or equal to 500 milliseconds should not be started on fingolimod. Patients with pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, or a prolonged QTc interval prior to fingolimod initiation should receive cardiologist consultation to evaluate the risks of fingolimod therapy. In all patients, first dose monitoring is recommended to monitor for bradycardia for the first 6 hours. Check blood pressure and pulse hourly. ECG monitoring is recommended prior to dosing and at the end of the observation period. US monitoring recommendations include additional monitoring for the following patients:(1) If heart rate (HR) is less than 45 beats per minute (bpm), the heart rate 6 hours postdose is at the lowest value postdose, or if the ECG shows new onset of second degree or higher AV block at the end of the monitoring period, then monitoring should continue until the finding has resolved. Continuous overnight ECG monitoring is recommended in patients requiring pharmacologic intervention for symptomatic bradycardia, some preexisting heart and cerebrovascular conditions, prolonged QTc before dosing or during 6 hours observation, concurrent therapy with QT prolonging drugs, or concurrent therapy with drugs that slow heart rate or AV conduction. Consult the prescribing information for full monitoring recommendations. United Kingdom recommendations:(3) Obtain a 12-lead ECG prior to initiating fingolimod therapy. Consult a cardiologist for pretreatment risk-benefit assessment if patient has a resting heart rate less than 55 bpm, history of syncope, second degree or greater AV block, sick-sinus syndrome, concurrent therapy with beta-blockers, Class Ia, or Class III antiarrhythmics, heart failure or other significant cardiovascular disease. Perform continuous ECG monitoring, measure blood pressure and heart rate every hour, and perform a 12-lead ECG 6 hours after the first dose. Monitoring should be extended beyond 6 hours if symptomatic bradycardia or new onset of second degree AV block, Mobitz Type II or third degree AV block has occurred at any time during the monitoring period. If heart rate 6 hours after the first dose is less than 40 bpm, has decreased more than 20 bpm compared with baseline, or if a new onset second degree AV block, Mobitz Type I (Wenckebach) persists, then monitoring should also be continued. If fingolimod treatment is discontinued for more than two weeks, the effects on heart rate and conduction could recur. Thus, first dose monitoring precautions should be followed upon reintroduction of fingolimod. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: After the first dose of fingolimod, heart rate decrease may begin within an hour. Decline is usually maximal at approximately 6 hours followed by a second decrease 12 to 24 hours after the first dose. The second dose may further decrease heart rate, but the magnitude of change is smaller than the first dose. With continued, chronic dosing, heart rate gradually returns to baseline in about one month.(1,2) In a thorough QT interval study of doses of 1.25 or 2.5 mg fingolimod at steady-state, when a negative chronotropic effect of fingolimod was still present, fingolimod treatment resulted in a prolongation of QTc, with the upper boundary of the 90% confidence interval (CI) of 14.0 msec. The cause of death in a patient who died within 24 hour after taking the first dose of fingolimod was not conclusive; however a link to fingolimod or a drug interaction with fingolimod could not be ruled out.(1) |
FINGOLIMOD, GILENYA, TASCENSO ODT |
Sorafenib/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of sorafenib with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The use of sorafenib in patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Patients receiving concurrent therapy with agents known to prolong the QTc interval should be monitored with electrocardiograms during treatment with sorafenib. Electrolytes (calcium, magnesium, and potassium) should also be monitored.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a non-randomized trial in 53 patients, sorafenib resulted in a mean change in QTc of 8.5 msec (upper bound of 90% CI: 13.3 msec).(1) A retrospective review of 618 cancer patients treated with 902 administrations of tyrosine kinase inhibitors were evaluated for rate and incidence of QTc prolongation. In patients who received sorafenib, QTc prolongation was identified in 13 (31.7%) with 5 (38.5%) having Grade 1 (QTc 450-480 ms) and 4 (30.7%) having Grade 2 (QTc 480-500 ms). Grade 3 events occurred in 2 (15.4%) having QTc greater than or equal to 500 ms and 2 (15.4%) having QTc change greater than or equal to 60 ms. No patients developed ventricular tachycardia, sudden cardiac death, or TdP.(3) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(4) |
NEXAVAR, SORAFENIB |
Bedaquiline/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of bedaquiline with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The use of bedaquiline patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Bedaquiline should be used with caution in patients receiving therapy with agents that prolong the QT interval. Patients should receive a baseline electrocardiogram (ECG) before initiation, 2 weeks after initiation, during treatment as clinically indicated, and at the expected time of maximum increase of the QT interval when receiving concurrent agents that prolong the QT interval. Bedaquiline and other QT prolonging agents should be discontinued if the patient develops a clinically significant ventricular arrhythmia or a QTcF of greater than 500 msec confirmed by repeat ECGs. If a patient develops syncope, perform an ECG.(1) Also consider obtaining serum calcium, magnesium, and potassium levels at baseline and regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a clinical trial, mean increases in QTc were greater in patients treated with bedaquiline than with placebo. At Week 1, bedaquiline increased QTc by an average of 9.9 msec, compared with 2.5 msec for placebo. At Week 24, bedaquiline increased QTc by an average of 15.7 msec, compared with 6.2 msec for placebo. In another clinical trial in which patients received bedaquiline with other QT prolonging agents, QT prolongation was additive and proportional to the number of QT prolonging drugs used. Patients receiving bedaquiline alone averaged a QTc increase of 23.7 msec over baseline, while patients receiving bedaquiline with at least one other QT prolonging agent averaged a QTc increase of 30.7 msec.(1) In a study, bedaquiline was coadministered with QTc prolonging agents clofazimine and levofloxacin. In the study, 5% of patients had a QTc >= 500 ms and 43% of patients had an increase in QTc >= 60 ms from baseline.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
SIRTURO |
Trazodone (Greater Than or Equal To 100 mg)/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of trazodone with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1,2) CLINICAL EFFECTS: The use of trazodone in patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1,2) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of trazodone states that concurrent use with agents known to prolong the QT interval should be avoided.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Trazodone has been reported to prolong the QT interval.(1) A thorough QT study in 20 subjects evaluated the effects of trazodone at doses of 20 mg, 60 mg and 140 mg. There was no evidence of QTc prolongation at the lowest trazodone dose of 20mg (mean effect on QTc of 4.5 ms 95% CI 3.7-5.3 ms), but at 60 mg and 140 mg, there was a significant effect that exceeds the E14 FDA Guidelines threshold of prolonging the QT/QTc interval by more than 5 ms. The study found a dose-dependent effect on QTc prolongation starting at 60 mg with a mean effect on QTc of 12.3 ms (95% CI 11-13.6 ms) and increasing with a 140 mg dose to a mean effect on QTc of 19.8 ms (95% CI 17.6-22.1).(3) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(4) |
RALDESY, TRAZODONE HCL |
Lenvatinib/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: Concurrent use of lenvatinib in patients taking other medications that prolong the QT interval may result in additive QT prolongation. QT prolongation may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, hypoalbuminemia, bradycardia, female gender, or advanced age.(1,2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Monitor electrocardiograms during concurrent therapy with lenvatinib and agents that prolong the QT interval. In a clinical trial of patients with refractory, progressive thyroid cancer, QT prolongation was reported in 9% of lenvatinib patients. Monitor and correct electrolyte abnormalities in all patients.(1) This is particularly important in lenvatinib patients as diarrhea, nausea, vomiting, and decreased appetite are common side effects which may increase the risk for electrolyte disturbances. Monitor ECG at baseline and at regular intervals. Lenvatinib dose must be withheld if the QTc exceeds 500 msec until QTc resolves to less than 480 msec or baseline. Lenvatinib must be resumed at reduced dose when QTc prolongation resolves to less than 480 msec or to baseline. Dose adjustments below are indication specific and are for patients with normal hepatic and renal function:(1) Dose Modifications in Differentiated Thyroid Cancer(DTC): - First occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose to 20 mg once daily - Second occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose to 14 mg once daily - Third occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose 10 mg once daily Dose Modifications in Renal Cell Cancer (RCC): - First occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose to 14 mg once daily - Second occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose to 10 mg once daily - Third occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose 8 mg once daily Dose Modifications in Hepatocellular Carcinoma (HCC) for Actual weight 60 kg or greater: - First occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose to 8 mg once daily - Second occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose to 4 mg once daily - Third occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose 4 mg every other day Dose Modifications in Hepatocellular Carcinoma (HCC) for Actual weight less than 60 kg: - First occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose to 4 mg once daily - Second occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose to 4 mg every other day - Third occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline and discontinue lenvatinib (1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a clinical trial of patients with refractory, progressive thyroid cancer, QT prolongation was reported in 9% of lenvatinib patients and 2% of placebo patients. The incidence of Grade 3 QT prolongation of > 500 msec was reported in 2% of lenvatinib patients compared with no reports in placebo patients.(1) In contrast, a single lenvatinib dose of 32 mg (1.3 times the recommended daily dose) did not prolong the QT/QTc interval in a thorough QT study performed in healthy subjects.(1) A retrospective review of 618 cancer patients treated with 902 administrations of tyrosine kinase inhibitors were evaluated for rate and incidence of QTc prolongation. In patients who received lenvatinib, QTc prolongation was identified in 9 (42.9%) with 4 (44.4%) having Grade 1 (QTc 450-480 ms) and 3 (33.3%) having Grade 2 (QTc 480-500 ms). Grade 3 events occurred in 0 (0%) having QTc greater than or equal to 500 ms and 1 (11.1%) having QTc change greater than or equal to 60 ms. Ventricular tachycardia was seen in 1 (11.1%) patient.(3) |
LENVIMA |
Hydroxyzine/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of hydroxyzine with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1-4) CLINICAL EFFECTS: The concurrent use of hydroxyzine with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1-4) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(5) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(5) Doses of hydroxyzine greater than 100 mg/day may also increase the risk.(1,2) PATIENT MANAGEMENT: Concurrent use of hydroxyzine with agents known to prolong the QT interval is contraindicated in Canada(1,2) and the UK.(3) The US manufacturer states that concurrent use should be approached with caution.(4) If concurrent therapy is deemed medically necessary, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In vitro data indicates that hydroxyzine blocks the hERG channel, which results in the potential risk of QT interval prolongation.(6) In a placebo controlled, non-thorough QT study, 10 patients in the placebo group (n=152) had a change in QT interval from baseline between 30 ms and 60 ms and one patient presented a change from baseline higher than 60 ms. In the hydroxyzine group (n=148), 14 subjects had a change in QT interval from baseline between 30 and 60 ms and were considered to have a potential risk factor for risk of QT interval prolongation and TdP due to relevant medical history, concomitant medication potentially associated with the induction of prolongation of QT interval, and/or polymedication.(6) Health Canada reviewed 61 cases of QT interval prolongation or torsades de pointes with hydroxyzine. In a majority of cases, patients had additional risk factors for QT prolongation. Three reports provided enough data for a more detailed review. Hydroxyzine was found to be either "possible" or "probably" contribution to QT prolongation/torsades in these reports.(1) The European Medicines Agency's Pharmacovigilance Risk Assessment Committee (PRAC) reviewed 190 case reports found in a search of "torsade de pointes/QT prolongation with hydroxyzine". Forty-two non-fatality cases were subdivided into torsades (n=16), QT prolongation (n=21), and ventricular tachycardia (n=5). All included risk factors for QT interval prolongation and TdP (cardiac disorders, hypokalemia, long QT syndrome, bradycardia, concomitant drugs which are known to prolong the QT interval). Dosages ranged from <= 100 mg/day (n=10), > 100 mg/day to <=300 mg/day (n=4), > 300 mg/day (n=8), overdosages (n=11), and premedication (n=9). Twenty-one cases involving fatalities had at least one risk factor for QT prolongation. The PRAC concluded that post-marketing cases of QT interval prolongation, TdP and ventricular tachycardia confirm the findings of the hERG studies suggesting that hydroxyzine blocks hERG channels. No difference in the risk of QT interval prolongation could be observed based on the indication, age of the subject, or dose.(6) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(7) |
HYDROXYZINE HCL, HYDROXYZINE PAMOATE |
Quetiapine/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may inhibit the metabolism of quetiapine. Quetiapine is a sensitive substrate for CYP3A4 and so an approximately 2-fold or higher increase in exposure (AUC, area-under-curve) is possible when quetiapine is given with a moderate CYP3A4 inhibitor.(1-4) CLINICAL EFFECTS: Concurrent use of a strong or moderate CYP3A4 inhibitor may result in elevated levels of and toxicity from quetiapine, including potentially life-threatening cardiac arrhythmias such as torsades de pointes.(2,3) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: Monitor patients when moderate inhibitors of CYP3A4 are co-prescribed with quetiapine as the magnitude of the interaction is highly variable between patients.(6) Use of higher doses of either the CYP3A4 inhibitor or quetiapine are other factors which may affect the magnitude of this interaction. Decrease the quetiapine dose if needed. If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, fainting, excessive drowsiness, rapid pulse/hypotension, weakness, fatigue, dizziness, or muscle stiffness/tremors (EPS). DISCUSSION: In a study in 19 Chinese patients with schizophrenia, patients received quetiapine (200 mg twice daily) alone and with erythromycin (500 mg 3 times daily, a moderate inhibitor of CYP3A4). Erythromycin increased the quetiapine maximum concentration (Cmax)by 68%(range approximately 20-130%), area-under-curve (AUC) 129% (range approximately 20-300%), and half-life by 92% (range approximately 0-250%). Quetiapine clearance decreased 52% (range approximately -15 to -80%).(6) Moderate inhibitors of CYP3A4 include: aprepitant, avacopan, berotralstat, clofazimine, conivaptan, diltiazem, duvelisib, fedratinib, fluvoxamine, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nirogacestat, schisandra, schisandra sphenanthera, tofisopam, treosulfan and verapamil.(4) |
AKYNZEO, APONVIE, APREPITANT, CARDIZEM, CARDIZEM CD, CARDIZEM LA, CARTIA XT, CINVANTI, CLOFAZIMINE, CONIVAPTAN-D5W, COPIKTRA, CRESEMBA, DILT-XR, DILTIAZEM 12HR ER, DILTIAZEM 24HR ER, DILTIAZEM 24HR ER (CD), DILTIAZEM 24HR ER (LA), DILTIAZEM 24HR ER (XR), DILTIAZEM HCL, DILTIAZEM HCL-0.7% NACL, DILTIAZEM HCL-0.9% NACL, DILTIAZEM HCL-NACL, DILTIAZEM-D5W, EMEND, FLUVOXAMINE MALEATE, FLUVOXAMINE MALEATE ER, GLEEVEC, GRAFAPEX, IMATINIB MESYLATE, IMKELDI, INREBIC, MATZIM LA, OGSIVEO, ORLADEYO, PREVYMIS, SUNLENCA, TAVNEOS, TIADYLT ER, TIAZAC, TRANDOLAPRIL-VERAPAMIL ER, VAPRISOL-5% DEXTROSE, VERAPAMIL ER, VERAPAMIL ER PM, VERAPAMIL HCL, VERAPAMIL SR |
Opioids (Extended Release)/Antipsychotics; Phenothiazines SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics with CNS depressants such as antipsychotics, including phenothiazine derivatives, to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
BUPRENORPHINE, BUTRANS, CONZIP, FENTANYL, HYDROCODONE BITARTRATE ER, HYDROMORPHONE ER, HYSINGLA ER, MORPHINE SULFATE ER, MS CONTIN, NUCYNTA ER, OXYCODONE HCL ER, OXYCONTIN, OXYMORPHONE HCL ER, TRAMADOL HCL ER, XTAMPZA ER |
Slt Opioids (Immediate Release)/Antipsychotics;Phenothiazine SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics with CNS depressants such as antipsychotics, including phenothiazine derivatives, to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
APADAZ, BELBUCA, BELLADONNA-OPIUM, BENZHYDROCODONE-ACETAMINOPHEN, BUPRENORPHINE HCL, BUTORPHANOL TARTRATE, DILAUDID, DSUVIA, DURAMORPH, ENDOCET, FENTANYL CITRATE, FENTANYL CITRATE-0.9% NACL, FENTANYL CITRATE-D5W, FENTANYL CITRATE-STERILE WATER, FENTANYL CITRATE-WATER, FENTANYL-BUPIVACAINE-0.9% NACL, FENTANYL-BUPIVACAINE-NACL, FENTANYL-ROPIVACAINE-0.9% NACL, FENTANYL-ROPIVACAINE-NACL, HYDROCODONE BITARTRATE, HYDROCODONE-ACETAMINOPHEN, HYDROCODONE-IBUPROFEN, HYDROMORPHONE HCL, HYDROMORPHONE HCL-0.9% NACL, HYDROMORPHONE HCL-D5W, HYDROMORPHONE HCL-NACL, HYDROMORPHONE HCL-WATER, INFUMORPH, MITIGO, MORPHINE SULFATE, MORPHINE SULFATE-0.9% NACL, MORPHINE SULFATE-NACL, NALBUPHINE HCL, NALOCET, NUCYNTA, OLINVYK, OPIUM TINCTURE, OXYCODONE HCL, OXYCODONE HYDROCHLORIDE, OXYCODONE-ACETAMINOPHEN, OXYMORPHONE HCL, PENTAZOCINE-NALOXONE HCL, PERCOCET, PRIMLEV, PROLATE, REMIFENTANIL HCL, ROXICODONE, ROXYBOND, SUFENTANIL CITRATE, ULTIVA |
Trazodone (Less Than 100 mg)/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of trazodone with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1,2) CLINICAL EFFECTS: The use of trazodone in patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1,2) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of trazodone states that concurrent use with agents known to prolong the QT interval should be avoided.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Trazodone has been reported to prolong the QT interval.(1) A thorough QT study in 20 subjects evaluated the effects of trazodone at doses of 20 mg, 60 mg and 140 mg. There was no evidence of QTc prolongation at the lowest trazodone dose of 20mg (mean effect on QTc of 4.5 ms 95% CI 3.7-5.3 ms), but at 60 mg and 140 mg, there was a significant effect that exceeds the E14 FDA Guidelines threshold of prolonging the QT/QTc interval by more than 5 ms. The study found a dose-dependent effect on QTc prolongation starting at 60 mg with a mean effect on QTc of 12.3 ms (95% CI 11-13.6 ms) and increasing with a 140 mg dose to a mean effect on QTc of 19.8 ms (95% CI 17.6-22.1).(3) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(4) |
TRAZODONE HCL |
Meperidine (IR)/Selected Antipsychotics; Phenothiazines SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids such as meperidine and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids such as meperidine and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics such as meperidine with CNS depressants such as antipsychotics, including phenothiazine derivatives, to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
DEMEROL, MEPERIDINE HCL, MEPERIDINE HCL-0.9% NACL |
Codeine; Levorphanol (IR)/Slt Antipsychotics; Phenothiazines SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids such as codeine and levorphanol and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids such as codeine and levorphanol and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics such as codeine and levorphanol with CNS depressants such as antipsychotics, including phenothiazine derivatives, to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
ACETAMIN-CAFF-DIHYDROCODEINE, ACETAMINOPHEN-CODEINE, ASA-BUTALB-CAFFEINE-CODEINE, ASCOMP WITH CODEINE, BUTALB-ACETAMINOPH-CAFF-CODEIN, CARISOPRODOL-ASPIRIN-CODEINE, CODEINE PHOSPHATE, CODEINE SULFATE, DIHYDROCODEINE BITARTRATE, FIORICET WITH CODEINE, HYDROCODONE BITARTRATE, LEVORPHANOL TARTRATE, TREZIX |
Tramadol (IR)/Selected Antipsychotics; Phenothiazines SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids such as tramadol and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids such as tramadol and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics such as tramadol with CNS depressants such as antipsychotics, including phenothiazine derivatives, to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
QDOLO, TRAMADOL HCL, TRAMADOL HCL-ACETAMINOPHEN |
Selected Opioids for MAT/Selected Antipsychotics SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of buprenorphine or diacetylmorphine and antipsychotics may result in additive CNS depression.(1-3) CLINICAL EFFECTS: Concurrent use of buprenorphine or diacetylmorphine and antipsychotics may result in profound sedation, respiratory depression, coma, and/or death.(1-3) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Medication assisted treatment (MAT) with buprenorphine or diacetylmorphine is not contraindicated in patients taking CNS depressants, such as antipsychotics; however, gradual tapering or decreasing to the lowest effective dose of the antipsychotic may be appropriate. Ensure that other health care providers prescribing other CNS depressants are aware of the patient's buprenorphine or diacetylmorphine treatment.(2) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(4) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(5) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(6) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(7) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(8) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(9) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(10) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(11) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(12) Selected antipsychotics linked include: amsulpride, chlorpromazine, chlorprothixene, clozapine, droperidol, haloperidol, iloperidone, mesoridazine, paliperidone, pimavanserin, pimozide, pipamperone, promethazine, quetiapine, sertindole, sulpiride, sultopride, thioridazine, ziprasidone, and zuclopenthixol. |
BRIXADI, BUPRENORPHINE HCL, BUPRENORPHINE-NALOXONE, SUBLOCADE, SUBOXONE, ZUBSOLV |
Amisulpride/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Amisulpride has been shown to prolong the QT interval. Concurrent use with QT prolonging agents may result in additive effects on the QT interval.(1) CLINICAL EFFECTS: The concurrent use of amisulpride with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Use caution when using amisulpride concurrently with other agents that can prolong the QT interval. Amisulpride may cause a dose and concentration dependent increase in the QTc interval. When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy. ECG monitoring is recommended in patients with pre-existing arrhythmias or cardiac conduction disorders; electrolyte abnormalities; congestive heart failure; or in patients taking medications or with other medical conditions known to prolong the QT interval. Correct any electrolyte abnormalities.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting.(2) DISCUSSION: QT prolongation and torsades de pointes have been reported with amisulpride. In a study in 40 patients with post operative nausea and vomiting, amisulpride increased baseline QTcF by 5 msec after a 2-minute intravenous infusion of 5 mg and by 23.4 msec after an 8-minute intravenous infusion of 40 mg. Based on an exposure-response relationship, it is expected that a 10 mg intravenous infusion over 1 minute may increase the QTcF by 13.4 msec.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
BARHEMSYS |
Osilodrostat/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Osilodrostat has been shown to prolong the QT interval. Concurrent use with QT prolonging agents may result in additive effects on the QT interval.(1) CLINICAL EFFECTS: The concurrent use of osilodrostat with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Use caution when using osilodrostat concurrently with other agents that can prolong the QT interval and consider more frequent ECG monitoring. A dose-dependent QT interval prolongation was noted in clinical studies. Prior to initiating therapy with osilodrostat, obtain a baseline ECG and monitor for QTc interval changes thereafter. Consider temporary discontinuation of therapy if the QTc interval increases > 480 msec. When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting.(2) DISCUSSION: QTc prolongation has been reported with osilodrostat. In a thorough QT study in 86 healthy patients, osilodrostat increased baseline QTcF by 1.73 msec at a 10 mg dose and 25.38 msec at a 150 mg dose (up to 2.5 times the maximum recommended dosage). The predicted mean placebo-corrected QTcF at the highest recommended dose in clinical practice (30 mg twice daily) was estimated as 5.3 msec.(1) In a clinical study, five patients (4%) were reported to have an event of QT prolongation, three patients (2%) had a QTcF increase of > 60 msec from baseline, and 18 patients (13%) had a new QTcF value of > 450 msec.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
ISTURISA |
Selpercatinib/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Selpercatinib prolongs the QTc interval.(1) Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(2,3) CLINICAL EFFECTS: The concurrent use of selpercatinib with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(2,3) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: Selpercatinib prolongs the QT interval. An increase in QT interval to > 500 ms was measured in 6% of patients and increase in the QT interval of at least 60 ms over baseline was measured in 15% of patients. Monitor patients at significant risk of developing QT prolongation, including patients with known long QT syndromes, clinically significant bradyarrhythmias, and severe or uncontrolled heart failure. Assess QT interval, electrolytes, and TSH at baseline and periodically during treatment. Correct hypokalemia, hypomagnesemia, and hypocalcemia prior to initiation and during treatment. Dose adjustments (1): For grade 3 QT interval prolongation, withhold selpercatinib until recovery to baseline or grade 0 or 1. Resume at a reduced dose. -1st dose reduction: For patients weighing less than 50 kg: 80 mg twice daily. For patients weighing 50 kg or greater: 120 mg twice daily. -2nd dose reduction: For patients weighing less than 50 kg: 40 mg twice daily. For patients weighing 50 kg or greater: 80 mg twice daily. -3rd dose reduction: For patients weighing less than 50 kg: 40 mg once daily. For patients weighing 50 kg or greater: 40 mg twice daily. -For grade 4 QT prolongation, discontinue selpercatinib. DISCUSSION: The effect of selpercatinib on the QT interval was evaluated in a thorough QT study in healthy subjects. The largest mean increase in QT is predicted to be 10.6 ms (upper 90% confidence interval: 12.1 ms) at the mean steady state maximum concentration (Cmax) observed in patients after administration of 160 mg twice daily. The increase in QT was concentration-dependent. Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
RETEVMO |
Quetiapine/Moderate CYP3A4 Inhibitors that Prolong QT SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may inhibit the metabolism of quetiapine.(1) Quetiapine is a sensitive substrate for CYP3A4 and so an approximately 2-fold or higher increase in exposure (AUC, area-under-curve) is possible when quetiapine is given with a moderate CYP3A4 inhibitor.(2) In addition, concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: Concurrent use of a moderate CYP3A4 inhibitor that also prolongs the QT interval may result in elevated levels of and toxicity from quetiapine,(1-3) including potentially life-threatening cardiac arrhythmias, such as torsades de pointes.(1,3) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: The US manufacturer of quetiapine states that concurrent use with agents known to prolong the QT interval should be avoided.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, fainting, excessive drowsiness, rapid pulse/hypotension, weakness, fatigue, dizziness, or muscle stiffness/tremors (EPS). Monitor patients when moderate inhibitors of CYP3A4 are co-prescribed with quetiapine as the magnitude of the interaction is highly variable between patients. Use of higher doses of either the CYP3A4 inhibitor or quetiapine are other factors which may affect the magnitude of this interaction. Decrease the quetiapine dose if needed. DISCUSSION: Although quetiapine was not associated with QT or QTc changes in clinical trials, QT prolongation has been reported in post-marketing reports in conjunction with the use of other agents known to prolong the QT interval.(1) In a study in 19 Chinese patients with schizophrenia, patients received quetiapine (200 mg twice daily) alone and with erythromycin (500 mg 3 times daily, a moderate inhibitor of CYP3A4). Erythromycin increased the quetiapine maximum concentration (Cmax)by 68%(range approximately 20-130%), area-under-curve (AUC) 129% (range approximately 20-300%), and half-life by 92% (range approximately 0-250%). Quetiapine clearance decreased 52% (range approximately -15 to -80%).(5) Moderate inhibitors of CYP3A4 that also are known QT prolonging agents include: crizotinib and nilotinib.(2,6,7) These agents may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(7) |
DANZITEN, NILOTINIB HCL, TASIGNA, XALKORI |
Galantamine/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Galantamine may reduce heart rate by increasing acetylcholine in the heart and increasing vagal tone. Bradycardia has been associated with increased risk of QTc interval prolongation.(1) Concurrent use of galantamine with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(2) CLINICAL EFFECTS: The use of galantamine in patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(2) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, advanced age or when receiving concomitant treatment with an inhibitor of CYP3A4.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The UK manufacturer of galantamine states that it should be used with caution in patients treated with drugs that affect the QTc interval.(2) If concurrent therapy is warranted, monitor ECG more frequently and consider obtaining serum calcium, magnesium, and potassium levels at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Therapeutic doses of galantamine have been reported to cause QTc prolongation in patients.(2) An 85 year old male with dementia was restarted on galantamine 8 mg daily after a 2-week treatment interruption due to a syncopal episode that occurred 3 months previously. During his prior syncopal episode, he was hypotensive and bradycardic, but QTc interval was normal. After restarting galantamine, he was found to be hypotension and bradycardiac again, and QTc interval was significantly prolonged to 503 msec, over 60 msec longer than when he was off galantamine. Galantamine was discontinued and his QTc interval returned to baseline.(4) A 47 year old schizophrenic male experienced prolongation of the QTc interval to 518 msec after galantamine was increased from 8 mg daily to 12 mg daily. Although he was also on quetiapine and metoprolol, he had been stable on his other medications. His QTc interval normalized after galantamine was stopped.(5) The European pharmacovigilance (Eudravigilance) database contains 14 reports of torsades de pointe in patients on galantamine as of October 2019.(1) A pharmacovigilance study based on the FDA Adverse Event Reporting System (FAERS) database found that, of a total of 33,626 cases of TdP/QT prolongation reported between January 2004 and September 2022, 54 cases occurred in patients on galantamine. The disproportionality analysis found a ROR = 5.12, 95% CI (3.92,6.68) and a PRR = 5.11, chi-square = 175.44.(6) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(7) |
GALANTAMINE ER, GALANTAMINE HBR, GALANTAMINE HYDROBROMIDE, ZUNVEYL |
Siponimod/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Siponimod is a sphingosine-1-phosphate (S1P) receptor modulator. Initiation of siponimod has a negative chronotropic effect. Siponimod blocks the capacity of lymphocytes to egress from lymph nodes, reducing the number of lymphocytes in peripheral blood. The mechanism by which siponimod exerts therapeutic effects in multiple sclerosis is unknown, but may involve reduction of lymphocyte migration into the central nervous system.(1,2) CLINICAL EFFECTS: The heart rate lowering effect of siponimod starts within an hour, and the Day 1 decline is maximal at approximately 3-4 hours. This leads to a mean decrease in heart rate of 5-6 beats per minute after the first dose. The first dose has also been associated with heart block. With continued up-titration, further heart rate decreases are seen on subsequent days, with maximal decrease from Day 1-baseline reached on Day 5-6. Symptomatic bradycardia has been observed. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes.(1) PREDISPOSING FACTORS: Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to siponimod initiation, factors associated with QTc prolongation (e.g. hypokalemia, hypomagnesemia), or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to siponimod. The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: Prior to initiation of siponimod, obtain an ECG to determine if preexisting conduction abnormalities are present.(1) Advice from a cardiologist is recommended in patients with preexisting heart and cerebrovascular conditions, prolonged QTc interval before or during the 6 hour observation, risk factors for QT prolongation, concurrent therapy with QT prolonging drugs or drugs that slow the heart rate or AV conduction.(1) In patients with heart rate (HR) less than 55 beats per minute (bpm), first- or second-degree AV block, or history of myocardial infarction or heart failure, first dose monitoring is recommended with hourly pulse and blood pressure to monitor for bradycardia for the first 6 hours. ECG monitoring is recommended prior to dosing and at the end of the observation period.(1) Additional US monitoring recommendations include: If HR is less than 45 bpm, the heart rate 6 hours postdose is at the lowest value postdose or if the ECG shows new onset of second degree or higher AV block at the end of the monitoring period, then monitoring should continue until the finding has resolved. If patient requires treatment for symptomatic bradycardia, second-degree or higher AV block, or QTc interval greater than or equal to 500 msec, perform continuous overnight ECG monitoring. Repeat the first dose monitoring strategy for the second dose of siponimod. If a titration dose is missed or if 4 or more consecutive daily doses are missed during maintenance treatment, reinitiate Day 1 of the dose titration and follow titration monitoring recommendations. Patient will need to be observed in the doctor's office or other facility for at least 6 hours after the first dose and after reinitiation if treatment is interrupted or discontinued for certain periods. Consult the prescribing information for full monitoring recommendations. United Kingdom recommendations:(3) In certain patients, it is recommended that an electrocardiogram (ECG) is obtained prior to dosing and at the end of the observation period. If post-dose bradyarrhythmia or conduction-related symptoms occur or if ECG 6 hours post-dose shows new onset second-degree or higher AV block or QTc > 500 msec, appropriate management should be initiated and observation continued until the symptoms/findings have resolved. If pharmacological treatment is required, monitoring should be continued overnight and 6-hour monitoring should be repeated after the second dose. During the first 6 days of treatment, if a titration dose is missed on one day, treatment needs to be re-initiated with a new titration pack. If there is a missed dose after day 6 the prescribed dose should be taken at the next scheduled time; the next dose should not be doubled. If maintenance treatment is interrupted for 4 or more consecutive daily doses, siponimod needs to be re-initiated with a new titration pack.(1,2) DISCUSSION: After the first dose of siponimod, heart rate decrease may begin within an hour. Decline is usually maximal at approximately 3-4 hours. With continued, chronic dosing, heart rate gradually returns to baseline in about 10 days.(1,2) A transient, dose-dependent decrease in heart rate was observed during the initial dosing phase of siponimod, which plateaued at doses greater than or equal to 5 mg, and bradyarrhythmic events (AV blocks and sinus pauses) were detected at a higher incidence under siponimod treatment than placebo. AV blocks and sinus pauses occurred above the recommended dose of 2 mg, with notably higher incidence under non-titrated conditions compared to dose titration conditions.(1) |
MAYZENT |
Ponesimod/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Ponesimod is a sphingosine 1-phosphate (S1P) receptor 1 modulator. Initiation of ponesimod has a negative chronotropic effect leading to a mean decrease in heart rate of 6 beats per minute (bpm) after the first dose. The first dose has also been associated with heart block.(1) CLINICAL EFFECTS: After a dose of ponesimod, a decrease in heart rate typically begins within an hour and reaches its nadir within 2-4 hours. The heart rate typically recovers to baseline levels 4-5 hours after administration. All patients recovered from bradycardia. The conduction abnormalities typically were transient, asymptomatic, and resolved within 24 hours. Second- and third-degree AV blocks were not reported. With up-titration after Day 1, the post-dose decrease in heart rate is less pronounced. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes.(1,2) PREDISPOSING FACTORS: Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to ponesimod initiation, factors associated with QTc prolongation, or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to ponesimod.(1) The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Prior to initiation of ponesimod, obtain an ECG to determine if preexisting conduction abnormalities are present. Ponesimod is generally not recommended in patients who are receiving concurrent treatment with a QT prolonging agent, anti-arrhythmic drugs, or drugs that may decrease heart rate. Consultation with a cardiologist is recommended.(1) In patients with heart rate (HR) less than 55 beats per minute (bpm), first- or second-degree AV block, or history of myocardial infarction or heart failure, monitor patients for 4 hours after the first dose for signs and symptoms of bradycardia with a minimum of hourly pulse and blood pressure measurements. Obtain an ECG in these patients prior to dosing and at the end of the 4-hour observation period.(1) Additional US monitoring recommendations include: If HR is less than 45 bpm, the heart rate 4 hours post-dose is at the lowest value post-dose or if the ECG shows new onset of second degree or higher AV block at the end of the monitoring period, then monitoring should continue until the finding has resolved. If patient requires treatment for symptomatic bradycardia, second-degree or higher AV block, or QTc interval greater than or equal to 500 msec, perform continuous overnight ECG monitoring and repeat the first dose monitoring strategy for the second dose of ponesimod. Consult the prescribing information for full monitoring recommendations. If fewer than 4 consecutive doses are missed during titration: resume treatment with the first missed titration dose and resume the titration schedule at that dose and titration day. If fewer than 4 consecutive doses are missed during maintenance: resume treatment with the maintenance dosage. If 4 or more consecutive daily doses are missed during treatment initiation or maintenance treatment, reinitiate Day 1 of the dose titration (new starter pack) and follow first-dose monitoring recommendations. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: After the first dose of ponesimod, heart rate decrease may begin within the first hour. Decline is usually maximal at approximately 4 hours. With continued, chronic dosing, post-dose decrease in heart rate is less pronounced. Heart rate gradually returns to baseline in about 4-5 hours.(1) |
PONVORY |
Ozanimod/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Ozanimod is a sphingosine 1-phosphate (S1P) receptor modulator. Initiation of ozanimod has a negative chronotropic effect leading to a mean decrease in heart rate of 13 beats per minute (bpm) after the first dose. The first dose has also been associated with heart block.(1,2) Ozanimod blocks the capacity of lymphocytes to egress from lymph nodes, reducing the number of lymphocytes in peripheral blood. The mechanism by which ozanimod exerts therapeutic effects in multiple sclerosis is unknown but may involve the reduction of lymphocyte migration into the central nervous system. CLINICAL EFFECTS: The initial heart rate lowering effect of ozanimod usually occurs within 5 hours. With continued up-titration, the maximal heart rate effect of ozanimod occurred on Day 8. Symptomatic bradycardia and heart block, including third degree block, have been observed. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes.(1,2) PREDISPOSING FACTORS: Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to ozanimod initiation, factors associated with QTc prolongation (e.g. hypokalemia, hypomagnesemia), or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to ozanimod.(1,2) The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: Prior to initiation of ozanimod, obtain an ECG to determine if preexisting conduction abnormalities are present. Patients with preexisting cardiac conditions, significant QT prolongation (QTc >450 msec in males, >470 msec in females), concurrent Class Ia or Class III antiarrhythmics, or receiving concurrent treatment with a QT prolonging agent at the time ozanimod is initiated or resumed should be referred to a cardiologist.(1) The US recommendations state: Dose titration is recommended with initiation of ozanimod due to transient decrease in heart rate and AV conduction delays.(1) United Kingdom recommendations:(2) Due to the risk of transient decreases in HR with the initiation of ozanimod, first dose, 6-hour monitoring for signs and symptoms of symptomatic bradycardia is recommended in patients with resting HR <55 bpm, second-degree [Mobitz type I] AV block or a history of myocardial infarction or heart failure. Patients should be monitored with hourly pulse and blood pressure measurement during this 6-hour period. An ECG prior to and at the end of this 6-hour period is recommended. Additional monitoring after 6 hours is recommended in patients with: heart rate less than 45 bpm, heart rate at the lowest value post-dose (suggesting that the maximum decrease in HR may not have occurred yet), evidence of a new onset second-degree or higher AV block at the 6-hour post dose ECG, or QTc interval greater than 500 msec. In these cases, appropriate management should be initiated and observation continued until the symptoms/findings have resolved. Instruct patients to report any irregular heartbeat, dizziness, or fainting.(2,3) DISCUSSION: After the first dose of ozanimod heart rate decline is usually maximal at approximately 5 hours, returning to baseline at 6 hours. With continued, chronic dosing, maximum heart rate effect occurred on day 8.(1,2) |
ZEPOSIA |
Intravenous Lefamulin/Selected Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of lefamulin with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of lefamulin with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Avoid the concurrent use of lefamulin with other medications that prolong the QT interval.(1) When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy. Correct any electrolyte abnormalities.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a thorough QT study, intravenous lefamulin increased the QTcF by 13.6 msec (90% CI = 15.5 msec) and oral lefamulin increased the QTcF by 9.3 msec (90% CI = 10.9 msec).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
XENLETA |
Tolterodine/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Tolterodine has been observed to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1,2) CLINICAL EFFECTS: The concurrent use of tolterodine with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1,2) PREDISPOSING FACTORS: Patients who are CYP2D6 poor metabolizers may be at increased risk.(1,2) The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The manufacturer of tolterodine states concurrent use agents known to prolong the QT interval should be used with caution. Consider close observation in patients with a known history of QT prolongation or patients taking antiarrhythmic medications.(1,2) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a study of the effect of tolterodine immediate release tablets, the effect on the QT interval appeared greater for 8 mg/day (two times the therapeutic dose) compared to 4 mg/day. Tolterodine 2 mg BID and tolterodine 4 mg BID increased the QTcF by 5.01 msec (0.28-9.74 msec) and 11.84 msec (7.11-16.58 msec), respectively. The change in QT interval was more pronounced in CYP2D6 poor metabolizers (PM) than extensive metabolizers (EMs).(1,2) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(4) |
TOLTERODINE TARTRATE, TOLTERODINE TARTRATE ER |
Pacritinib/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Pacritinib has been observed to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of pacritinib with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of pacritinib states concurrent use with agents known to prolong the QT interval should be avoided. Avoid the use of pacritinib in patients with a baseline QTc > 480 msec. Correct hypokalemia prior to initiation and during therapy with pacritinib.(1) If patients develop QTc prolongation >500 msec or >60 msec from baseline, hold pacritinib. If QTc prolongation resolves to <=480 msec or to baseline within 1 week, resume pacritinib at the same dose. If time to resolution of the QTc interval takes greater than 1 week to resolve, reduce the pacritinib dose.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a 24 week clinical study, patients treatment with pacritinib 200 mg twice daily had a change in QTc from baseline of 11 msec (90% CI: 5-17).(1) Pacritinib has been associated with QTc interval prolongation. In clinical trials, patients with QTc prolongation >500 msec occurred in 1.4% of patients in the treatment arm compared to 1% in the control arm. The treatment arm had a greater incidence of an increase in QTc > 60 msec from baseline than the control arm (1.9% vs 1%, respectively). QTc prolongation adverse reactions were higher in the treatment arm than the control group (3.8% vs 2%, respectively).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
VONJO |
Triclabendazole/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Triclabendazole has been observed to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) Triclabendazole is partially metabolized by CYP1A2. Ciprofloxacin, propafenone, and vemurafenib are CYP1A2 inhibitors and may inhibit the CYP1A2 mediated metabolism of triclabendazole. CLINICAL EFFECTS: The concurrent use of triclabendazole with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) Hepatic impairment and concurrent use of CYP1A2 inhibitors may raise triclabendazole levels and increase the risk of QT prolongation.(1) PATIENT MANAGEMENT: The manufacturer of triclabendazole states concurrent use with agents known to prolong the QT interval should be used with caution. Monitor ECG in patients with a history of QTc prolongation, symptoms of long QT interval, electrolyte imbalances, concurrent CYP1A2 inhibitors, or hepatic impairment. If signs of a cardiac arrhythmia develop, stop treatment with triclabendazole and monitor ECG.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a thorough QT study, a dose-dependent prolongation in the QTc interval was observed with triclabendazole. The largest placebo-corrected mean increase in QTc was 9.2 msec (upper limit of confidence interval (UCI): 12.2 msec) following oral administration of 10 mg/kg triclabendazole twice daily (at the recommended dose), and the largest placebo-corrected mean increase in QTc was 21.7 msec (UCI: 24.7 msec) following oral administration of 10 mg/kg triclabendazole twice daily for 3 days (3 times the approved recommended dosing duration).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
EGATEN |
Etrasimod/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Etrasimod is a sphingosine-1-phosphate (S1P) receptor modulator. Initiation of etrasimod has a negative chronotropic effect, which may increase the risk of developing QT prolongation. CLINICAL EFFECTS: Initiation of etrasimod may result in a transient decrease in heart rate. A mean decrease in heart rate of 7.2 (8.98) beats per minute was seen 2 to 3 hours after the first dose. The first dose has also been associated with heart block. Symptomatic bradycardia has been observed. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes.(1) PREDISPOSING FACTORS: Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to etrasimod initiation, factors associated with QTc prolongation (e.g. hypokalemia, hypomagnesemia), or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to etrasimod. The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Prior to initiation of etrasimod, obtain an ECG to determine if preexisting conduction abnormalities are present.(1) Advice from a cardiologist is recommended in patients with preexisting heart and cerebrovascular conditions, prolonged QTc interval, risk factors for QT prolongation, concurrent therapy with QT prolonging drugs or drugs that slow the heart rate or AV conduction.(1) Monitor blood pressure during treatment.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Initiation of etrasimod may result in a transient decrease in heart rate or transient AV conduction delays.(1) A transient decrease in heart rate was observed during the initial dosing phase of etrasimod and bradyarrhythmic events (AV blocks) were detected at a higher incidence under etrasimod treatment than placebo.(1) |
VELSIPITY |
Dexmedetomidine Sublingual/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Dexmedetomidine sublingual has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of dexmedetomidine sublingual with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of dexmedetomidine sublingual states that concurrent use should be avoided with other agents known to prolong the QTc interval.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a QT study, dexmedetomidine sublingual had a concentration dependent effect on the QT interval. The mean QTc (95% confidence interval) increased from baseline by 6 (7) msec with a 120 mcg single dose, 8 (9) msec with 120 mcg followed by 2 additional doses of 60 mcg (total 3 doses), 8 (11) msec with a single 180 mcg dose, and 11 (14) msec with 180 mcg followed by 2 additional doses of 90 mcg (total 3 doses), respectively.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
IGALMI |
Quetiapine (Less Than or Equal To 150 mg)/Strong 3A4 Inducers that Prolong QT SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Strong CYP3A4 inducers may increase the metabolic clearance of quetiapine.(1) Quetiapine may prolong the QTc interval. Concomitant use with other QT prolonging agents may result in an additive risk of QT prolongation.(1) CLINICAL EFFECTS: Concurrent use of strong CYP3A4 inducers that prolong QT with quetiapine may decrease the levels and effectiveness of quetiapine and cause additive effects on the QTc interval, which may result in life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) Induction effects may be more likely with regular use of the inducer for longer than 1-2 weeks. PATIENT MANAGEMENT: In patients on quetiapine receiving chronic treatment (i.e., greater than 7-14 days) of inducers of CYP3A4, titrate the dose of quetiapine based on the patient's clinical response and tolerance, up to 5-fold of the original dose. The onset of induction is gradual but may begin within one week for potent agents (e.g. rifampin). The time to maximal induction may be 2 or more weeks depending upon the half-life and dose of the inducer. If the CYP3A4 inducer is discontinued, the dose of quetiapine should be reduced to the original level within 7-14 days.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In an interaction study, 18 stable patients with schizophrenia, schizoaffective or bipolar disorder started treatment with quetiapine, achieving the target dose of 300 mg twice daily on day five. On day 9 carbamazepine was started, gradually increasing to the target dose of 200 mg three times a day on day 13. Patients continued on the combination through day 33 to assure maximal enzyme induction was achieved. Carbamazepine decreased quetiapine AUC 87%, decreased steady-state maximum concentration (Cmax) by 80%, and increased clearance approximately 7-fold.(3) In a review of 2111 quetiapine levels from 1179 patients, quetiapine levels were 86% lower in patients receiving concurrent carbamazepine.(4) In a review of 62 psychiatric patients, patients receiving carbamazepine had significantly lower quetiapine concentration-to-dose ratios.(5) A case report described a newly hospitalized patient admitted on carbamazepine 600 mg daily and risperidone 8 mg daily for schizoaffective disorder. She was then converted from risperidone to quetiapine. After 7 days of treatment at the target quetiapine dose of 700 mg daily, serum quetiapine concentrations were undetectable. A repeat level 7 days later was also undetectable. The decision was then made to discontinue carbamazepine and continue quetiapine without dose adjustment. Quetiapine concentrations increased over the following days to weeks and were accompanied by clinical improvement sufficient for discharge. The authors also briefly described 2 additional patients, each receiving carbamazepine for a seizure disorder who were subsequently treated with quetiapine 600 mg or 700 mg daily for more than two weeks. As with the first case, quetiapine serum concentrations with concurrent carbamazepine therapy were below the limit of detection for each patient (lower limit of detection was 25 mcg/mL).(6) Concurrent use of phenytoin (100 mg three times daily), a strong CYP3A4 inducer, and quetiapine increased oral clearance of quetiapine by 5-fold.(7) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(8) Strong CYP3A4 inducers that prolong QT linked to this monograph include: encorafenib and ivosidenib.(9) |
BRAFTOVI, TIBSOVO |
Quetiapine (Less Than or Equal To 150 mg)/Strong CYP3A4 Inducers SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Quetiapine and its active metabolite are metabolized by CYP3A4.(1) In addition, FDA describes quetiapine as a sensitive CYP3A4 substrate: a drug which can have large changes in systemic exposure due to induction (or inhibition) of the CYP3A4 pathway.(2) CLINICAL EFFECTS: Concurrent use of strong CYP3A4 inducers and quetiapine will result in decreased systemic concentrations of quetiapine and may lead to therapeutic failure.(1) PREDISPOSING FACTORS: Induction effects may be more likely with regular use of the inducer for longer than 1-2 weeks. PATIENT MANAGEMENT: In patients on quetiapine receiving chronic treatment (i.e., greater than 7-14 days) of inducers of CYP3A4, titrate the dose of quetiapine based on the patient's clinical response and tolerance, up to 5-fold of the original dose. The onset of induction is gradual but may begin within one week for potent agents (e.g. rifampin). The time to maximal induction may be 2 or more weeks depending upon the half-life and dose of the inducer. If the CYP3A4 inducer is discontinued, the dose of quetiapine should be reduced to the original level within 7-14 days.(1) DISCUSSION: In an interaction study, 18 stable patients with schizophrenia, schizoaffective or bipolar disorder started treatment with quetiapine, achieving the target dose of 300 mg twice daily on day five. On day 9 carbamazepine was started, gradually increasing to the target dose of 200 mg three times a day on day 13. Patients continued on the combination through day 33 to assure maximal enzyme induction was achieved. Carbamazepine decreased quetiapine AUC 87%, decreased steady-state maximum concentration (Cmax) by 80%, and increased clearance approximately 7-fold.(3) In a review of 2111 quetiapine levels from 1179 patients, quetiapine levels were 86% lower in patients receiving concurrent carbamazepine.(4) In a review of 62 psychiatric patients, patients receiving carbamazepine had significantly lower quetiapine concentration-to-dose ratios.(5) A case report described a newly hospitalized patient admitted on carbamazepine 600 mg daily and risperidone 8 mg daily for schizoaffective disorder. She was then converted from risperidone to quetiapine. After 7 days of treatment at the target quetiapine dose of 700 mg daily, serum quetiapine concentrations were undetectable. A repeat level 7 days later was also undetectable. The decision was then made to discontinue carbamazepine and continue quetiapine without dose adjustment. Quetiapine concentrations increased over the following days to weeks and were accompanied by clinical improvement sufficient for discharge. The authors also briefly described 2 additional patients, each receiving carbamazepine for a seizure disorder who were subsequently treated with quetiapine 600 mg or 700 mg daily for more than two weeks. As with the first case, quetiapine serum concentrations with concurrent carbamazepine therapy were below the limit of detection for each patient (lower limit of detection was 25 mcg/mL).(6) Concurrent use of phenytoin (100 mg three times daily), a strong CYP3A4 inducer, and quetiapine increased oral clearance of quetiapine by 5-fold.(7) FDA defines strong CYP inducers as agents which cause at least an 80% decrease in systemic exposure (area-under-curve or AUC) of a drug metabolized by a specific CYP enzyme.(2) Strong CYP3A4 inducers linked to this monograph include: apalutamide, barbiturates, carbamazepine, enzalutamide, fosphenytoin, lumacaftor, mitotane, natisedine, phenytoin, primidone, rifampin, rifapentine and St. John's Wort.(8) |
ASA-BUTALB-CAFFEINE-CODEINE, ASCOMP WITH CODEINE, BUTALB-ACETAMINOPH-CAFF-CODEIN, BUTALBITAL, BUTALBITAL-ACETAMINOPHEN, BUTALBITAL-ACETAMINOPHEN-CAFFE, BUTALBITAL-ASPIRIN-CAFFEINE, CARBAMAZEPINE, CARBAMAZEPINE ER, CARBATROL, CEREBYX, DILANTIN, DILANTIN-125, DONNATAL, EPITOL, EQUETRO, ERLEADA, FIORICET, FIORICET WITH CODEINE, FOSPHENYTOIN SODIUM, LYSODREN, MITOTANE, MYSOLINE, ORKAMBI, PENTOBARBITAL SODIUM, PHENOBARBITAL, PHENOBARBITAL SODIUM, PHENOBARBITAL-BELLADONNA, PHENOBARBITAL-HYOSC-ATROP-SCOP, PHENOHYTRO, PHENYTEK, PHENYTOIN, PHENYTOIN SODIUM, PHENYTOIN SODIUM EXTENDED, PRIFTIN, PRIMIDONE, RIFADIN, RIFAMPIN, SEZABY, TEGRETOL, TEGRETOL XR, TENCON, XTANDI |
Mavorixafor/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Mavorixafor has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of mavorixafor with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of mavorixafor states that concurrent use of mavorixafor with other agents known to prolong the QTc interval should be approached with caution. ECG monitoring is recommended prior to initiation, during concurrent therapy, and as clinically indicated with other agents known to prolong the QTc interval.(1) If QT prolongation occurs, a dose reduction or discontinuation of mavorixafor may be required.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a thorough QT study, a dose of mavorixafor 800 mg increased the mean QTc 15.6 msec (upper 90% CI = 19.9 msec). The dose of mavorixafor was 2 times the recommended maximum daily dose.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
XOLREMDI |
Givinostat/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Givinostat may prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of givinostat with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of givinostat states that the concurrent use of QT prolonging agents should be avoided. If concurrent use cannot be avoided, obtain ECGs prior to initiating givinostat, during concomitant use, and as clinically indicated.(1) If the QTc interval is greater than 500 ms or the change from baseline is greater than 60 ms, withhold givinostat therapy.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a QT study, the largest mean increase in QTc interval of 13.6 ms (upper confidence interval of 17.1 ms) occurred 5 hours after administration of givinostat 265.8 mg (approximately 5 times the recommended 53.2 mg dose in patients weighing 60 kg or more).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
DUVYZAT |
The following contraindication information is available for QUETIAPINE FUMARATE ER (quetiapine fumarate):
Drug contraindication overview.
The manufacturer states that there are no known contraindications to quetiapine use.
The manufacturer states that there are no known contraindications to quetiapine use.
There are 4 contraindications.
Absolute contraindication.
Contraindication List |
---|
Congenital long QT syndrome |
Neuroleptic malignant syndrome |
Prolonged QT interval |
Torsades de pointes |
There are 12 severe contraindications.
Adequate patient monitoring is recommended for safer drug use.
Severe List |
---|
Child-pugh class A hepatic impairment |
Child-pugh class B hepatic impairment |
Child-pugh class C hepatic impairment |
Debilitation |
Disease of liver |
Hypokalemia |
Hypomagnesemia |
Metabolic syndrome x |
Myocarditis |
Neutropenic disorder |
Orthostatic hypotension |
Senile dementia |
There are 30 moderate contraindications.
Clinically significant contraindication, where the condition can be managed or treated before the drug may be given safely.
Moderate List |
---|
30 day risk period post-myocardial infarction |
Acquired dystonia |
Acute cognitive impairment |
Acute myocardial infarction |
Anemia |
Angle-closure glaucoma |
Benign prostatic hyperplasia |
Bradycardia |
Cataracts |
Cerebrovascular disorder |
Chronic heart failure |
Constipation |
Dehydration |
Diabetes mellitus |
Hyperlipidemia |
Hyperprolactinemia |
Hypertension |
Hypothyroidism |
Hypovolemia |
Intestinal obstruction |
Leukopenia |
Lower seizure threshold |
Myocardial ischemia |
Obesity |
Predisposition to aspiration |
Seizure disorder |
Suicidal ideation |
Tardive dyskinesia |
Urinary retention |
Weight gain |
The following adverse reaction information is available for QUETIAPINE FUMARATE ER (quetiapine fumarate):
Adverse reaction overview.
The most common adverse effects reported in 5% or more of patients receiving quetiapine therapy for schizophrenia or bipolar disorder and at a frequency twice that reported among patients receiving placebo in clinical trials include somnolence, sedation, asthenia, lethargy, dizziness, dry mouth, constipation, increased ALT, weight gain, dyspepsia, abdominal pain, postural hypotension, and pharyngitis.
The most common adverse effects reported in 5% or more of patients receiving quetiapine therapy for schizophrenia or bipolar disorder and at a frequency twice that reported among patients receiving placebo in clinical trials include somnolence, sedation, asthenia, lethargy, dizziness, dry mouth, constipation, increased ALT, weight gain, dyspepsia, abdominal pain, postural hypotension, and pharyngitis.
There are 56 severe adverse reactions.
More Frequent | Less Frequent |
---|---|
None. |
Abnormal hepatic function tests Akathisia Dysarthria Dyspnea Hyperglycemia Hypotension Increased alanine transaminase Increased aspartate transaminase Leukopenia Parkinsonism Skin rash Suicidal ideation |
Rare/Very Rare |
---|
Accidental fall Acute generalized exanthematous pustulosis Agranulocytosis Anaphylaxis Bradycardia Cardiomyopathy Cataracts Cerebral ischemia Cerebrovascular accident Depression Diabetes mellitus Diabetic ketoacidosis DRESS syndrome Eosinophilia Esophageal dysmotility Extrapyramidal disease Galactorrhea not associated with childbirth Gastrointestinal obstruction Hepatic failure Hepatic necrosis Hepatitis Hyponatremia Hypothermia Hypothyroidism Ileus Menstrual disorder Myalgia Myocarditis Neuroleptic malignant syndrome Neutropenic disorder Pancreatitis Peripheral edema Priapism Prolonged QT interval Rhabdomyolysis Seizure disorder SIADH syndrome Sleep apnea Stevens-johnson syndrome Tardive dyskinesia Thrombocytopenic disorder Thrombotic thrombocytopenic purpura Toxic epidermal necrolysis Urinary retention |
There are 50 less severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Constipation Dizziness Drowsy Dyspepsia General weakness Headache disorder Insomnia Lethargy Orthostatic hypotension Pharyngitis Weight gain Xerostomia |
Acute abdominal pain Agitation Anorexia Cough Dream disorder Flu-like symptoms Gastroenteritis Hypercholesterolemia Hyperhidrosis Hyperprolactinemia Hypertension Hypertonia Hypertriglyceridemia Increased appetite Irritability Nasal congestion Pain Palpitations Restless leg syndrome Rhinitis Tachycardia Toxic amblyopia Tremor Visual changes Vomiting |
Rare/Very Rare |
---|
Acquired dystonia Anticholinergic toxicity Complex sleep behavior Cutaneous vasculitis Dysphagia Fecal incontinence Fever Memory impairment Nightmares Nocturnal enuresis Sleep walking disorder Syncope Vasodilation of blood vessels |
The following precautions are available for QUETIAPINE FUMARATE ER (quetiapine fumarate):
Safety and efficacy not established in children younger than 18 years of age. FDA warns that a greater risk of suicidal thinking or behavior (suicidality) occurred during first few months of antidepressant treatment (4%) compared with placebo (2%) in children and adolescents with major depressive disorder, obsessive-compulsive disorder (OCD), or other psychiatric disorders based on pooled analyses of 24 short-term, placebo-controlled trials of 9 antidepressant drugs (selective serotonin-reuptake inhibitors (SSRIs) and other antidepressants). However, a more recent meta-analysis of 27 placebo-controlled trials of 9 antidepressants (SSRIs and others) in patients younger than 19 years of age with major depressive disorder, OCD, or non-OCD anxiety disorders suggests that the benefits of antidepressant therapy in treating these conditions may outweigh the risks of suicidal behavior or suicidal ideation.
No suicides occurred in these pediatric trials. Carefully consider these findings when assessing potential benefits and risks of quetiapine in a child or adolescent for any clinical use. (See Worsening of Depression and Suicidality Risk under Warnings/Precautions: Warnings, in Cautions.)
Contraindicated
Severe Precaution
Management or Monitoring Precaution
No suicides occurred in these pediatric trials. Carefully consider these findings when assessing potential benefits and risks of quetiapine in a child or adolescent for any clinical use. (See Worsening of Depression and Suicidality Risk under Warnings/Precautions: Warnings, in Cautions.)
Contraindicated
None |
Severe Precaution
None |
Management or Monitoring Precaution
None |
Category C. (See Users Guide.) Neonates exposed to antipsychotic agents during the third trimester of pregnancy are at risk for extrapyramidal and/or withdrawal symptoms following delivery. Symptoms reported to date have included agitation, hypertonia, hypotonia, tardive dyskinetic-like symptoms, tremor, somnolence, respiratory distress, and feeding disorder.
Neonates exhibiting such symptoms should be monitored. The complications have varied in severity; some neonates recovered within hours to days without specific treatment, while others have required intensive care unit support and prolonged hospitalization. For further information on extrapyramidal and withdrawal symptoms in neonates, see Cautions: Pregnancy, Fertility, and Lactation, in the Phenothiazines General Statement 28:16.08.24.
The effect of quetiapine on labor and delivery is unknown.
Neonates exhibiting such symptoms should be monitored. The complications have varied in severity; some neonates recovered within hours to days without specific treatment, while others have required intensive care unit support and prolonged hospitalization. For further information on extrapyramidal and withdrawal symptoms in neonates, see Cautions: Pregnancy, Fertility, and Lactation, in the Phenothiazines General Statement 28:16.08.24.
The effect of quetiapine on labor and delivery is unknown.
Quetiapine appears to be distributed into human milk in relatively small amounts. The manufacturer recommends that women receiving quetiapine not breast-feed.
In clinical studies, approximately 7% of 3400 patients were 65 years of age or older. While no substantial differences in safety relative to younger adults were observed, factors that decrease pharmacokinetic clearance, increase the pharmacodynamic response, or cause poorer tolerance (e.g., orthostasis) may be present in geriatric patients. (See Dosage and Administration: Special Populations and also see Increased Mortality in Geriatric Patients with Dementia-related Psychosis under Warnings/Precautions: Warnings, in Cautions.) In pooled data analyses, a reduced risk of suicidality was observed in adults 65 years of age or older with antidepressant therapy compared with placebo. (See Worsening of Depression and Suicidality Risk under Warnings/Precautions: Warnings, in Cautions.)
The following prioritized warning is available for QUETIAPINE FUMARATE ER (quetiapine fumarate):
WARNING: There may be a slightly increased risk of serious, possibly fatal side effects (such as stroke, heart failure, fast/irregular heartbeat, pneumonia) when this medication is used by older adults with dementia. This medication is not approved for the treatment of dementia-related behavior problems. Discuss the risks and benefits of this medication, as well as other effective and possibly safer treatments for dementia-related behavior problems, with the doctor.
If you are using quetiapine in combination with other medication to treat depression, also carefully read the drug information for the other medication. Quetiapine sustained-release is used to treat certain mental/mood disorders (such as schizophrenia, bipolar disorder, sudden episodes of mania or depression associated with bipolar disorder). It is also used with other medications to treat depression.
Drugs used to treat depression can help prevent suicidal thoughts/attempts and provide other important benefits. However, studies have shown that a small number of people (especially people younger than 25) who take drugs to treat depression may experience worsening depression, other mental/mood symptoms, or suicidal thoughts/attempts. It is very important to talk with the doctor about the risks and benefits of drugs used to treat depression (especially for people younger than 25), even if treatment is not for a mental/mood condition.
Tell the doctor right away if you notice worsening depression/other psychiatric conditions, unusual behavior changes (including possible suicidal thoughts/attempts), or other mental/mood changes (including new/worsening anxiety, panic attacks, trouble sleeping, irritability, hostile/angry feelings, impulsive actions, severe restlessness, very rapid speech). Be especially watchful for these symptoms when a new drug to treat depression is started or when the dose is changed. This medication is not approved for use in children under 10 years old.
WARNING: There may be a slightly increased risk of serious, possibly fatal side effects (such as stroke, heart failure, fast/irregular heartbeat, pneumonia) when this medication is used by older adults with dementia. This medication is not approved for the treatment of dementia-related behavior problems. Discuss the risks and benefits of this medication, as well as other effective and possibly safer treatments for dementia-related behavior problems, with the doctor.
If you are using quetiapine in combination with other medication to treat depression, also carefully read the drug information for the other medication. Quetiapine sustained-release is used to treat certain mental/mood disorders (such as schizophrenia, bipolar disorder, sudden episodes of mania or depression associated with bipolar disorder). It is also used with other medications to treat depression.
Drugs used to treat depression can help prevent suicidal thoughts/attempts and provide other important benefits. However, studies have shown that a small number of people (especially people younger than 25) who take drugs to treat depression may experience worsening depression, other mental/mood symptoms, or suicidal thoughts/attempts. It is very important to talk with the doctor about the risks and benefits of drugs used to treat depression (especially for people younger than 25), even if treatment is not for a mental/mood condition.
Tell the doctor right away if you notice worsening depression/other psychiatric conditions, unusual behavior changes (including possible suicidal thoughts/attempts), or other mental/mood changes (including new/worsening anxiety, panic attacks, trouble sleeping, irritability, hostile/angry feelings, impulsive actions, severe restlessness, very rapid speech). Be especially watchful for these symptoms when a new drug to treat depression is started or when the dose is changed. This medication is not approved for use in children under 10 years old.
The following icd codes are available for QUETIAPINE FUMARATE ER (quetiapine fumarate)'s list of indications:
Bipolar disorder | |
F31 | Bipolar disorder |
F31.0 | Bipolar disorder, current episode hypomanic |
F31.1 | Bipolar disorder, current episode manic without psychotic features |
F31.10 | Bipolar disorder, current episode manic without psychotic features, unspecified |
F31.11 | Bipolar disorder, current episode manic without psychotic features, mild |
F31.12 | Bipolar disorder, current episode manic without psychotic features, moderate |
F31.13 | Bipolar disorder, current episode manic without psychotic features, severe |
F31.2 | Bipolar disorder, current episode manic severe with psychotic features |
F31.3 | Bipolar disorder, current episode depressed, mild or moderate severity |
F31.30 | Bipolar disorder, current episode depressed, mild or moderate severity, unspecified |
F31.31 | Bipolar disorder, current episode depressed, mild |
F31.32 | Bipolar disorder, current episode depressed, moderate |
F31.4 | Bipolar disorder, current episode depressed, severe, without psychotic features |
F31.5 | Bipolar disorder, current episode depressed, severe, with psychotic features |
F31.6 | Bipolar disorder, current episode mixed |
F31.60 | Bipolar disorder, current episode mixed, unspecified |
F31.61 | Bipolar disorder, current episode mixed, mild |
F31.62 | Bipolar disorder, current episode mixed, moderate |
F31.63 | Bipolar disorder, current episode mixed, severe, without psychotic features |
F31.64 | Bipolar disorder, current episode mixed, severe, with psychotic features |
F31.7 | Bipolar disorder, currently in remission |
F31.70 | Bipolar disorder, currently in remission, most recent episode unspecified |
F31.71 | Bipolar disorder, in partial remission, most recent episode hypomanic |
F31.72 | Bipolar disorder, in full remission, most recent episode hypomanic |
F31.73 | Bipolar disorder, in partial remission, most recent episode manic |
F31.74 | Bipolar disorder, in full remission, most recent episode manic |
F31.75 | Bipolar disorder, in partial remission, most recent episode depressed |
F31.76 | Bipolar disorder, in full remission, most recent episode depressed |
F31.77 | Bipolar disorder, in partial remission, most recent episode mixed |
F31.78 | Bipolar disorder, in full remission, most recent episode mixed |
F31.8 | Other bipolar disorders |
F31.81 | Bipolar II disorder |
F31.89 | Other bipolar disorder |
F31.9 | Bipolar disorder, unspecified |
Depression associated with bipolar disorder | |
F31.3 | Bipolar disorder, current episode depressed, mild or moderate severity |
F31.30 | Bipolar disorder, current episode depressed, mild or moderate severity, unspecified |
F31.31 | Bipolar disorder, current episode depressed, mild |
F31.32 | Bipolar disorder, current episode depressed, moderate |
F31.4 | Bipolar disorder, current episode depressed, severe, without psychotic features |
F31.5 | Bipolar disorder, current episode depressed, severe, with psychotic features |
Major depressive disorder treatment adjunct | |
F32.0 | Major depressive disorder, single episode, mild |
F32.1 | Major depressive disorder, single episode, moderate |
F32.2 | Major depressive disorder, single episode, severe without psychotic features |
F32.3 | Major depressive disorder, single episode, severe with psychotic features |
F32.9 | Major depressive disorder, single episode, unspecified |
F33 | Major depressive disorder, recurrent |
F33.0 | Major depressive disorder, recurrent, mild |
F33.1 | Major depressive disorder, recurrent, moderate |
F33.2 | Major depressive disorder, recurrent severe without psychotic features |
F33.3 | Major depressive disorder, recurrent, severe with psychotic symptoms |
F33.8 | Other recurrent depressive disorders |
F33.9 | Major depressive disorder, recurrent, unspecified |
Schizophrenia | |
F20 | Schizophrenia |
F20.0 | Paranoid schizophrenia |
F20.1 | Disorganized schizophrenia |
F20.2 | Catatonic schizophrenia |
F20.3 | Undifferentiated schizophrenia |
F20.5 | Residual schizophrenia |
F20.8 | Other schizophrenia |
F20.81 | Schizophreniform disorder |
F20.89 | Other schizophrenia |
F20.9 | Schizophrenia, unspecified |
Formulary Reference Tool