Please wait while the formulary information is being retrieved.
Drug overview for CISPLATIN (cisplatin):
Generic name: CISPLATIN (sis-PLAT-in)
Drug class: Platinum Compounds
Therapeutic class: Antineoplastics
Cisplatin is a platinum-containing antineoplastic agent.
Cisplatin is often used as a component of combination chemotherapeutic regimens because of its relative lack of hematologic toxicity.
Generic name: CISPLATIN (sis-PLAT-in)
Drug class: Platinum Compounds
Therapeutic class: Antineoplastics
Cisplatin is a platinum-containing antineoplastic agent.
Cisplatin is often used as a component of combination chemotherapeutic regimens because of its relative lack of hematologic toxicity.
DRUG IMAGES
- CISPLATIN 100 MG/100 ML VIAL
- CISPLATIN 50 MG/50 ML VIAL
The following indications for CISPLATIN (cisplatin) have been approved by the FDA:
Indications:
Biliary tract malignancy
Invasive bladder cancer
Malignant neoplasm of the ovary
Ovarian germ cell tumor carcinoma
Small cell lung carcinoma
Testicular germ cell tumor
Professional Synonyms:
Biliary cancer
Biliary malignancy
Gallbladder or bile duct cancer
Germ cell tumor of testis
Invasive malignancy of bladder
Malignant neoplasm of gallbladder or bile ducts
Malignant neoplasm of ovary
Malignant tumor of gallbladder or bile ducts
Malignant tumor of the ovary
Oat cell carcinoma of the lung
Ovarian cancer
Ovarian germ cell carcinoma
Ovarian germ cell tumor
Ovarian malignancy
Small cell lung cancer
Indications:
Biliary tract malignancy
Invasive bladder cancer
Malignant neoplasm of the ovary
Ovarian germ cell tumor carcinoma
Small cell lung carcinoma
Testicular germ cell tumor
Professional Synonyms:
Biliary cancer
Biliary malignancy
Gallbladder or bile duct cancer
Germ cell tumor of testis
Invasive malignancy of bladder
Malignant neoplasm of gallbladder or bile ducts
Malignant neoplasm of ovary
Malignant tumor of gallbladder or bile ducts
Malignant tumor of the ovary
Oat cell carcinoma of the lung
Ovarian cancer
Ovarian germ cell carcinoma
Ovarian germ cell tumor
Ovarian malignancy
Small cell lung cancer
The following dosing information is available for CISPLATIN (cisplatin):
While some evidence indicates that dose intensity (i.e., amount of platinum per unit time) is an important factor in achieving optimum results in patients with stage III or IV ovarian carcinoma, other evidence suggests that total platinum dose or duration of exposure is a more important factor in improving progression-free survival in responding patients. However, no improvement in response appears to occur with increased dose intensity or increased total dose once a certain threshold is reached. Although optimum duration of chemotherapy has not been clearly defined, there currently is no evidence of improved response and/or survival when the duration of drug administration exceeds 6 cycles.
Despite the fact that platinum-containing combination chemotherapy regimens are associated with high response rates, no regimen has been found that is sufficiently active to prevent disease progression and/or recurrence in most women with stage III or IV ovarian carcinoma.
Other therapeutic techniques, such as interval debulking surgery, may improve survival in patients with advanced ovarian carcinoma. In a randomized study involving patients with residual lesions (greater than 1 cm) following primary surgery for advanced ovarian cancer (stages IIB through IV) who responded to cisplatin-based induction chemotherapy, those who received interval debulking surgery accompanied by subsequent chemotherapy had improved survival compared with those who received chemotherapy alone.
The usual dosage schedule for the M-VAC regimen is a monthly cycle consisting of IV cisplatin 70 mg/m2 (administered on day 2), IV methotrexate 30 mg/m2 (administered on days 1, 15, and 22), IV vinblastine 3 mg/m2 (administered on days 2, 15, and 22), and IV doxorubicin 30 mg/m2 (administered on day 2).
Higher doses of cisplatin are administered in the CMV regimen. The usual dosage schedule for the CMV regimen is a 21-day cycle consisting of IV cisplatin 100 mg/m2 (administered on day 2), IV methotrexate 30 mg/m2 (administered on days 1 and 8), and IV vinblastine 4 mg/m2 (administered on days 1 and 8).
Escalated doses in the M-VAC regimen with concomitant administration of hematopoietic therapy (GM-CSF or G-CSF) have been used in patients with advanced urothelial carcinoma. In a randomized, phase III trial, a higher rate of complete response but no difference in overall survival was observed in patients receiving high-dose M-VAC with G-CSF versus classic M-VAC alone (without G-CSF) for advanced bladder cancer.
Treatment with cisplatin-based regimens should be discontinued if objective response is not observed following 2 or 3 cycles of therapy. Although the optimal duration of therapy has not been fully determined, some experts recommend 4-6 cycles of therapy as tolerated for patients showing clinical response; additional cycles of therapy do not appear to improve outcome. Surgical resection, when indicated, generally is considered after 4 cycles of therapy; additional cycles of chemotherapy following surgery have not been shown to provide benefit.
Administration of cisplatin in divided doses may be necessary in patients with renal impairment receiving cisplatin-based regimens for the treatment of advanced bladder cancer.
Dosage of cisplatin must be based on the clinical, renal, hematologic, and otic response and tolerance of the patient in order to obtain optimum therapeutic results with minimum adverse effects. The clinician should consult published protocols for the dosage of cisplatin and other chemotherapeutic agents and the method and sequence of administration. At the usual dosage, courses of cisplatin therapy should not be given more frequently than once every 3-4 weeks.
A repeat course of cisplatin should not be administered until the patient's renal, hematologic, and otic functions are within acceptable limits, and precautions must always be taken to treat an anaphylactoid reaction if it occurs. (See Cautions: Precautions and Contraindications.)
Inadvertent substitution of cisplatin for carboplatin can result in potentially fatal overdosage. Therefore, care should be taken to ensure that such mix-ups do not occur. In addition, care should be taken to avoid prescribing practices by clinicians that fail to differentiate between daily doses of cisplatin and a total cisplatin dosage used in one course of therapy.
To minimize the risk of overdosage, the manufacturer recommends that an alerting mechanism be instituted to verify any prescription or order for cisplatin doses exceeding 100 mg/m2 per course. IV dosages exceeding 100 mg/m2 per course once every 3-4 weeks are rarely used. Other safeguard procedures to minimize the risk of accidental overdosage of cisplatin (e.g., overdosage resulting from inadvertent administration of the drug when carboplatin was intended) also should be considered.
Because cisplatin is considered an antineoplastic agent of high emetic risk, antiemetic therapy for the prevention of acute and delayed emesis is recommended. (See Emetogenic Effects in Cautions: GI Effects.)
When cisplatin has been administered intra-arterially+ for the treatment of regionally confined malignancies, including advanced bladder cancer, metastases from malignant melanoma, and osteogenic sarcomas, a dose of 75-150 mg/m2 at intervals ranging from 2-5 weeks for at least 1-4 courses of therapy has been used.
For the management of intraperitoneal tumors (e.g., advanced ovarian carcinoma, carcinoid, mesothelioma) that are confined to the peritoneal cavity and/or are associated with malignant ascites, cisplatin has been administered intraperitoneally+ in doses of 60-100 mg/m2.
When combined therapy with intraperitoneal cisplatin and IV and intraperitoneal paclitaxel+ has been used for the initial adjuvant treatment of optimally debulked stage III epithelial ovarian cancer, IV paclitaxel 135 mg/m2 by 24-hour infusion on day 1, followed by intraperitoneal cisplatin 100 mg/m2 on day 2 and intraperitoneal paclitaxel 60 mg/m2 on day 8, has been administered every 21 days for up to 6 cycles. Modified IV and intraperitoneal regimens are being investigated. (See Uses: Ovarian Cancer.)
Pediatric dosage of cisplatin has not been fully established. For the treatment of osteogenic sarcoma+ or neuroblastoma+, cisplatin has been given in a dosage of 90 mg/m2 IV once every 3 weeks or 30 mg/m2 IV once weekly. For the treatment of recurrent brain tumors+, cisplatin has been given in a dosage of 60 mg/m2 IV once daily for 2 consecutive days every 3-4 weeks.
Cisplatin therapy is contraindicated in patients with preexisting renal impairment. Because cisplatin-induced renal toxicity may become more prolonged and severe with repeated doses of the drug, the manufacturer states that cisplatin therapy should be resumed only when the patient has recovered normal renal function. (See Cautions: Precautions and Contraindications.)
Despite the fact that platinum-containing combination chemotherapy regimens are associated with high response rates, no regimen has been found that is sufficiently active to prevent disease progression and/or recurrence in most women with stage III or IV ovarian carcinoma.
Other therapeutic techniques, such as interval debulking surgery, may improve survival in patients with advanced ovarian carcinoma. In a randomized study involving patients with residual lesions (greater than 1 cm) following primary surgery for advanced ovarian cancer (stages IIB through IV) who responded to cisplatin-based induction chemotherapy, those who received interval debulking surgery accompanied by subsequent chemotherapy had improved survival compared with those who received chemotherapy alone.
The usual dosage schedule for the M-VAC regimen is a monthly cycle consisting of IV cisplatin 70 mg/m2 (administered on day 2), IV methotrexate 30 mg/m2 (administered on days 1, 15, and 22), IV vinblastine 3 mg/m2 (administered on days 2, 15, and 22), and IV doxorubicin 30 mg/m2 (administered on day 2).
Higher doses of cisplatin are administered in the CMV regimen. The usual dosage schedule for the CMV regimen is a 21-day cycle consisting of IV cisplatin 100 mg/m2 (administered on day 2), IV methotrexate 30 mg/m2 (administered on days 1 and 8), and IV vinblastine 4 mg/m2 (administered on days 1 and 8).
Escalated doses in the M-VAC regimen with concomitant administration of hematopoietic therapy (GM-CSF or G-CSF) have been used in patients with advanced urothelial carcinoma. In a randomized, phase III trial, a higher rate of complete response but no difference in overall survival was observed in patients receiving high-dose M-VAC with G-CSF versus classic M-VAC alone (without G-CSF) for advanced bladder cancer.
Treatment with cisplatin-based regimens should be discontinued if objective response is not observed following 2 or 3 cycles of therapy. Although the optimal duration of therapy has not been fully determined, some experts recommend 4-6 cycles of therapy as tolerated for patients showing clinical response; additional cycles of therapy do not appear to improve outcome. Surgical resection, when indicated, generally is considered after 4 cycles of therapy; additional cycles of chemotherapy following surgery have not been shown to provide benefit.
Administration of cisplatin in divided doses may be necessary in patients with renal impairment receiving cisplatin-based regimens for the treatment of advanced bladder cancer.
Dosage of cisplatin must be based on the clinical, renal, hematologic, and otic response and tolerance of the patient in order to obtain optimum therapeutic results with minimum adverse effects. The clinician should consult published protocols for the dosage of cisplatin and other chemotherapeutic agents and the method and sequence of administration. At the usual dosage, courses of cisplatin therapy should not be given more frequently than once every 3-4 weeks.
A repeat course of cisplatin should not be administered until the patient's renal, hematologic, and otic functions are within acceptable limits, and precautions must always be taken to treat an anaphylactoid reaction if it occurs. (See Cautions: Precautions and Contraindications.)
Inadvertent substitution of cisplatin for carboplatin can result in potentially fatal overdosage. Therefore, care should be taken to ensure that such mix-ups do not occur. In addition, care should be taken to avoid prescribing practices by clinicians that fail to differentiate between daily doses of cisplatin and a total cisplatin dosage used in one course of therapy.
To minimize the risk of overdosage, the manufacturer recommends that an alerting mechanism be instituted to verify any prescription or order for cisplatin doses exceeding 100 mg/m2 per course. IV dosages exceeding 100 mg/m2 per course once every 3-4 weeks are rarely used. Other safeguard procedures to minimize the risk of accidental overdosage of cisplatin (e.g., overdosage resulting from inadvertent administration of the drug when carboplatin was intended) also should be considered.
Because cisplatin is considered an antineoplastic agent of high emetic risk, antiemetic therapy for the prevention of acute and delayed emesis is recommended. (See Emetogenic Effects in Cautions: GI Effects.)
When cisplatin has been administered intra-arterially+ for the treatment of regionally confined malignancies, including advanced bladder cancer, metastases from malignant melanoma, and osteogenic sarcomas, a dose of 75-150 mg/m2 at intervals ranging from 2-5 weeks for at least 1-4 courses of therapy has been used.
For the management of intraperitoneal tumors (e.g., advanced ovarian carcinoma, carcinoid, mesothelioma) that are confined to the peritoneal cavity and/or are associated with malignant ascites, cisplatin has been administered intraperitoneally+ in doses of 60-100 mg/m2.
When combined therapy with intraperitoneal cisplatin and IV and intraperitoneal paclitaxel+ has been used for the initial adjuvant treatment of optimally debulked stage III epithelial ovarian cancer, IV paclitaxel 135 mg/m2 by 24-hour infusion on day 1, followed by intraperitoneal cisplatin 100 mg/m2 on day 2 and intraperitoneal paclitaxel 60 mg/m2 on day 8, has been administered every 21 days for up to 6 cycles. Modified IV and intraperitoneal regimens are being investigated. (See Uses: Ovarian Cancer.)
Pediatric dosage of cisplatin has not been fully established. For the treatment of osteogenic sarcoma+ or neuroblastoma+, cisplatin has been given in a dosage of 90 mg/m2 IV once every 3 weeks or 30 mg/m2 IV once weekly. For the treatment of recurrent brain tumors+, cisplatin has been given in a dosage of 60 mg/m2 IV once daily for 2 consecutive days every 3-4 weeks.
Cisplatin therapy is contraindicated in patients with preexisting renal impairment. Because cisplatin-induced renal toxicity may become more prolonged and severe with repeated doses of the drug, the manufacturer states that cisplatin therapy should be resumed only when the patient has recovered normal renal function. (See Cautions: Precautions and Contraindications.)
No enhanced Administration information available for this drug.
No dosing information available.
No generic dosing information available.
The following drug interaction information is available for CISPLATIN (cisplatin):
There are 7 contraindications.
These drug combinations generally should not be dispensed or administered to the same patient. A manufacturer label warning that indicates the contraindication warrants inclusion of a drug combination in this category, regardless of clinical evidence or lack of clinical evidence to support the contraindication.
Drug Interaction | Drug Names |
---|---|
Efalizumab; Natalizumab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Natalizumab,(1-3) efalizumab,(4) immunosuppressives, and immunomodulators all suppress the immune system. CLINICAL EFFECTS: Concurrent use of natalizumab(1-3) or efalizumab(4) with immunosuppressives or immunomodulators may result in an increased risk of infections, including progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV). PREDISPOSING FACTORS: Previous JCV infection, longer duration of natalizumab treatment - especially if greater than 2 years, and prior or concomitant treatment with immunosuppressant medication are all independent risk factors which increase the risk for PML.(1,5) The FDA has estimated PML incidence stratified by risk factors: If anti-JCV antibody positive, no prior immunosuppressant use and natalizumab treatment less than 25 months, incidence <1/1,000. If anti-JCV antibody positive, history of prior immunosuppressant use and natalizumab treatment less than 25 months, incidence 2/1,000 If anti-JCV antibody positive, no prior immunosuppressant use and natalizumab treatment 25-48 months, incidence 4/1,000 If anti-JCV antibody positive, history of prior immunosuppressant use and natalizumab treatment 25-48 months, incidence 11/1,000. PATIENT MANAGEMENT: The US manufacturer of natalizumab states patients with Crohn's disease should not receive concurrent immunosuppressants, with the exception of limited overlap of corticosteroids, due to the increased risk for PML. For new natalizumab patients currently receiving chronic oral corticosteroids for Crohn's Disease, begin corticosteroid taper when therapeutic response to natalizumab has occurred. If corticosteroids cannot be discontinued within six months of starting natalizumab, discontinue natalizumab.(3) The US manufacturer of natalizumab states that natalizumab should not ordinarily be used in multiple sclerosis patients receiving immunosuppressants or immunomodulators due to the increased risk for PML. Immunosuppressives include, but are not limited to azathioprine, cyclophosphamide, cyclosporine, mercaptopurine, methotrexate, mitoxantrone, mycophenolate, and corticosteroids.(3,6) The UK manufacturer of natalizumab states that concurrent use with immunosuppressives or antineoplastic agents is contraindicated.(1) The Canadian manufacturer of natalizumab states that natalizumab should not be used with immunosuppressive or immunomodulatory agents.(2) The US manufacturer of certolizumab states that concurrent therapy with natalizumab is not recommended.(7) DISCUSSION: Progressive multifocal leukoencephalopathy has been reported in patients receiving concurrent natalizumab were recently or concomitantly taking immunomodulators or immunosuppressants.(1-5,8,9) In a retrospective cohort study of multiple sclerosis patients newly initiated on a disease-modifying therapy, use of high-efficacy agents (alemtuzumab, natalizumab, or ocrelizumab) resulted in the same risk of overall infections as moderate-efficacy agents, but there was an elevated risk of serious infections (adjusted hazard ratio [aHR] = 1.24, 95% confidence interval (CI) = 1.06-1.44) and UTIs (aHR = 1.21, 95% CI = 1.14-1.30).(10) |
TYSABRI |
Alkylating Agents/Nalidixic Acid SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: The exact mechanism is unknown. CLINICAL EFFECTS: Concurrent use of nalidixic acid in patients undergoing therapy with an alkylating agent may result in serious gastrointestinal toxicity such as hemorrhagic ulcerative colitis or intestinal necrosis.(1-2) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of nalidixic acid states that the concurrent use of nalidixic acid with an alkylating agent is contraindicated.(1) The manufacturer of intravenous melphalan states that when given simultaneously with nalidixic acid, the incidence of severe hemorrhagic necrotic enterocolitis has been reported to increase in pediatric patients.(2) DISCUSSION: Concurrent use of nalidixic acid in patients undergoing therapy with may result in serious gastrointestinal toxicity such as hemorrhagic ulcerative colitis or intestinal necrosis.(1,2) Therefore, the manufacturer of nalidixic acid states that the concurrent use of nalidixic acid with an alkylating agent is contraindicated.(1) |
NALIDIXIC ACID |
Selected Nephrotoxic Agents/Cidofovir SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Cidofovir is nephrotoxic. Concurrent administration of other nephrotoxic agents may result in additive or synergistic effects on renal function.(1-3) CLINICAL EFFECTS: Concurrent use of cidofovir with nephrotoxic agents such as adefovir, intravenous aminoglycosides, amphotericin B, foscarnet, intravenous pentamidine, tenofovir, vancomycin, voclosporin and non-steroidal anti-inflammatory agents may result in renal toxicity.(1-3) Other nephrotoxic agents include capreomycin, cisplatin, gallium nitrate, high-dose methotrexate, and streptozocin. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The Australian,(1) UK,(2) and US(3) manufacturers of cidofovir state that concurrent administration of potentially nephrotoxic agents such as adefovir, intravenous aminoglycosides, amphotericin B, foscarnet, intravenous pentamidine, tenofovir, vancomycin, voclosporin and non-steroidal anti-inflammatory agents may result in renal toxicity.(1-3) Other nephrotoxic agents include capreomycin, cisplatin, gallium nitrate, high-dose methotrexate, and streptozocin. These agents should be discontinued at least 7 days before the administration of cidofovir. DISCUSSION: The safety of cidofovir has not been studied in patients receiving other known potentially nephrotoxic agents. Renal impairment is the major toxicity of cidofovir.(1-3) |
CIDOFOVIR |
Live Vaccines; Live BCG/Selected Immunosuppressive Agents SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: A variety of disease modifying agents suppress the immune system. Immunocompromised patients may be at increased risk for uninhibited replication after administration of live, attenuated vaccines or intravesicular BCG. Immune response to vaccines may be decreased during periods of immunocompromise.(1) CLINICAL EFFECTS: The expected serum antibody response may not be obtained and/or the vaccine may result in illness.(1) After instillation of intravesicular BCG, immunosuppression may interfere with local immune response, or increase the severity of mycobacterial infection following inadvertent systemic exposure.(2) PREDISPOSING FACTORS: Immunosuppressive diseases (e.g. hematologic malignancies, HIV disease), treatments (e.g. radiation) and drugs may all increase the magnitude of immunodeficiency. PATIENT MANAGEMENT: The Centers for Disease Control(CDC) Advisory Committee on Immunization Practices (ACIP) states that live-virus and live, attenuated vaccines should not be administered to patients who are immunocompromised. The magnitude of immunocompromise and associated risks should be determined by a physician.(1) For patients scheduled to receive chemotherapy, vaccination should ideally precede the initiation of chemotherapy by 14 days. Patients vaccinated while on immunosuppressive therapy or in the 2 weeks prior to starting therapy should be considered unimmunized and should be revaccinated at least 3 months after discontinuation of therapy.(1) Patients who receive anti-B cell therapies should not receive live vaccines for at least 6 months after such therapies due to a prolonged duration of immunosuppression. An exception is the Zoster vaccine, which can be given at least 1 month after receipt of anti-B cell therapies.(1) The US manufacturer of abatacept states live vaccines should not be given during or for up to 3 months after discontinuation of abatacept.(2) The US manufacturer of live BCG for intravesicular treatment of bladder cancer states use is contraindicated in immunosuppressed patients.(3) The US manufacturer of daclizumab states live vaccines are not recommended during and for up to 4 months after discontinuation of treatment.(4) The US manufacturer of guselkumab states that live vaccines should be avoided during treatment with guselkumab.(5) The US manufacturer of inebilizumab-cdon states that live vaccines are not recommended during treatment and after discontinuation until B-cell repletion. Administer all live vaccinations at least 4 weeks prior to initiation of inebilizumab-cdon.(6) The US manufacturer of ocrelizumab states that live vaccines are not recommended during treatment and until B-cell repletion occurs after discontinuation of therapy. Administer all live vaccines at least 4 weeks prior to initiation of ocrelizumab.(7) The US manufacturer of ozanimod states that live vaccines should be avoided during and for up to 3 months after discontinuation of ozanimod.(8) The US manufacturer of siponimod states that live vaccines are not recommended during treatment and for up to 4 weeks after discontinuation of treatment.(9) The US manufacturer of ustekinumab states BCG vaccines should not be given in the year prior to, during, or the year after ustekinumab therapy.(10) The US manufacturer of satralizumab-mwge states that live vaccines are not recommended during treatment and should be administered at least four weeks prior to initiation of satralizumab-mwge.(11) The US manufacturer of ublituximab-xiiy states that live vaccines are not recommended during treatment and until B-cell recovery. Live vaccines should be administered at least 4 weeks prior to initiation of ublituximab-xiiy.(12) The US manufacturer of etrasimod states that live vaccines should be avoided during and for 5 weeks after treatment. Live vaccines should be administered at least 4 weeks prior to initiation of etrasimod.(13) The US manufacturer of emapalumab-lzsg states that live vaccines should not be administered to patients receiving emapalumab-lzsg and for at least 4 weeks after the last dose of emapalumab-lzsg. The safety of immunization with live vaccines during or following emapalumab-lzsg therapy has not been studied.(14) DISCUSSION: Killed or inactivated vaccines do not pose a danger to immunocompromised patients.(1) Patients with a history of leukemia who are in remission and have not received chemotherapy for at least 3 months are not considered to be immunocompromised.(1) |
ACAM2000 (NATIONAL STOCKPILE), ADENOVIRUS TYPE 4, ADENOVIRUS TYPE 4 AND TYPE 7, ADENOVIRUS TYPE 7, BCG (TICE STRAIN), BCG VACCINE (TICE STRAIN), DENGVAXIA, ERVEBO (NATIONAL STOCKPILE), FLUMIST 2025-2026, FLUMIST HOME 2025-2026, IXCHIQ, M-M-R II VACCINE, PRIORIX, PROQUAD, ROTARIX, ROTATEQ, STAMARIL, VARIVAX VACCINE, VAXCHORA ACTIVE COMPONENT, VAXCHORA VACCINE, VIVOTIF, YF-VAX |
Talimogene laherparepvec/Selected Immunosuppressants SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Talimogene laherparepvec is a live, attenuated herpes simplex virus.(1) CLINICAL EFFECTS: Concurrent use of talimogene laherparepvec in patients receiving immunosuppressive therapy may cause a life-threatening disseminated herpetic infection.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Talimogene laherparepvec is contraindicated in immunosuppressed patients.(1) The magnitude of immunocompromise and associated risks due to immunosuppressant drugs should be determined by a physician. DISCUSSION: Concurrent use of talimogene laherparepvec in patients receiving immunosuppressive therapy may cause a life-threatening disseminated herpetic infection.(1) |
IMLYGIC |
Selected Nephrotoxic Agents/Bacitracin SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Bacitracin may cause renal failure due to glomerular and tubular necrosis. Concurrent administration of other nephrotoxic agents may result in additive renal toxicity.(1-3) CLINICAL EFFECTS: Concurrent use of bacitracin with other potentially nephrotoxic agents may result in renal toxicity.(1-3) PREDISPOSING FACTORS: Dehydration and high-dose bacitracin may predispose to adverse renal effects.(1) PATIENT MANAGEMENT: Health Canada states that bacitracin is contraindicated in patients with renal impairment, including those taking other nephrotoxic drugs.(1) The Canadian and US manufacturers of bacitracin state that concomitant use of bacitracin with other potentially nephrotoxic agents should be avoided.(2,3) DISCUSSION: Renal impairment is a major toxicity of bacitracin. Cases of nephrotoxicity have been reported when bacitracin was used off-label.(1-3) |
BACITRACIN, BACITRACIN MICRONIZED, BACITRACIN ZINC |
Nadofaragene Firadenovec/Selected Immunosuppressants SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Nadofaragene firadenovec may contain low levels of replication-competent adenovirus.(1) CLINICAL EFFECTS: Concurrent use of nadofaragene firadenovec in patients receiving immunosuppressive therapy may cause disseminated adenovirus infection.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Individuals who are immunosuppressed or immune-deficient should not receive nadofaragene firadenovec.(1) DISCUSSION: Nadofaragene firadenovec is a non-replicating adenoviral vector-based gene therapy but may contain low levels of replication-competent adenovirus. Immunocompromised persons, including those receiving immunosuppressant therapy, may be at risk for disseminated adenovirus infection.(1) |
ADSTILADRIN |
There are 20 severe interactions.
These drug interactions can produce serious consequences in most patients. Actions required for severe interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration scheduling, and providing additional patient monitoring. Review the full interaction monograph for more information.
Drug Interaction | Drug Names |
---|---|
Colistimethate/Selected Nephrotoxic Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Colistimethate can cause nephrotoxicity.(1,2) Concurrent administration of other nephrotoxic agents may result in an increased risk of nephrotoxicity.(1) It is suspected that cephalothin interferes with the excretion of colistimethate resulting in enhanced nephrotoxicity.(2,3) CLINICAL EFFECTS: Concurrent use of colistimethate with other nephrotoxic agents may result in additive nephrotoxic effects. PREDISPOSING FACTORS: Factors predisposing to nephrotoxicity include higher cumulative doses of colistimethate, longer treatment duration, hypovolemia, and critical illness. PATIENT MANAGEMENT: Concurrent use of potentially nephrotoxic agents with colistimethate should be avoided.(1,2) If concurrent use is necessary, it should be undertaken with great caution.(1) DISCUSSION: In a case control study of 42 patients on intravenous colistimethate sodium, NSAIDs were identified as an independent risk factor for nephrotoxicity (OR 40.105, p=0.044).(4) In 4 case reports, patients developed elevated serum creatinine and blood urea nitrogen following concurrent colistimethate and cephalothin (3 patients) or when colistimethate followed cephalothin therapy (1 patient).(3) A literature review found that individual nephrotoxic agents, including aminoglycosides, vancomycin, amphotericin, IV contrast, diuretics, ACE inhibitors, ARBs, NSAIDs, and calcineurin inhibitors, were not consistently associated with additive nephrotoxicity when used with colistimethate. However, when multiple agents (at least 2 additional potential nephrotoxins) were used concurrently, there was a significant correlation to colistimethate nephrotoxicity.(5) |
COLISTIMETHATE, COLISTIMETHATE SODIUM, COLY-MYCIN M PARENTERAL |
Deferiprone/Selected Myelosuppressive Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of deferiprone with other drugs known to be associated with neutropenia or agranulocytosis may increase the frequency or risk for severe toxicity.(1) CLINICAL EFFECTS: Concurrent use of deferiprone and myelosuppressive agents may result in severe neutropenia or agranulocytosis, which may be fatal. PREDISPOSING FACTORS: Agranulocytosis may be less common in patients receiving deferiprone for thalassemia, and more common in patients treated for other systemic iron overload conditions (e.g. myelodysplastic syndromes, sickle cell disease).(2,3) Inadequate monitoring appears to increase the risk for severe outcomes. Manufacturer post market surveillance found that in all fatal cases of agranulocytosis reported between 1999 and 2005, data on weekly white blood count (WBC) monitoring was missing. In three fatal cases, deferiprone was continued for two to seven days after the detection of neutropenia or agranulocytosis.(2) PATIENT MANAGEMENT: If possible, discontinue one of the drugs associated with risk for neutropenia or agranulocytosis. If alternative therapy is not available, documentation and adherence to the deferiprone monitoring protocol is essential. Baseline absolute neutrophil count (ANC) must be at least 1,500/uL prior to starting deferiprone. Monitor ANC weekly during therapy. If infection develops, interrupt deferiprone therapy and monitor ANC more frequently. If ANC is less than 1,500/uL but greater than 500/uL, discontinue deferiprone and any other drugs possibly associated with neutropenia. Initiate ANC and platelet counts daily until recovery (i.e. ANC at least 1,500/uL). If ANC is less than 500/uL, discontinue deferiprone, evaluate patient and hospitalize if appropriate. Do not resume deferiprone unless potential benefits outweigh potential risks.(1) DISCUSSION: Drugs linked to this monograph have an FDA Boxed Warning for risk of neutropenia, agranulocytosis, or pancytopenia, or have > 5% risk for neutropenia and/or warnings describing risk for myelosuppression in manufacturer prescribing information.(1-25) In pooled clinical studies submitted to the FDA, 6.1% of deferiprone patients met criteria for neutropenia and 1.7% of patients developed agranulocytosis.(1) The time to onset of agranulocytosis was highly variable with a range of 65 days to 9.2 years (median, 161 days).(3) |
DEFERIPRONE, DEFERIPRONE (3 TIMES A DAY), FERRIPROX, FERRIPROX (2 TIMES A DAY), FERRIPROX (3 TIMES A DAY) |
Tofacitinib/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of tofacitinib and azathioprine, other biologic disease-modifying antirheumatic drugs (DMARDs), or potent immunosuppressants may result in additive or synergistic effects on the immune system.(1) CLINICAL EFFECTS: Concurrent use of tofacitinib and azathioprine, other biologic DMARDs, or potent immunosuppressants use may increase the risk of serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Tofacitinib should not be used concurrently with azathioprine, other biologic DMARDs, or cyclosporine.(1) Patient should be monitored for decreases in lymphocytes and neutrophils. Therapy should be adjusted based on the indication. - For all indications: If absolute neutrophil count (ANC) or lymphocyte count is less than 500 cells/mm3, discontinue tofacitinib. - For rheumatoid arthritis or psoriatic arthritis and absolute neutrophil count (ANC) 500 to 1000 cells/mm3: interrupt dosing. When ANC is greater than 1000 cells/mm3, resume Xeljanz 5 mg twice daily or Xeljanz XR 11 mg once daily. - For ulcerative colitis and ANC 500 to 1000 cells/mm3: -If taking Xeljanz 10 mg twice daily, decrease to 5 mg twice daily. When ANC is greater than 1000 cells/mm3, increase to 10 mg twice daily based on clinical response. -If taking Xeljanz 5 mg twice daily, interrupt dosing. When ANC is greater than 1000 cells/mm3, resume 5 mg twice daily. -If taking Xeljanz XR 22 mg once daily, decrease to 11 mg once daily. When ANC is greater than 1000 cells/mm3, increase to 22 mg once daily based on clinical response. -If taking Xeljanz XR 11 mg once daily, interrupt dosing. When ANC is greater than 1000 cells/mm3, resume 11 mg once daily. - For polyarticular course juvenile idiopathic arthritis (pcJIA) and ANC 500 to 1000 cells/mm3: interrupt dosing until ANC is greater than 1000 cells/mm3.(1) DISCUSSION: Concurrent use of tofacitinib and azathioprine, other biologic DMARDs, or potent immunosuppressants may increase the risk of infection.(1) |
TOFACITINIB CITRATE, XELJANZ, XELJANZ XR |
Clozapine/Selected Myelosuppressive Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Clozapine and other myelosuppressive agents may be associated with neutropenia or agranulocytosis.(2) CLINICAL EFFECTS: Moderate neutropenia, even if due to combination therapy, may require abrupt discontinuation of clozapine resulting in decompensation of the patient's psychiatric disorder (e.g. schizophrenia). The disease treated by the myelosuppressive agent may be compromised if myelosuppression requires dose reduction, delay, or discontinuation of the myelosuppressive agent. Undetected severe neutropenia or agranulocytosis may be fatal. PREDISPOSING FACTORS: Low white blood counts prior to initiation of the myelosuppressive agent may increase risk for clinically significant neutropenia. PATIENT MANAGEMENT: If a patient stabilized on clozapine therapy requires treatment with a myelosuppressive agent, the clozapine prescriber should consult with prescriber of the myelosuppressive agent (e.g. oncologist) to discuss treatment and monitoring options.(2) More frequent ANC monitoring or treatment alternatives secondary to neutropenic episodes may need to be considered. Clozapine is only available through a restricted distribution system which requires documentation of the absolute neutrophil count (ANC) prior to dispensing.(1-2) For most clozapine patients, clozapine treatment must be interrupted for a suspected clozapine-induced ANC < 1000 cells/microliter. For patients with benign ethnic neutropenia (BEN), treatment must be interrupted for suspected clozapine-induced neutropenia < 500 cells/microliter.(2) DISCUSSION: Clozapine is only available through a restricted distribution system which requires documentation of the ANC prior to dispensing.(1) Agents linked to this interaction generally have > 5% risk for neutropenia and/or warnings describing risk for myelosuppression in manufacturer prescribing information.(3-26) |
CLOZAPINE, CLOZAPINE ODT, CLOZARIL, VERSACLOZ |
Selected Multiple Sclerosis Agents/Immunosuppressants; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ocrelizumab or ofatumumab in combination with immunosuppressives and immune-modulators all suppress the immune system.(1,2) CLINICAL EFFECTS: Concurrent use of ocrelizumab or ofatumumab with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1,2) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: The ocrelizumab US prescribing information states: - Ocrelizumab and other immune-modulating or immunosuppressive therapies, (including immunosuppressant doses of corticosteroids) are expected to increase the risk of immunosuppression, and the risk of additive immune system effects must be considered if these therapies are coadministered with ocrelizumab. When switching from drugs with prolonged immune effects, such as daclizumab, fingolimod, natalizumab, teriflunomide, or mitoxantrone, the duration and mode of action of these drugs must be considered to avoid unintended additive immunosuppressive effects when initiating ocrelizumab.(1) The ofatumumab US prescribing information states: - Ofatumumab and other immunosuppressive therapies (including systemic corticosteroids) may have the potential for increased immunosuppressive effects and increase the risk of infection. When switching between therapies, the duration and mechanism of action of each therapy should be considered due to the potential for additive immunosuppressive effects. Ofatumumab for MS therapy has not been studied in combination with other MS agents that suppress the immune system.(2) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1,2) In a retrospective cohort study of multiple sclerosis patients newly initiated on a disease-modifying therapy, use of high-efficacy agents (alemtuzumab, natalizumab, or ocrelizumab) resulted in the same risk of overall infections as moderate-efficacy agents, but there was an elevated risk of serious infections (adjusted hazard ratio [aHR] = 1.24, 95% confidence interval (CI) = 1.06-1.44) and UTIs (aHR = 1.21, 95% CI = 1.14-1.30).(3) |
KESIMPTA PEN, OCREVUS, OCREVUS ZUNOVO |
Selected Nephrotoxic Agents/Foscarnet SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Foscarnet is nephrotoxic. Concurrent administration of other nephrotoxic agents may result in additive or synergistic effects on renal function.(1) Concurrent intravenous pentamidine may also result in hypocalcemia.(1) CLINICAL EFFECTS: Concurrent use of foscarnet with nephrotoxic agents such as acyclovir, adefovir, intravenous aminoglycosides, amphotericin B, cyclosporine, methotrexate, non-steroidal anti-inflammatory agents, intravenous pentamidine, tacrolimus, tenofovir, vancomycin and voclosporin may result in renal toxicity.(1) Other nephrotoxic agents include capreomycin, cisplatin, gallium nitrate, high-dose methotrexate, and streptozocin. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of foscarnet state that concurrent administration of potentially nephrotoxic agents such as acyclovir, intravenous aminoglycosides, amphotericin B, cyclosporine, methotrexate, tacrolimus, and intravenous pentamidine should be avoided.(1) Other nephrotoxic agents include adefovir, capreomycin, cisplatin, gallium nitrate, high-dose methotrexate, non-steroidal anti-inflammatory agents, streptozocin, tenofovir, vancomycin and voclosporin. If concurrent therapy is warranted, monitor renal function closely. In patients receiving concurrent foscarnet and pentamidine, also monitor serum calcium levels and instruct patients to report severe muscle spasms, mental/mood changes, and/or seizures.(1) DISCUSSION: The safety of foscarnet has not been studied in patients receiving other known potentially nephrotoxic agents. Renal impairment is the major toxicity of foscarnet.(1) |
FOSCARNET SODIUM, FOSCAVIR |
Upadacitinib/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Upadacitinib, immunosuppressives, and immunomodulators all suppress the immune system. CLINICAL EFFECTS: Concurrent use of upadacitinib with immunosuppressives or immunomodulators may result in an increased risk of serious infections. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of upadacitinib states that concurrent use of upadacitinib with immunosuppressives or immunomodulators is not recommended. DISCUSSION: Serious infections have been reported in patients receiving upadacitinib. Reported infections included pneumonia, cellulitis, tuberculosis, multidermatomal herpes zoster, oral/esophageal candidiasis, cryptococcosis. Reports of viral reactivation, including herpes virus reactivation and hepatitis B reactivation, were reported in clinical studies with upadacitinib.(1) |
RINVOQ, RINVOQ LQ |
Inebilizumab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inebilizumab, immunosuppressives, and immunomodulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of inebilizumab with immunosuppressive or immunomodulating agents may result in myelosuppression including neutropenia resulting in an increased risk for serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of inebilizumab states that the concurrent use of inebilizumab with immunosuppressive agents, including systemic corticosteroids, may increase the risk of infection. If concurrent therapy is warranted, consider the risk of additive immune suppression and monitor based on prescribing information for both agents.(1) DISCUSSION: Inebilizumab has not been studied in combination with other immunosuppressants. If concurrent therapy is warranted, consider the potential for increased immunosuppressive risks from both agents. The most common infections reported by inebilizumab treated patients in the randomized and open-label clinical trial periods included urinary tract infections (20%), nasopharyngitis (13%), upper respiratory tract infections (8%), and influenza (7%). Although there been no cases of Hepatitis B virus reactivation or progressive multifocal leukoencephalopathy reported in patients taking inebilizumab, these infections have been observed in patients taking other B-cell-depleting antibodies.(1) |
UPLIZNA |
Baricitinib/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of baricitinib with other biologic disease-modifying antirheumatic drugs (DMARDs) or potent immunosuppressants such as azathioprine or cyclosporine may result in additive or synergistic effects on the immune system. CLINICAL EFFECTS: Concurrent use of baricitinib with other biologic DMARDs or potent immunosuppressants such as azathioprine or cyclosporine may increase the risk of serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of baricitinib states that concurrent use of baricitinib with biologic DMARDs or potent immunosuppressants is not recommended.(1) DISCUSSION: Most patients who developed serious infections while being treated with baricitinib were on concomitant immunosuppressants like methotrexate and corticosteroids. The combination of baricitinib with other biologic DMARDs has not been studied.(1) |
OLUMIANT |
Leflunomide; Teriflunomide/Selected Immunosuppressants SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of leflunomide or teriflunomide and potent immunosuppressants may result in additive or synergistic effects on the immune system.(1,2) Leflunomide is a prodrug and is converted to its active metabolite teriflunomide.(1) CLINICAL EFFECTS: Concurrent use of leflunomide or teriflunomide with immunosuppressants may result in an increased risk of serious infections, including opportunistic infections, especially Pneumocystis jiroveci pneumonia, tuberculosis (including extra-pulmonary tuberculosis), and aspergillosis. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: If leflunomide or teriflunomide is used concurrently with immunosuppressive agents, chronic CBC monitoring should be performed more frequently, every month instead of every 6 to 8 weeks. If bone marrow suppression or a serious infection occurs, leflunomide or teriflunomide should be stopped and rapid drug elimination procedure should be performed.(1,2) DISCUSSION: Pancytopenia, agranulocytosis and thrombocytopenia have been reported in patients receiving leflunomide or teriflunomide alone, but most frequently in patients taking concurrent immunosuppressants.(1,2) Severe and potentially fatal infections, including sepsis, have been reported in patients receiving leflunomide or teriflunomide, especially Pneumocystis jiroveci pneumonia and aspergillosis. Tuberculosis has also been reported.(1,2) |
ARAVA, AUBAGIO, LEFLUNICLO, LEFLUNOMIDE, TERIFLUNOMIDE |
Ponesimod/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ponesimod in combination with immunosuppressives and immune-modulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of ponesimod with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection, cryptococcal infection, or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: The ponesimod US prescribing information states ponesimod has not been studied in combination with anti-neoplastic, immune-modulating, or immunosuppressive therapies. Caution should be used during concomitant administration because of the risk of additive immune effects during therapy and in the weeks following administration. When switching from drugs with prolonged immune effects, the half-life and mode of action of these drugs must be considered in order to avoid unintended additive immunosuppressive effects. Initiating treatment with ponesimod after alemtuzumab is not recommended. However, ponesimod can generally be started immediately after discontinuation of beta interferon or glatiramer acetate.(1) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections, cryptococcal meningitis, disseminated cryptococcal infections, and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1) |
PONVORY |
Sodium Iodide I 131/Myelosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Sodium iodide I 131 can cause depression of the hematopoetic system. Myelosuppressives and immunomodulators also suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of sodium iodide I 131 with agents that cause bone marrow depression, including myelosuppressives or immunomodulators, may result in an enhanced risk of hematologic disorders, including anemia, blood dyscrasias, bone marrow depression, leukopenia, and thrombocytopenia. Bone marrow depression may increase the risk of serious infections and bleeding.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of sodium iodide I 131 states that concurrent use with bone marrow depressants may enhance the depression of the hematopoetic system caused by large doses of sodium iodide I 131.(1) Sodium iodide I 131 causes a dose-dependent bone marrow suppression, including neutropenia or thrombocytopenia, in the 3 to 5 weeks following administration. Patients may be at increased risk of infections or bleeding during this time. Monitor complete blood counts within one month of therapy. If results indicate leukopenia or thrombocytopenia, dosimetry should be used to determine a safe sodium iodide I 131 activity.(1) DISCUSSION: Hematologic disorders including death have been reported with sodium iodide I 131. The most common hematologic disorders reported include anemia, blood dyscrasias, bone marrow depression, leukopenia, and thrombocytopenia.(1) |
HICON, SODIUM IODIDE I-131 |
Fingolimod/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Fingolimod in combination with immunosuppressives and immune-modulators all suppress the immune system.(1-3) CLINICAL EFFECTS: Concurrent use of fingolimod with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1-3) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: Recommendations for fingolimod regarding this interaction differ between regulatory approving agencies. The fingolimod US prescribing information states: - Antineoplastic, immune-modulating, or immunosuppressive therapies, (including corticosteroids) are expected to increase the risk of immunosuppression, and the risk of additive immune system effects must be considered if these therapies are coadministered with fingolimod. When switching from drugs with prolonged immune effects, such as natalizumab, teriflunomide or mitoxantrone, the duration and mode of action of these drugs must be considered to avoid unintended additive immunosuppressive effects when initiating fingolimod.(1) The fingolimod Canadian prescribing information states: - Concurrent use with immunosuppressive or immunomodulatory agents is contraindicated due to the risk of additive immune system effects. However, co-administration of a short course of corticosteroids (up to 5 days) did not increase the overall rate of infection in patients participating Phase III clinical trials.(2) The fingolimod UK specific product characteristics states: - Fingolimod is contraindicated in patients currently receiving immunosuppressive therapies or those immunocompromised by prior therapies. When switching patients from another disease modifying therapy to Gilenya, the half-life and mode of action of the other therapy must be considered in order to avoid an additive immune effect whilst at the same time minimizing the risk of disease activation.(3) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1-3) |
FINGOLIMOD, GILENYA, TASCENSO ODT |
Ozanimod/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ozanimod in combination with immunosuppressives and immune-modulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of ozanimod with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: The ozanimod US prescribing information state this information regarding this interaction: -Ozanimod has not been studied in combination with anti-neoplastic, immune-modulating, or immunosuppressive therapies. Caution should be used during concomitant administration because of the risk of additive immune effects during therapy and in the week following administration. When switching from drugs with prolonged immune effects, the half-life and mode of action of these drugs must be considered in order to avoid unintended additive immunosuppressive effects. Initiating treatment with ozanimod after alemtuzumab is not recommended. However, ozanimod can generally be started immediately after discontinuation of beta interferon or glatiramer acetate.(1) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1) |
ZEPOSIA |
Siponimod/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Siponimod in combination with immunosuppressives and immune-modulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of siponimod with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: The siponimod US prescribing information state this information regarding this interaction: -Siponimod has not been studied in combination with anti-neoplastic, immune-modulating, or immunosuppressive therapies. Caution should be used during concomitant administration because of the risk of additive immune effects during therapy and in the week following administration. When switching from drugs with prolonged immune effects, the half-life and mode of action of these drugs must be considered in order to avoid unintended additive immunosuppressive effects. Initiating treatment with siponimod after alemtuzumab is not recommended. However, siponimod can generally be started immediately after discontinuation of beta interferon or glatiramer acetate.(1) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1) |
MAYZENT |
Cladribine/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Cladribine in combination with immunosuppressives and immune-modulators all suppress the immune system.(1-2) CLINICAL EFFECTS: Concurrent use of cladribine with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1-2) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: Recommendations for cladribine regarding this interaction differ between regulatory approving agencies. The cladribine US prescribing information states: -Concomitant use with myelosuppressive or other immunosuppressive drugs is not recommended. Acute short-term therapy with corticosteroids can be administered. In patients who have previously been treated with immunomodulatory or immunosuppressive drugs, consider potential additive effect, the mode of action, and duration of effect of the other drugs prior to initiation of cladribine.(1) The cladribine Canadian prescribing information states: -Use of cladribine in immunocompromised patients is contraindicated because of a risk of additive effects on the immune system. Acute short-term therapy with corticosteroids can be administered during cladribine treatment.(2) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1-2) |
CLADRIBINE, MAVENCLAD |
Ritlecitinib/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ritlecitinib, immunosuppressives, and immunomodulators all suppress the immune system. CLINICAL EFFECTS: Concurrent use of ritlecitinib with immunosuppressives or immunomodulators may result in an increased risk of serious infections. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of ritlecitinib states that concurrent use of ritlecitinib with other JAK inhibitors, biologic immunomodulators, cyclosporine or other potent immunosuppressants is not recommended.(1) DISCUSSION: Serious infections have been reported in patients receiving ritlecitinib. Reported infections included appendicitis, COVID-19 infection (including pneumonia), and sepsis. Reports of viral reactivation, including herpes virus reactivation was reported in clinical studies with ritlecitinib.(1) |
LITFULO |
Etrasimod/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Etrasimod causes reversible sequestration of lymphocytes in lymphoid tissues, resulting in a mean 55% decrease in peripheral blood lymphocyte count at 52 weeks.(1) Other immunosuppressives and immune-modulators also suppress the immune system. CLINICAL EFFECTS: Concurrent use of etrasimod with immunosuppressive or immune-modulating agents may result in an increased risk of serious and fatal infections, such as disseminated herpetic infection, cryptococcal infection, or progressive multifocal leukoencephalopathy (PML).(1) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications increases the risk of adverse effects. PATIENT MANAGEMENT: The etrasimod US prescribing information states etrasimod has not been studied in combination with anti-neoplastic, immune-modulating, or immunosuppressive therapies. Concomitant administration of these therapies with etrasimod should be avoided because of the risk of additive immune effects during therapy and in the weeks following administration. Etrasimod's effect on peripheral lymphocytes may persist for up to 5 weeks after discontinuation.(1) When switching from drugs with prolonged immune effects, the half-life and mode of action of these drugs must be considered in order to avoid unintended additive immunosuppressive effects.(1) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections, cryptococcal meningitis, disseminated cryptococcal infections, and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients treated with other sphingosine-1 phosphate receptor modulators.(1) |
VELSIPITY |
Ropeginterferon alfa-2b/Slt Immunosuppress; Immunomodulator SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ropeginterferon alfa-2b and immunosuppressives both suppress the immune system. CLINICAL EFFECTS: Concurrent use of ropeginterferon alfa-2b with immunosuppressives may result in an increased risk of serious infections. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid concurrent use of myelosuppressive agents.(1-2) If concurrent use cannot be avoided, monitor for effects of excessive immunosuppression. DISCUSSION: In clinical trials, 20% of patients experienced leukopenia. Interferon alfa products may cause fatal or life-threatening infections.(1-2) |
BESREMI |
Deuruxolitinib/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Deuruxolitinib, immunosuppressives, and immunomodulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of deuruxolitinib and potent immunosuppressants may increase the risk of serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of deuruxolitinib states that concurrent use of deuruxolitinib with other JAK inhibitors, biologic immunomodulators, cyclosporine or other potent immunosuppressants is not recommended.(1) If concurrent use cannot be avoided, patients should be monitored for signs and symptoms of infection. If a patient develops a serious or opportunistic infection, interrupt deuruxolitinib treatment until the infection is controlled. DISCUSSION: Serious infections have been reported in patients receiving treatment with deuruxolitinib.(1) |
LEQSELVI |
There are 10 moderate interactions.
The clinician should assess the patient’s characteristics and take action as needed. Actions required for moderate interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration.
Drug Interaction | Drug Names |
---|---|
Hydantoins/Selected Antineoplastics SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Antineoplastic agents may decrease the absorption and increase the metabolism of phenytoin. CLINICAL EFFECTS: The pharmacological effects of phenytoin may be decreased. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Monitor serum phenytoin concentrations when starting or discontinuing cancer chemotherapy. Adjust the dose of phenytoin as needed. DISCUSSION: Decreased plasma phenytoin concentrations and loss of seizure control have been reported after starting chemotherapy in patients receiving phenytoin. In order to maintain adequate levels of phenytoin during chemotherapy, it may be necessary to increase the dose of phenytoin. |
CEREBYX, DILANTIN, DILANTIN-125, FOSPHENYTOIN SODIUM, PHENYTEK, PHENYTOIN, PHENYTOIN SODIUM, PHENYTOIN SODIUM EXTENDED |
Selected Nephrotoxic Agents/Cisplatin SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The nephrotoxic effects of aminoglycosides or non-steroidal anti-inflammatory drugs (NSAIDs) may be additive to those of cisplatin. CLINICAL EFFECTS: The concurrent administration of amikacin, gentamicin, tobramycin, or NSAIDs with cisplatin may result in additive nephrotoxic effects.(1,2,5,6) PREDISPOSING FACTORS: Pre-existing renal insufficiency, advanced age, dehydration may increase the risk of nephrotoxicity.(1,5,6) PATIENT MANAGEMENT: The US labeling for aminoglycosides and cisplatin states that the concurrent use of aminoglycosides and cisplatin should be avoided.(1,3,4,6) Inform patients that concurrent cisplatin and aminoglycosides or NSAIDs can cause nephrotoxicity and that renal function and electrolyte monitoring during treatment is necessary.(2) DISCUSSION: The US manufacturers of amikacin, gentamicin and tobramycin state that since the nephrotoxic effects of these medications may be additive, avoid concurrent or sequential use of other neurotoxic and/or nephrotoxic agents including cisplatin.(1,3,6) |
AFINITOR, AFINITOR DISPERZ, AMIKACIN SULFATE, ANAPROX DS, ARIKAYCE, ARTHROTEC 50, ARTHROTEC 75, BETHKIS, BISMUTH SUBSALICYLATE, BROMFENAC SODIUM, BUPIVACAINE-KETOROLAC-KETAMINE, CALDOLOR, CELEBREX, CELECOXIB, CHOLINE MAGNESIUM TRISALICYLAT, COMBOGESIC, COMBOGESIC IV, CONSENSI, COXANTO, DAYPRO, DICLOFENAC, DICLOFENAC POTASSIUM, DICLOFENAC SODIUM, DICLOFENAC SODIUM ER, DICLOFENAC SODIUM MICRONIZED, DICLOFENAC SODIUM-MISOPROSTOL, DIFLUNISAL, DISALCID, DOLOBID, EC-NAPROSYN, ELYXYB, ETODOLAC, ETODOLAC ER, EVEROLIMUS, FELDENE, FENOPROFEN CALCIUM, FENOPRON, FLURBIPROFEN, FYARRO, GENTAMICIN SULFATE, GENTAMICIN SULFATE IN NS, HYDROCODONE-IBUPROFEN, IBU, IBUPAK, IBUPROFEN, IBUPROFEN LYSINE, IBUPROFEN-FAMOTIDINE, INDOCIN, INDOMETHACIN, INDOMETHACIN ER, INFLAMMACIN, INFLATHERM(DICLOFENAC-MENTHOL), KETOPROFEN, KETOPROFEN MICRONIZED, KETOROLAC TROMETHAMINE, KIPROFEN, KITABIS PAK, LODINE, LOFENA, LUPKYNIS, MB CAPS, MECLOFENAMATE SODIUM, MEFENAMIC ACID, MELOXICAM, NABUMETONE, NABUMETONE MICRONIZED, NALFON, NAPRELAN, NAPROSYN, NAPROTIN, NAPROXEN, NAPROXEN SODIUM, NAPROXEN SODIUM CR, NAPROXEN SODIUM ER, NAPROXEN-ESOMEPRAZOLE MAG, NEOMYCIN SULFATE, NEOPROFEN, OXAPROZIN, PHENYL SALICYLATE, PHENYLBUTAZONE, PIROXICAM, R.E.C.K.(ROPIV-EPI-CLON-KETOR), RELAFEN DS, ROPIVACAINE-CLONIDINE-KETOROLC, ROPIVACAINE-KETOROLAC-KETAMINE, SALSALATE, SIROLIMUS, SODIUM SALICYLATE, SPRIX, STREPTOMYCIN SULFATE, SULINDAC, SUMATRIPTAN SUCC-NAPROXEN SOD, SYMBRAVO, TEMSIROLIMUS, TOBI, TOBI PODHALER, TOBRAMYCIN, TOBRAMYCIN SULFATE, TOLECTIN 600, TOLMETIN SODIUM, TORISEL, TORONOVA II SUIK, TORONOVA SUIK, TORPENZ, TOXICOLOGY SALIVA COLLECTION, TRESNI, TREXIMET, URIMAR-T, URNEVA, VIMOVO, VIVLODEX, XIFYRM, ZEMDRI, ZIPSOR, ZORTRESS, ZORVOLEX, ZYNRELEF |
Tenofovir/Selected Nephrotoxic Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Tenofovir and other nephrotoxic agents may result in additive or synergistic effects on renal function and increase nephrotoxicity risk.(1) CLINICAL EFFECTS: Concurrent use of tenofovir and other nephrotoxic agents may result in renal toxicity and acute renal failure.(1) Reports of acute renal failure and Fanconi syndrome have been reported with tenofovir use.(2,3) However, this has been reported in 3 case reports and the renal failure may have been complicated by other pre-existing conditions.(2) PREDISPOSING FACTORS: Pre-existing renal dysfunction, long duration of use, low body weight, concomitant use of drugs that may increase tenofovir levels may increase the risk of nephrotoxicity.(1) PATIENT MANAGEMENT: The US prescribing information for tenofovir recommends avoiding concurrent or recent use of a nephrotoxic agent.(3) Evaluate renal function prior to initiation of concurrent therapy and continue renal function monitoring during therapy. Dose adjustments may be required for impaired renal function. Tenofovir should be avoided with high-dose or multiple NSAIDs. Alternatives to NSAIDs should be considered in patients at risk for renal dysfunction.(3) Patients receiving concurrent NSAIDs with tenofovir should be monitored for possible renal toxicity.(1,2) The dosing interval should be adjusted in patients with a baseline creatinine clearance of less than 50 ml/min.(1-3) DISCUSSION: From March 18, 2003 to December 1, 2005, Health Canada received 10 reports of nephrotoxic reactions with tenofovir. Three of these occurred following the addition of a NSAID to tenofovir therapy. In the first report, a patient maintained on tenofovir for 29 months developed acute renal failure and acute tubular necrosis requiring dialysis 5 days after beginning indomethacin (100 mg rectally twice daily). In the second report, a patient maintained on tenofovir for 7 months developed acute renal failure and acute tubular necrosis after taking 90 tablets of naproxen (375 mg) over 2 months. The patient died. In the third report, a patient maintained on tenofovir for over a year developed acute renal failure and nephrotic syndrome after 2 months of valdecoxib (20 mg daily) therapy. Symptoms subsided following discontinuation of valdecoxib.(1) |
BIKTARVY, CIMDUO, COMPLERA, DELSTRIGO, DESCOVY, EFAVIRENZ-EMTRIC-TENOFOV DISOP, EFAVIRENZ-LAMIVU-TENOFOV DISOP, EMTRICITABINE-RILPIVIRNE-TENOF, EMTRICITABINE-TENOFOVIR DISOP, GENVOYA, ODEFSEY, STRIBILD, SYMFI, SYMTUZA, TENOFOVIR DISOPROXIL FUMARATE, TRUVADA, VEMLIDY, VIREAD |
Selected Nephrotoxic Agents/Adefovir SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Recommended doses of adefovir have been associated with delayed nephrotoxicity.(1-4) Concurrent administration of other nephrotoxic agents may result in additive or synergistic effects on renal function.(1) CLINICAL EFFECTS: Concurrent use of adefovir with nephrotoxic agents such as intravenous aminoglycosides, amphotericin B, cyclosporine, tacrolimus,tenofovir, vancomycin, voclosporin and non-steroidal anti-inflammatory agents may result in renal toxicity.(1) Other nephrotoxic agents include capreomycin, cisplatin, gallium nitrate, high-dose methotrexate, intravenous pentamidine, and streptozocin. PREDISPOSING FACTORS: Patients with pre-existing renal impairment(1,2) or receiving multiple nephrotoxic agents appear to be at greater risk for nephrotoxicity. PATIENT MANAGEMENT: Evaluate renal function prior to initiation of concurrent therapy and continue renal function monitoring during therapy. Dose adjustments may be required for impaired renal function. Weigh the risks and benefits of concurrent therapy in patients with treatment-emergent nephrotoxicity. DISCUSSION: Because of the known risks for adefovir nephrotoxicity, particularly at higher than recommended doses, the safety of adefovir has not been studied in patients receiving other known potentially nephrotoxic agents. |
ADEFOVIR DIPIVOXIL, HEPSERA |
Ustekinumab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Ustekinumab, immunosuppressives, and immunomodulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of ustekinumab with immunosuppressive or immunomodulating agents may result in an increased risk for serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of ustekinumab recommends caution because the concurrent use of ustekinumab with immunosuppressive agents may increase the risk of infection. If concurrent therapy is warranted, consider the risk of additive immune suppression and monitor based on prescribing information for both agents.(1) DISCUSSION: Ustekinumab has not been studied in combination with other immunosuppressants in psoriasis studies. In psoriatic arthritis studies, concomitant methotrexate use did not appear to influence the safety or efficacy of ustekinumab. In Crohn's disease and ulcerative colitis studies, concomitant use of immunosuppressants or corticosteroids did not appear to influence the safety or efficacy of ustekinumab. If concurrent therapy is warranted, consider the potential for increased immunosuppressive risks from both agents.(1) The most common infections reported by ustekinumab treated patients in the clinical trial periods included nasopharyngitis(8%) and upper respiratory tract infection(5%). Serious bacterial, mycobacterial, fungal, and viral infections were observed in patients receiving ustekinumab. Cases of interstitial pneumonia, eosinophilic pneumonia, and cryptogenic organizing pneumonia resulting in respiratory failure or prolonged hospitalization have been reported in patients receiving ustekinumab.(1) |
IMULDOSA, OTULFI, PYZCHIVA, SELARSDI, STELARA, STEQEYMA, USTEKINUMAB, USTEKINUMAB-AEKN, USTEKINUMAB-TTWE, WEZLANA, YESINTEK |
Cisplatin/OCT2 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Agents that inhibit the organic cation transporter 2 (OCT2) may inhibit the excretion of cisplatin by OCT2 in the kidneys.(1,2) CLINICAL EFFECTS: Concurrent use of OCT2 renal transport inhibitors may result in increased levels of and toxicities from cisplatin, including nephrotoxicity, ototoxicity, neuropathy, and myelosuppression.(1,2) PREDISPOSING FACTORS: Pre-existing renal insufficiency, advanced age, and dehydration may increase the risk of nephrotoxicity. PATIENT MANAGEMENT: Consider the potential benefits against the risks of concurrent use of cisplatin with OCT2 renal transport inhibitors. If concurrent use is appropriate, monitor closely for toxicities of cisplatin and consider dosage reduction of cisplatin.(1,2) DISCUSSION: In a study, givinostat increased the levels of creatinine (OCT2 substrate) by 4.76 umol/L from baseline.(1) In a study, trilaciclib increased the area-under-curve (AUC) and maximum concentration (Cmax) of metformin (an OCT2, MATE1, and MATE-2K substrate) by approximately 65% and 81%, respectively. Renal clearance of metformin was decreased by 37%. Trilaciclib did not cause significant changes in the pharmacokinetics of topotecan (a MATE1 and MATE-2K substrate).(2) OCT2 inhibitors linked to this monograph include: abemaciclib, arimoclomol, bictegravir, dolutegravir, givinostat, isavuconazole, ranolazine, trilaciclib, trimethoprim, tucatinib, and vimseltinib.(3) |
ASPRUZYO SPRINKLE, BACTRIM, BACTRIM DS, BIKTARVY, COSELA, CRESEMBA, DOVATO, DUVYZAT, JULUCA, MIPLYFFA, PRIMSOL, RANOLAZINE ER, ROMVIMZA, SULFAMETHOXAZOLE-TRIMETHOPRIM, SULFATRIM, TIVICAY, TIVICAY PD, TRIMETHOPRIM, TRIMETHOPRIM MICRONIZED, TRIUMEQ, TRIUMEQ PD, TUKYSA, VERZENIO |
COVID-19 Vaccines/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Immunosuppressants and immunomodulators may prevent the immune system from properly responding to the COVID-19 vaccine.(1,2) CLINICAL EFFECTS: Administration of a COVID-19 vaccine with immunosuppressants or immunomodulators may interfere with vaccine-induced immune response and impair the efficacy of the vaccine. However, patients should be offered and given a COVID-19 vaccine even if the use and timing of immunosuppressive agents cannot be adjusted.(1,2) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: In an effort to optimize COVID-19 vaccine response, the American College of Rheumatology (ACR) published conditional recommendations for administration of COVID-19 vaccines with immunosuppressants and immunomodulators.(1) The CDC also provides clinical considerations for COVID-19 vaccination in patients on immunosuppressants.(2) The CDC states that all immunocompromised patients over 6 months of age should receive at least 1 dose of COVID-19 vaccine if eligible. See the CDC's Interim Clinical Considerations for Use of COVID-19 Vaccines for specific recommendations based on age, vaccination history, and vaccine manufacturer.(2) The ACR states that in general, immunosuppressants and immunomodulators should be held for 1-2 weeks after each vaccine dose. See below for specific recommendations for certain agents.(1) The CDC advises planning for vaccination at least 2 weeks before starting or resuming immunosuppressive therapy.(2) Patients should be offered and given a COVID-19 vaccine even if the use and timing of immunosuppressive agents cannot be adjusted.(1,2) B-cell depleting agents, including rituximab: The ACR recommends consulting with the rheumatologist to determine optimal timing of COVID-19 vaccination. Measuring CD19 B cells may be considered to determine need for a booster vaccine dose. If B cell levels are not measured, a supplemental vaccine dose 2-4 weeks before the next scheduled dose of rituximab is recommended.(1) The CDC states that the utility of B-cell quantification to guide clinical care is not known and is not recommended. Patients who receive B-cell depleting therapy should receive COVID-19 vaccines about 4 weeks before the next scheduled dose. For patients who received 1 or more doses of COVID-19 vaccine during treatment with B-cell-depleting therapies that were administered over a limited period (e.g., as part of a treatment regimen for certain malignancies), revaccination may be considered. The suggested interval to start revaccination is about 6 months after completion of the B-cell-depleting therapy.(2) Abatacept: - Subcutaneous abatacept should be withheld for 1-2 weeks after each vaccine dose, as disease activity allows. - For intravenous abatacept, time administration so that vaccination will occur 1 week before the next abatacept infusion.(1) Cyclophosphamide: When feasible, administer cyclophosphamide one week after each COVID-19 vaccine dose.(1) Recipients of hematopoietic cell transplant or CAR-T-cell therapy who received one or more doses of COVID-19 vaccine prior to or during treatment should undergo revaccination following the current CDC recommendations for unvaccinated patients. Revaccination should start at least 3 months (12 weeks) after transplant or CAR-T-cell therapy.(2) TNF-alpha inhibitors and cytokine inhibitors: The ACR was not able to reach consensus on whether to modify dosing or timing of these agents with COVID-19 vaccination.(1) The CDC includes these agents in their general recommendation to hold therapy for at least 2 weeks following vaccination.(2) DISCUSSION: The ACR convened a COVID-19 Vaccine Guidance Task Force to provide guidance on optimal use of COVID-19 vaccines in rheumatology patients. These recommendations are based on limited clinical evidence of COVID-19 vaccines in patients without rheumatic and musculoskeletal disorders and evidence of other vaccines in this patient population.(1) The ACR recommendation for rituximab is based on studies of humoral immunity following receipt of other vaccines. These studies have uncertain generalizability to vaccination against COVID-19, as it is unknown if efficacy is attributable to induction of host T cells versus B cell (antibody-based) immunity.(1) The ACR recommendation for mycophenolate is based on preexisting data of mycophenolate on non-COVID-19 vaccine immunogenicity. Emerging data suggests that mycophenolate may impair SARS-CoV-2 vaccine response in rheumatic and musculoskeletal disease and transplant patients.(1) The ACR recommendation for methotrexate is based on data from influenza vaccines and pneumococcal vaccines with methotrexate.(1) The ACR recommendation for JAK inhibitors is based on concerns related to the effects of JAK inhibitors on interferon signaling that may result in a diminished vaccine response.(1) The ACR recommendation for subcutaneous abatacept is based on several studies suggesting a negative effect of abatacept on vaccine immunogenicity. The first vaccine dose primes naive T cells, naive T cell priming is inhibited by CTLA-4, and abatacept is a CTLA-4Ig construct. CTLA-4 should not inhibit boosts of already primed T cells at the time of the second vaccine dose.(1) |
COMIRNATY 2024-2025, MODERNA COVID 24-25(6M-11Y)EUA, NOVAVAX COVID 2024-2025 (EUA), PFIZER COVID 2024-25(5-11Y)EUA, PFIZER COVID 2024-25(6M-4Y)EUA, SPIKEVAX 2024-2025 |
Sarilumab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Sarilumab, immunosuppressives, and immunomodulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of sarilumab with immunosuppressive or immunomodulating agents may result in an increased risk for serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of sarilumab recommends caution because the concurrent use of sarilumab with immunosuppressive agents may increase the risk of infection. If concurrent therapy is warranted, consider the risk of additive immune suppression and monitor based on prescribing information for both agents.(1) DISCUSSION: Sarilumab was studied as monotherapy and in combination with methotrexate or conventional disease modifying antirheumatic drugs (DMARDs) in rheumatoid arthritis studies. Sarilumab has not been studied with biological DMARDs and concurrent use should be avoided. If concurrent therapy is warranted, consider the potential for increased immunosuppressive risks from both agents.(1) The most common infections reported by sarilumab treated patients in the clinical trial periods included pneumonia and cellulitis. Serious bacterial, mycobacterial, fungal, and viral infections were observed in patients receiving sarilumab. Cases of tuberculosis, candidiasis, and pneumocystis with sarilumab have been reported.(1) |
KEVZARA |
Ublituximab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Ublituximab, immunosuppressives, and immunomodulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of ublituximab with immunosuppressive or immunomodulating agents may result in an increased risk for serious infections.(1) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: The US manufacturer of ublituximab recommends caution because the concurrent use of ublituximab with immunomodulating or immunosuppressive agents, including immunosuppressant doses of corticosteroids, may increase the risk of infection.(1) If concurrent therapy is warranted, consider the risk of additive immune suppression and monitor based on prescribing information for both agents. When switching from agents with immune effects, the half-life and mechanism of action of these drugs must be taken into consideration in order to prevent additive immunosuppressive effects.(1) DISCUSSION: The most common infections reported by ublituximab-treated patients in the clinical trial periods included upper respiratory tract infections and urinary tract infections. Serious, including life-threatening or fatal, bacterial and viral infections were observed in patients receiving ublituximab.(1) Serious and/or fatal bacterial, fungal, and new or reactivated viral infections have been associated with other anti-CD20 B-cell depleting therapies. There were no cases of progressive multifocal leukoencephalopathy (PML) reported during the clinical trials; however, there have been reports of PML during or following completion of other anti-CD20 B-cell depleting therapies.(1) |
BRIUMVI |
Tocilizumab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Tocilizumab, immunosuppressives, and immunomodulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of tocilizumab with immunosuppressive or immunomodulating agents may result in an increased risk for serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of tocilizumab recommends caution because the concurrent use of tocilizumab with immunosuppressive agents may increase the risk of infection. If concurrent therapy is warranted, consider the risk of additive immune suppression and monitor based on prescribing information for both agents.(1) DISCUSSION: Tocilizumab was studied as monotherapy and in combination with methotrexate, non-biologic DMARDs or corticosteroids, depending on the indication. Tocilizumab has not been studied with biological DMARDs and concurrent use should be avoided. If concurrent therapy is warranted, consider the potential for increased immunosuppressive risks from both agents.(1) The most common infections reported by tocilizumab treated patients in the clinical trial periods included pneumonia, urinary tract infection, cellulitis, herpes zoster, gastroenteritis, diverticulitis, sepsis and bacterial arthritis. Serious bacterial, mycobacterial, fungal, and viral infections were observed in patients receiving tocilizumab. Cases of tuberculosis, cryptococcus, aspergillosis, candidiasis, and pneumocystosis have been reported.(1) |
ACTEMRA, ACTEMRA ACTPEN, TOFIDENCE, TYENNE, TYENNE AUTOINJECTOR |
The following contraindication information is available for CISPLATIN (cisplatin):
Drug contraindication overview.
No enhanced Contraindications information available for this drug.
No enhanced Contraindications information available for this drug.
There are 2 contraindications.
Absolute contraindication.
Contraindication List |
---|
Kidney disease with reduction in glomerular filtration rate (GFr) |
Lactation |
There are 26 severe contraindications.
Adequate patient monitoring is recommended for safer drug use.
Severe List |
---|
Acute leukemia |
Acute myocardial infarction |
Anemia |
Cerebral arteritis |
Cerebrovascular accident |
Deep venous thrombosis |
Hearing loss |
Hemolytic uremic syndrome |
Hyperuricemia |
Hypocalcemia |
Hypokalemia |
Hypomagnesemia |
Hyponatremia |
Kidney disease with likely reduction in glomerular filtration rate (GFr) |
Leukopenia |
Optic neuritis |
Ototoxicity |
Peripheral neuropathy |
Posterior reversible encephalopathy syndrome |
Pregnancy |
Pulmonary thromboembolism |
Severe infection |
Thrombocytopenic disorder |
Thrombosis of aorta |
Thrombotic thrombocytopenic purpura |
TPMT poor metabolizer |
There are 2 moderate contraindications.
Clinically significant contraindication, where the condition can be managed or treated before the drug may be given safely.
Moderate List |
---|
Raynaud's phenomenon |
Vomiting |
The following adverse reaction information is available for CISPLATIN (cisplatin):
Adverse reaction overview.
No enhanced Common Adverse Effects information available for this drug.
No enhanced Common Adverse Effects information available for this drug.
There are 63 severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Anemia Bone marrow depression Hemolytic anemia Hyperuricemia Hypomagnesemia Leukopenia Nausea Nephrotoxicity Ototoxicity Thrombocytopenic disorder Uric acid nephropathy Vomiting |
Anaphylaxis Bronchospastic pulmonary disease CNS toxicity Injection site sequelae Urticaria |
Rare/Very Rare |
---|
Abnormal hepatic function tests Acute myeloid leukemia Acute myocardial infarction Acute renal failure Azoospermia Cellulitis Cerebral arteritis Cerebrovascular accident Color blindness Cortical blindness Facial edema Gastrointestinal perforation Hemolytic uremic syndrome Hepatic veno-occlusive disease Hyperbilirubinemia Hypersensitivity drug reaction Hypocalcemia Hypokalemia Hyponatremia Hypophosphatemia Infection Infertility Injection site necrosis Interstitial pneumonitis Leukoencephalopathy Oligospermia Optic neuritis Pancreatitis Papilledema Pericardial effusion Pigmentary retinopathy Posterior reversible encephalopathy syndrome Progressive multifocal leukoencephalopathy Pulmonary thromboembolism Raynaud's phenomenon Secondary ovarian failure Seizure disorder SIADH syndrome Sudden visual loss Tachycardia Tetany Thromboembolic disorder Thrombosis of aorta Thrombotic thrombocytopenic purpura Tumor lysis syndrome Ventricular arrhythmias |
There are 20 less severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Peripheral neuropathy |
Alopecia Anorexia Fever General weakness Malaise Paresthesia Skin rash Stomatitis |
Rare/Very Rare |
---|
Blurred vision Cramps Dehydration Diarrhea Dysgeusia Elevated serum amylase Hiccups Hypotension Loss of taste Slurred speech Wheezing |
The following precautions are available for CISPLATIN (cisplatin):
No enhanced Pediatric Use information available for this drug.
Contraindicated
Severe Precaution
Management or Monitoring Precaution
Contraindicated
None |
Severe Precaution
None |
Management or Monitoring Precaution
None |
Cisplatin and/or its platinum-containing products appear to cross the placenta. Cisplatin may cause fetal harm when administered to a pregnant woman, but potential benefits from use of the drug may be acceptable in certain conditions despite possible risks to the fetus. Cisplatin has been shown to be teratogenic in mice and embryotoxic in mice and rats.
Cisplatin should be used during pregnancy only in life-threatening situations or severe disease for which safer drugs cannot be used or are ineffective. When the drug is administered during pregnancy or if the patient becomes pregnant while receiving the drug, the patient should be informed of the potential hazard to the fetus. Patients should be advised to avoid becoming pregnant during the period in which they are receiving cisplatin therapy.
Cisplatin should be used during pregnancy only in life-threatening situations or severe disease for which safer drugs cannot be used or are ineffective. When the drug is administered during pregnancy or if the patient becomes pregnant while receiving the drug, the patient should be informed of the potential hazard to the fetus. Patients should be advised to avoid becoming pregnant during the period in which they are receiving cisplatin therapy.
Cisplatin is distributed into milk. Because of the potential for serious adverse reactions to cisplatin in nursing infants, nursing should not be undertaken by women receiving the drug.
No enhanced Geriatric Use information available for this drug.
The following prioritized warning is available for CISPLATIN (cisplatin):
WARNING: Cisplatin may cause severe kidney problems, nerve problems, and severe nausea and vomiting. Nerve problems may occur during treatment or weeks after stopping treatment. Your risk of these problems increases with higher doses or longer treatment with cisplatin.
Tell your doctor right way if you develop any of the following symptoms: change in the amount of urine, numbness/tingling of arms/legs, loss of reflexes, loss of balance, trouble walking, nausea, or vomiting. This medication decreases bone marrow function, an effect that may lead to a low number of blood cells such as red cells, white cells, and platelets. This effect can cause anemia, decrease your body's ability to fight an infection, or cause easy bruising/bleeding. Tell your doctor right away if you develop any of the following symptoms: unusual tiredness, pale skin, easy bruising/bleeding, or signs of infection (such as sore throat that doesn't go away, fever, chills).
WARNING: Cisplatin may cause severe kidney problems, nerve problems, and severe nausea and vomiting. Nerve problems may occur during treatment or weeks after stopping treatment. Your risk of these problems increases with higher doses or longer treatment with cisplatin.
Tell your doctor right way if you develop any of the following symptoms: change in the amount of urine, numbness/tingling of arms/legs, loss of reflexes, loss of balance, trouble walking, nausea, or vomiting. This medication decreases bone marrow function, an effect that may lead to a low number of blood cells such as red cells, white cells, and platelets. This effect can cause anemia, decrease your body's ability to fight an infection, or cause easy bruising/bleeding. Tell your doctor right away if you develop any of the following symptoms: unusual tiredness, pale skin, easy bruising/bleeding, or signs of infection (such as sore throat that doesn't go away, fever, chills).
The following icd codes are available for CISPLATIN (cisplatin)'s list of indications:
Biliary tract malignancy | |
C22.1 | Intrahepatic bile duct carcinoma |
C23 | Malignant neoplasm of gallbladder |
C24 | Malignant neoplasm of other and unspecified parts of biliary tract |
C24.0 | Malignant neoplasm of extrahepatic bile duct |
C24.1 | Malignant neoplasm of ampulla of vater |
C24.8 | Malignant neoplasm of overlapping sites of biliary tract |
C24.9 | Malignant neoplasm of biliary tract, unspecified |
Invasive bladder cancer | |
C67 | Malignant neoplasm of bladder |
C67.0 | Malignant neoplasm of trigone of bladder |
C67.1 | Malignant neoplasm of dome of bladder |
C67.2 | Malignant neoplasm of lateral wall of bladder |
C67.3 | Malignant neoplasm of anterior wall of bladder |
C67.4 | Malignant neoplasm of posterior wall of bladder |
C67.5 | Malignant neoplasm of bladder neck |
C67.6 | Malignant neoplasm of ureteric orifice |
C67.7 | Malignant neoplasm of urachus |
C67.8 | Malignant neoplasm of overlapping sites of bladder |
C67.9 | Malignant neoplasm of bladder, unspecified |
Malignant neoplasm of the ovary | |
C56 | Malignant neoplasm of ovary |
C56.1 | Malignant neoplasm of right ovary |
C56.2 | Malignant neoplasm of left ovary |
C56.3 | Malignant neoplasm of bilateral ovaries |
C56.9 | Malignant neoplasm of unspecified ovary |
Ovarian germ cell tumor carcinoma | |
C56 | Malignant neoplasm of ovary |
C56.1 | Malignant neoplasm of right ovary |
C56.2 | Malignant neoplasm of left ovary |
C56.3 | Malignant neoplasm of bilateral ovaries |
C56.9 | Malignant neoplasm of unspecified ovary |
Small cell lung carcinoma | |
C34 | Malignant neoplasm of bronchus and lung |
C34.0 | Malignant neoplasm of main bronchus |
C34.00 | Malignant neoplasm of unspecified main bronchus |
C34.01 | Malignant neoplasm of right main bronchus |
C34.02 | Malignant neoplasm of left main bronchus |
C34.1 | Malignant neoplasm of upper lobe, bronchus or lung |
C34.10 | Malignant neoplasm of upper lobe, unspecified bronchus or lung |
C34.11 | Malignant neoplasm of upper lobe, right bronchus or lung |
C34.12 | Malignant neoplasm of upper lobe, left bronchus or lung |
C34.2 | Malignant neoplasm of middle lobe, bronchus or lung |
C34.3 | Malignant neoplasm of lower lobe, bronchus or lung |
C34.30 | Malignant neoplasm of lower lobe, unspecified bronchus or lung |
C34.31 | Malignant neoplasm of lower lobe, right bronchus or lung |
C34.32 | Malignant neoplasm of lower lobe, left bronchus or lung |
C34.8 | Malignant neoplasm of overlapping sites of bronchus and lung |
C34.80 | Malignant neoplasm of overlapping sites of unspecified bronchus and lung |
C34.81 | Malignant neoplasm of overlapping sites of right bronchus and lung |
C34.82 | Malignant neoplasm of overlapping sites of left bronchus and lung |
C34.9 | Malignant neoplasm of unspecified part of bronchus or lung |
C34.90 | Malignant neoplasm of unspecified part of unspecified bronchus or lung |
C34.91 | Malignant neoplasm of unspecified part of right bronchus or lung |
C34.92 | Malignant neoplasm of unspecified part of left bronchus or lung |
Testicular germ cell tumor | |
C62 | Malignant neoplasm of testis |
C62.0 | Malignant neoplasm of undescended testis |
C62.00 | Malignant neoplasm of unspecified undescended testis |
C62.01 | Malignant neoplasm of undescended right testis |
C62.02 | Malignant neoplasm of undescended left testis |
C62.1 | Malignant neoplasm of descended testis |
C62.10 | Malignant neoplasm of unspecified descended testis |
C62.11 | Malignant neoplasm of descended right testis |
C62.12 | Malignant neoplasm of descended left testis |
C62.9 | Malignant neoplasm of testis, unspecified whether descended or undescended |
C62.90 | Malignant neoplasm of unspecified testis, unspecified whether descended or undescended |
C62.91 | Malignant neoplasm of right testis, unspecified whether descended or undescended |
C62.92 | Malignant neoplasm of left testis, unspecified whether descended or undescended |
Formulary Reference Tool