Please wait while the formulary information is being retrieved.
Drug overview for REVUFORJ (revumenib citrate):
Generic name: REVUMENIB CITRATE
Drug class:
Therapeutic class: Antineoplastics
Revumenib citrate, a menin inhibitor, is an antineoplastic agent.
No enhanced Uses information available for this drug.
Generic name: REVUMENIB CITRATE
Drug class:
Therapeutic class: Antineoplastics
Revumenib citrate, a menin inhibitor, is an antineoplastic agent.
No enhanced Uses information available for this drug.
DRUG IMAGES
- No Image Available
The following indications for REVUFORJ (revumenib citrate) have been approved by the FDA:
Indications:
Acute leukemia with lysine methyltransferase 2A gene (KMT2A) translocation
Professional Synonyms:
Acute leukemia with KMT2A translocation
Indications:
Acute leukemia with lysine methyltransferase 2A gene (KMT2A) translocation
Professional Synonyms:
Acute leukemia with KMT2A translocation
The following dosing information is available for REVUFORJ (revumenib citrate):
Revumenib is commercially available as the citrate salt; dosage is expressed in terms of revumenib.
If an adverse reaction occurs, treatment interruption, dosage reduction, and/or discontinuation of therapy may be necessary based on the severity of the adverse event.
The manufacturer's recommended dosage reduction schedule and dosing modifications for adverse reactions are provided in Table 1 and the recommended dosage in Tables 2 and 3.
Table 1. Revumenib Dosage Adjustments for Adverse Reactions
Adverse Reaction Recommended Action Differentiation syndrome If suspected, administer systemic corticosteroids and monitor hemodynamics until symptoms resolve and for at least 3 days. Interrupt revumenib if severe symptoms persist >48 hours after starting systemic corticosteroids or sooner for life-threatening sympt oms (e.g., pulmonary symptoms requiring ventilator support). Resume revumenib at the same dosage once symptoms improve to Grade <=1.
Noninfectious leukocytosis Start hydroxyurea for elevated or rapidly rising leukocyte counts; add leukapheresis if clinically indicated. Taper hydroxyurea only after leukocytosis improves or resolves. QTc interval >480-500 msec Interrupt revumenib, check electrolytes, and correct hypokalemia and hypomagnesemia.
Restart revumenib at the same dosage once QTc <=480 msec. QTc >500 msec (Grade 3) Interrupt revumenib, check electrolytes, and correct hypokalemia and hypomagnesemia. Restart revumenib at a reduced dosage after QTc <=480 msec (see Tables 2 and 3).
QTc interval prolongation with Permanently discontinue revumenib. signs/symptoms of life-threatening arrhythmia, torsades de pointes, polymorphic ventricular tachycardia, signs/symptoms of life-threatening arrhythmia (Grade 4) Potassium 3.6-3.9
mEq/L and/or Supplement potassium and/or magnesium 1.7-1.9 mg/dL magnesium and continue revumenib therapy.
Potassium <=3.5 mEq/L and/or Supplement potassium and/or magnesium <=1.6 mg/dL magnesium and recheck levels within 24 hours.
Hold revumenib, continue supplementation, and resume revumenib at the same dosage once correction is complete. Other nonhematological adverse Interpret revumenib therapy until reactions Grade >=3 recovery to Grade 1 or baseline. If recovered in <=7 days, restart revumenib at same dosage level.
If the same Grade >=3 toxicity recurs, interrupt revumenib until recovery to Grade 1 or baseline, then restart at a reduced dosage (see Tables 2 and 3). If recovered in >7 days, restart revumenib at the reduced dosage (see Tables 2 and 3). If the same Grade >=3 toxicity recurs, discontinue revumenib.
Neutropenia or thrombocytopenia Interrupt revumenib until recovery Grade 4 to Grade <=2 or baseline, then restart at the same dosage. If Grade 4 neutropenia or thrombocytopenia recurs without cause, interrupt until recovery to Grade <=3 and restart at a reduced dosage (see Tables 2 and 3). Allergic reaction Grade >=3 Permanently discontinue revumenib.
Table 2. Dosage Reduction for Adverse Reactions in Patients NOT on Strong CYP3A4 Inhibitors
Patient Weighing >=40 kg at Starting Patients Weighing <40 kg at Starting Dosage of 270 mg orally twice daily Dosage of 160 mg/m2orally twice daily Reduce dosage to 160 mg orally twice Reduce dosage to 95 mg/m2 orally daily. twice daily.
Table 3. Dosage Reduction for Adverse Reactions in Patients on Strong CYP3A4 Inhibitors
Patients Weighing >=40 kg at Patients Weighing <40 kg at Starting Starting Dosage of 160 mg orally Dosage of 95 mg/m2orally twice daily twice daily Reduce dosage to 110 mg orally twice Reduce dosage to 65 mg/m2 orally daily. twice daily.
If an adverse reaction occurs, treatment interruption, dosage reduction, and/or discontinuation of therapy may be necessary based on the severity of the adverse event.
The manufacturer's recommended dosage reduction schedule and dosing modifications for adverse reactions are provided in Table 1 and the recommended dosage in Tables 2 and 3.
Table 1. Revumenib Dosage Adjustments for Adverse Reactions
Adverse Reaction Recommended Action Differentiation syndrome If suspected, administer systemic corticosteroids and monitor hemodynamics until symptoms resolve and for at least 3 days. Interrupt revumenib if severe symptoms persist >48 hours after starting systemic corticosteroids or sooner for life-threatening sympt oms (e.g., pulmonary symptoms requiring ventilator support). Resume revumenib at the same dosage once symptoms improve to Grade <=1.
Noninfectious leukocytosis Start hydroxyurea for elevated or rapidly rising leukocyte counts; add leukapheresis if clinically indicated. Taper hydroxyurea only after leukocytosis improves or resolves. QTc interval >480-500 msec Interrupt revumenib, check electrolytes, and correct hypokalemia and hypomagnesemia.
Restart revumenib at the same dosage once QTc <=480 msec. QTc >500 msec (Grade 3) Interrupt revumenib, check electrolytes, and correct hypokalemia and hypomagnesemia. Restart revumenib at a reduced dosage after QTc <=480 msec (see Tables 2 and 3).
QTc interval prolongation with Permanently discontinue revumenib. signs/symptoms of life-threatening arrhythmia, torsades de pointes, polymorphic ventricular tachycardia, signs/symptoms of life-threatening arrhythmia (Grade 4) Potassium 3.6-3.9
mEq/L and/or Supplement potassium and/or magnesium 1.7-1.9 mg/dL magnesium and continue revumenib therapy.
Potassium <=3.5 mEq/L and/or Supplement potassium and/or magnesium <=1.6 mg/dL magnesium and recheck levels within 24 hours.
Hold revumenib, continue supplementation, and resume revumenib at the same dosage once correction is complete. Other nonhematological adverse Interpret revumenib therapy until reactions Grade >=3 recovery to Grade 1 or baseline. If recovered in <=7 days, restart revumenib at same dosage level.
If the same Grade >=3 toxicity recurs, interrupt revumenib until recovery to Grade 1 or baseline, then restart at a reduced dosage (see Tables 2 and 3). If recovered in >7 days, restart revumenib at the reduced dosage (see Tables 2 and 3). If the same Grade >=3 toxicity recurs, discontinue revumenib.
Neutropenia or thrombocytopenia Interrupt revumenib until recovery Grade 4 to Grade <=2 or baseline, then restart at the same dosage. If Grade 4 neutropenia or thrombocytopenia recurs without cause, interrupt until recovery to Grade <=3 and restart at a reduced dosage (see Tables 2 and 3). Allergic reaction Grade >=3 Permanently discontinue revumenib.
Table 2. Dosage Reduction for Adverse Reactions in Patients NOT on Strong CYP3A4 Inhibitors
Patient Weighing >=40 kg at Starting Patients Weighing <40 kg at Starting Dosage of 270 mg orally twice daily Dosage of 160 mg/m2orally twice daily Reduce dosage to 160 mg orally twice Reduce dosage to 95 mg/m2 orally daily. twice daily.
Table 3. Dosage Reduction for Adverse Reactions in Patients on Strong CYP3A4 Inhibitors
Patients Weighing >=40 kg at Patients Weighing <40 kg at Starting Starting Dosage of 160 mg orally Dosage of 95 mg/m2orally twice daily twice daily Reduce dosage to 110 mg orally twice Reduce dosage to 65 mg/m2 orally daily. twice daily.
Administer revumenib orally around the same time each day without food or with a low-fat meal (e.g., meal consisting of approximately 400 calories with <25% from fat). Swallow the tablets whole without cutting or chewing. If swallowing is difficult, the tablets may be crushed, mixed with water, and taken within 2 hours. Store the tablets at 20-25degreesC; excursions between 15-30degreesC are permitted.
DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
---|---|---|
REVUFORJ 110 MG TABLET | Maintenance | Adults take 1 tablet (110 mg) by oral route 2 times per day |
REVUFORJ 160 MG TABLET | Maintenance | Adults take 1 tablet (160 mg) by oral route 2 times per day |
No generic dosing information available.
The following drug interaction information is available for REVUFORJ (revumenib citrate):
There are 12 contraindications.
These drug combinations generally should not be dispensed or administered to the same patient. A manufacturer label warning that indicates the contraindication warrants inclusion of a drug combination in this category, regardless of clinical evidence or lack of clinical evidence to support the contraindication.
Drug Interaction | Drug Names |
---|---|
Pimozide/QT Prolonging Agents SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Pimozide has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of pimozide with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug know to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction.(3) PATIENT MANAGEMENT: The manufacturer of pimozide states under contraindications that the use of pimozide is contraindicated in patients taking other drugs which prolong the QT interval.(1) If concurrent therapy is deemed medically necessary, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) One or more of the drug pairs linked to this monograph have been included in a list of interactions that should be considered "high-priority" for inclusion and should not be inactivated in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
PIMOZIDE |
Droperidol/QT Prolonging Agents SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Droperidol has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of droperidol with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: Congestive heart failure, bradycardia, use of a diuretic, cardiac hypertrophy, hypokalemia, hypomagnesemia, age over 65 years, alcohol abuse, and the use of agents such as benzodiazepines, volatile anesthetics, and intravenous opiate may predispose patients to the development of prolonged QT syndrome.(1) Risk may also be increased in patients with other cardiovascular diseases (e.g. myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypocalcemia, or female gender.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The manufacturer of droperidol states under precautions drug interactions that drugs known to have the potential to prolong the QT interval should not be used together with droperidol.(1) DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) One or more of the drug pairs linked to this monograph have been included in a list of interactions that should be considered "high-priority" for inclusion and should not be inactivated in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
DROPERIDOL |
Efalizumab; Natalizumab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Natalizumab,(1-3) efalizumab,(4) immunosuppressives, and immunomodulators all suppress the immune system. CLINICAL EFFECTS: Concurrent use of natalizumab(1-3) or efalizumab(4) with immunosuppressives or immunomodulators may result in an increased risk of infections, including progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV). PREDISPOSING FACTORS: Previous JCV infection, longer duration of natalizumab treatment - especially if greater than 2 years, and prior or concomitant treatment with immunosuppressant medication are all independent risk factors which increase the risk for PML.(1,5) The FDA has estimated PML incidence stratified by risk factors: If anti-JCV antibody positive, no prior immunosuppressant use and natalizumab treatment less than 25 months, incidence <1/1,000. If anti-JCV antibody positive, history of prior immunosuppressant use and natalizumab treatment less than 25 months, incidence 2/1,000 If anti-JCV antibody positive, no prior immunosuppressant use and natalizumab treatment 25-48 months, incidence 4/1,000 If anti-JCV antibody positive, history of prior immunosuppressant use and natalizumab treatment 25-48 months, incidence 11/1,000. PATIENT MANAGEMENT: The US manufacturer of natalizumab states patients with Crohn's disease should not receive concurrent immunosuppressants, with the exception of limited overlap of corticosteroids, due to the increased risk for PML. For new natalizumab patients currently receiving chronic oral corticosteroids for Crohn's Disease, begin corticosteroid taper when therapeutic response to natalizumab has occurred. If corticosteroids cannot be discontinued within six months of starting natalizumab, discontinue natalizumab.(3) The US manufacturer of natalizumab states that natalizumab should not ordinarily be used in multiple sclerosis patients receiving immunosuppressants or immunomodulators due to the increased risk for PML. Immunosuppressives include, but are not limited to azathioprine, cyclophosphamide, cyclosporine, mercaptopurine, methotrexate, mitoxantrone, mycophenolate, and corticosteroids.(3,6) The UK manufacturer of natalizumab states that concurrent use with immunosuppressives or antineoplastic agents is contraindicated.(1) The Canadian manufacturer of natalizumab states that natalizumab should not be used with immunosuppressive or immunomodulatory agents.(2) The US manufacturer of certolizumab states that concurrent therapy with natalizumab is not recommended.(7) DISCUSSION: Progressive multifocal leukoencephalopathy has been reported in patients receiving concurrent natalizumab were recently or concomitantly taking immunomodulators or immunosuppressants.(1-5,8,9) In a retrospective cohort study of multiple sclerosis patients newly initiated on a disease-modifying therapy, use of high-efficacy agents (alemtuzumab, natalizumab, or ocrelizumab) resulted in the same risk of overall infections as moderate-efficacy agents, but there was an elevated risk of serious infections (adjusted hazard ratio [aHR] = 1.24, 95% confidence interval (CI) = 1.06-1.44) and UTIs (aHR = 1.21, 95% CI = 1.14-1.30).(10) |
TYSABRI |
Disopyramide/QT Prolonging Agents SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Concurrent use of disopyramide and agents known to prolong the QT interval may result in additive or synergistic effects on the QTc interval.(1) CLINICAL EFFECTS: Concurrent administration may result in prolongation of the QTc interval and life-threatening cardiac arrhythmias, including torsades de pointes. PREDISPOSING FACTORS: The risk of torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The Australian manufacturer of disopyramide states that concurrent use with agents liable to produce torsades de pointes, including tricyclic or tetracyclic antidepressants, erythromycin, vincamine, and sultopride, is contraindicated.(1) If alternatives are not available and concurrent therapy is deemed medically necessary, obtain serum calcium, magnesium, and potassium levels and monitor ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) One or more of the drug pairs linked to this monograph have been included in a list of interactions that should be considered "high-priority" for inclusion and should not be inactivated in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
DISOPYRAMIDE PHOSPHATE, NORPACE, NORPACE CR |
Live Vaccines; Live BCG/Selected Immunosuppressive Agents SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: A variety of disease modifying agents suppress the immune system. Immunocompromised patients may be at increased risk for uninhibited replication after administration of live, attenuated vaccines or intravesicular BCG. Immune response to vaccines may be decreased during periods of immunocompromise.(1) CLINICAL EFFECTS: The expected serum antibody response may not be obtained and/or the vaccine may result in illness.(1) After instillation of intravesicular BCG, immunosuppression may interfere with local immune response, or increase the severity of mycobacterial infection following inadvertent systemic exposure.(2) PREDISPOSING FACTORS: Immunosuppressive diseases (e.g. hematologic malignancies, HIV disease), treatments (e.g. radiation) and drugs may all increase the magnitude of immunodeficiency. PATIENT MANAGEMENT: The Centers for Disease Control(CDC) Advisory Committee on Immunization Practices (ACIP) states that live-virus and live, attenuated vaccines should not be administered to patients who are immunocompromised. The magnitude of immunocompromise and associated risks should be determined by a physician.(1) For patients scheduled to receive chemotherapy, vaccination should ideally precede the initiation of chemotherapy by 14 days. Patients vaccinated while on immunosuppressive therapy or in the 2 weeks prior to starting therapy should be considered unimmunized and should be revaccinated at least 3 months after discontinuation of therapy.(1) Patients who receive anti-B cell therapies should not receive live vaccines for at least 6 months after such therapies due to a prolonged duration of immunosuppression. An exception is the Zoster vaccine, which can be given at least 1 month after receipt of anti-B cell therapies.(1) The US manufacturer of abatacept states live vaccines should not be given during or for up to 3 months after discontinuation of abatacept.(2) The US manufacturer of live BCG for intravesicular treatment of bladder cancer states use is contraindicated in immunosuppressed patients.(3) The US manufacturer of daclizumab states live vaccines are not recommended during and for up to 4 months after discontinuation of treatment.(4) The US manufacturer of guselkumab states that live vaccines should be avoided during treatment with guselkumab.(5) The US manufacturer of inebilizumab-cdon states that live vaccines are not recommended during treatment and after discontinuation until B-cell repletion. Administer all live vaccinations at least 4 weeks prior to initiation of inebilizumab-cdon.(6) The US manufacturer of ocrelizumab states that live vaccines are not recommended during treatment and until B-cell repletion occurs after discontinuation of therapy. Administer all live vaccines at least 4 weeks prior to initiation of ocrelizumab.(7) The US manufacturer of ozanimod states that live vaccines should be avoided during and for up to 3 months after discontinuation of ozanimod.(8) The US manufacturer of siponimod states that live vaccines are not recommended during treatment and for up to 4 weeks after discontinuation of treatment.(9) The US manufacturer of ustekinumab states BCG vaccines should not be given in the year prior to, during, or the year after ustekinumab therapy.(10) The US manufacturer of satralizumab-mwge states that live vaccines are not recommended during treatment and should be administered at least four weeks prior to initiation of satralizumab-mwge.(11) The US manufacturer of ublituximab-xiiy states that live vaccines are not recommended during treatment and until B-cell recovery. Live vaccines should be administered at least 4 weeks prior to initiation of ublituximab-xiiy.(12) The US manufacturer of etrasimod states that live vaccines should be avoided during and for 5 weeks after treatment. Live vaccines should be administered at least 4 weeks prior to initiation of etrasimod.(13) The US manufacturer of emapalumab-lzsg states that live vaccines should not be administered to patients receiving emapalumab-lzsg and for at least 4 weeks after the last dose of emapalumab-lzsg. The safety of immunization with live vaccines during or following emapalumab-lzsg therapy has not been studied.(14) DISCUSSION: Killed or inactivated vaccines do not pose a danger to immunocompromised patients.(1) Patients with a history of leukemia who are in remission and have not received chemotherapy for at least 3 months are not considered to be immunocompromised.(1) |
ACAM2000 (NATIONAL STOCKPILE), ADENOVIRUS TYPE 4, ADENOVIRUS TYPE 4 AND TYPE 7, ADENOVIRUS TYPE 7, BCG (TICE STRAIN), BCG VACCINE (TICE STRAIN), DENGVAXIA, ERVEBO (NATIONAL STOCKPILE), FLUMIST 2025-2026, FLUMIST HOME 2025-2026, IXCHIQ, M-M-R II VACCINE, PRIORIX, PROQUAD, ROTARIX, ROTATEQ, STAMARIL, VARIVAX VACCINE, VAXCHORA ACTIVE COMPONENT, VAXCHORA VACCINE, VIVOTIF, YF-VAX |
Artemether-Lumefantrine/QT Prolonging Agents SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Concurrent use of artemether-lumefantrine and agents known to prolong the QT interval may result in additive or synergistic effects on the QTc interval.(1) CLINICAL EFFECTS: Concurrent administration may result in prolongation of the QTc interval and life-threatening cardiac arrhythmias, including torsades de pointes. PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: The UK manufacturer of artemether-lumefantrine states that the use of artemether-lumefantrine in patients taking drugs that are known to prolong the QTc interval is contraindicated. These agents include class IA and III antiarrhythmics; neuroleptics; antidepressive agents; some macrolides, fluoroquinolones, imidazole and triazole antifungals; terfenadine; astemizole; and cisapride.(1) The US manufacturer of artemether-lumefantrine states that the use of artemether-lumefantrine should be avoided in patients taking drugs that are known to prolong the QTc interval. These agents include class IA and III antiarrhythmics; neuroleptics; antidepressive agents; some macrolides, fluoroquinolones, imidazole and triazole antifungals; terfenadine; astemizole; and cisapride.(2) If concurrent therapy is deemed medically necessary, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
COARTEM |
Dronedarone/QT Prolonging Agents SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Concurrent use of dronedarone and agents known to prolong the QT interval may result in additive or synergistic effects on the QTc interval.(1) CLINICAL EFFECTS: Concurrent administration may result in prolongation of the QTc interval and life-threatening cardiac arrhythmias, including torsades de pointes. PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The US manufacturer of dronedarone states that the use of drugs or herbal products that are known to prolong the QTc interval is contraindicated. These agents include phenothiazine anti-psychotics, tricyclic antidepressants, certain oral macrolide antibiotics, and Class IA and III antiarrhythmics.(1) If concurrent therapy is deemed medically necessary, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) One or more of the drug pairs linked to this monograph have been included in a list of interactions that should be considered "high-priority" for inclusion and should not be inactivated in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
MULTAQ |
Anagrelide/QT Prolonging Agents SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Concurrent use of anagrelide with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of anagrelide with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of anagrelide states that anagrelide should not be used in patients taking medications known to prolong the QT interval.(1) If concurrent therapy is deemed medically necessary, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a thorough QT study, dose-related QT changes were observed with anagrelide. The maximum mean change in QTcI (95% CI) in comparison to placebo was 7.0 (9.8) ms and 13.0 (15.7) msec following doses of 0.5 mg and 2.5mg, respectively.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) One or more of the drug pairs linked to this monograph have been included in a list of interactions that should be considered "high-priority" for inclusion and should not be inactivated in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
AGRYLIN, ANAGRELIDE HCL |
Talimogene laherparepvec/Selected Immunosuppressants SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Talimogene laherparepvec is a live, attenuated herpes simplex virus.(1) CLINICAL EFFECTS: Concurrent use of talimogene laherparepvec in patients receiving immunosuppressive therapy may cause a life-threatening disseminated herpetic infection.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Talimogene laherparepvec is contraindicated in immunosuppressed patients.(1) The magnitude of immunocompromise and associated risks due to immunosuppressant drugs should be determined by a physician. DISCUSSION: Concurrent use of talimogene laherparepvec in patients receiving immunosuppressive therapy may cause a life-threatening disseminated herpetic infection.(1) |
IMLYGIC |
CYP3A4 Substrates that Prolong QT/Posaconazole SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Posaconazole is a strong inhibitor of CYP3A4 and may inhibit the metabolism of CYP3A4 substrates. Use of posaconazole with agents that prolong the QTc interval may result in an additive effect on the QTc interval.(1,2) CLINICAL EFFECTS: Concurrent administration may result in elevated levels of the CYP3A4 substrate and/or prolongation of the QTc interval, which may result in life-threatening cardiac arrhythmias, including torsades de pointes.(1,2) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The US manufacturer of posaconazole states that the concurrent use of agents that prolong the QTc interval that are metabolized by CYP3A4 is contraindicated.(1) The UK manufacturer of posaconazole states that CYP3A4 substrates that are known to prolong the QTc interval must not be coadministered.(2) If concurrent therapy is deemed medically necessary, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Posaconazole has been shown to inhibit CYP3A4. Elevated levels of CYP3A4 substrates that are known to prolong the QTc interval may have an additive effect on the QTc interval.(1,2) CYP3A4 substrates that prolong the QTc interval and that are linked to this monograph include: aclarubicin, adagrasib, amiodarone, artemether-lumefantrine, bepridil, clarithromycin, dofetilide, erythromycin, fexinidazole, levomethadyl, lonafarnib, mobocertinib, quizartinib, revumenib, savolitinib, taletrectinib, and telithromycin. |
NOXAFIL, POSACONAZOLE |
Nadofaragene Firadenovec/Selected Immunosuppressants SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Nadofaragene firadenovec may contain low levels of replication-competent adenovirus.(1) CLINICAL EFFECTS: Concurrent use of nadofaragene firadenovec in patients receiving immunosuppressive therapy may cause disseminated adenovirus infection.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Individuals who are immunosuppressed or immune-deficient should not receive nadofaragene firadenovec.(1) DISCUSSION: Nadofaragene firadenovec is a non-replicating adenoviral vector-based gene therapy but may contain low levels of replication-competent adenovirus. Immunocompromised persons, including those receiving immunosuppressant therapy, may be at risk for disseminated adenovirus infection.(1) |
ADSTILADRIN |
Revumenib/Strong CYP3A4 Inhibitors that Prolong QT SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Strong inhibitors of CYP3A4 that prolong the QTc interval may inhibit the metabolism of revumenib and result in additive risk of QT prolongation.(1) CLINICAL EFFECTS: Concurrent use of strong CYP3A4 inhibitors may increase the levels of and effects from revumenib including QTc prolongation, which may result in potentially life-threatening cardiac arrhythmias like torsades de pointes (TdP).(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of revumenib states that concomitant use of other drugs that may prolong the QTc interval should be avoided. If concurrent use cannot be avoided, obtain ECGs prior to initiating revumenib, during concomitant use, and as clinically indicated. If the QTc interval is greater than 480 ms, withhold revumenib therapy. Resume revumenib after the QTc interval drops to 480 msec or less.(1) The manufacturer of levoketoconazole states that concomitant use of other drugs that prolong the QTc interval is contraindicated.(3) If concomitant use of strong CYP3A4 inhibitors is unavoidable, dose reduction of revumenib is necessary. -For patients 1 year and older who weigh at least 40 kg, decrease the dosage of revumenib to 160 mg twice daily. -For patients 1 year and older who weigh less than 40 kg, decrease the dosage of revumenib to 95 mg/m2 twice daily. Refer to the revumenib prescribing information for total tablet dosage by body surface area. If the strong CYP3A4 inhibitor is discontinued, increase the dose of revumenib to the recommended dose without strong CYP3A4 inhibitors after at least 5 half-lives of the inhibitor.(1) If coadministration with strong CYP3A4 inhibitors that prolong QT is unavoidable, monitor for prolongation of the QTc interval.(1) When concurrent therapy is warranted: consider obtaining serum calcium, magnesium, and potassium levels and monitoring EKG at baseline and regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a study, azole antifungals that are strong CYP3A4 inhibitors (i.e., posaconazole, itraconazole, and voriconazole) increased the area-under-curve (AUC) and maximum concentration (Cmax) of revumenib by 2-fold. Cobicistat (a strong CYP3A4 inhibitor) increased the AUC and Cmax of revumenib by 2.5-fold.(1) In clinical trials, QTc interval prolongation was reported as an adverse event in 29% of 135 patients treated with the recommended dosage of revumenib; 12% of patients had Grade 3 QTc prolongation. Revumenib increased the QTc interval in a concentration-dependent manner. At the mean steady-state Cmax using the highest approved recommended dosage of revumenib without CYP3A4 inhibitors, QTc increase was predicted to be 27 msec (upper bound of 90% confidence interval = 30 msec). At the steady-state Cmax using the highest approved recommended dosage of revumenib with CYP3A4 inhibitors, QTc increase was predicted to be 19 msec (upper bound of 90% confidence interval = 22 msec).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(4) Strong inhibitors of CYP3A4 that prolong the QT interval include: levoketoconazole.(5,6) |
RECORLEV |
There are 56 severe interactions.
These drug interactions can produce serious consequences in most patients. Actions required for severe interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration scheduling, and providing additional patient monitoring. Review the full interaction monograph for more information.
Drug Interaction | Drug Names |
---|---|
Ziprasidone/Selected QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ziprasidone has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of ziprasidone with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(1,3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The manufacturer of ziprasidone states under contraindications that ziprasidone should not be used with other drugs that prolong the QT interval such as dofetilide, sotalol, quinidine, other Class Ia and III anti-arrhythmics, mesoridazine, thioridazine, chlorpromazine, droperidol, pimozide, sparfloxacin, gatifloxacin, moxifloxacin, halofantrine, mefloquine, pentamidine, arsenic trioxide, levomethadyl acetate, dolasetron mesylate, probucol or tacrolimus.(1) It would be prudent to avoid the use of ziprasidone with medicines suspected of prolonging the QT interval. If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
GEODON, ZIPRASIDONE HCL, ZIPRASIDONE MESYLATE |
Ivabradine/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: QT prolongation may be exacerbated by ivabradine-induced reduction in heart rate.(1) CLINICAL EFFECTS: Concurrent use of ivabradine and agents known to prolong the QT interval may exacerbate QT prolongation.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The UK, AU, and Canadian manufacturer of ivabradine states that concurrent use with cardiovascular and non-cardiovascular QT prolonging agents should be avoided.(1,4,5) The Canadian manufacturer states that if concurrent therapy is deemed necessary, close cardiac monitoring (12-lead ECG) is required. Depending on the ECG results, ivabradine dosing may need to be decreased or stopped.(4) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
CORLANOR, IVABRADINE HCL |
Paliperidone/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Paliperidone has been shown to cause a modest increase in the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1,2) CLINICAL EFFECTS: The concurrent use of paliperidone with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1,2) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: The US manufacturer of paliperidone states that the use of paliperidone should be avoided with other drugs that are known to prolong the QTc interval, including Class IA and Class III antiarrhythmics, antipsychotics, antibiotics such as gatifloxacin and moxifloxacin, or any other class of medications known to prolong the QTc interval.(1,2) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
ERZOFRI, INVEGA, INVEGA HAFYERA, INVEGA SUSTENNA, INVEGA TRINZA, PALIPERIDONE ER |
Nilotinib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Nilotinib prolongs the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1,3) CLINICAL EFFECTS: The concurrent use of nilotinib with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1,3) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: The US manufacturer of nilotinib states that the use of nilotinib should be avoided with other drugs that are known to prolong the QTc interval. Should treatment with a QT prolonging agent be required, interruption of nilotinib therapy should be considered. If concurrent therapy cannot be avoided, monitor patients closely for prolongation of the QT interval and follow recommended nilotinib dosage adjustments for QT prolongation.(1) Consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. The UK manufacturer of nilotinib states that the use of nilotinib should be used with caution with other drugs that are known to prolong the QTc interval.(3) DISCUSSION: A retrospective review of 618 cancer patients treated with 902 administrations of tyrosine kinase inhibitors were evaluated for rate and incidence of QTc prolongation. In patients who received nilotinib, QTc prolongation was identified in 29 (38.7%) with 1 (3.5%) having Grade 1 (QTc 450-480 ms) and 2 (7%) having Grade 2 (QTc 480-500 ms). Grade 3 events occurred in 9 (31%) having QTc greater than or equal to 500 ms and 17 (58.6%) having QTc change greater than or equal to 60 ms. No patients developed ventricular tachycardia, sudden cardiac death, or TdP.(5) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
DANZITEN, NILOTINIB HCL, NILOTINIB TARTRATE, TASIGNA |
Toremifene/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Toremifene has been shown to prolong the QTc interval in a dose-related and concentration-related manner.(1) Concurrent use of toremifene and agents known to prolong the QT interval may result in additive or synergistic effects on the QTc interval.(1,2) CLINICAL EFFECTS: Concurrent administration may result in prolongation of the QTc interval and life-threatening cardiac arrhythmias, including torsades de pointes.(1,2) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: The US manufacturer of toremifene states that concurrent use should be avoided. If treatment with an agent known to prolong the QT interval is required, toremifene therapy should be interrupted. If it is not possible to interrupt toremifene therapy, patients should be closely monitored. Electrocardiograms (ECGs) should be obtained.(1) Consider obtaining serum calcium, magnesium, and potassium levels and correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. The UK manufacturer of toremifene states that the use of other drugs that are known to prolong the QTc interval is contraindicated. These agents include class IA and III antiarrhythmics, astemizole, bepridil, cisapride, diphemanil, erythromycin IV, halofantrine, haloperidol, mizolastine, moxifloxacin, pentamidine, phenothiazines, pimozide, sertindole, terfenadine, and vincamine IV.(2) DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
FARESTON, TOREMIFENE CITRATE |
Iloperidone/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Iloperidone has been shown to prolong the QTc interval by 9 msec at dosages of 12 mg twice daily. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of iloperidone with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, congenital prolongation of the QT interval, female gender, advanced age and with concurrent use of inhibitors of CYP3A4 or CYP2D6, which metabolize iloperidone. Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The US manufacturer of iloperidone states that the concurrent administration of other drugs that are known to prolong the QTc interval should be avoided. Disopyramide and procainamide should not be used to treat iloperidone-overdose-induced arrhythmias.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) Coadministration of ketoconazole (200 mg twice daily, an inhibitor of CYP3A4) and iloperidone (12 mg twice daily) was associated with a mean QTcF increase of 19 msec from baseline, compared with an increase of 9 msec with iloperidone alone.(1) Coadministration of paroxetine (20 mg daily, an inhibitor of CYP2D6) and iloperidone (12 mg twice daily) was associated with a mean QTcF increase of 19 msec from baseline, compared with an increase of 9 msec with iloperidone alone.(1) |
FANAPT |
Quinine/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Quinine has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of quinine with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The US manufacturer of quinine states that concurrent use with agents known to prolong the QT interval should be avoided.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports. |
QUALAQUIN, QUININE HCL, QUININE SULFATE |
Propafenone/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Propafenone has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of propafenone with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The manufacturer of propafenone states that the use of propafenone with other agents known to prolong the QT interval should be avoided.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
PROPAFENONE HCL, PROPAFENONE HCL ER |
Quetiapine/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The use of quetiapine in patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The US manufacturer of quetiapine states that concurrent use with agents known to prolong the QT interval should be avoided.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Although quetiapine was not associated with QT or QTc changes in clinical trials, QT prolongation has been reported in post-marketing reports in conjunction with the use of other agents known to prolong the QT interval.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(2) |
QUETIAPINE FUMARATE, QUETIAPINE FUMARATE ER, SEROQUEL, SEROQUEL XR |
Deferiprone/Selected Myelosuppressive Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of deferiprone with other drugs known to be associated with neutropenia or agranulocytosis may increase the frequency or risk for severe toxicity.(1) CLINICAL EFFECTS: Concurrent use of deferiprone and myelosuppressive agents may result in severe neutropenia or agranulocytosis, which may be fatal. PREDISPOSING FACTORS: Agranulocytosis may be less common in patients receiving deferiprone for thalassemia, and more common in patients treated for other systemic iron overload conditions (e.g. myelodysplastic syndromes, sickle cell disease).(2,3) Inadequate monitoring appears to increase the risk for severe outcomes. Manufacturer post market surveillance found that in all fatal cases of agranulocytosis reported between 1999 and 2005, data on weekly white blood count (WBC) monitoring was missing. In three fatal cases, deferiprone was continued for two to seven days after the detection of neutropenia or agranulocytosis.(2) PATIENT MANAGEMENT: If possible, discontinue one of the drugs associated with risk for neutropenia or agranulocytosis. If alternative therapy is not available, documentation and adherence to the deferiprone monitoring protocol is essential. Baseline absolute neutrophil count (ANC) must be at least 1,500/uL prior to starting deferiprone. Monitor ANC weekly during therapy. If infection develops, interrupt deferiprone therapy and monitor ANC more frequently. If ANC is less than 1,500/uL but greater than 500/uL, discontinue deferiprone and any other drugs possibly associated with neutropenia. Initiate ANC and platelet counts daily until recovery (i.e. ANC at least 1,500/uL). If ANC is less than 500/uL, discontinue deferiprone, evaluate patient and hospitalize if appropriate. Do not resume deferiprone unless potential benefits outweigh potential risks.(1) DISCUSSION: Drugs linked to this monograph have an FDA Boxed Warning for risk of neutropenia, agranulocytosis, or pancytopenia, or have > 5% risk for neutropenia and/or warnings describing risk for myelosuppression in manufacturer prescribing information.(1-25) In pooled clinical studies submitted to the FDA, 6.1% of deferiprone patients met criteria for neutropenia and 1.7% of patients developed agranulocytosis.(1) The time to onset of agranulocytosis was highly variable with a range of 65 days to 9.2 years (median, 161 days).(3) |
DEFERIPRONE, DEFERIPRONE (3 TIMES A DAY), FERRIPROX, FERRIPROX (2 TIMES A DAY), FERRIPROX (3 TIMES A DAY) |
Tofacitinib/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of tofacitinib and azathioprine, other biologic disease-modifying antirheumatic drugs (DMARDs), or potent immunosuppressants may result in additive or synergistic effects on the immune system.(1) CLINICAL EFFECTS: Concurrent use of tofacitinib and azathioprine, other biologic DMARDs, or potent immunosuppressants use may increase the risk of serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Tofacitinib should not be used concurrently with azathioprine, other biologic DMARDs, or cyclosporine.(1) Patient should be monitored for decreases in lymphocytes and neutrophils. Therapy should be adjusted based on the indication. - For all indications: If absolute neutrophil count (ANC) or lymphocyte count is less than 500 cells/mm3, discontinue tofacitinib. - For rheumatoid arthritis or psoriatic arthritis and absolute neutrophil count (ANC) 500 to 1000 cells/mm3: interrupt dosing. When ANC is greater than 1000 cells/mm3, resume Xeljanz 5 mg twice daily or Xeljanz XR 11 mg once daily. - For ulcerative colitis and ANC 500 to 1000 cells/mm3: -If taking Xeljanz 10 mg twice daily, decrease to 5 mg twice daily. When ANC is greater than 1000 cells/mm3, increase to 10 mg twice daily based on clinical response. -If taking Xeljanz 5 mg twice daily, interrupt dosing. When ANC is greater than 1000 cells/mm3, resume 5 mg twice daily. -If taking Xeljanz XR 22 mg once daily, decrease to 11 mg once daily. When ANC is greater than 1000 cells/mm3, increase to 22 mg once daily based on clinical response. -If taking Xeljanz XR 11 mg once daily, interrupt dosing. When ANC is greater than 1000 cells/mm3, resume 11 mg once daily. - For polyarticular course juvenile idiopathic arthritis (pcJIA) and ANC 500 to 1000 cells/mm3: interrupt dosing until ANC is greater than 1000 cells/mm3.(1) DISCUSSION: Concurrent use of tofacitinib and azathioprine, other biologic DMARDs, or potent immunosuppressants may increase the risk of infection.(1) |
TOFACITINIB CITRATE, XELJANZ, XELJANZ XR |
Trazodone (Greater Than or Equal To 100 mg)/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of trazodone with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1,2) CLINICAL EFFECTS: The use of trazodone in patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1,2) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of trazodone states that concurrent use with agents known to prolong the QT interval should be avoided.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Trazodone has been reported to prolong the QT interval.(1) A thorough QT study in 20 subjects evaluated the effects of trazodone at doses of 20 mg, 60 mg and 140 mg. There was no evidence of QTc prolongation at the lowest trazodone dose of 20mg (mean effect on QTc of 4.5 ms 95% CI 3.7-5.3 ms), but at 60 mg and 140 mg, there was a significant effect that exceeds the E14 FDA Guidelines threshold of prolonging the QT/QTc interval by more than 5 ms. The study found a dose-dependent effect on QTc prolongation starting at 60 mg with a mean effect on QTc of 12.3 ms (95% CI 11-13.6 ms) and increasing with a 140 mg dose to a mean effect on QTc of 19.8 ms (95% CI 17.6-22.1).(3) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(4) |
RALDESY, TRAZODONE HCL |
Selected Multiple Sclerosis Agents/Immunosuppressants; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ocrelizumab or ofatumumab in combination with immunosuppressives and immune-modulators all suppress the immune system.(1,2) CLINICAL EFFECTS: Concurrent use of ocrelizumab or ofatumumab with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1,2) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: The ocrelizumab US prescribing information states: - Ocrelizumab and other immune-modulating or immunosuppressive therapies, (including immunosuppressant doses of corticosteroids) are expected to increase the risk of immunosuppression, and the risk of additive immune system effects must be considered if these therapies are coadministered with ocrelizumab. When switching from drugs with prolonged immune effects, such as daclizumab, fingolimod, natalizumab, teriflunomide, or mitoxantrone, the duration and mode of action of these drugs must be considered to avoid unintended additive immunosuppressive effects when initiating ocrelizumab.(1) The ofatumumab US prescribing information states: - Ofatumumab and other immunosuppressive therapies (including systemic corticosteroids) may have the potential for increased immunosuppressive effects and increase the risk of infection. When switching between therapies, the duration and mechanism of action of each therapy should be considered due to the potential for additive immunosuppressive effects. Ofatumumab for MS therapy has not been studied in combination with other MS agents that suppress the immune system.(2) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1,2) In a retrospective cohort study of multiple sclerosis patients newly initiated on a disease-modifying therapy, use of high-efficacy agents (alemtuzumab, natalizumab, or ocrelizumab) resulted in the same risk of overall infections as moderate-efficacy agents, but there was an elevated risk of serious infections (adjusted hazard ratio [aHR] = 1.24, 95% confidence interval (CI) = 1.06-1.44) and UTIs (aHR = 1.21, 95% CI = 1.14-1.30).(3) |
KESIMPTA PEN, OCREVUS, OCREVUS ZUNOVO |
Osimertinib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Osimertinib prolongs the QTc interval.(1) Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(2,3) CLINICAL EFFECTS: The concurrent use of osimertinib with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(2,3) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: Osimertinib prolongs the QT interval. Premarket clinical trials excluded patients with a baseline QTc > or = 470 msec. In these trials 11 patients (2.7%) had increase in QTc greater than 60 msec.(1) Manufacturer recommendations: when feasible, avoid concurrent administrations of osimertinib with drugs known to prolong the QTc interval. Conduct baseline and periodic monitoring with ECGs in patients with congenital long QTc syndrome, congestive heart failure, electrolyte abnormalities (e.g. serum calcium, magnesium, and potassium), or those taking medications known to prolong the QT interval.(1) Dose adjustments (1): - If QTc is greater than 500 msec on at least 2 separate ECGs, withhold osimertinib until QTc is < 481 msec or recovery to baseline (if baseline QTc was greater than or equal to 481 msec), then resume osimertinib at 40 mg per day. - For QTc prolongation with signs or symptoms of life threatening arrhythmia, permanently discontinue osimertinib. During concomitant therapy with another QT prolonging agent, monitor patients closely for prolongation of the QT interval.(1) Obtain serum calcium, magnesium, and potassium levels and monitoring ECG at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: A retrospective review of 618 cancer patients treated with 902 administrations of tyrosine kinase inhibitors were evaluated for rate and incidence of QTc prolongation. In patients who received osimertinib, QTc prolongation was identified in 4 (25%) with 1 (25%) having Grade 1 (QTc 450-480 ms) and 1 (25%) having Grade 2 (QTc 480-500 ms). Grade 3 events occurred in 1 (25%) having QTc greater than or equal to 500 ms and 1 (25%) having QTc change greater than or equal to 60 ms. No patients had ventricular tachycardia, sudden cardiac death, or TdP.(4) In clinical studies of 1813 patients treated with osimertinib monotherapy, 1.1% of patients were found to have a QTc interval greater than 500 ms and 4.3% of patients had an increase from baseline QTc > 60 ms.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
TAGRISSO |
Bedaquiline/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of bedaquiline with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The use of bedaquiline patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Bedaquiline should be used with caution in patients receiving therapy with agents that prolong the QT interval. Patients should receive a baseline electrocardiogram (ECG) before initiation, 2 weeks after initiation, during treatment as clinically indicated, and at the expected time of maximum increase of the QT interval when receiving concurrent agents that prolong the QT interval. Bedaquiline and other QT prolonging agents should be discontinued if the patient develops a clinically significant ventricular arrhythmia or a QTcF of greater than 500 msec confirmed by repeat ECGs. If a patient develops syncope, perform an ECG.(1) Also consider obtaining serum calcium, magnesium, and potassium levels at baseline and regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a clinical trial, mean increases in QTc were greater in patients treated with bedaquiline than with placebo. At Week 1, bedaquiline increased QTc by an average of 9.9 msec, compared with 2.5 msec for placebo. At Week 24, bedaquiline increased QTc by an average of 15.7 msec, compared with 6.2 msec for placebo. In another clinical trial in which patients received bedaquiline with other QT prolonging agents, QT prolongation was additive and proportional to the number of QT prolonging drugs used. Patients receiving bedaquiline alone averaged a QTc increase of 23.7 msec over baseline, while patients receiving bedaquiline with at least one other QT prolonging agent averaged a QTc increase of 30.7 msec.(1) In a study, bedaquiline was coadministered with QTc prolonging agents clofazimine and levofloxacin. In the study, 5% of patients had a QTc >= 500 ms and 43% of patients had an increase in QTc >= 60 ms from baseline.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
SIRTURO |
Crizotinib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The use of crizotinib in patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Consider periodic electrocardiogram (ECG) and electrolyte monitoring (calcium, magnesium, and potassium levels at baseline and regular intervals) in patients receiving concurrent therapy with crizotinib and another agent that prolongs the QTc interval.(1) In patients who develop a QTc greater than 500 ms on at least 2 separate ECGs, withhold crizotinib until recovery to baseline or to a QTc less than 481 ms, then resume crizotinib at reduced dose.(1) In patients who develop a QTc greater than 500 ms or greater than or equal to 60 ms change from baseline with Torsade de pointes or polymorphic ventricular tachycardia or signs/symptoms of serious arrhythmia, permanently discontinue crizotinib.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Crizotinib is associated with concentration-dependent QTc interval prolongation. In a clinical trial 2.1% of patients were found to have a QTcF greater than or equal to 500 msec and 5% of patients had an increase in QTcF by greater than or equal to 60 msec.(1) A retrospective review of 618 cancer patients treated with 902 administrations of tyrosine kinase inhibitors were evaluated for rate and incidence of QTc prolongation. In patients who received crizotinib, QTc prolongation was identified in 1 (50%) with 1 (100%) having Grade 1 (QTc 450-480 ms). No patients had a QTc change greater than or equal to 60 ms, ventricular tachycardia, sudden cardiac death, or TdP.(3) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(4) |
XALKORI |
Lenvatinib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: Concurrent use of lenvatinib in patients taking other medications that prolong the QT interval may result in additive QT prolongation. QT prolongation may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, hypoalbuminemia, bradycardia, female gender, or advanced age.(1,2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Monitor electrocardiograms during concurrent therapy with lenvatinib and agents that prolong the QT interval. In a clinical trial of patients with refractory, progressive thyroid cancer, QT prolongation was reported in 9% of lenvatinib patients. Monitor and correct electrolyte abnormalities in all patients.(1) This is particularly important in lenvatinib patients as diarrhea, nausea, vomiting, and decreased appetite are common side effects which may increase the risk for electrolyte disturbances. Monitor ECG at baseline and at regular intervals. Lenvatinib dose must be withheld if the QTc exceeds 500 msec until QTc resolves to less than 480 msec or baseline. Lenvatinib must be resumed at reduced dose when QTc prolongation resolves to less than 480 ms or to baseline. Dose adjustments below are indication specific and are for patients with normal hepatic and renal function:(1) Dose Modifications in Differentiated Thyroid Cancer(DTC): - First occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose to 20 mg once daily - Second occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose to 14 mg once daily - Third occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose 10 mg once daily Dose Modifications in Renal Cell Cancer (RCC): - First occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose to 14 mg once daily - Second occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose to 10 mg once daily - Third occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose 8 mg once daily Dose Modifications in Hepatocellular Carcinoma (HCC) for Actual weight 60 kg or greater: - First occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose to 8 mg once daily - Second occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose to 4 mg once daily - Third occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose 4 mg every other day Dose Modifications in Hepatocellular Carcinoma (HCC) for Actual weight less than 60 kg: - First occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose to 4 mg once daily - Second occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose to 4 mg every other day - Third occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline and discontinue lenvatinib (1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a clinical trial of patients with refractory, progressive thyroid cancer, QT prolongation was reported in 9% of lenvatinib patients and 2% of placebo patients. The incidence of Grade 3 QT prolongation of > 500 msec was reported in 2% of lenvatinib patients compared with no reports in placebo patients.(1) In contrast, a single lenvatinib dose of 32 mg (1.3 times the recommended daily dose) did not prolong the QT/QTc interval in a thorough QT study performed in healthy subjects.(1) A retrospective review of 618 cancer patients treated with 902 administrations of tyrosine kinase inhibitors were evaluated for rate and incidence of QTc prolongation. In patients who received lenvatinib, QTc prolongation was identified in 9 (42.9%) with 4 (44.4%) having Grade 1 (QTc 450-480 ms) and 3 (33.3%) having Grade 2 (QTc 480-500 ms). Grade 3 events occurred in 0 (0%) having QTc greater than or equal to 500 ms and 1 (11.1%) having QTc change greater than or equal to 60 ms. Ventricular tachycardia was seen in 1 (11.1%) patient.(3) |
LENVIMA |
Ondansetron/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1-3) CLINICAL EFFECTS: The use of ondansetron in patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1-3) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or in the elderly (> or = 75 years of age).(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: The risk for QT prolongation due to ondansetron is dose and route related. Intravenous (IV) doses lead to higher peak concentrations and systemic exposure and so have a greater risk for QT prolongation compared with the same dose given orally. Faster rates of IV infusion are also associated with a greater risk for QT prolongation.(5) If concomitant therapy is needed, correct electrolyte abnormalities prior to starting therapy. Monitor closely, particularly in patients with predisposing risk factors for QT prolongation (e.g. cardiac disease, female, elderly). Electrocardiogram (ECG) monitoring should be performed in patients receiving concurrent therapy.(1-3) The Canadian manufacturer of Zofran injection has specific recommendations for use of IV ondansetron in oncology patients greater than or equal to 75 years of age (5): - all IV doses must be diluted in 50 - 100 mL of compatible fluid and infused over at least 15 minutes - initial and repeat IV doses must not exceed 8 mg. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a double-blind, randomized, placebo and positive controlled cross-over study, an ondansetron intravenous (IV) dose of 32 mg increased the maximum mean QTcF by 19.6 msec (upper limit of 90% CI: 21.5). A dose of 8mg increased the QTcF by a maximum mean of 5.8 (upper limit of 90% CI: 7.8). A dose of 16 mg was predicted to have a mean increase in QTcF of 9.1 msec (upper limit of 90% CI: 11.2).(1) QT prolongation and torsades de pointes have been reported in post-marketing reports in patients receiving ondansetron.(2-3) In a review of published reports of QT prolongation associated with ondansetron administration, 67% of patients were also receiving another medication known to prolong the QT interval.(6) In a prospective, observational study, administration of a single ondansetron IV dose of 4 mg in the emergency department increased the mean and median QTc interval by 16.2 msec (95% CI 4.2-28.2 msec; p=0.01) and 12 msec (IQR 5.5-18 msec; p<0.01), respectively. Three patients had extreme QTc prolongation. With exclusion of those 3 patients, the median QTc prolongation was 10 msec (IQR 5-15 msec; p<0.01).(7) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(8) One or more of the drug pairs linked to this monograph have been included in a list of interactions that should be considered "high-priority" for inclusion and should not be inactivated in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
ONDANSETRON HCL, ONDANSETRON HCL-0.9% NACL |
Romidepsin/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Romidepsin has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of romidepsin with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of romidepsin states that appropriate cardiovascular monitoring, such as baseline and regular monitoring of ECG and obtaining serum calcium, magnesium, and potassium levels, should be performed if concurrent therapy with agents known to prolong the QT interval is warranted.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In two clinical trials, discontinuation of romidepsin secondary to QT prolongation occurred in at least 2% of patients.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
ISTODAX, ROMIDEPSIN |
Sorafenib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of sorafenib with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The use of sorafenib patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Patients receiving concurrent therapy with agents known to prolong the QTc interval should be monitored with electrocardiograms during treatment with sorafenib. Electrolytes (calcium, magnesium, and potassium) should also be monitored.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a non-randomized trial in 53 patients, sorafenib resulted in a mean change in QTc of 8.5 msec (upper bound of 90% CI: 13.3 msec).(1) A retrospective review of 618 cancer patients treated with 902 administrations of tyrosine kinase inhibitors were evaluated for rate and incidence of QTc prolongation. In patients who received sorafenib, QTc prolongation was identified in 13 (31.7%) with 5 (38.5%) having Grade 1 (QTc 450-480 ms) and 4 (30.7%) having Grade 2 (QTc 480-500 ms). Grade 3 events occurred in 2 (15.4%) having QTc greater than or equal to 500 ms and 2 (15.4%) having QTc change greater than or equal to 60 ms. No patients developed ventricular tachycardia, sudden cardiac death, or TdP.(3) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(4) |
NEXAVAR, SORAFENIB |
Telavancin/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Telavancin has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of telavancin with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of telavancin recommends against the use of telavancin with other drugs known to cause QT prolongation.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a randomized, double-blind, multiple-dose, positive-controlled, placebo-controlled, parallel study in healthy subjects, the mean maximum baseline-corrected, placebo-corrected QTc prolongation was 11.6 msec and 15.1 msec for telavancin at dosages of 7.5 mg/kg and 15 mg/kg, respectively. The estimated mean maximum baseline-corrected, placebo-corrected QTc prolongation for a telavancin dosage of 10 mg/kg is 12-15 msec.(1) In studies in patients, 21% of patients receiving telavancin (214 of 1029, 10 mg/kg) and 16% of patients receiving vancomycin (164 of 1033) received concurrent QT prolonging agents. The rate of QTc prolongation greater than 60 msec was 1.5% (15 patients) in the telavancin group and 0.6% (6 patients) in the vancomycin group. Nine of the 15 telavancin subjects with QTc prolongation received concurrent QT prolongers, compared with 1 of the vancomycin patients.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
VIBATIV |
Vemurafenib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The use of vemurafenib in patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Vemurafenib should not be initiated in patients taking medications known to prolong the QT interval, patients having a baseline QTc greater than 500 msec, uncorrectable electrolyte abnormalities, or known long QT syndrome is not recommended.(1) All patients receiving vemurafenib should undergo ECG testing at baseline, after 15 days of treatment, monthly during the first 3 months of treatment, and then every 3 months. If a patient's QTc exceeds 500 msec during treatment, vemurafenib should be discontinued and cardiac risk factors for QT prolongation should be controlled. Consider discontinuing other medications known to prolong the QT interval at this time. If the patient's QTc decreases below 500 msec, vemurafenib may be introduced at a lower dosage according to the current labeling recommendations. If the patient's QTc remains greater than 500 msec and increased >60 msec from pre-treatment values after controlling cardiac risk factors for prolongation, permanently discontinue vemurafenib.(1) Consider obtaining serum calcium, magnesium, and potassium levels at baseline and regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Vemurafenib is associated with concentration-dependent QTc interval prolongation. In the first month of treatment, the largest mean QTc change was 12.8 msec (upper boundary of 90% CI: 14.9 msec). In the first 6 months of treatment, the largest mean QTc change was 15.1 msec (upper boundary of 90% CI: 17.7 msec).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
ZELBORAF |
Pimavanserin/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Pimavanserin prolongs the QTc interval.(1) Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(2,3) CLINICAL EFFECTS: The concurrent use of pimavanserin with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(2,3) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: Avoid the use of pimavanserin in patients receiving QT prolonging agents.(1) During concomitant therapy with another QT prolonging agent, monitor patients closely for prolongation of the QT interval.(1) Obtain serum calcium, magnesium, and potassium levels and monitoring ECG at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In thorough-QT study, pimavanserin (at twice the therapeutic dose) found that the maximum mean change was 13.5 (16.6) msec. In placebo-controlled effectiveness studies, mean increases of 5-8 msec were observed with normal dosages of 37 mg daily. Sporadic QTcF values of equal to or greater than 500 msec and change from baseline values equal to or greater than 60 msec were observed at this dose as well.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
NUPLAZID |
Hydroxyzine/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of hydroxyzine with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1-4) CLINICAL EFFECTS: The concurrent use of hydroxyzine with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1-4) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(5) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(5) Doses of hydroxyzine greater than 100 mg/day may also increase the risk.(1,2) PATIENT MANAGEMENT: Concurrent use of hydroxyzine with agents known to prolong the QT interval is contraindicated in Canada(1,2) and the UK.(3) The US manufacturer states that concurrent use should be approached with caution.(4) If concurrent therapy is deemed medically necessary, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In vitro data indicates that hydroxyzine blocks the hERG channel, which results in the potential risk of QT interval prolongation.(6) In a placebo controlled, non-thorough QT study, 10 patients in the placebo group (n=152) had a change in QT interval from baseline between 30 ms and 60 ms and one patient presented a change from baseline higher than 60 ms. In the hydroxyzine group (n=148), 14 subjects had a change in QT interval from baseline between 30 and 60 ms and were considered to have a potential risk factor for risk of QT interval prolongation and TdP due to relevant medical history, concomitant medication potentially associated with the induction of prolongation of QT interval, and/or polymedication.(6) Health Canada reviewed 61 cases of QT interval prolongation or torsades de pointes with hydroxyzine. In a majority of cases, patients had additional risk factors for QT prolongation. Three reports provided enough data for a more detailed review. Hydroxyzine was found to be either "possible" or "probably" contribution to QT prolongation/torsades in these reports.(1) The European Medicines Agency's Pharmacovigilance Risk Assessment Committee (PRAC) reviewed 190 case reports found in a search of "torsade de pointes/QT prolongation with hydroxyzine". Forty-two non-fatality cases were subdivided into torsades (n=16), QT prolongation (n=21), and ventricular tachycardia (n=5). All included risk factors for QT interval prolongation and TdP (cardiac disorders, hypokalemia, long QT syndrome, bradycardia, concomitant drugs which are known to prolong the QT interval). Dosages ranged from <= 100 mg/day (n=10), > 100 mg/day to <=300 mg/day (n=4), > 300 mg/day (n=8), overdosages (n=11), and premedication (n=9). Twenty-one cases involving fatalities had at least one risk factor for QT prolongation. The PRAC concluded that post-marketing cases of QT interval prolongation, TdP and ventricular tachycardia confirm the findings of the hERG studies suggesting that hydroxyzine blocks hERG channels. No difference in the risk of QT interval prolongation could be observed based on the indication, age of the subject, or dose.(6) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(7) |
HYDROXYZINE HCL, HYDROXYZINE PAMOATE |
Inotuzumab Ozogamicin/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of inotuzumab ozogamicin with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of inotuzumab ozogamicin with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: When possible, discontinue QT prolonging agents prior to therapy with inotuzumab ozogamicin or use alternative agents during inotuzumab ozogamicin therapy.(1) When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy.(1) Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting.(1) DISCUSSION: Inotuzumab ozogamicin was shown to prolong the QT interval in clinical trials. In the INO-VATE trial, 3% (4/162) of patients experienced an increase in QTc equal to or greater than 60 msec. No patients has QTc values greater than 500 msec. Grade 2 QT prolongation was reported in 1% (2/164) patients. There were no reports of Grade 3 QT prolongation or Torsade de Pointes.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
BESPONSA |
Lofexidine/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Lofexidine has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1,2) CLINICAL EFFECTS: Concurrent use of lofexidine and agents known to prolong the QT interval may exacerbate QT prolongation.(1,2) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, advanced age,(3) renal impairment, and/or hepatic impairment.(1,2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The UK manufacturer of lofexidine states that concurrent use of lofexidine and QT prolonging agents should be avoided.(1) The US manufacturer states that ECGs should be monitored in patients receiving concurrent therapy with lofexidine and agents that are known to prolong the QT interval.(2) Consider obtaining serum calcium, magnesium, and potassium levels at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a study of healthy volunteers, lofexidine 1.44 mg to 1.8 mg had a change from baseline in QTc of 14.4 msec and 13.6 msec, respectively.(2) In a dose response study, lofexidine had a mean QTc prolongation of 7.3 msec and 9.3 msec at doses of 2.16 mg/day and 2.88 mg/day, respectively.(2) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(4) |
LOFEXIDINE HCL, LUCEMYRA |
Glasdegib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of glasdegib with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of glasdegib with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Avoid the concurrent use of glasdegib with medications that prolong the QT interval.(1) When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. If QTc prolongation develops: ---Monitor and supplement electrolytes as clinically indicated ---Review and adjust concomitant QT prolonging medications ---Interrupt glasdegib therapy for QTc interval greater than 500 ms. ---Monitor ECGs at least weekly for 2 weeks following resolution of QTc prolongation ---Follow labeling recommendations regarding restarting glasdegib.(1) DISCUSSION: In a randomized, single-dose, double-blind, 4-way cross-over, placebo- and open-label moxifloxacin-controlled study in 36 healthy subjects, the largest placebo and baseline-adjusted QTc interval change was 8 msec (90% CI: 6-10 msec) with a single 150 mg dose of glasdegib (The 150 mg single dose was used to achieve therapeutic plasma concentrations). With two-fold therapeutic plasma concentrations (achieved with a 300 mg single dose), the QTc change was 13 msec (90% CI: 11-16 msec).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
DAURISMO |
Upadacitinib/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Upadacitinib, immunosuppressives, and immunomodulators all suppress the immune system. CLINICAL EFFECTS: Concurrent use of upadacitinib with immunosuppressives or immunomodulators may result in an increased risk of serious infections. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of upadacitinib states that concurrent use of upadacitinib with immunosuppressives or immunomodulators is not recommended. DISCUSSION: Serious infections have been reported in patients receiving upadacitinib. Reported infections included pneumonia, cellulitis, tuberculosis, multidermatomal herpes zoster, oral/esophageal candidiasis, cryptococcosis. Reports of viral reactivation, including herpes virus reactivation and hepatitis B reactivation, were reported in clinical studies with upadacitinib.(1) |
RINVOQ, RINVOQ LQ |
Entrectinib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of entrectinib with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of entrectinib with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Avoid the concurrent use of entrectinib with medications that prolong the QT interval.(1) When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. If QTc prolongation develops: ---Monitor and supplement electrolytes as clinically indicated ---Review and adjust concomitant QT prolonging medications ---Interrupt entrectinib therapy for QTc interval greater than 500 ms. ---Follow labeling recommendations regarding restarting entrectinib.(1) If torsade de pointes, polymorphic ventricular tachycardia, and/or signs/symptoms of serious arrhythmia occur, permanently discontinue entrectinib.(1) DISCUSSION: In clinical trials, 3.1% of patients with at least one post-baseline ECG experienced QTcF prolongation of greater than 60 msec after starting entrectinib..(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
ROZLYTREK |
Lefamulin/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of lefamulin with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of lefamulin with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Avoid the concurrent use of lefamulin with medications that prolong the QT interval.(1) When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy. Correct any electrolyte abnormalities.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a thorough QT study, intravenous lefamulin increased the QTcF 13.6 msec (90% CI = 15.5 msec) and oral lefamulin increased the QTcF by 9.3 msec (90% CI = 10.9 msec).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
XENLETA |
Clozapine/Myelosuppressive Agents that Prolong QT SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of clozapine with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1-3) Clozapine and concurrent use with other myelosuppressive agents may be associated with additive risk of neutropenia or agranulocytosis.(4) CLINICAL EFFECTS: The use of clozapine in patients maintained on other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1-3) Moderate neutropenia, even if due to combination therapy, may require abrupt discontinuation of clozapine resulting in decompensation of the patient's psychiatric disorder (e.g. schizophrenia). The disease treated by other agents may be compromised if myelosuppression requires dose reduction, delay, or discontinuation of the myelosuppressive agent. Undetected severe neutropenia or agranulocytosis may be fatal. PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) Low white blood counts prior to initiation of the myelosuppressive agent may increase risk for clinically significant neutropenia.(2) PATIENT MANAGEMENT: Approach the concurrent use of clozapine and other agents that prolong the QTc interval with caution.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. If a patient stabilized on clozapine therapy requires treatment with other myelosuppressive agents the clozapine prescriber should consult with the prescriber of the myelosuppressive agent to discuss treatment and monitoring options. More frequent ANC monitoring or treatment alternatives secondary to neutropenic episodes may need to be considered. Clozapine is only available through a restricted distribution system which requires documentation of the absolute neutrophil count (ANC) prior to dispensing. For most clozapine patients, clozapine treatment must be interrupted for a suspected clozapine-induced ANC < 1000 cells/microliter. For patients with benign ethnic neutropenia (BEN), treatment must be interrupted for suspected clozapine-induced neutropenia < 500 cells/microliter.(1) DISCUSSION: Treatment with clozapine has been associated with QT prolongation as well as ventricular arrhythmia, torsades de pointes, cardiac arrest, and sudden death.(1) Clozapine is only available through a restricted distribution system which requires documentation of the ANC prior to dispensing.(1) Myelosuppressive agents that prolong QT linked to this monograph include: arsenic, crizotinib, dasatinib, encorafenib, entrectinib, epirubicin, eribulin, fexinidazole, glasdegib, inotuzumab, lenvatinib, midostaurin, nilotinib, osimertinib, oxaliplatin, pacritinib, panobinostat, pazopanib, pentamidine, quinine, quizartinib, revumenib, ribociclib, romidepsin, rucaparib, sorafenib, tacrolimus, and vinflunine. |
CLOZAPINE, CLOZAPINE ODT, CLOZARIL, VERSACLOZ |
Selpercatinib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Selpercatinib prolongs the QTc interval.(1) Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(2,3) CLINICAL EFFECTS: The concurrent use of selpercatinib with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(2,3) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: Selpercatinib prolongs the QT interval. An increase in QT interval to > 500 ms was measured in 6% of patients and increase in the QT interval of at least 60 ms over baseline was measured in 15% of patients. Monitor patients at significant risk of developing QT prolongation, including patients with known long QT syndromes, clinically significant bradyarrhythmias, and severe or uncontrolled heart failure. Assess QT interval, electrolytes, and TSH at baseline and periodically during treatment. Correct hypokalemia, hypomagnesemia, and hypocalcemia prior to initiation and during treatment. Dose adjustments (1): For grade 3 QT interval prolongation, withhold selpercatinib until recovery to baseline or grade 0 or 1. Resume at a reduced dose. -1st dose reduction: For patients weighing less than 50 kg: 80 mg twice daily. For patients weighing 50 kg or greater: 120 mg twice daily. -2nd dose reduction: For patients weighing less than 50 kg: 40 mg twice daily. For patients weighing 50 kg or greater: 80 mg twice daily. -3rd dose reduction: For patients weighing less than 50 kg: 40 mg once daily. For patients weighing 50 kg or greater: 40 mg twice daily. -For grade 4 QT prolongation, discontinue selpercatinib. DISCUSSION: The effect of selpercatinib on the QT interval was evaluated in a thorough QT study in healthy subjects. The largest mean increase in QT is predicted to be 10.6 ms (upper 90% confidence interval: 12.1 ms) at the mean steady state maximum concentration (Cmax) observed in patients after administration of 160 mg twice daily. The increase in QT was concentration-dependent. Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
RETEVMO |
Inebilizumab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inebilizumab, immunosuppressives, and immunomodulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of inebilizumab with immunosuppressive or immunomodulating agents may result in myelosuppression including neutropenia resulting in an increased risk for serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of inebilizumab states that the concurrent use of inebilizumab with immunosuppressive agents, including systemic corticosteroids, may increase the risk of infection. If concurrent therapy is warranted, consider the risk of additive immune suppression and monitor based on prescribing information for both agents.(1) DISCUSSION: Inebilizumab has not been studied in combination with other immunosuppressants. If concurrent therapy is warranted, consider the potential for increased immunosuppressive risks from both agents. The most common infections reported by inebilizumab treated patients in the randomized and open-label clinical trial periods included urinary tract infections (20%), nasopharyngitis (13%), upper respiratory tract infections (8%), and influenza (7%). Although there been no cases of Hepatitis B virus reactivation or progressive multifocal leukoencephalopathy reported in patients taking inebilizumab, these infections have been observed in patients taking other B-cell-depleting antibodies.(1) |
UPLIZNA |
Baricitinib/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of baricitinib with other biologic disease-modifying antirheumatic drugs (DMARDs) or potent immunosuppressants such as azathioprine or cyclosporine may result in additive or synergistic effects on the immune system. CLINICAL EFFECTS: Concurrent use of baricitinib with other biologic DMARDs or potent immunosuppressants such as azathioprine or cyclosporine may increase the risk of serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of baricitinib states that concurrent use of baricitinib with biologic DMARDs or potent immunosuppressants is not recommended.(1) DISCUSSION: Most patients who developed serious infections while being treated with baricitinib were on concomitant immunosuppressants like methotrexate and corticosteroids. The combination of baricitinib with other biologic DMARDs has not been studied.(1) |
OLUMIANT |
Pazopanib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Pazopanib has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of pazopanib with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The US manufacturer of pazopanib states that pazopanib should be avoided in patients receiving other drugs known to cause QT prolongation.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In clinical studies, 2% (11/558) of patients receiving pazopanib experienced QT prolongation. Torsades de pointes occurred in less than 1% (2/977) of patients who received pazopanib in monotherapy studies. In a randomized clinical trial, 3 of 290 patients who received pazopanib had post-baseline QTc values between 500 and 549 msec. None of the patients receiving placebo had post-baseline QTc values greater than or equal to 500 msec.(1) A retrospective review of 618 cancer patients treated with 902 administrations of tyrosine kinase inhibitors were evaluated for rate and incidence of QTc prolongation. In patients who received pazopanib, QTc prolongation was identified in 32 (19.4%) with 18 (56.3%) having Grade 1 (QTc 450-480 ms) and 4 (12.5%) having Grade 2 (QTc 480-500 ms). Grade 3 events occurred in 3 (9.3%) having QTc greater than or equal to 500 ms and 4 (12.5%) having QTc change greater than or equal to 60 ms. Ventricular tachycardia was seen in 2 (6.3%) of patients and 1 (3.1%) patient experienced sudden cardiac death.(4) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(2) |
PAZOPANIB HCL, VOTRIENT |
Leflunomide; Teriflunomide/Selected Immunosuppressants SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of leflunomide or teriflunomide and potent immunosuppressants may result in additive or synergistic effects on the immune system.(1,2) Leflunomide is a prodrug and is converted to its active metabolite teriflunomide.(1) CLINICAL EFFECTS: Concurrent use of leflunomide or teriflunomide with immunosuppressants may result in an increased risk of serious infections, including opportunistic infections, especially Pneumocystis jiroveci pneumonia, tuberculosis (including extra-pulmonary tuberculosis), and aspergillosis. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: If leflunomide or teriflunomide is used concurrently with immunosuppressive agents, chronic CBC monitoring should be performed more frequently, every month instead of every 6 to 8 weeks. If bone marrow suppression or a serious infection occurs, leflunomide or teriflunomide should be stopped and rapid drug elimination procedure should be performed.(1,2) DISCUSSION: Pancytopenia, agranulocytosis and thrombocytopenia have been reported in patients receiving leflunomide or teriflunomide alone, but most frequently in patients taking concurrent immunosuppressants.(1,2) Severe and potentially fatal infections, including sepsis, have been reported in patients receiving leflunomide or teriflunomide, especially Pneumocystis jiroveci pneumonia and aspergillosis. Tuberculosis has also been reported.(1,2) |
ARAVA, AUBAGIO, LEFLUNICLO, LEFLUNOMIDE, TERIFLUNOMIDE |
Sodium Iodide I 131/Myelosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Sodium iodide I 131 can cause depression of the hematopoetic system. Myelosuppressives and immunomodulators also suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of sodium iodide I 131 with agents that cause bone marrow depression, including myelosuppressives or immunomodulators, may result in an enhanced risk of hematologic disorders, including anemia, blood dyscrasias, bone marrow depression, leukopenia, and thrombocytopenia. Bone marrow depression may increase the risk of serious infections and bleeding.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of sodium iodide I 131 states that concurrent use with bone marrow depressants may enhance the depression of the hematopoetic system caused by large doses of sodium iodide I 131.(1) Sodium iodide I 131 causes a dose-dependent bone marrow suppression, including neutropenia or thrombocytopenia, in the 3 to 5 weeks following administration. Patients may be at increased risk of infections or bleeding during this time. Monitor complete blood counts within one month of therapy. If results indicate leukopenia or thrombocytopenia, dosimetry should be used to determine a safe sodium iodide I 131 activity.(1) DISCUSSION: Hematologic disorders including death have been reported with sodium iodide I 131. The most common hematologic disorders reported include anemia, blood dyscrasias, bone marrow depression, leukopenia, and thrombocytopenia.(1) |
HICON, SODIUM IODIDE I-131 |
Ponesimod/Immunosuppressives; Immunomodulators that Prolong QT SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ponesimod in combination with immunosuppressives and immune-modulators all suppress the immune system.(1) Initiation of ponesimod has a negative chronotropic effect leading to a mean decrease in heart rate of 6 beats per minute (bpm) after the first dose. The first dose has also been associated with heart block.(1) CLINICAL EFFECTS: Concurrent use of ponesimod with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection, cryptococcal infection, or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1) The heart rate lowering effect of ponesimod reaches an initial decrease within an hour and reaches its nadir within 2-4 hours. The heart rate typically recovers to baseline levels 4-5 hours after administration. All patients recovered from bradycardia. The conduction abnormalities typically were transient, asymptomatic, resolved within 24 hours. Second- and third-degree AV blocks were not reported. With up-titration after Day 1, the post-dose decrease in heart rate is less pronounced. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes.(1,2) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications may increase the risk from this interaction. Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to ponesimod initiation, factors associated with QTc prolongation, or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to ponesimod.(1) The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The ponesimod US prescribing information states ponesimod has not been studied in combination with anti-neoplastic, immune-modulating, or immunosuppressive therapies. Caution should be used during concomitant administration because of the risk of additive immune effects during therapy and in the weeks following administration. When switching from drugs with prolonged immune effects, the half-life and mode of action of these drugs must be considered in order to avoid unintended additive immunosuppressive effects. Initiating treatment with ponesimod after alemtuzumab is not recommended. However, ponesimod can generally be started immediately after discontinuation of beta interferon or glatiramer acetate.(1) Ponesimod is generally not recommended in patients receiving concurrent treatment with a QT prolonging agent, anti-arrhythmic drugs, or drugs that may decrease heart rate. Consultation with a cardiologist is recommended. Consult the prescribing information for recommendations regarding cardiac monitoring.(1) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections, cryptococcal meningitis, disseminated cryptococcal infections, and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1) After the first dose of ponesimod, heart rate decrease may begin within the first hour. Decline is usually maximal at approximately 4 hours. With continued, chronic dosing, post-dose decrease in heart rate is less pronounced. Heart rate gradually returns to baseline in about 4-5 hours.(1) |
PONVORY |
Fingolimod/Immunosuppressives; Immunomodulators that Prolong QT SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Fingolimod in combination with immunosuppressives and immune-modulators all suppress the immune system.(1-3) Initiation of fingolimod has a negative chronotropic effect leading to a mean decrease in heart rate of 13 beats per minute (bpm) after the first dose. The first dose has also been associated with heart block.(1-3) CLINICAL EFFECTS: Concurrent use of fingolimod with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1-3) The heart rate lowering effect of fingolimod is biphasic with an initial decrease usually within 6 hours, followed by a second decrease 12 to 24 hours after the first dose. Symptomatic bradycardia and heart block, including third degree block, have been observed. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes. There is no consistent signal of increased incidence of QTc outliers, either absolute or change from baseline, associated with fingolimod treatment.(1-3) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications may increase the risk from this interaction. Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to fingolimod initiation, factors associated with QTc prolongation (e.g. hypokalemia, hypomagnesemia), or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to fingolimod. The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: Recommendations for managing this interaction differ between regulatory approving agencies. The fingolimod US prescribing information states: - Antineoplastic, immune-modulating, or immunosuppressive therapies (including corticosteroids) are expected to increase the risk of immunosuppression, and the risk of additive immune system effects must be considered if these therapies are coadministered with fingolimod. When switching from drugs with prolonged immune effects, such as natalizumab, teriflunomide or mitoxantrone, the duration and mode of action of these drugs must be considered to avoid unintended additive immunosuppressive effects when initiating fingolimod.(1) The fingolimod Canadian prescribing information states: - Concurrent use with immunosuppressive or immunomodulatory agents is contraindicated due to the risk of additive immune system effects. However, co-administration of a short course of corticosteroids (up to 5 days) did not increase the overall rate of infection in patients participating Phase III clinical trials.(2) The fingolimod UK summary of product characteristics states: - Fingolimod is contraindicated in patients currently receiving immunosuppressive therapies or those immunocompromised by prior therapies. When switching patients from another disease modifying therapy to fingolimod, the half-life and mode of action of the other therapy must be considered in order to avoid an additive immune effect whilst at the same time minimizing the risk of disease activation.(3) Patients receiving concurrent treatment with a QT prolonging agent at the time fingolimod is initiated or resumed should be monitored overnight with continuous ECG monitoring in a medical facility. Consult the prescribing information for recommendations regarding cardiac monitoring.(1) Correct hypokalemia or hypomagnesemia prior to starting fingolimod. DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1-3) After the first dose of fingolimod, heart rate decrease may begin within an hour. Decline is usually maximal at approximately 6 hours followed by a second decrease 12 to 24 hours after the first dose. The second dose may further decrease heart rate, but the magnitude of change is smaller than the first dose. With continued, chronic dosing, heart rate gradually returns to baseline in about one month.(1,2) In a thorough QT interval study of doses of 1.25 or 2.5 mg fingolimod at steady-state, when a negative chronotropic effect of fingolimod was still present, fingolimod treatment resulted in a prolongation of QTc, with the upper boundary of the 90% confidence interval (CI) of 14.0 msec. The cause of death in a patient who died within 24 hours after taking the first dose of fingolimod was not conclusive; however a link to fingolimod or a drug interaction with fingolimod could not be ruled out.(1) |
FINGOLIMOD, GILENYA, TASCENSO ODT |
Ozanimod/Immunosuppressives;Immunomodulators that Prolong QT SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ozanimod in combination with immunosuppressives and immune-modulators all suppress the immune system.(1,2) Initiation of ozanimod has a negative chronotropic effect leading to a mean decrease in heart rate of 13 beats per minute (bpm) after the first dose. The first dose has also been associated with heart block.(1,2) CLINICAL EFFECTS: Concurrent use of ozanimod with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1,2) The initial heart rate lowering effect of ozanimod usually occurs within 5 hours. With continued up-titration, the maximal heart rate effect of ozanimod occurred on Day 8. Symptomatic bradycardia and heart block, including third degree block, have been observed. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes.(1,2) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications may increase the risk from this interaction. Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to ozanimod initiation, factors associated with QTc prolongation (e.g. hypokalemia, hypomagnesemia), or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to ozanimod.(1,2) The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The ozanimod US prescribing information includes this information regarding this interaction: -Ozanimod has not been studied in combination with anti-neoplastic, immune-modulating, or immunosuppressive therapies. Caution should be used during concomitant administration because of the risk of additive immune effects during therapy and in the week following administration. When switching from drugs with prolonged immune effects, the half-life and mode of action of these drugs must be considered in order to avoid unintended additive immunosuppressive effects. Initiating treatment with ozanimod after alemtuzumab is not recommended. However, ozanimod can generally be started immediately after discontinuation of beta interferon or glatiramer acetate.(1,2) Patients receiving concurrent treatment with a QT prolonging agent at the time ozanimod is initiated or resumed should receive consultation with a cardiologist. Consult the prescribing information for recommendations regarding cardiac monitoring.(1) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1,2) After the first dose of ozanimod heart rate decline is usually maximal at approximately 5 hours, returning to baseline at 6 hours. With continued, chronic dosing, max heart rate effect occurred on day 8.(1,2) |
ZEPOSIA |
Siponimod/Immunosuppressives; Immunomodulators that Prolong QT SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Siponimod in combination with immunosuppressives and immune-modulators all suppress the immune system.(1,2) Initiation of siponimod has a negative chronotropic effect and can cause bradycardia.(1,2) CLINICAL EFFECTS: Concurrent use of siponimod with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1,2) The heart rate lowering effect of siponimod starts within an hour, and the Day 1 decline is maximal at approximately 3-4 hours. This leads to a mean decrease in heart rate of 5-6 beats per minute after the first dose. The first dose has also been associated with heart block. With continued up-titration, further heart rate decreases are seen on subsequent days, with maximal decrease from Day 1-baseline reached on Day 5-6. Symptomatic bradycardia has been observed. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsade de pointes.(1) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications may increase the risk from this interaction. Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to siponimod initiation, factors associated with QTc prolongation (e.g. hypokalemia, hypomagnesemia), or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to siponimod. The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The siponimod US prescribing information includes this information regarding this interaction: -Siponimod has not been studied in combination with anti-neoplastic, immune-modulating, or immunosuppressive therapies. Caution should be used during concomitant administration because of the risk of additive immune effects during therapy and in the week following administration. When switching from drugs with prolonged immune effects, the half-life and mode of action of these drugs must be considered in order to avoid unintended additive immunosuppressive effects. Initiating treatment with siponimod after alemtuzumab is not recommended. However, siponimod can generally be started immediately after discontinuation of beta interferon or glatiramer acetate.(1,2) Patients receiving concurrent treatment with a QT prolonging agent at the time siponimod is initiated or resumed should be referred to a cardiologist. Consult the prescribing information for recommendations regarding cardiac monitoring.(1) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1,2) After the first dose of siponimod, heart rate decrease may begin within an hour. Decline is usually maximal at approximately 3-4 hours. With continued, chronic dosing, heart rate gradually returns to baseline in about 10 days.(1,2) A transient, dose-dependent decrease in heart rate was observed during the initial dosing phase of siponimod, which plateaued at doses greater than or equal to 5 mg, and bradyarrhythmic events (AV blocks and sinus pauses) were detected at a higher incidence under siponimod treatment than placebo. AV blocks and sinus pauses occurred above the recommended dose of 2 mg, with notably higher incidence under non-titrated conditions compared to dose titration conditions.(1) |
MAYZENT |
Cladribine/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Cladribine in combination with immunosuppressives and immune-modulators all suppress the immune system.(1-2) CLINICAL EFFECTS: Concurrent use of cladribine with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1-2) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: Recommendations for cladribine regarding this interaction differ between regulatory approving agencies. The cladribine US prescribing information states: -Concomitant use with myelosuppressive or other immunosuppressive drugs is not recommended. Acute short-term therapy with corticosteroids can be administered. In patients who have previously been treated with immunomodulatory or immunosuppressive drugs, consider potential additive effect, the mode of action, and duration of effect of the other drugs prior to initiation of cladribine.(1) The cladribine Canadian prescribing information states: -Use of cladribine in immunocompromised patients is contraindicated because of a risk of additive effects on the immune system. Acute short-term therapy with corticosteroids can be administered during cladribine treatment.(2) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1-2) |
CLADRIBINE, MAVENCLAD |
Panobinostat/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Panobinostat has been observed to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of panobinostat with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of panobinostat states concurrent use agents known to prolong the QT interval are not recommended. Panobinostat should not be started in patients with a QTcF > 450 msec or clinically significant baseline ST-segment or T-wave abnormalities. If during panobinostat therapy the QTcF increases to > 480 msec, interrupt treatment and correct any electrolyte abnormalities. If QT prolongation does not resolve, permanently discontinue treatment with panobinostat.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In the randomized multiple myeloma trial, QTc prolongation with values between 451 msec to 480 msec occurred in 10.8% of panobinostat treated patients and patients with values of 481 msec to 500 msec occurred in 1.3% of patients. A maximum QTcF increase from baseline of between 31 msec and 60 msec was reported in 14.5% of patients and a maximum QTcF increase from baseline of >60 msec was reported in 0.8% of patients.(1) Pooled clinical data from over 500 patients treated with single agent panobinostat in multiple indications and at different dose levels has shown that the incidence of CTC Grade 3 QTc prolongation (QTcF >500 msec) was approximately 1% overall and 5% or more at a dose of 60 mg or higher.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
FARYDAK |
Ritlecitinib/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ritlecitinib, immunosuppressives, and immunomodulators all suppress the immune system. CLINICAL EFFECTS: Concurrent use of ritlecitinib with immunosuppressives or immunomodulators may result in an increased risk of serious infections. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of ritlecitinib states that concurrent use of ritlecitinib with other JAK inhibitors, biologic immunomodulators, cyclosporine or other potent immunosuppressants is not recommended.(1) DISCUSSION: Serious infections have been reported in patients receiving ritlecitinib. Reported infections included appendicitis, COVID-19 infection (including pneumonia), and sepsis. Reports of viral reactivation, including herpes virus reactivation was reported in clinical studies with ritlecitinib.(1) |
LITFULO |
Etrasimod/Immunosuppressives; Immunomodulators that Prolong QT SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Etrasimod causes reversible sequestration of lymphocytes in lymphoid tissues, resulting in a mean 55% decrease in peripheral blood lymphocyte count at 52 weeks.(1) Other immunosuppressives and immune-modulators also suppress the immune system. Initiation of etrasimod has a negative chronotropic effect leading to a mean decrease in heart rate of 7 beats per minute (bpm) after the first dose.(1) This may increase the risk of QT prolongation. CLINICAL EFFECTS: Concurrent use of etrasimod with immunosuppressive or immune-modulating agents may result in an increased risk of serious and fatal infections, such as disseminated herpetic infection, cryptococcal infection, or progressive multifocal leukoencephalopathy (PML).(1) Initiation of etrasimod may result in a transient decrease in heart rate. A mean decrease in heart rate of 7.2 (8.98) beats per minute was seen 2 to 3 hours after the first dose. The first dose has also been associated with heart block. Symptomatic bradycardia has been observed. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes.(1) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications may increase the risk of infection. Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to etrasimod initiation, factors associated with QTc prolongation, or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to etrasimod.(1) The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The etrasimod US prescribing information states etrasimod has not been studied in combination with anti-neoplastic, immune-modulating, or immunosuppressive therapies. Concomitant administration of these therapies with etrasimod should be avoided because of the risk of additive immune effects during therapy and in the weeks following administration. Etrasimod's effect on peripheral lymphocytes may persist for up to 5 weeks after discontinuation.(1) When switching from drugs with prolonged immune effects, the half-life and mode of action of these drugs must be considered in order to avoid unintended additive immunosuppressive effects.(1) If concurrent therapy is unavoidable, obtain an ECG to determine if preexisting conduction abnormalities are present prior to initiation of etrasimod.(1) Advice from a cardiologist is recommended in patients with preexisting heart and cerebrovascular conditions, prolonged QTc interval, risk factors for QT prolongation, concurrent therapy with QT prolonging drugs or drugs that slow the heart rate or AV conduction.(1) Monitor blood pressure during treatment.(1) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections, cryptococcal meningitis, disseminated cryptococcal infections, and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients treated with other sphingosine-1 phosphate receptor modulators.(1) Initiation of etrasimod may result in a transient decrease in heart rate or transient AV conduction delays.(1) A transient decrease in heart rate was observed during the initial dosing phase of etrasimod and bradyarrhythmic events (AV blocks) were detected at a higher incidence under etrasimod treatment than placebo.(1) |
VELSIPITY |
Dexmedetomidine Sublingual/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Dexmedetomidine sublingual has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of dexmedetomidine sublingual with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of dexmedetomidine sublingual states that concurrent use should be avoided with other agents known to prolong the QTc interval.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a QT study, dexmedetomidine sublingual had a concentration dependent effect on the QT interval. The mean QTc (95% confidence interval) increased from baseline by 6 (7) msec with a 120 mcg single dose, 8 (9) msec with 120 mcg followed by 2 additional doses of 60 mcg (total 3 doses), 8 (11) msec with a single 180 mcg dose, and 11 (14) msec with 180 mcg followed by 2 additional doses of 90 mcg (total 3 doses), respectively.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
IGALMI |
Ropeginterferon alfa-2b/Slt Immunosuppress; Immunomodulator SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ropeginterferon alfa-2b and immunosuppressives both suppress the immune system. CLINICAL EFFECTS: Concurrent use of ropeginterferon alfa-2b with immunosuppressives may result in an increased risk of serious infections. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid concurrent use of myelosuppressive agents.(1-2) If concurrent use cannot be avoided, monitor for effects of excessive immunosuppression. DISCUSSION: In clinical trials, 20% of patients experienced leukopenia. Interferon alfa products may cause fatal or life-threatening infections.(1-2) |
BESREMI |
Deuruxolitinib/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Deuruxolitinib, immunosuppressives, and immunomodulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of deuruxolitinib and potent immunosuppressants may increase the risk of serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of deuruxolitinib states that concurrent use of deuruxolitinib with other JAK inhibitors, biologic immunomodulators, cyclosporine or other potent immunosuppressants is not recommended.(1) If concurrent use cannot be avoided, patients should be monitored for signs and symptoms of infection. If a patient develops a serious or opportunistic infection, interrupt deuruxolitinib treatment until the infection is controlled. DISCUSSION: Serious infections have been reported in patients receiving treatment with deuruxolitinib.(1) |
LEQSELVI |
Givinostat/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Givinostat may prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of givinostat with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of givinostat states that the concurrent use of QT prolonging agents should be avoided. If concurrent use cannot be avoided, obtain ECGs prior to initiating givinostat, during concomitant use, and as clinically indicated.(1) If the QTc interval is greater than 500 ms or the change from baseline is greater than 60 ms, withhold givinostat therapy.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a QT study, the largest mean increase in QTc interval of 13.6 ms (upper confidence interval of 17.1 ms) occurred 5 hours after administration of givinostat 265.8 mg (approximately 5 times the recommended 53.2 mg dose in patients weighing 60 kg or more).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
DUVYZAT |
Revumenib/Strong CYP3A4 Inhibitors that Prolong QT SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Strong inhibitors of CYP3A4 that prolong the QTc interval may inhibit the metabolism of revumenib and result in additive risk of QT prolongation.(1) CLINICAL EFFECTS: Concurrent use of strong CYP3A4 inhibitors may increase the levels of and effects from revumenib including QTc prolongation, which may result in potentially life-threatening cardiac arrhythmias like torsades de pointes (TdP).(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of revumenib states that concomitant use of other drugs that may prolong the QTc interval should be avoided. If concurrent use cannot be avoided, obtain ECGs prior to initiating revumenib, during concomitant use, and as clinically indicated.(1) If the QTc interval is greater than 480 ms, withhold revumenib therapy. Resume revumenib after the QTc interval drops to 480 msec or less.(1) If concomitant use of strong CYP3A4 inhibitors is unavoidable, dose reduction of revumenib is necessary. -For patients 1 year and older who weigh at least 40 kg, decrease the dosage of revumenib to 160 mg twice daily. -For patients 1 year and older who weigh less than 40 kg, decrease the dosage of revumenib to 95 mg/m2 twice daily. Refer to the revumenib prescribing information for total tablet dosage by body surface area. If the strong CYP3A4 inhibitor is discontinued, increase the dose of revumenib to the recommended dose without strong CYP3A4 inhibitors after at least 5 half-lives of the inhibitor.(1) If coadministration with a strong CYP3A4 inhibitor that prolongs QT is unavoidable, monitor for prolongation of the QTc interval.(1) When concurrent therapy is warranted: consider obtaining serum calcium, magnesium, and potassium levels and monitoring EKG at baseline and regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a study, azole antifungals that are strong CYP3A4 inhibitors (i.e., posaconazole, itraconazole, and voriconazole) increased the area-under-curve (AUC) and maximum concentration (Cmax) of revumenib by 2-fold. Cobicistat (a strong CYP3A4 inhibitor) increased the AUC and Cmax of revumenib by 2.5-fold.(1) In clinical trials, QTc interval prolongation was reported as an adverse event in 29% of 135 patients treated with the recommended dosage of revumenib; 12% of patients had Grade 3 QTc prolongation. Revumenib increased the QTc interval in a concentration-dependent manner. At the mean steady-state Cmax using the highest approved recommended dosage of revumenib without CYP3A4 inhibitors, QTc increase was predicted to be 27 msec (upper bound of 90% confidence interval = 30 msec). At the steady-state Cmax using the highest approved recommended dosage of revumenib with CYP3A4 inhibitors, QTc increase was predicted to be 19 msec (upper bound of 90% confidence interval = 22 msec).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) Strong inhibitors of CYP3A4 that prolong the QT interval include: adagrasib, ceritinib, clarithromycin, lonafarnib, lopinavir, ribociclib, saquinavir.(4,5) |
CLARITHROMYCIN, CLARITHROMYCIN ER, KALETRA, KISQALI, KRAZATI, LANSOPRAZOL-AMOXICIL-CLARITHRO, LOPINAVIR-RITONAVIR, OMECLAMOX-PAK, VOQUEZNA TRIPLE PAK, ZOKINVY, ZYKADIA |
Revumenib/Strong CYP3A4 Inducers that Prolong QT SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Strong CYP3A4 inducers may induce the metabolism of revumenib by CYP3A4 and increase formation of the M1 metabolite which contributes to revumenib's effects on the QTc interval.(1) Concurrent use of agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: Concurrent use of strong CYP3A4 inducers may result in decreased levels and effectiveness of revumenib and increased risk of QT prolongation due to increased exposure to revumenib's M1 metabolite. The risk of potentially life-threatening arrhythmias including torsades de pointes may be increased.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) Induction effects may be more likely with regular use of the inducer for longer than 1-2 weeks. PATIENT MANAGEMENT: The manufacturer of revumenib states that concomitant use of other drugs that may prolong the QTc interval should be avoided. In addition, concomitant use of strong CYP3A4 inducers should be avoided. If concurrent use cannot be avoided, obtain ECGs prior to initiating revumenib, during concomitant use, and as clinically indicated.(1) If the QTc interval is greater than 480 ms, withhold revumenib therapy. Resume revumenib after the QTc interval drops to 480 msec or less.(1) If coadministration with another agent that prolongs QT is unavoidable, monitor for prolongation of the QTc interval.(1) When concurrent therapy is warranted: consider obtaining serum calcium, magnesium, and potassium levels and monitoring EKG at baseline and regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Revumenib is primarily metabolized by CYP3A4. Concomitant use of a strong CYP3A4 inducer may decrease revumenib concentrations and increase M1 systemic exposure, resulting in decreased revumenib efficacy or increased risk of QT prolongation.(1) In clinical trials, QTc interval prolongation was reported as an adverse event in 29% of 135 patients treated with the recommended dosage of revumenib; 12% of patients had Grade 3 QTc prolongation. Revumenib increased the QTc interval in a concentration-dependent manner. At the mean steady-state Cmax using the highest approved recommended dosage of revumenib without CYP3A4 inhibitors, QTc increase was predicted to be 27 msec (upper bound of 90% confidence interval = 30 msec). At the steady-state Cmax using the highest approved recommended dosage of revumenib with CYP3A4 inhibitors, QTc increase was predicted to be 19 msec (upper bound of 90% confidence interval = 22 msec).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) Strong CYP3A4 inducers that prolong QT linked to this monograph include: encorafenib and ivosidenib.(4) |
BRAFTOVI, TIBSOVO |
Revumenib/Strong CYP3A4 Inducers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Strong CYP3A4 inducers may induce the metabolism of revumenib by CYP3A4 and increase formation of the M1 metabolite which contributes to revumenib's effects on the QTc interval.(1) CLINICAL EFFECTS: Concurrent use of strong CYP3A4 inducers may result in decreased levels and effectiveness of revumenib and increased risk of QT prolongation due to increased exposure to revumenib's M1 metabolite. The risk of potentially life-threatening arrhythmias including torsades de pointes may be increased.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) Induction effects may be more likely with regular use of the inducer for longer than 1-2 weeks. PATIENT MANAGEMENT: The manufacturer of revumenib states that concomitant use of strong CYP3A4 inducers should be avoided.(1) DISCUSSION: Revumenib is primarily metabolized by CYP3A4. Concomitant use of a strong CYP3A4 inducer may decrease revumenib concentrations and increase M1 systemic exposure, resulting in decreased revumenib efficacy or increased risk of QT prolongation.(1) In clinical trials, QTc interval prolongation was reported as an adverse event in 29% of 135 patients treated with the recommended dosage of revumenib; 12% of patients had Grade 3 QTc prolongation. Revumenib increased the QTc interval in a concentration-dependent manner. At the mean steady-state Cmax using the highest approved recommended dosage of revumenib without CYP3A4 inhibitors, QTc increase was predicted to be 27 msec (upper bound of 90% confidence interval = 30 msec). At the steady-state Cmax using the highest approved recommended dosage of revumenib with CYP3A4 inhibitors, QTc increase was predicted to be 19 msec (upper bound of 90% confidence interval = 22 msec).(1) Strong CYP3A4 inducers linked to this monograph include: apalutamide, barbiturates, carbamazepine, enzalutamide, fosphenytoin, lumacaftor, mitotane, phenobarbital, phenytoin, primidone, rifampin, rifapentine, and St. John's wort.(3) |
ASA-BUTALB-CAFFEINE-CODEINE, ASCOMP WITH CODEINE, BUTALB-ACETAMINOPH-CAFF-CODEIN, BUTALBITAL, BUTALBITAL-ACETAMINOPHEN, BUTALBITAL-ACETAMINOPHEN-CAFFE, BUTALBITAL-ASPIRIN-CAFFEINE, CARBAMAZEPINE, CARBAMAZEPINE ER, CARBATROL, CEREBYX, DILANTIN, DILANTIN-125, DONNATAL, EPITOL, EQUETRO, ERLEADA, FIORICET, FIORICET WITH CODEINE, FOSPHENYTOIN SODIUM, LYSODREN, MITOTANE, MYSOLINE, ORKAMBI, PENTOBARBITAL SODIUM, PHENOBARBITAL, PHENOBARBITAL SODIUM, PHENOBARBITAL-BELLADONNA, PHENOBARBITAL-HYOSC-ATROP-SCOP, PHENOHYTRO, PHENYTEK, PHENYTOIN, PHENYTOIN SODIUM, PHENYTOIN SODIUM EXTENDED, PRIFTIN, PRIMIDONE, RIFADIN, RIFAMPIN, SEZABY, TEGRETOL, TEGRETOL XR, TENCON, XTANDI |
Revumenib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Revumenib may prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of revumenib with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of revumenib states that the concurrent use of QT prolonging agents should be avoided. If concurrent use cannot be avoided, obtain ECGs prior to initiating revumenib, during concomitant use, and as clinically indicated.(1) If the QTc interval is greater than 480 ms, withhold revumenib therapy. Resume revumenib after the QTc interval drops to 480 msec or less.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In clinical trials, QTc interval prolongation was reported as an adverse event in 29% of 135 patients treated with the recommended dosage of revumenib; 12% of patients had Grade 3 QTc prolongation. Revumenib increased the QTc interval in a concentration-dependent manner. At the mean steady-state Cmax using the highest approved recommended dosage of revumenib without CYP3A4 inhibitors, QTc increase was predicted to be 27 msec (upper bound of 90% confidence interval = 30 msec). At the steady-state Cmax using the highest approved recommended dosage of revumenib with CYP3A4 inhibitors, QTc increase was predicted to be 19 msec (upper bound of 90% confidence interval = 22 msec).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
ADLARITY, AMIODARONE HCL, AMIODARONE HCL-D5W, ARICEPT, ARSENIC TRIOXIDE, AVELOX IV, AZITHROMYCIN, BETAPACE, BETAPACE AF, CAPRELSA, CELEXA, CESIUM CHLORIDE, CHLOROQUINE PHOSPHATE, CHLORPROMAZINE HCL, CILOSTAZOL, CIPRO, CIPROFLOXACIN, CIPROFLOXACIN HCL, CIPROFLOXACIN-D5W, CITALOPRAM HBR, CORVERT, DIFLUCAN, DIPRIVAN, DISKETS, DOFETILIDE, DONEPEZIL HCL, DONEPEZIL HCL ODT, E.E.S. 200, E.E.S. 400, ERY-TAB, ERYPED 200, ERYPED 400, ERYTHROCIN LACTOBIONATE, ERYTHROCIN STEARATE, ERYTHROMYCIN, ERYTHROMYCIN ESTOLATE, ERYTHROMYCIN ETHYLSUCCINATE, ERYTHROMYCIN LACTOBIONATE, ESCITALOPRAM OXALATE, FLECAINIDE ACETATE, FLUCONAZOLE, FLUCONAZOLE-NACL, GATIFLOXACIN SESQUIHYDRATE, HALDOL DECANOATE 100, HALOPERIDOL, HALOPERIDOL DECANOATE, HALOPERIDOL DECANOATE 100, HALOPERIDOL LACTATE, HYDROXYCHLOROQUINE SULFATE, IBUTILIDE FUMARATE, LEVOFLOXACIN, LEVOFLOXACIN HEMIHYDRATE, LEVOFLOXACIN-D5W, LEXAPRO, MEMANTINE HCL-DONEPEZIL HCL ER, METHADONE HCL, METHADONE HCL-0.9% NACL, METHADONE HCL-NACL, METHADONE INTENSOL, METHADOSE, MOXIFLOXACIN, MOXIFLOXACIN HCL, NAMZARIC, NEBUPENT, NEXTERONE, NUEDEXTA, OXALIPLATIN, PACERONE, PENTAM 300, PENTAMIDINE ISETHIONATE, PLAQUENIL, PROCAINAMIDE HCL, PROPOFOL, QUINIDINE GLUCONATE, QUINIDINE SULFATE, SEVOFLURANE, SOTALOL, SOTALOL AF, SOTALOL HCL, SOTYLIZE, SOVUNA, TIKOSYN, TRISENOX, ULTANE, VANFLYTA, ZITHROMAX, ZITHROMAX TRI-PAK |
Revumenib/Moderate CYP3A4 Inducers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate CYP3A4 inducers may induce the metabolism of revumenib by CYP3A4 and increase formation of the M1 metabolite which contributes to revumenib's effects on the QTc interval.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inducers may result in decreased levels and effectiveness of revumenib and increased risk of QT prolongation due to increased exposure to revumenib's M1 metabolite. The risk of potentially life-threatening arrhythmias including torsades de pointes may be increased.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) Induction effects may be more likely with regular use of the inducer for longer than 1-2 weeks. PATIENT MANAGEMENT: The manufacturer of revumenib states that concomitant use of moderate CYP3A4 inducers should be avoided.(1) DISCUSSION: Revumenib is primarily metabolized by CYP3A4. Concomitant use of a moderate CYP3A4 inducer may decrease revumenib concentrations and increase M1 systemic exposure, resulting in decreased revumenib efficacy or increased risk of QT prolongation.(1) In clinical trials, QTc interval prolongation was reported as an adverse event in 29% of 135 patients treated with the recommended dosage of revumenib; 12% of patients had Grade 3 QTc prolongation. Revumenib increased the QTc interval in a concentration-dependent manner. At the mean steady-state Cmax using the highest approved recommended dosage of revumenib without CYP3A4 inhibitors, QTc increase was predicted to be 27 msec (upper bound of 90% confidence interval = 30 msec). At the steady-state Cmax using the highest approved recommended dosage of revumenib with CYP3A4 inhibitors, QTc increase was predicted to be 19 msec (upper bound of 90% confidence interval = 22 msec).(1) Moderate CYP3A4 inducers linked to this monograph include: belzutifan, bosentan, cenobamate, dabrafenib, dipyrone, elagolix, etravirine, lesinurad, lorlatinib, mavacamten, mitapivat, modafinil, nafcillin, pexidartinib, repotrectinib, rifabutin, sotorasib, telotristat ethyl, and tovorafenib.(3) |
AUGTYRO, BOSENTAN, CAMZYOS, DUZALLO, ETRAVIRINE, INTELENCE, LORBRENA, LUMAKRAS, MODAFINIL, NAFCILLIN, NAFCILLIN SODIUM, OJEMDA, ORIAHNN, ORILISSA, PROVIGIL, PYRUKYND, RIFABUTIN, TAFINLAR, TALICIA, TRACLEER, TURALIO, WELIREG, XCOPRI, XERMELO |
Revumenib/Moderate CYP3A4 Inducers that Prolong QT SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate CYP3A4 inducers may induce the metabolism of revumenib by CYP3A4 and increase formation of the M1 metabolite which contributes to revumenib's effects on the QTc interval.(1) Concurrent use of agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inducers may result in decreased levels and effectiveness of revumenib and increased risk of QT prolongation due to increased exposure to revumenib's M1 metabolite. The risk of potentially life-threatening arrhythmias including torsades de pointes may be increased.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) Induction effects may be more likely with regular use of the inducer for longer than 1-2 weeks. PATIENT MANAGEMENT: The manufacturer of revumenib states that concomitant use of other drugs that may prolong the QTc interval should be avoided. In addition, concomitant use of moderate CYP3A4 inducers should be avoided. If concurrent use cannot be avoided, obtain ECGs prior to initiating revumenib, during concomitant use, and as clinically indicated.(1) If the QTc interval is greater than 480 ms, withhold revumenib therapy. Resume revumenib after the QTc interval drops to 480 msec or less.(1) If coadministration with another agent that prolongs QT is unavoidable, monitor for prolongation of the QTc interval.(1) When concurrent therapy is warranted: consider obtaining serum calcium, magnesium, and potassium levels and monitoring EKG at baseline and regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Revumenib is primarily metabolized by CYP3A4. Concomitant use of a moderate CYP3A4 inducer may decrease revumenib concentrations and increase M1 systemic exposure, resulting in decreased revumenib efficacy or increased risk of QT prolongation.(1) In clinical trials, QTc interval prolongation was reported as an adverse event in 29% of 135 patients treated with the recommended dosage of revumenib; 12% of patients had Grade 3 QTc prolongation. Revumenib increased the QTc interval in a concentration-dependent manner. At the mean steady-state Cmax using the highest approved recommended dosage of revumenib without CYP3A4 inhibitors, QTc increase was predicted to be 27 msec (upper bound of 90% confidence interval = 30 msec). At the steady-state Cmax using the highest approved recommended dosage of revumenib with CYP3A4 inhibitors, QTc increase was predicted to be 19 msec (upper bound of 90% confidence interval = 22 msec).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) Moderate CYP3A4 inducers that prolong QT linked to this monograph include: efavirenz, pacritinib, and thioridazine.(4) |
EFAVIRENZ, EFAVIRENZ-EMTRIC-TENOFOV DISOP, EFAVIRENZ-LAMIVU-TENOFOV DISOP, SYMFI, THIORIDAZINE HCL, THIORIDAZINE HYDROCHLORIDE, VONJO |
Taletrectinib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Taletrectinib has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of taletrectinib with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes (TdP).(1) PREDISPOSING FACTORS: In general, the risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) Taletrectinib should be taken on an empty stomach. Administration with food may increase the risk of QT prolongation or torsade de pointes. PATIENT MANAGEMENT: If possible, avoid the use of taletrectinib with other agents known to prolong the QT interval.(1) If concurrent therapy cannot be avoided, adjust the frequency of monitoring as recommended in the prescribing information. If QTc is >500 msec or the change from baseline is >60 msec, withhold taletrectinib.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Taletrectinib causes concentration-dependent QTc prolongation. At steady state maximal concentration, taletrectinib (600 mg daily) increased the QTc interval by 12.8 msec (upper confidence interval 15.4 msec). At plasma concentrations achieved with taletrectinib (600 mg daily) with high fat food (1.5-fold higher than on an empty stomach), the predicted QTc interval increase is 20.5 (16.3, 24.7) msec.(1) In a clinical trial including 351 evaluable patients, 13% experienced an increase in QTcF of >60 msec compared to baseline and 2.6% had an increase in QTcF to >500 msec. Overall, 3.4% of patients had Grade 3 QTc interval prolongation. The median time from the first dose of taletrectinib to the onset of QT prolongation was 22 days (range: 1 day to 38.7 months). Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
IBTROZI |
There are 9 moderate interactions.
The clinician should assess the patient’s characteristics and take action as needed. Actions required for moderate interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration.
Drug Interaction | Drug Names |
---|---|
Trazodone (Less Than 100 mg)/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of trazodone with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1,2) CLINICAL EFFECTS: The use of trazodone in patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1,2) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of trazodone states that concurrent use with agents known to prolong the QT interval should be avoided.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Trazodone has been reported to prolong the QT interval.(1) A thorough QT study in 20 subjects evaluated the effects of trazodone at doses of 20 mg, 60 mg and 140 mg. There was no evidence of QTc prolongation at the lowest trazodone dose of 20mg (mean effect on QTc of 4.5 ms 95% CI 3.7-5.3 ms), but at 60 mg and 140 mg, there was a significant effect that exceeds the E14 FDA Guidelines threshold of prolonging the QT/QTc interval by more than 5 ms. The study found a dose-dependent effect on QTc prolongation starting at 60 mg with a mean effect on QTc of 12.3 ms (95% CI 11-13.6 ms) and increasing with a 140 mg dose to a mean effect on QTc of 19.8 ms (95% CI 17.6-22.1).(3) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(4) |
TRAZODONE HCL |
Ustekinumab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Ustekinumab, immunosuppressives, and immunomodulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of ustekinumab with immunosuppressive or immunomodulating agents may result in an increased risk for serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of ustekinumab recommends caution because the concurrent use of ustekinumab with immunosuppressive agents may increase the risk of infection. If concurrent therapy is warranted, consider the risk of additive immune suppression and monitor based on prescribing information for both agents.(1) DISCUSSION: Ustekinumab has not been studied in combination with other immunosuppressants in psoriasis studies. In psoriatic arthritis studies, concomitant methotrexate use did not appear to influence the safety or efficacy of ustekinumab. In Crohn's disease and ulcerative colitis studies, concomitant use of immunosuppressants or corticosteroids did not appear to influence the safety or efficacy of ustekinumab. If concurrent therapy is warranted, consider the potential for increased immunosuppressive risks from both agents.(1) The most common infections reported by ustekinumab treated patients in the clinical trial periods included nasopharyngitis(8%) and upper respiratory tract infection(5%). Serious bacterial, mycobacterial, fungal, and viral infections were observed in patients receiving ustekinumab. Cases of interstitial pneumonia, eosinophilic pneumonia, and cryptogenic organizing pneumonia resulting in respiratory failure or prolonged hospitalization have been reported in patients receiving ustekinumab.(1) |
IMULDOSA, OTULFI, PYZCHIVA, SELARSDI, STELARA, STEQEYMA, USTEKINUMAB, USTEKINUMAB-AEKN, USTEKINUMAB-TTWE, WEZLANA, YESINTEK |
COVID-19 Vaccines/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Immunosuppressants and immunomodulators may prevent the immune system from properly responding to the COVID-19 vaccine.(1,2) CLINICAL EFFECTS: Administration of a COVID-19 vaccine with immunosuppressants or immunomodulators may interfere with vaccine-induced immune response and impair the efficacy of the vaccine. However, patients should be offered and given a COVID-19 vaccine even if the use and timing of immunosuppressive agents cannot be adjusted.(1,2) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: In an effort to optimize COVID-19 vaccine response, the American College of Rheumatology (ACR) published conditional recommendations for administration of COVID-19 vaccines with immunosuppressants and immunomodulators.(1) The CDC also provides clinical considerations for COVID-19 vaccination in patients on immunosuppressants.(2) The CDC states that all immunocompromised patients over 6 months of age should receive at least 1 dose of COVID-19 vaccine if eligible. See the CDC's Interim Clinical Considerations for Use of COVID-19 Vaccines for specific recommendations based on age, vaccination history, and vaccine manufacturer.(2) The ACR states that in general, immunosuppressants and immunomodulators should be held for 1-2 weeks after each vaccine dose. See below for specific recommendations for certain agents.(1) The CDC advises planning for vaccination at least 2 weeks before starting or resuming immunosuppressive therapy.(2) Patients should be offered and given a COVID-19 vaccine even if the use and timing of immunosuppressive agents cannot be adjusted.(1,2) B-cell depleting agents, including rituximab: The ACR recommends consulting with the rheumatologist to determine optimal timing of COVID-19 vaccination. Measuring CD19 B cells may be considered to determine need for a booster vaccine dose. If B cell levels are not measured, a supplemental vaccine dose 2-4 weeks before the next scheduled dose of rituximab is recommended.(1) The CDC states that the utility of B-cell quantification to guide clinical care is not known and is not recommended. Patients who receive B-cell depleting therapy should receive COVID-19 vaccines about 4 weeks before the next scheduled dose. For patients who received 1 or more doses of COVID-19 vaccine during treatment with B-cell-depleting therapies that were administered over a limited period (e.g., as part of a treatment regimen for certain malignancies), revaccination may be considered. The suggested interval to start revaccination is about 6 months after completion of the B-cell-depleting therapy.(2) Abatacept: - Subcutaneous abatacept should be withheld for 1-2 weeks after each vaccine dose, as disease activity allows. - For intravenous abatacept, time administration so that vaccination will occur 1 week before the next abatacept infusion.(1) Cyclophosphamide: When feasible, administer cyclophosphamide one week after each COVID-19 vaccine dose.(1) Recipients of hematopoietic cell transplant or CAR-T-cell therapy who received one or more doses of COVID-19 vaccine prior to or during treatment should undergo revaccination following the current CDC recommendations for unvaccinated patients. Revaccination should start at least 3 months (12 weeks) after transplant or CAR-T-cell therapy.(2) TNF-alpha inhibitors and cytokine inhibitors: The ACR was not able to reach consensus on whether to modify dosing or timing of these agents with COVID-19 vaccination.(1) The CDC includes these agents in their general recommendation to hold therapy for at least 2 weeks following vaccination.(2) DISCUSSION: The ACR convened a COVID-19 Vaccine Guidance Task Force to provide guidance on optimal use of COVID-19 vaccines in rheumatology patients. These recommendations are based on limited clinical evidence of COVID-19 vaccines in patients without rheumatic and musculoskeletal disorders and evidence of other vaccines in this patient population.(1) The ACR recommendation for rituximab is based on studies of humoral immunity following receipt of other vaccines. These studies have uncertain generalizability to vaccination against COVID-19, as it is unknown if efficacy is attributable to induction of host T cells versus B cell (antibody-based) immunity.(1) The ACR recommendation for mycophenolate is based on preexisting data of mycophenolate on non-COVID-19 vaccine immunogenicity. Emerging data suggests that mycophenolate may impair SARS-CoV-2 vaccine response in rheumatic and musculoskeletal disease and transplant patients.(1) The ACR recommendation for methotrexate is based on data from influenza vaccines and pneumococcal vaccines with methotrexate.(1) The ACR recommendation for JAK inhibitors is based on concerns related to the effects of JAK inhibitors on interferon signaling that may result in a diminished vaccine response.(1) The ACR recommendation for subcutaneous abatacept is based on several studies suggesting a negative effect of abatacept on vaccine immunogenicity. The first vaccine dose primes naive T cells, naive T cell priming is inhibited by CTLA-4, and abatacept is a CTLA-4Ig construct. CTLA-4 should not inhibit boosts of already primed T cells at the time of the second vaccine dose.(1) |
COMIRNATY 2024-2025, MODERNA COVID 24-25(6M-11Y)EUA, NOVAVAX COVID 2024-2025 (EUA), PFIZER COVID 2024-25(5-11Y)EUA, PFIZER COVID 2024-25(6M-4Y)EUA, SPIKEVAX 2024-2025 |
Sarilumab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Sarilumab, immunosuppressives, and immunomodulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of sarilumab with immunosuppressive or immunomodulating agents may result in an increased risk for serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of sarilumab recommends caution because the concurrent use of sarilumab with immunosuppressive agents may increase the risk of infection. If concurrent therapy is warranted, consider the risk of additive immune suppression and monitor based on prescribing information for both agents.(1) DISCUSSION: Sarilumab was studied as monotherapy and in combination with methotrexate or conventional disease modifying antirheumatic drugs (DMARDs) in rheumatoid arthritis studies. Sarilumab has not been studied with biological DMARDs and concurrent use should be avoided. If concurrent therapy is warranted, consider the potential for increased immunosuppressive risks from both agents.(1) The most common infections reported by sarilumab treated patients in the clinical trial periods included pneumonia and cellulitis. Serious bacterial, mycobacterial, fungal, and viral infections were observed in patients receiving sarilumab. Cases of tuberculosis, candidiasis, and pneumocystis with sarilumab have been reported.(1) |
KEVZARA |
Ublituximab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Ublituximab, immunosuppressives, and immunomodulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of ublituximab with immunosuppressive or immunomodulating agents may result in an increased risk for serious infections.(1) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: The US manufacturer of ublituximab recommends caution because the concurrent use of ublituximab with immunomodulating or immunosuppressive agents, including immunosuppressant doses of corticosteroids, may increase the risk of infection.(1) If concurrent therapy is warranted, consider the risk of additive immune suppression and monitor based on prescribing information for both agents. When switching from agents with immune effects, the half-life and mechanism of action of these drugs must be taken into consideration in order to prevent additive immunosuppressive effects.(1) DISCUSSION: The most common infections reported by ublituximab-treated patients in the clinical trial periods included upper respiratory tract infections and urinary tract infections. Serious, including life-threatening or fatal, bacterial and viral infections were observed in patients receiving ublituximab.(1) Serious and/or fatal bacterial, fungal, and new or reactivated viral infections have been associated with other anti-CD20 B-cell depleting therapies. There were no cases of progressive multifocal leukoencephalopathy (PML) reported during the clinical trials; however, there have been reports of PML during or following completion of other anti-CD20 B-cell depleting therapies.(1) |
BRIUMVI |
Tocilizumab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Tocilizumab, immunosuppressives, and immunomodulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of tocilizumab with immunosuppressive or immunomodulating agents may result in an increased risk for serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of tocilizumab recommends caution because the concurrent use of tocilizumab with immunosuppressive agents may increase the risk of infection. If concurrent therapy is warranted, consider the risk of additive immune suppression and monitor based on prescribing information for both agents.(1) DISCUSSION: Tocilizumab was studied as monotherapy and in combination with methotrexate, non-biologic DMARDs or corticosteroids, depending on the indication. Tocilizumab has not been studied with biological DMARDs and concurrent use should be avoided. If concurrent therapy is warranted, consider the potential for increased immunosuppressive risks from both agents.(1) The most common infections reported by tocilizumab treated patients in the clinical trial periods included pneumonia, urinary tract infection, cellulitis, herpes zoster, gastroenteritis, diverticulitis, sepsis and bacterial arthritis. Serious bacterial, mycobacterial, fungal, and viral infections were observed in patients receiving tocilizumab. Cases of tuberculosis, cryptococcus, aspergillosis, candidiasis, and pneumocystosis have been reported.(1) |
ACTEMRA, ACTEMRA ACTPEN, TOFIDENCE, TYENNE, TYENNE AUTOINJECTOR |
Revumenib/Strong CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Agents that inhibit the CYP3A4 isoenzyme may inhibit the metabolism of revumenib.(1) CLINICAL EFFECTS: Concurrent use of strong CYP3A4 inhibitors may increase the levels of and effects from revumenib including QTc prolongation, which may result in potentially life-threatening cardiac arrhythmias like torsades de pointes (TdP).(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The concomitant use of strong CYP3A4 inhibitors requires dose reduction of revumenib. -For patients 1 year and older who weigh at least 40 kg, decrease the dosage of revumenib to 160 mg twice daily. -For patients 1 year and older who weigh less than 40 kg, decrease the dosage of revumenib to 95 mg/m2 twice daily. Refer to the revumenib prescribing information for total tablet dosage by body surface area. If the strong CYP3A4 inhibitor is discontinued, increase the dose of revumenib to the recommended dose without strong CYP3A4 inhibitors after at least 5 half-lives of the inhibitor.(1) If coadministration with a strong CYP3A4 inhibitor is unavoidable, monitor for prolongation of the QTc interval.(1) When concurrent therapy is warranted: consider obtaining serum calcium, magnesium, and potassium levels and monitoring EKG at baseline and regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a study, azole antifungals that are strong CYP3A4 inhibitors (i.e., posaconazole, itraconazole, and voriconazole) increased the area-under-curve (AUC) and maximum concentration (Cmax) of revumenib by 2-fold. Cobicistat (a strong CYP3A4 inhibitor) increased the AUC and Cmax of revumenib by 2.5-fold.(1) Strong inhibitors of CYP3A4 include: boceprevir, cobicistat, grapefruit, idelalisib, indinavir, itraconazole, josamycin, ketoconazole, mibefradil, mifepristone, nefazodone, nelfinavir, nirmatrelvir, paritaprevir, telaprevir, tipranavir, troleandomycin, and tucatinib.(3,4) |
APTIVUS, EVOTAZ, GENVOYA, ITRACONAZOLE, ITRACONAZOLE MICRONIZED, KETOCONAZOLE, KORLYM, MIFEPREX, MIFEPRISTONE, NEFAZODONE HCL, PAXLOVID, PREZCOBIX, SPORANOX, STRIBILD, SYMTUZA, TOLSURA, TUKYSA, TYBOST, VIRACEPT, ZYDELIG |
Revumenib/Strong CYP3A4 Inhibitors that Prolong QT SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Strong inhibitors of CYP3A4 that prolong the QTc interval may inhibit the metabolism of revumenib and result in additive risk of QT prolongation.(1) CLINICAL EFFECTS: Concurrent use of strong CYP3A4 inhibitors may increase the levels of and effects from revumenib including QTc prolongation, which may result in potentially life-threatening cardiac arrhythmias like torsades de pointes (TdP).(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of revumenib states that concomitant use of other drugs that may prolong the QTc interval should be avoided. If concurrent use cannot be avoided, obtain ECGs prior to initiating revumenib, during concomitant use, and as clinically indicated.(1) If the QTc interval is greater than 480 ms, withhold revumenib therapy. Resume revumenib after the QTc interval drops to 480 msec or less.(1) If concomitant use of strong CYP3A4 inhibitors is unavoidable, dose reduction of revumenib is necessary. -For patients 1 year and older who weigh at least 40 kg, decrease the dosage of revumenib to 160 mg twice daily. -For patients 1 year and older who weigh less than 40 kg, decrease the dosage of revumenib to 95 mg/m2 twice daily. Refer to the revumenib prescribing information for total tablet dosage by body surface area. If the strong CYP3A4 inhibitor is discontinued, increase the dose of revumenib to the recommended dose without strong CYP3A4 inhibitors after at least 5 half-lives of the inhibitor.(1) If coadministration with a strong CYP3A4 inhibitor that prolongs QT is unavoidable, monitor for prolongation of the QTc interval.(1) When concurrent therapy is warranted: consider obtaining serum calcium, magnesium, and potassium levels and monitoring EKG at baseline and regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a study, azole antifungals that are strong CYP3A4 inhibitors (i.e., posaconazole, itraconazole, and voriconazole) increased the area-under-curve (AUC) and maximum concentration (Cmax) of revumenib by 2-fold. Cobicistat (a strong CYP3A4 inhibitor) increased the AUC and Cmax of revumenib by 2.5-fold.(1) In clinical trials, QTc interval prolongation was reported as an adverse event in 29% of 135 patients treated with the recommended dosage of revumenib; 12% of patients had Grade 3 QTc prolongation. Revumenib increased the QTc interval in a concentration-dependent manner. At the mean steady-state Cmax using the highest approved recommended dosage of revumenib without CYP3A4 inhibitors, QTc increase was predicted to be 27 msec (upper bound of 90% confidence interval = 30 msec). At the steady-state Cmax using the highest approved recommended dosage of revumenib with CYP3A4 inhibitors, QTc increase was predicted to be 19 msec (upper bound of 90% confidence interval = 22 msec).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) Strong inhibitors of CYP3A4 that prolong the QT interval include: telithromycin and voriconazole.(4,5) |
VFEND, VFEND IV, VORICONAZOLE |
Revumenib/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Revumenib may prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of revumenib with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of revumenib states that the concurrent use of QT prolonging agents should be avoided. If concurrent use cannot be avoided, obtain ECGs prior to initiating revumenib, during concomitant use, and as clinically indicated.(1) If the QTc interval is greater than 480 ms, withhold revumenib therapy. Resume revumenib after the QTc interval drops to 480 msec or less.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In clinical trials, QTc interval prolongation was reported as an adverse event in 29% of 135 patients treated with the recommended dosage of revumenib; 12% of patients had Grade 3 QTc prolongation. Revumenib increased the QTc interval in a concentration-dependent manner. At the mean steady-state Cmax using the highest approved recommended dosage of revumenib without CYP3A4 inhibitors, QTc increase was predicted to be 27 msec (upper bound of 90% confidence interval = 30 msec). At the steady-state Cmax using the highest approved recommended dosage of revumenib with CYP3A4 inhibitors, QTc increase was predicted to be 19 msec (upper bound of 90% confidence interval = 22 msec).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
ALFUZOSIN HCL ER, APOKYN, APOMORPHINE HCL, ASPRUZYO SPRINKLE, ASTAGRAF XL, ATOMOXETINE HCL, BARHEMSYS, DASATINIB, EGATEN, ELLENCE, ENVARSUS XR, EPIRUBICIN HCL, ERIBULIN MESYLATE, GALANTAMINE ER, GALANTAMINE HBR, GALANTAMINE HYDROBROMIDE, GRANISETRON HCL, HALAVEN, ISRADIPINE, ISTURISA, LAPATINIB, OFLOXACIN, ONAPGO, PROGRAF, RANOLAZINE ER, RUBRACA, RYDAPT, SANCUSO, SIGNIFOR, SIGNIFOR LAR, SPRYCEL, SUNITINIB MALATE, SUSTOL, SUTENT, TACROLIMUS, TACROLIMUS XL, TOLTERODINE TARTRATE, TOLTERODINE TARTRATE ER, TYKERB, UROXATRAL, WAKIX, XOLREMDI, XOSPATA, ZUNVEYL |
The following contraindication information is available for REVUFORJ (revumenib citrate):
Drug contraindication overview.
*None.
*None.
There are 2 contraindications.
Absolute contraindication.
Contraindication List |
---|
Congenital long QT syndrome |
Lactation |
There are 4 severe contraindications.
Adequate patient monitoring is recommended for safer drug use.
Severe List |
---|
Chronic heart failure |
Hypokalemia |
Hypomagnesemia |
Pregnancy |
There are 0 moderate contraindications.
The following adverse reaction information is available for REVUFORJ (revumenib citrate):
Adverse reaction overview.
The most common adverse reactions (>=20%) with revumenib, including laboratory abnormalities, are hemorrhage, nausea, phosphate increased, musculoskeletal pain, infection, AST increased, febrile neutropenia, ALT increased, parathyroid hormone intact increased, bacterial infection, diarrhea, differentiation syndrome, QTc prolongation, phosphate decreased, triglycerides increased, potassium decreased, appetite decreased, constipation, edema, viral infection, fatigue, and alkaline phosphatase increased.
The most common adverse reactions (>=20%) with revumenib, including laboratory abnormalities, are hemorrhage, nausea, phosphate increased, musculoskeletal pain, infection, AST increased, febrile neutropenia, ALT increased, parathyroid hormone intact increased, bacterial infection, diarrhea, differentiation syndrome, QTc prolongation, phosphate decreased, triglycerides increased, potassium decreased, appetite decreased, constipation, edema, viral infection, fatigue, and alkaline phosphatase increased.
There are 5 severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Bacterial infection Differentiation syndrome Hemorrhage Infection |
Thrombotic disorder |
Rare/Very Rare |
---|
None. |
There are 33 less severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Abnormal hepatic function tests Anorexia Constipation Diarrhea Edema Fatigue Hyperparathyroidism Hyperphosphatemia Hypertriglyceridemia Hypokalemia Hypophosphatemia Increased alkaline phosphatase Musculoskeletal pain Nausea Prolonged QT interval Viral infection |
Acute abdominal pain Acute respiratory failure Cataracts Chronic heart failure Dysgeusia Headache disorder Hypercalcemia Hypercholesterolemia Hypersensitivity drug reaction Hyponatremia Kidney disease with reduction in glomerular filtration rate (GFr) Leukocytosis Paresthesia Pericardial effusion Skin rash Syncope Ventricular tachycardia |
Rare/Very Rare |
---|
None. |
The following precautions are available for REVUFORJ (revumenib citrate):
The safety and efficacy of revumenib have been established in pediatric patients >=1 year of age with relapsed or refractory acute leukemia with a KMT2A translocation. This is supported by data in adults and pediatric patients, along with additional pharmacokinetic and safety data. The study population included 13 infants (<2 years of age), 41 children (2-12 years of age), and 16 adolescents (12-17 years of age). The safety and efficacy of revumenib in patients <1 year of age have not been established.
Contraindicated
Severe Precaution
Management or Monitoring Precaution
Contraindicated
None |
Severe Precaution
None |
Management or Monitoring Precaution
None |
Based on animal studies and its mechanism of action, revumenib may cause fetal harm if administered during pregnancy. No human data are available to assess drug-associated risk. In animal studies, oral revumenib exposure during organogenesis caused embryo-fetal mortality, malformations, and impaired fetal growth at maternal drug exposures approximately half of those observed in humans at the recommended dose based on AUC comparisons. Advise pregnant women of the potential fetal risk.
There are no data on the presence of revumenib or its metabolites in human milk or effects on the breastfed child or milk production. Due to the potential for serious adverse reactions, advise women not to breastfeed during treatment and for 1 week after the last dose.
In clinical studies of revumenib, 16 (12%) of 135 patients with relapsed or refractory acute leukemia with a KMT2A translocation were >=65 years of age, and 3 (2%) were >=75 years of age. No overall differences in efficacy were observed between patients >=65 years of age and younger patients. However, QTc prolongation and edema occurred more frequently in patients >=65 years of age.
The following prioritized warning is available for REVUFORJ (revumenib citrate):
WARNING: Revumenib may cause a serious (possibly fatal) condition called differentiation syndrome. Get medical help right away if you develop any signs of differentiation syndrome, such as fever, cough, shortness of breath, decreased urination, rapid weight gain, swelling of the arms/legs, or dizziness/lightheadedness.
WARNING: Revumenib may cause a serious (possibly fatal) condition called differentiation syndrome. Get medical help right away if you develop any signs of differentiation syndrome, such as fever, cough, shortness of breath, decreased urination, rapid weight gain, swelling of the arms/legs, or dizziness/lightheadedness.
The following icd codes are available for REVUFORJ (revumenib citrate)'s list of indications:
No ICD codes found for this drug.
No ICD codes found for this drug.
Formulary Reference Tool