Please wait while the formulary information is being retrieved.
Drug overview for BROVANA (arformoterol tartrate):
Generic name: ARFORMOTEROL TARTRATE (AR-for-MOE-ter-ol)
Drug class: Beta-Adrenergic Agents Long-Acting (Inhaled)
Therapeutic class: Respiratory Therapy Agents
Arformoterol tartrate, a relatively selective long-acting beta2-agonist, is a bronchodilator.
No enhanced Uses information available for this drug.
Generic name: ARFORMOTEROL TARTRATE (AR-for-MOE-ter-ol)
Drug class: Beta-Adrenergic Agents Long-Acting (Inhaled)
Therapeutic class: Respiratory Therapy Agents
Arformoterol tartrate, a relatively selective long-acting beta2-agonist, is a bronchodilator.
No enhanced Uses information available for this drug.
DRUG IMAGES
- No Image Available
The following indications for BROVANA (arformoterol tartrate) have been approved by the FDA:
Indications:
Bronchospasm prevention with COPD
Professional Synonyms:
COPD with bronchospasms prophylaxis
Indications:
Bronchospasm prevention with COPD
Professional Synonyms:
COPD with bronchospasms prophylaxis
The following dosing information is available for BROVANA (arformoterol tartrate):
Dosage of arformoterol tartrate is expressed in terms of arformoterol.
Delivery of oral inhalation solution to the lungs depends on the type of jet nebulizers used, performance of the compressor, and other factors such as the patient's inspiratory flow. (See Administration under Dosage and Administration.)
For long-term symptomatic treatment of chronic obstructive pulmonary disease, the usual adult dosage of arformoterol is 15 mcg twice daily by oral inhalation via nebulization. Higher dosages provide no additional therapeutic benefit and may increase risk of adverse effects. Maximum recommended dosage is 30 mcg daily.
Fatalities have been associated with excessive use of inhaled sympathomimetic drugs. Higher than recommended dosages of arformoterol should not be used.
Patients receiving arformoterol should not use additional arformoterol or other long-acting beta2-adrenergic agonists for maintenance treatment of COPD.
Delivery of oral inhalation solution to the lungs depends on the type of jet nebulizers used, performance of the compressor, and other factors such as the patient's inspiratory flow. (See Administration under Dosage and Administration.)
For long-term symptomatic treatment of chronic obstructive pulmonary disease, the usual adult dosage of arformoterol is 15 mcg twice daily by oral inhalation via nebulization. Higher dosages provide no additional therapeutic benefit and may increase risk of adverse effects. Maximum recommended dosage is 30 mcg daily.
Fatalities have been associated with excessive use of inhaled sympathomimetic drugs. Higher than recommended dosages of arformoterol should not be used.
Patients receiving arformoterol should not use additional arformoterol or other long-acting beta2-adrenergic agonists for maintenance treatment of COPD.
No enhanced Administration information available for this drug.
DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
---|---|---|
BROVANA 15 MCG/2 ML SOLUTION | Maintenance | Adults inhale 2 milliliters (15 mcg) by inhalation route 2 times per day |
DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
---|---|---|
ARFORMOTEROL 15 MCG/2 ML SOLN | Maintenance | Adults inhale 2 milliliters (15 mcg) by inhalation route 2 times per day |
The following drug interaction information is available for BROVANA (arformoterol tartrate):
There are 0 contraindications.
There are 4 severe interactions.
These drug interactions can produce serious consequences in most patients. Actions required for severe interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration scheduling, and providing additional patient monitoring. Review the full interaction monograph for more information.
Drug Interaction | Drug Names |
---|---|
Ergot Alkaloids/Sympathomimetics SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of ergot alkaloids and sympathomimetics may result in additive or synergistic effect on peripheral blood vessels. CLINICAL EFFECTS: Concurrent use of ergot alkaloids and sympathomimetics may result in increased blood pressure due to peripheral vasoconstriction. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: When possible, avoid the concurrent use of ergot alkaloids and sympathomimetics. If concurrent use is warranted, monitor blood pressure and for signs of vasoconstriction. Decreasing the dose of one or both drugs may be necessary. DISCUSSION: There have been reports of severe vasoconstriction resulting in gangrene in patients receiving intravenous ergonovine with dopamine or norepinephrine. |
DIHYDROERGOTAMINE MESYLATE, ERGOLOID MESYLATES, ERGOMAR, ERGOTAMINE TARTRATE, ERGOTAMINE-CAFFEINE, METHYLERGONOVINE MALEATE, METHYSERGIDE MALEATE, MIGERGOT, MIGRANAL, TRUDHESA |
Selected Inhalation Anesthetic Agents/Sympathomimetics SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: The exact mechanism is unknown. The anesthetics produce conduction changes that increase impulse re-entry into the myocardial tissue.(1) The anesthetics' ability to precipitate arrhythmias is enhanced by elevated arterial blood pressure, tachycardia, hypercapnia, and/or hypoxia, events that stimulate the release of endogenous catecholamines.(1) CLINICAL EFFECTS: Concurrent use of inhalation anesthetic agents and sympathomimetics may result in ventricular arrhythmias or sudden blood pressure and heart rate increase during surgery.(2) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Monitor blood pressure and avoid use of sympathomimetics in patients being treated with anesthetics on the day of surgery.(2) Intravenous use of epinephrine during surgery with halothane and related halogenated general anesthetics should be strongly discouraged. When intravenous epinephrine is necessary, nitrous oxide anesthesia supplemented with ether, muscle relaxants, or opioids should be used instead of halothane.(3,4) Epinephrine may safely be used subcutaneously with the following precautions: the patient is adequately ventilated to prevent hypoxia or respiratory acidosis; the total dose of epinephrine is limited to 100 mcg/10 minute period or 300 mcg/hour in adults, 3.5 mcg/Kg in infants, 2.5 mcg/Kg in children up to two years of age, and 1.45 mcg/Kg in children over two years of age; a minimum effective concentration of anesthetic is maintained; the drugs are not co-administered in patients with hypertension or other cardiovascular disorders; and the cardiac rhythm is continuously monitored during and after injection.(3-10) If arrhythmias occur after the administration of the epinephrine, the drugs of choice are lidocaine or propranolol, depending on the type of arrhythmia.(1) DISCUSSION: Administration of epinephrine during halothane anesthesia may may lead to serious ventricular arrhythmias.(3-6,11-18) This has occurred when epinephrine was administered intravenously,(6) when it was administered with lidocaine as a dental block,(11,14) or when it was administered supraperiosteally.(5) Norepinephrine has been shown to interact with halothane in a manner similar to epinephrine.(1) In two case reports, patients were given terbutaline (0.25 to 0.35 mg) for wheezing following induction of anesthesia with halothane. One patient's heart rate increased from 68 to 100 beats/minute, and the ECG showed premature ventricular contractions and bigeminy, while the other patient developed multiple unifocal premature ventricular contractions and bigeminy. The arrhythmias resolved in both patients following lidocaine administration.(19) Although not documented, isoproterenol causes effects on the heart similar to terbutaline(20) and would probably interact with halothane in a similar manner. Other inhalation anesthetics that increase the incidence of arrhythmias with epinephrine include chloroform,(20) methoxyflurane,(20) and enflurane.(12) A similar interaction may be expected between the other inhalation anesthetics and sympathomimetics. |
DESFLURANE, FORANE, ISOFLURANE, SEVOFLURANE, SUPRANE, TERRELL, ULTANE |
Beta-2 Agonists/Non-Cardioselective Beta-Blockers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Non-cardioselective beta-blockers and beta-2 agonists may antagonize the effects of each other. CLINICAL EFFECTS: Diminished response to either the beta-agonist, beta-blocker, or both may occur. Beta-blockers may also induce bronchospasm. PREDISPOSING FACTORS: Patients receiving beta-2 agonists for the treatment of asthma may be more at risk for bronchospasm. PATIENT MANAGEMENT: If possible, avoid beta-blocker therapy in asthmatic patients requiring beta-2 agonist therapy. If beta-blocker therapy is required, use a cardio-selective beta-blocker. For timolol ophthalmic drops, counsel patients to apply pressure to the inner corner of the eye after administration to prevent systemic absorption. Monitor patients for decreased effects of either agent, such as increased need for/use of beta-2 agonists or increased heart rate or blood pressure. DISCUSSION: Many patients with asymptomatic or mild reactive airways disease tolerate beta-blockers well. Most patients with COPD do not have bronchospastic component to their illness and may be given beta-blockers. Heart failure treatment guidelines recommend beta-blockers in the presence of COPD. Non-selective beta-blockers have been shown to have a negative effect on lung function (FEV1) and airway hyperresponsiveness (AHR) in patients with asthma and COPD.(1) An open-label study using the nonselective beta blocker nadolol showed no effect on salbutamol in 10 patients with mild asthma not on controller therapy.(2) A study in 8 healthy men showed that long acting propranolol (160 mg) only effected airway dilation at the 200 mcg salbutamol dose. The 800 mcg and 1600 mcg dose were unaffected. However, penbutolol prevented any significant airway dilation with all doses of salbutamol.(3) In a double blind, three-way, crossover study, 44% (7/16 patients) of patients taking metoprolol showed a greater than 20% decrease in FEV1 compared to 19% (3 patients) after dilevalol and 6% (1 patient) after placebo. Dilevalol and metoprolol significantly inhibited isoproterenol response compared to placebo.(4) A double-blind, randomized, crossover study in 10 asthmatic patients showed that intravenous propranolol produced marked symptomatic bronchoconstriction. Only a slight but significant inhibition of bronchomotor sensitivity to isoproterenol was noted during esmolol infusion.(5) In 18 patients with reversible bronchial asthma, labetalol caused a significant increase in FEV1 and metoprolol caused a significant decrease in FEV1. Concurrent administration of isoproterenol and labetalol caused a further increase in FEV1. The effect of isoproterenol was decreased by metoprolol (100, 200mg).(6) In one study propranolol (0.06mg/kg IV) was shown to almost completely block the effects of isoproterenol in asthmatics. Metoprolol (0.12mg/kg IV) did not affect isoproterenol.(7) Studies have shown that cardioselective beta-blockers are safe for patients with asthma and COPD.(8,9,10) Nebivolol and celiprolol significantly decreased FEV1. Inhalation of albuterol (up to 800mcg) significantly improved FEV1, but the values after nebivolol and celiprolol administration were lower than the initial values.(11) Administration of metoprolol did not cause any respiratory problems in 9 asthmatic patients. There was no significant difference between the metoprolol and placebo groups in the respiratory response to an isoproterenol aerosol in 24 asthmatic patients.(12) Eight male asthmatic patients were given 10 mg bisoprolol, 20 mg bisoprolol, and 100 mg metoprolol. Both bisoprolol and metoprolol caused bronchoconstriction measured by a significant fall in PEFR (peak expiratory flow rate). Terbutaline was able to reverse bronchoconstriction in all patients.(13) A double blind, placebo-controlled study analyzed the use of atenolol 100mg, metoprolol 100mg, or acebutolol 400 mg in 8 asthmatic patients before and after exercise. All three drugs reduced significantly FEV1 and PEFR. Administration of terbutaline improved all respiratory indices.(14) A double-blind crossover trial in 10 asthmatic patients showed that a single IV dose of atenolol 3mg caused slight impairment of ventilatory function. A dose of salbutamol by inhalation was able to reverse the bronchial effect of atenolol.(15) Propranolol (80mg/day), oxprenolol (80mg/day), atenolol (100mg/day), and celiprolol 200mg/day were given to 10 asthmatic patients in a randomized, crossover design with a two week washout period between each drug. The non-beta 1 selective beta blockers (propranolol, oxprenolol) caused a significant reduction in FEV1 and inhibited the bronchodilator response to inhaled salbutamol. Atenolol and celiprolol (beta1 selective beta blockers) did not significantly affect respiratory function or antagonize salbutamol effects.(16) A double blind, randomized, within patient, placebo-controlled study compared the cardioselective beta-blocker atenolol to the non-selective propranolol. Atenolol caused a significantly less drop in FEV1 compared to propranolol. The effect of isoprenaline plus the beta blockers were also studied. Both atenolol and propranolol effected isoprenaline FEV1 dose response curves but the greatest displacement was seen with propranolol.(17) The pulmonary effects of celiprolol 200 mg, celiprolol 400mg, propranolol 40mg, atenolol 100 mg were evaluated in 34 asthmatic patients. Propranolol and atenolol caused significant reductions in pulmonary function. Propranolol pretreatment caused a significant reduction in the effect of the bronchodilator. Celiprolol did not antagonize the bronchodilators.(18) A double-blind, placebo controlled, randomized, crossover design study studied the effects of propranolol 80mg or celiprolol 200 or 400mg on pulmonary function. Propranolol produced a significant decrease in FEV1 and FVC. Celiprolol and placebo had similar results. The effect of aerosolized terbutaline was also measured. Even at supratherapeutic doses, terbutaline was unable to restore pulmonary function parameters to baseline levels after treatment with propranolol. Terbutaline caused further bronchodilation after administration of celiprolol.(19) Eleven asthmatic patients showed significant bronchoconstriction in small airways after propranolol 40mg and pindolol 2.5mg in a double blind, randomized trial. Large airways only showed bronchoconstriction with propranolol. Terbutaline 0.5mg subcutaneous was given after pretreatment with propranolol and pindolol. The bronchodilator effect of terbutaline on large airways was diminished after both propranolol and timolol.(20) |
BETAPACE, BETAPACE AF, BETIMOL, BRIMONIDINE TARTRATE-TIMOLOL, CARVEDILOL, CARVEDILOL ER, COMBIGAN, COREG, COREG CR, CORGARD, COSOPT, COSOPT PF, DORZOLAMIDE-TIMOLOL, HEMANGEOL, INDERAL LA, INDERAL XL, INNOPRAN XL, ISTALOL, LABETALOL HCL, LABETALOL HCL-WATER, NADOLOL, PINDOLOL, PROPRANOLOL HCL, PROPRANOLOL HCL ER, PROPRANOLOL-HYDROCHLOROTHIAZID, SOTALOL, SOTALOL AF, SOTALOL HCL, SOTYLIZE, TIMOLOL, TIMOLOL MALEATE, TIMOLOL-BIMATOPROST, TIMOLOL-BRIMONI-DORZOL-BIMATOP, TIMOLOL-BRIMONIDIN-DORZOLAMIDE, TIMOLOL-DORZOLAMIDE-BIMATOPRST, TIMOPTIC OCUDOSE |
Iobenguane I 123/Agents that Affect Catecholamines SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Many compounds that reduce catecholamine uptake or that deplete catecholamine stores may interfere with iobenguane uptake into cells.(1) CLINICAL EFFECTS: Compounds that reduce catecholamine uptake or that deplete catecholamine stores may interfere with imaging completed with iobenguane.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Discuss the use of agents that affect catecholamines. Discontinue drugs that reduce catecholamine uptake or deplete catecholamine stores prior to imaging with iobenguane. Before imaging with iobenguane, discontinue agents that affect catecholamines for at least 5 biological half-lives, as clinically tolerated.(1) DISCUSSION: Many agents may reduce catecholamine uptake or deplete catecholamine stores.(1) Examples include: - CNS stimulants or amphetamines (e.g. cocaine, methylphenidate, dextroamphetamine) - norepinephrine and dopamine reuptake inhibitors (e.g. phentermine) - norepinephrine and serotonin reuptake inhibitors (e.g. tramadol) - monoamine oxidase inhibitors (e.g. phenelzine, linezolid) - central monoamine depleting drugs (e.g. reserpine) - non-select beta adrenergic blocking drugs (e.g. labetalol) - alpha agonists or alpha/beta agonists (e.g. pseudoephedrine, phenylephrine, ephedrine, phenylpropanolamine, naphazoline) - tricyclic antidepressants or norepinephrine reuptake inhibitors (e.g. amitriptyline, bupropion, duloxetine, mirtazapine, venlafaxine) - botanicals that may inhibit reuptake of norepinephrine, serotonin or dopamine (e.g. ephedra, ma huang, St. John's Wort, yohimbine) |
ADREVIEW |
There are 2 moderate interactions.
The clinician should assess the patient’s characteristics and take action as needed. Actions required for moderate interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration.
Drug Interaction | Drug Names |
---|---|
Inhaled Direct-Acting Sympathomimetics/Tricyclic Compounds SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Unknown. However, it is speculated that direct-acting sympathomimetic amines have an enhanced effect due to tricyclic blockage of norepinephrine reuptake. CLINICAL EFFECTS: Increased effect of direct acting sympathomimetics. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The concurrent use of inhaled sympathomimetics and tricyclic compounds or the use of these agents within 14 days of each other should be approached with extreme caution. DISCUSSION: Epinephrine and other direct-acting sympathomimetic amines exert enhanced cardiovascular effects (e.g., arrhythmias, hypertension, and tachycardia) in individuals concurrently receiving or previously treated with tricyclic antidepressants. Protriptyline, amitriptyline, and desipramine have also been reported to interact with direct-acting sympathomimetics. Similarity between cyclobenzaprine and the tricyclic antidepressants consideration of tricyclic antidepressant interactions for cyclobenzaprine. |
AMITRIPTYLINE HCL, AMOXAPINE, AMRIX, ANAFRANIL, CHLORDIAZEPOXIDE-AMITRIPTYLINE, CLOMIPRAMINE HCL, CYCLOBENZAPRINE HCL, CYCLOBENZAPRINE HCL ER, CYCLOPAK, CYCLOTENS, DESIPRAMINE HCL, DOXEPIN HCL, FEXMID, IMIPRAMINE HCL, IMIPRAMINE PAMOATE, NOPIOID-LMC KIT, NORPRAMIN, NORTRIPTYLINE HCL, PAMELOR, PERPHENAZINE-AMITRIPTYLINE, PROTRIPTYLINE HCL, SILENOR, TRIMIPRAMINE MALEATE |
Methacholine/Beta-Agonists; Anticholinergics; Theophylline SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Beta-agonists, anticholinergics, and theophylline may inhibit the action of methacholine on the airway.(1) CLINICAL EFFECTS: The result of the methacholine challenge test may not be accurate.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The following drugs should be held before a methacholine challenge for the the duration indicated:(1) - short-acting beta-agonists: 6 hours - long-acting beta-agonists: 36 hours - short-acting anti-cholinergics: 12 hours - long-acting anti-cholinergics: at least 168 hours (7 days) - oral theophylline: 12-48 hours DISCUSSION: Beta-agonists, anticholinergics, and theophylline may inhibit the action of methacholine on the airway and cause inaccurate test results. |
METHACHOLINE CHLORIDE, PROVOCHOLINE |
The following contraindication information is available for BROVANA (arformoterol tartrate):
Drug contraindication overview.
Known hypersensitivity to arformoterol, formoterol, or any ingredient in the formulation. All long-acting beta2-adrenergic agonists, including arformoterol, are contraindicated in patients with asthma without concomitant use of long-term asthma controller therapy; safety and efficacy of arformoterol in patients with asthma+ have not been established. (See Asthma-related Death under Warnings/Precautions: Warnings, in Cautions.)
Known hypersensitivity to arformoterol, formoterol, or any ingredient in the formulation. All long-acting beta2-adrenergic agonists, including arformoterol, are contraindicated in patients with asthma without concomitant use of long-term asthma controller therapy; safety and efficacy of arformoterol in patients with asthma+ have not been established. (See Asthma-related Death under Warnings/Precautions: Warnings, in Cautions.)
There are 1 contraindications.
Absolute contraindication.
Contraindication List |
---|
Acute asthma attack |
There are 4 severe contraindications.
Adequate patient monitoring is recommended for safer drug use.
Severe List |
---|
Congenital long QT syndrome |
Hypokalemia |
Prolonged QT interval |
Thyrotoxicosis |
There are 4 moderate contraindications.
Clinically significant contraindication, where the condition can be managed or treated before the drug may be given safely.
Moderate List |
---|
Chronic myocardial ischemia |
Diabetes mellitus |
Hypertension |
Seizure disorder |
The following adverse reaction information is available for BROVANA (arformoterol tartrate):
Adverse reaction overview.
Pain (unspecified), chest pain, back pain, diarrhea, sinusitis, leg cramps, dyspnea, rash, flu syndrome, peripheral edema, lung disorder.
Pain (unspecified), chest pain, back pain, diarrhea, sinusitis, leg cramps, dyspnea, rash, flu syndrome, peripheral edema, lung disorder.
There are 48 severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Chest pain Peripheral edema Sinusitis Skin rash |
Bronchitis Fever Leukocytosis Tremor |
Rare/Very Rare |
---|
Abscess Acute cerebral infarction Acute myocardial infarction Anaphylaxis Angioedema Arteriosclerosis obliterans Atrial flutter Atrioventricular block Cardiac arrhythmia Chronic heart failure Crystalluria Cystitis Dehydration Edema Gastritis Glaucoma Glycosuria Gout Hematuria Herpes simplex infection Herpes zoster Hyperkalemia Hyperlipidemia Hypertension Hypoglycemic disorder Hypokalemia Hypokinesia Hypotension Kidney stone Malaise Metabolic acidosis Neck stiffness Neoplasm Neoplasm of breast Paradoxical bronchospasm Paralysis Paroxysmal supraventricular tachycardia Periodontal infection Pyuria Tachycardia |
There are 34 less severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Back pain Cramps in legs Diarrhea Dyspnea Flu-like symptoms Pain |
Cramps General weakness Headache disorder Nervousness Pulmonary congestion |
Rare/Very Rare |
---|
Agitation Arthralgia Arthritis Black tarry stools Constipation Dizziness Drowsy Dry skin Dyschromia Fatigue Hyperglycemia Insomnia Nausea Nocturia Oral paresthesia Palpitations Pelvic pain Skin hypertrophy Urticaria Visual changes Voice change Vomiting Xerostomia |
The following precautions are available for BROVANA (arformoterol tartrate):
Safety and efficacy not established in pediatric patients. COPD does not occur in children.
Contraindicated
Severe Precaution
Management or Monitoring Precaution
Contraindicated
None |
Severe Precaution
None |
Management or Monitoring Precaution
None |
Category C. (See Users Guide.)
Distributed into milk in rats. It is not known whether arformoterol is distributed into human milk. Use caution.
No substantial differences in safety and efficacy observed relative to younger adults, but increased sensitivity cannot be ruled out. Incidence of ventricular ectopy with arformoterol therapy in geriatric patients 65-75 years of age is comparable to that with placebo.
The following prioritized warning is available for BROVANA (arformoterol tartrate):
No warning message for this drug.
No warning message for this drug.
The following icd codes are available for BROVANA (arformoterol tartrate)'s list of indications:
Bronchospasm prevention with COPD | |
J44 | Other chronic obstructive pulmonary disease |
J44.8 | Other specified chronic obstructive pulmonary disease |
J44.89 | Other specified chronic obstructive pulmonary disease |
J44.9 | Chronic obstructive pulmonary disease, unspecified |
Formulary Reference Tool