Please wait while the formulary information is being retrieved.
Drug overview for CAFFEINE CITRATE (caffeine citrated):
Generic name: CAFFEINE CITRATED (KAF-een SIT-rate)
Drug class: Amphetamines/Anorexiants/Stimulants
Therapeutic class: Central Nervous System Agents
Caffeine is a xanthine-derivative CNS stimulant that occurs naturally in tea and coffee, but is prepared synthetically for commercial drug use.
No enhanced Uses information available for this drug.
Generic name: CAFFEINE CITRATED (KAF-een SIT-rate)
Drug class: Amphetamines/Anorexiants/Stimulants
Therapeutic class: Central Nervous System Agents
Caffeine is a xanthine-derivative CNS stimulant that occurs naturally in tea and coffee, but is prepared synthetically for commercial drug use.
No enhanced Uses information available for this drug.
DRUG IMAGES
- CAFFEINE CIT 60 MG/3 ML VIAL
- CAFFEINE CIT 60 MG/3 ML ORAL
The following indications for CAFFEINE CITRATE (caffeine citrated) have been approved by the FDA:
Indications:
Neonatal apnea
Professional Synonyms:
Apnea of prematurity
Idiopathic apnea of prematurity
Indications:
Neonatal apnea
Professional Synonyms:
Apnea of prematurity
Idiopathic apnea of prematurity
The following dosing information is available for CAFFEINE CITRATE (caffeine citrated):
Some clinicians suggest that when used as a mild CNS stimulant to overcome fatigue, oral doses of 100-200 mg of anhydrous caffeine are required. The manufacturers state that adults and children 12 years of age or older may receive a dosage of 100-200 mg no more frequently than every 3-4 hours.
For the treatment of apnea of prematurity, commercially available caffeine citrate injection in a loading dose of 20 mg/kg (10 mg/kg when expressed in terms of anhydrous caffeine) is administered by slow IV infusion (i.e., over 30 minutes) using a syringe infusion pump. Beginning 24 hours after the loading dose, maintenance doses of caffeine citrate of 5 mg/kg (2.5 mg/kg when expressed as anhydrous caffeine) may be administered every 24 hours, either orally or via slow IV infusion (i.e., over 10 minutes) using a syringe infusion pump. The manufacturer states that the safety and efficacy of dosing periods exceeding 10-12 days have not been established.
Other dosing regimens+ for the treatment of apnea of prematurity have used caffeine doses (in terms of anhydrous caffeine) of 5-10 mg/kg, given IV, IM, or orally as a loading dose, and followed by 2.5-5 mg/kg, given IV, IM, or orally once daily. Maintenance dosage has been adjusted according to the patient's response and tolerance and plasma caffeine concentrations.
When caffeine citrate is used for the treatment of apnea of prematurity in infants with hepatic or renal impairment, serum concentrations of caffeine should be monitored and dosage adjusted to avoid toxicity.
Analeptic use of caffeine is strongly discouraged by most clinicians. However, the manufacturers of caffeine and sodium benzoate injection recommend IM, or in emergency respiratory failure, IV injection of 500 mg of the drug (about 250 mg of anhydrous caffeine) or a maximum single dose of 1 g (about 500 mg of anhydrous caffeine) for the treatment of respiratory depression associated with overdosage of CNS depressants, including opiate analgesics and alcohol, and with electric shock.
Some clinicians recommend that when caffeine and sodium benzoate injection is used in children for CNS stimulation+, an IM, IV, or subcutaneous dose of 8 mg/kg (about 4 mg of anhydrous caffeine per kg) (not to exceed 500 mg) or 250 mg/m2 (about 125 mg of anhydrous caffeine per m2) be given up to every 4 hours if necessary.
For the treatment of apnea of prematurity, commercially available caffeine citrate injection in a loading dose of 20 mg/kg (10 mg/kg when expressed in terms of anhydrous caffeine) is administered by slow IV infusion (i.e., over 30 minutes) using a syringe infusion pump. Beginning 24 hours after the loading dose, maintenance doses of caffeine citrate of 5 mg/kg (2.5 mg/kg when expressed as anhydrous caffeine) may be administered every 24 hours, either orally or via slow IV infusion (i.e., over 10 minutes) using a syringe infusion pump. The manufacturer states that the safety and efficacy of dosing periods exceeding 10-12 days have not been established.
Other dosing regimens+ for the treatment of apnea of prematurity have used caffeine doses (in terms of anhydrous caffeine) of 5-10 mg/kg, given IV, IM, or orally as a loading dose, and followed by 2.5-5 mg/kg, given IV, IM, or orally once daily. Maintenance dosage has been adjusted according to the patient's response and tolerance and plasma caffeine concentrations.
When caffeine citrate is used for the treatment of apnea of prematurity in infants with hepatic or renal impairment, serum concentrations of caffeine should be monitored and dosage adjusted to avoid toxicity.
Analeptic use of caffeine is strongly discouraged by most clinicians. However, the manufacturers of caffeine and sodium benzoate injection recommend IM, or in emergency respiratory failure, IV injection of 500 mg of the drug (about 250 mg of anhydrous caffeine) or a maximum single dose of 1 g (about 500 mg of anhydrous caffeine) for the treatment of respiratory depression associated with overdosage of CNS depressants, including opiate analgesics and alcohol, and with electric shock.
Some clinicians recommend that when caffeine and sodium benzoate injection is used in children for CNS stimulation+, an IM, IV, or subcutaneous dose of 8 mg/kg (about 4 mg of anhydrous caffeine per kg) (not to exceed 500 mg) or 250 mg/m2 (about 125 mg of anhydrous caffeine per m2) be given up to every 4 hours if necessary.
Caffeine may be administered orally. Caffeine citrate is administered orally or by slow IV infusion using a syringe infusion pump. Caffeine and sodium benzoate injection may be administered by IM or slow IV injection; the drug has also been administered subcutaneously.
The preservative-free commercially available injection is for single use only, and any unused portion should be discarded. It is important that such oral solution be measured accurately (e.g., using a 1-mL or other appropriate syringe).
The preservative-free commercially available injection is for single use only, and any unused portion should be discarded. It is important that such oral solution be measured accurately (e.g., using a 1-mL or other appropriate syringe).
No dosing information available.
No generic dosing information available.
The following drug interaction information is available for CAFFEINE CITRATE (caffeine citrated):
There are 2 contraindications.
These drug combinations generally should not be dispensed or administered to the same patient. A manufacturer label warning that indicates the contraindication warrants inclusion of a drug combination in this category, regardless of clinical evidence or lack of clinical evidence to support the contraindication.
Drug Interaction | Drug Names |
---|---|
Dipyridamole Injectable/Xanthine Derivatives SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: The xanthine derivatives are adenosine receptor antagonists. Concurrent administration may inhibit dipyridamole-induced increases in endogenous plasma adenosine levels, thus decreasing dipyridamole's vasodilator effects.(1) CLINICAL EFFECTS: Concurrent administration may result in a decrease in dipyridamole's vasodilator effects. This may produce false-negative results during dipyridamole-thallium imaging tests.(1-3) PREDISPOSING FACTORS: In patients with congestive heart failure and decreased hepatic function, the metabolism of xanthine derivatives may be decreased. These patients may need a longer xanthine-free period prior to dipyridamole-thallium imaging tests.(2) PATIENT MANAGEMENT: Patients scheduled for dipyridamole-thallium imaging tests should have a xanthine-free period (including caffeine-containing products) for at least 24 hours prior to their exam.(3) DISCUSSION: In a study in eight male subjects with documented coronary artery disease, intravenous dipyridamole administered during a dipyridamole-thallium 201 SPECT image test produced a significant increase in heart rate, a decrease in blood pressure, and angina in seven patients and ST segment depression in four patients. SPECT imaging showed reversible perfusion defects in myocardial segments supplied by stenotic coronary arteries. When the exam was repeated when the subjects were receiving therapeutic dosages of theophylline, there was no appearance of angina, ST depression, or hemodynamic changes and SPECT imaging shown total absence of reversible perfusion defects.(1) A study in eight patients with coronary artery disease evaluated the effects of caffeine on dipyridamole-201Tl myocardial imaging. The administration of dipyridamole alone resulted in chest pain and ST-segment depression in four patients. Concurrent caffeine infusion decreased the dipyridamole-induced decrease in blood pressure and heart rate. No patients experience chest pain or ST-segment depression. Six patients had false negative test results.(2) Another study found that the attenuation of the hemodynamic response to dipyridamole by caffeine was dose-dependent.(3) |
DIPYRIDAMOLE |
Fezolinetant/CYP1A2 Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Inhibitors of CYP1A2 may inhibit the metabolism of fezolinetant.(1) CLINICAL EFFECTS: Concurrent use of a CYP1A2 inhibitor may increase levels of and adverse effects from fezolinetant.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of fezolinetant states that concurrent use with CYP1A2 inhibitors is contraindicated.(1) DISCUSSION: In a study, fluvoxamine, a strong CYP1A2 inhibitor, increased fezolinetant maximum concentration (Cmax) and area-under-curve (AUC) by 80% and 840%, respectively. Mexiletine (400 mg every 8 hours), a moderate CYP1A2 inhibitor, increased fezolinetant Cmax and AUC by 40% and 360%, respectively. Cimetidine (300 mg every 6 hours), a weak CYP1A2 inhibitor, increased fezolinetant Cmax and AUC by 30% and 100%, respectively.(1) Strong CYP1A2 inhibitors linked to this monograph include angelica root, ciprofloxacin, enasidenib, enoxacin, fluvoxamine, and rofecoxib. Moderate CYP1A2 inhibitors linked to this monograph include capmatinib, dipyrone, fexinidazole, genistein, hormonal contraceptives, methoxsalen, mexiletine, osilodrostat, phenylpropanolamine, pipemidic acid, rucaparib, troleandomycin, vemurafenib, and viloxazine. Weak CYP1A2 inhibitors linked to this monograph include allopurinol, artemisinin, caffeine, cannabidiol, cimetidine, curcumin, dan-shen, deferasirox, disulfiram, Echinacea, famotidine, ginseng, norfloxacin, obeticholic acid, parsley, piperine, propafenone, propranolol, ribociclib, simeprevir, thiabendazole, ticlopidine, triclabendazole, verapamil, zileuton.(2-4) |
VEOZAH |
There are 4 severe interactions.
These drug interactions can produce serious consequences in most patients. Actions required for severe interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration scheduling, and providing additional patient monitoring. Review the full interaction monograph for more information.
Drug Interaction | Drug Names |
---|---|
Theophylline Derivatives/Cimetidine SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Cimetidine inhibits the metabolism of theophylline by CYP1A2.(1-10) The duration of cimetidine's inhibitory action is uncertain. Short-term cimetidine therapy appears to reverse rapidly(2) but may persist in prolonged therapy. Increased pentoxifylline serum levels may be the result of an increase in the oral bioavailability of pentoxifylline.(11) CLINICAL EFFECTS: Concurrent cimetidine and theophylline derivative therapy may result in elevated theophylline derivative concentration levels, prolonged elimination half-life, and decreased clearance. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Theophylline derivative blood levels should be very closely monitored if cimetidine therapy is to be initiated, changed, or discontinued. Theophylline has a narrow therapeutic range; therefore, dosage reductions up to 30-50%(4) should be considered to prevent intoxication when cimetidine therapy is started. Antacids, famotidine, or possibly ranitidine might be more judicious choices than cimetidine in patients receiving theophylline derivatives. DISCUSSION: It is well documented that cimetidine impairs the elimination of theophylline when the two agents are co-administered to patients.(1-10, 12-22) This interaction has been noted by a variety of routes including continuous intravenous infusion.(22) Reports indicate that with concurrent cimetidine, theophylline plasma concentrations increase, theophylline half-life is prolonged from 29% to 73%(1-3;9,12-14) and theophylline clearance is decreased by 18.5% to 46%.(1-3,9,13,23) Age and smoking do not appear to affect the magnitude of the interaction.(17,18,20) Significant changes can be seen within 24 hours(3,5) and may progress as co-therapy continues.(3) A study involving ten healthy patients demonstrated that concomitant administration of cimetidine significantly decreased the plasma clearance of oxtriphylline.(24) Aminophylline is involved in a similar interaction as theophylline as seen in one case report.(25) In one report cimetidine also decreased the clearance and prolonged the half-life of caffeine.(26,27) A study demonstrated that cimetidine caused a significant increase in plasma levels of pentoxifylline.(11) Information on ranitidine is conflicting. Several studies have shown that ranitidine does not influence theophylline.(9,15,16,19,28,29) One case report noted toxic theophylline levels after ranitidine;(30) however, this case report has been challenged.(31) In another case report, theophylline levels rose from 16.6 mcg/ml to 39.7 mcg/ml(32) when the patient was given ranitidine. Other reports have also noted a reduction in theophylline elimination by ranitidine.(33,34) Famotidine has shown to have no effect on theophylline metabolism in a clinical trial;(35) however, there is one case report of decreased theophylline clearance during famotidine therapy.(36) Dyphylline, a theophylline derivative that is not converted to theophylline in vivo, is not to be expected to interact with cimetidine. A study showed that cimetidine increased the average steady state plasma concentration of pentoxifylline and its metabolite by 25% and 30%, respectively.(37) |
CIMETIDINE |
Adenosine; Hexobendine; Regadenoson/Xanthine Derivatives SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Xanthine derivatives may antagonize the effects of endogenous(1) and exogenous adenosine,(2,3) regadenoson,(4) and hexobendine.(5) CLINICAL EFFECTS: Concurrent use of a xanthine derivative use may result in decreased effectiveness of adenosine, hexobendine and regadenoson. Aminophylline may increase the risk of adenosine-induced seizures.(3) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Patients receiving concurrent therapy with adenosine and a xanthine derivative should be monitored for decreased effectiveness of adenosine. The dosage of adenosine may need to be increased. Whenever possible, withhold xanthine derivatives for 5 half-lives prior to using adenosine in cardiac stress tests.(6) Methylxanthines should not be used to reverse the effects of adenosine in patients who experience adenosine-induced seizures.(3) Concurrent therapy with hexobendine and a xanthine oxidase derivative should also be monitored for decreased effectiveness of hexobendine.(5) The US manufacturer of regadenoson recommends that patients avoid methylxanthines (e.g. caffeine, pentoxifylline, and theophylline) for 12 hours prior to regadenoson administration. Aminophylline may be used to attenuate severe and/or persistent adverse reactions to regadenoson.(4) DISCUSSION: In a study in six healthy subjects, theophylline significantly reduced the heart-rate response to adenosine. In addition, theophylline reduced the amount of abdominal and chest discomfort reported by subjects, allowing significantly higher infusion rates of adenosine.(7) Theophylline has also been reported to antagonize the vasorelaxant action of adenosine in human forearm arterioles.(8) In a study in five subjects, theophylline decreased the amounts of adenosine-induced side effects, including chest pain. There was no change in blood pressure or respiratory rate during concurrent adenosine and theophylline.(9) In a study in ten dog and twelve human subjects, the administration of adenosine after hexobendine increased coronary sinus blood flow. Aminophylline administration significantly decreased the coronary vasodilation response to adenosine and hexobendine.(5) In a study in ten healthy subjects, caffeine reduced the mean adenosine-induced increases in systolic blood pressure by 7.2 mmHg and heart rate by 8.4 beats/min when compared to placebo.(2) In another study in ten healthy subjects, caffeine was shown to lower the adenosine-induced response of blood pressure and heart rate.(3) Caffeine has also been reported to reduced adenosine-induced changes in minute ventilation and tidal volume.(3) Aminophylline has been shown to shorten the duration of coronary blood flow response to regadenoson.(3) Coronary flow reserve was 8% lower in patients who received caffeine (200 mg single dose) 2 hours prior to regadenoson administration when compared to subjects who received placebo instead of caffeine.(4) |
ADENOSINE, LEXISCAN, REGADENOSON |
Selected CYP1A2 Substrates/Viloxazine SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Viloxazine is a strong inhibitor of CYP1A2 and may increase the total exposure of sensitive CYP1A2 substrates.(1) The FDA defines strong inhibition as an increase in drug area-under-curve (AUC) greater than 5-fold.(2) CLINICAL EFFECTS: Concurrent use of viloxazine with drugs primarily metabolized by CYP1A2 may lead to elevated drug levels and increase the risk of adverse reactions associated with the CYP1A2 substrate.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Drugs linked to this monograph are moderately sensitive to CYP1A2 inhibition. Coadministration of viloxazine with moderately sensitive CYP1A2 substrates is not recommended. If coadministered, dose reduction of the CYP1A2 substrate may be warranted.(1) DISCUSSION: Concomitant use of viloxazine significantly increases the total exposure, but not peak exposure, of sensitive CYP1A2 substrates, which may increase the risk of adverse reactions associated with these CYP1A2 substrates. In a study, viloxazine increased the AUC of caffeine by almost 6-fold.(1) Though not designed to evaluate drug interactions, the open-label portion of a pediatric randomized controlled trial looking at the association of riluzole concentrations with efficacy and adverse effects found that fluvoxamine (a strong CYP1A2 inhibitor) increased riluzole concentrations by about 2-fold.(3) CYP1A2 substrates linked to this monograph include: caffeine and riluzole.(2,4) |
QELBREE |
Tizanidine/Selected Moderate and Weak CYP1A2 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate and weak CYP1A2 inhibitors may inhibit the metabolism of tizanidine by CYP1A2.(1) CLINICAL EFFECTS: Concurrent use of moderate and weak CYP1A2 inhibitors may result in elevated levels of and effects from tizanidine, including hypotension, bradycardia, drowsiness, sedation, and decreased psychomotor function. PREDISPOSING FACTORS: The risk of anticholinergic toxicities including cognitive decline, delirium, falls and fractures is increased in geriatric patients using more than one medicine with anticholinergic properties.(2) PATIENT MANAGEMENT: The US manufacturer of tizanidine states that concurrent use of tizanidine with inhibitors of CYP1A2 should be avoided. If concurrent use is warranted, tizanidine should be initiated with 2 mg dose and increased in 2-4 mg steps daily based on patient response to therapy.(3) If adverse reactions such as hypotension, bradycardia or excessive drowsiness occur, reduce or discontinue tizanidine therapy.(3) DISCUSSION: In a study, cannabidiol 750 mg twice daily (a weak CYP1A2 inhibitor) increased the maximum concentration (Cmax) and area-under-curve (AUC) of a 200 mg single dose of caffeine (a sensitive CYP1A2 substrate) by 15% and 95%, respectively.(1) In a study in 10 healthy subjects, concurrent fluvoxamine, a strong inhibitor of CYP1A2, increased tizanidine Cmax, AUC, and half-life (T1/2) by 12-fold, 33-fold, and 3-fold, respectively. Significant decreases in blood pressure and increases in drowsiness and psychomotor impairment occurred.(3) In a study in 10 healthy subjects, concurrent ciprofloxacin, a strong inhibitor of CYP1A2, increased tizanidine Cmax and AUC by 7-fold and 10-fold, respectively. Significant decreases in blood pressure and increases in drowsiness and psychomotor impairment occurred.(3) Moderate CYP1A2 inhibitors linked to this monograph include: dipyrone, fexinidazole, genistein, methoxsalen, phenylpropanolamine, pipemidic acid, propranolol, rucaparib, and troleandomycin. Weak CYP1A2 inhibitors linked to this monograph include: allopurinol, artemisinin, caffeine, cannabidiol, curcumin, dan-shen, disulfiram, Echinacea, ginseng, parsley, piperine, ribociclib, simeprevir, thiabendazole, and triclabendazole.(4) |
TIZANIDINE HCL, ZANAFLEX |
There are 3 moderate interactions.
The clinician should assess the patient’s characteristics and take action as needed. Actions required for moderate interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration.
Drug Interaction | Drug Names |
---|---|
Theophylline Derivatives/Lithium SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Theophylline derivatives increase the renal excretion of lithium. CLINICAL EFFECTS: Decreased levels of lithium which may result in decreased clinical effectiveness. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Lithium levels and response should be monitored in patients in whom theophylline therapy is initiated or withdrawn. Patients receiving concurrent therapy should be monitored for increased adverse effects. DISCUSSION: In a study involving ten volunteers, the concurrent administration of lithium and theophylline resulted in a significant decrease in lithium serum levels. Upon discontinuation of theophylline, lithium levels and half-life increased, and the clearance of lithium decreased. Individual variability in these parameters was significant. The overall incidence of adverse effects was significantly greater with concurrent therapy including restlessness, tremor, and anorexia. In another study in ten normal subjects, lithium (1200 mg/day for seven days) was administered and it was reported that theophylline infusion (dosed to achieve a plasma level of 14 mcg/ml) increased lithium clearances by 51%. In a case report, reduced lithium levels as well as worsening of manic symptoms occurred after increasing doses of theophylline were administered. It has been shown that aminophylline increases the lithium/creatinine clearance ratio, which may result in decreased serum lithium below the therapeutic level. Caffeine withdrawal has been reported to increase lithium levels in several case reports. This interaction is most important to consider in patients who have been previously sensitive to relapse with decreased lithium levels and in whom levels are maintained at the therapeutic/prophylactic borderline. |
LITHIUM CARBONATE, LITHIUM CARBONATE ER, LITHIUM CITRATE, LITHIUM CITRATE TETRAHYDRATE, LITHOBID |
Selected Xanthine Derivatives/Fluvoxamine SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Fluvoxamine may inhibit the metabolism of the xanthine derivatives by CYP1A2.(1,2) CLINICAL EFFECTS: Concurrent use of fluvoxamine and xanthine derivatives may result in elevated levels of the xanthine derivative and toxicity. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of fluvoxamine recommends that the dose of theophylline be decreased to one-third of the usual daily dose in patients receiving concurrent therapy. Theophylline levels should be closely monitored and patients should be observed for signs of theophylline toxicity.(3) The dosage of theophylline may need to be adjusted if fluvoxamine is discontinued. Patients receiving fluvoxamine should be instructed to consume caffeine containing beverages and/or medications with caution. DISCUSSION: In a study in 12 healthy subjects, the administration of a single dose of theophylline ethylenediamine (300 mg) on Day 4 of fluvoxamine (50 mg Day 1, 100 mg daily Days 2-6) decreased theophylline total clearance by 70%. The half-life of theophylline increased 2.3-fold (from 6.6 hours to 22 hours).(1) In a study in 12 healthy males, the administration of a single dose of theophylline (375 mg given as 442 mg aminophylline) with fluvoxamine (50 mg twice daily at steady state) decreased theophylline clearance by 3-fold.(3) Fluvoxamine has been shown to inhibit the metabolism of theophylline in vitro.(2) There are four case reports of theophylline toxicity during concurrent fluvoxamine therapy.(4-7) In a study in eight healthy subjects, the administration of a single dose of caffeine (200 mg) on Day 8 of fluvoxamine (50 mg daily Days 1-4, 100 mg daily Days 5-12) decreased caffeine clearance by 80%. The half-life of caffeine increased 5.2-fold (from 5 hours to 31 hours).(8) In a study, seven reports of impaired caffeine clearance were reported in patients whom received single 250mg doses of caffeine together with fluvoxamine (four doses of 100mg over two days). Fluvoxamine reduced the apparent oral clearance of caffeine by 91.3%, and prolonged its elimination half-life by 11.4-fold (from 4.9 hours to 56 hours). There were no changes in the pharmacodynamic effects of caffeine.(9) |
FLUVOXAMINE MALEATE, FLUVOXAMINE MALEATE ER |
Migalastat/Caffeine-Containing Products SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The mechanism of this interaction is unknown. CLINICAL EFFECTS: Concurrent use of a caffeine-containing product may result in decreased levels and effectiveness of migalastat.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid coadministration of migalastat with caffeine-containing products. Do not administer caffeine-containing products within 2 hours before and 2 hours after taking migalastat.(1) DISCUSSION: Coadministration of migalastat with caffeine 190 mg decreased the migalastat maximum concentration (Cmax) by 60% and area-under-curve (AUC) by 55%.(1) |
GALAFOLD |
The following contraindication information is available for CAFFEINE CITRATE (caffeine citrated):
Drug contraindication overview.
No enhanced Contraindications information available for this drug.
No enhanced Contraindications information available for this drug.
There are 0 contraindications.
There are 5 severe contraindications.
Adequate patient monitoring is recommended for safer drug use.
Severe List |
---|
Chronic kidney disease stage 4 (severe) GFR 15-29 ml/min |
Chronic kidney disease stage 5 (failure) GFr<15 ml/min |
Necrotizing enterocolitis |
Peptic ulcer |
Severe hepatic disease |
There are 2 moderate contraindications.
Clinically significant contraindication, where the condition can be managed or treated before the drug may be given safely.
Moderate List |
---|
Cardiac arrhythmia |
Seizure disorder |
The following adverse reaction information is available for CAFFEINE CITRATE (caffeine citrated):
Adverse reaction overview.
No enhanced Common Adverse Effects information available for this drug.
No enhanced Common Adverse Effects information available for this drug.
There are 10 severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Dizziness Tachycardia |
Acidosis Hemorrhage Hyperglycemia Intracerebral hemorrhage Sepsis |
Rare/Very Rare |
---|
Disseminated intravascular coagulation Hypoglycemic disorder Necrotizing enterocolitis |
There are 10 less severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Gastrointestinal irritation Insomnia Irritability Nausea Nervousness Tremor Vomiting |
Dry skin Gastritis Skin rash |
Rare/Very Rare |
---|
None. |
The following precautions are available for CAFFEINE CITRATE (caffeine citrated):
No enhanced Pediatric Use information available for this drug.
Contraindicated
Severe Precaution
Management or Monitoring Precaution
Contraindicated
None |
Severe Precaution
None |
Management or Monitoring Precaution
None |
There are no adequate and well-controlled studies in pregnant women. In studies performed in adult animals, caffeine (as caffeine base) administered to pregnant mice as sustained-release pellets at 50 mg/kg (less than the maximum IV loading dose for neonates on a mg/m2 basis) during the period of organogenesis caused a low incidence of cleft palate and exencephaly in fetuses. Based on data from a large retrospective epidemiologic study and from a large retrospective case-control study in humans, it appears that use of caffeine during pregnancy has little, if any, effect on the outcome of pregnancy. Although caffeine use during pregnancy does not appear to be associated with substantial risk, most clinicians recommend that pregnant women avoid or limit their consumption of foods, beverages, and drugs containing caffeine, since caffeine crosses the placenta.
Caffeine is distributed into the milk of nursing women. Milk-to-plasma ratios of 0.5-0.76
have been reported. The amount of caffeine ingested from usual quantities of caffeinated beverages is considered compatible with breast-feeding; however, caffeine may accumulate in nursing infants following moderate to heavy maternal consumption of caffeine, resulting in irritability and poor sleeping patterns.
have been reported. The amount of caffeine ingested from usual quantities of caffeinated beverages is considered compatible with breast-feeding; however, caffeine may accumulate in nursing infants following moderate to heavy maternal consumption of caffeine, resulting in irritability and poor sleeping patterns.
No enhanced Geriatric Use information available for this drug.
The following prioritized warning is available for CAFFEINE CITRATE (caffeine citrated):
No warning message for this drug.
No warning message for this drug.
The following icd codes are available for CAFFEINE CITRATE (caffeine citrated)'s list of indications:
Neonatal apnea | |
P28.4 | Other apnea of newborn |
P28.40 | Unspecified apnea of newborn |
P28.49 | Other apnea of newborn |
Formulary Reference Tool