Please wait while the formulary information is being retrieved.
Drug overview for AGRYLIN (anagrelide hcl):
Generic name: ANAGRELIDE HCL (an-AG-re-lide)
Drug class: Thrombocytosis Agents
Therapeutic class: Hematological Agents
Anagrelide is an imidazoquinazoline-derivative platelet-reducing agent.
No enhanced Uses information available for this drug.
Generic name: ANAGRELIDE HCL (an-AG-re-lide)
Drug class: Thrombocytosis Agents
Therapeutic class: Hematological Agents
Anagrelide is an imidazoquinazoline-derivative platelet-reducing agent.
No enhanced Uses information available for this drug.
DRUG IMAGES
- AGRYLIN 0.5 MG CAPSULE
The following indications for AGRYLIN (anagrelide hcl) have been approved by the FDA:
Indications:
Essential thrombocytosis
Thrombocytosis in myeloproliferative disease
Professional Synonyms:
Essential hemorrhagic thrombocythemia
Essential thrombocythemia
Hemorrhagic thrombocythemia
Idiopathic hemorrhagic thrombocythemia
Idiopathic thrombocythemia
Thrombocythemia in myeloproliferative disease
Thrombocythemia primary
Indications:
Essential thrombocytosis
Thrombocytosis in myeloproliferative disease
Professional Synonyms:
Essential hemorrhagic thrombocythemia
Essential thrombocythemia
Hemorrhagic thrombocythemia
Idiopathic hemorrhagic thrombocythemia
Idiopathic thrombocythemia
Thrombocythemia in myeloproliferative disease
Thrombocythemia primary
The following dosing information is available for AGRYLIN (anagrelide hcl):
No enhanced Dosing information available for this drug.
No enhanced Administration information available for this drug.
DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
---|---|---|
AGRYLIN 0.5 MG CAPSULE | Maintenance | Adults take 2 capsules (1 mg) by oral route 2 times per day |
DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
---|---|---|
ANAGRELIDE HCL 0.5 MG CAPSULE | Maintenance | Adults take 2 capsules (1 mg) by oral route 2 times per day |
The following drug interaction information is available for AGRYLIN (anagrelide hcl):
There are 2 contraindications.
These drug combinations generally should not be dispensed or administered to the same patient. A manufacturer label warning that indicates the contraindication warrants inclusion of a drug combination in this category, regardless of clinical evidence or lack of clinical evidence to support the contraindication.
Drug Interaction | Drug Names |
---|---|
Anagrelide/QT Prolonging Agents SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Concurrent use of anagrelide with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of anagrelide with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of anagrelide states that anagrelide should not be used in patients taking medications known to prolong the QT interval.(1) If concurrent therapy is deemed medically necessary, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a thorough QT study, dose-related QT changes were observed with anagrelide. The maximum mean change in QTcI (95% CI) in comparison to placebo was 7.0 (9.8) ms and 13.0 (15.7) msec following doses of 0.5 mg and 2.5mg, respectively.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) One or more of the drug pairs linked to this monograph have been included in a list of interactions that should be considered "high-priority" for inclusion and should not be inactivated in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
ADLARITY, AMIODARONE HCL, AMIODARONE HCL-D5W, ARICEPT, ARSENIC TRIOXIDE, ASPRUZYO SPRINKLE, AVELOX IV, AZITHROMYCIN, BETAPACE, BETAPACE AF, CAPRELSA, CELEXA, CESIUM CHLORIDE, CHLOROQUINE PHOSPHATE, CHLORPROMAZINE HCL, CILOSTAZOL, CIPRO, CIPROFLOXACIN, CIPROFLOXACIN HCL, CIPROFLOXACIN-D5W, CITALOPRAM HBR, CLARITHROMYCIN, CLARITHROMYCIN ER, COARTEM, CORVERT, DASATINIB, DIFLUCAN, DIPRIVAN, DISKETS, DISOPYRAMIDE PHOSPHATE, DOFETILIDE, DONEPEZIL HCL, DONEPEZIL HCL ODT, DROPERIDOL, E.E.S. 200, E.E.S. 400, ERY-TAB, ERYPED 200, ERYPED 400, ERYTHROCIN LACTOBIONATE, ERYTHROCIN STEARATE, ERYTHROMYCIN, ERYTHROMYCIN ESTOLATE, ERYTHROMYCIN ETHYLSUCCINATE, ERYTHROMYCIN LACTOBIONATE, ERZOFRI, ESCITALOPRAM OXALATE, FANAPT, FARESTON, FLECAINIDE ACETATE, FLUCONAZOLE, FLUCONAZOLE-NACL, HALDOL DECANOATE 100, HALDOL DECANOATE 50, HALOPERIDOL, HALOPERIDOL DECANOATE, HALOPERIDOL DECANOATE 100, HALOPERIDOL LACTATE, HYDROXYCHLOROQUINE SULFATE, IBUTILIDE FUMARATE, INVEGA, INVEGA HAFYERA, INVEGA SUSTENNA, INVEGA TRINZA, ISRADIPINE, KRAZATI, LANSOPRAZOL-AMOXICIL-CLARITHRO, LEVOFLOXACIN, LEVOFLOXACIN HEMIHYDRATE, LEVOFLOXACIN-D5W, LEXAPRO, MEMANTINE HCL-DONEPEZIL HCL ER, METHADONE HCL, METHADONE HCL-0.9% NACL, METHADONE HCL-NACL, METHADONE INTENSOL, METHADOSE, MOXIFLOXACIN, MOXIFLOXACIN HCL, MULTAQ, NAMZARIC, NEXTERONE, NORPACE, NORPACE CR, NUEDEXTA, OMECLAMOX-PAK, OXALIPLATIN, PACERONE, PALIPERIDONE ER, PENTAM 300, PENTAMIDINE ISETHIONATE, PIMOZIDE, PLAQUENIL, PROCAINAMIDE HCL, PROPAFENONE HCL, PROPAFENONE HCL ER, PROPOFOL, QUALAQUIN, QUINIDINE GLUCONATE, QUINIDINE SULFATE, QUININE HCL, QUININE SULFATE, RANOLAZINE ER, REVUFORJ, SEVOFLURANE, SIGNIFOR, SIGNIFOR LAR, SOTALOL, SOTALOL AF, SOTALOL HCL, SOTYLIZE, SOVUNA, SPRYCEL, THIORIDAZINE HCL, THIORIDAZINE HYDROCHLORIDE, TIKOSYN, TOREMIFENE CITRATE, TRISENOX, ULTANE, VANFLYTA, VOQUEZNA TRIPLE PAK, ZITHROMAX, ZITHROMAX TRI-PAK, ZOKINVY |
Levoketoconazole/QT Prolonging Agents SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Levoketoconazole has been observed to prolong the QTc interval in a dose-dependent manner. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of levoketoconazole with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of levoketoconazole states that levoketoconazole is contraindicated with other agents that prolong the QT interval.(1) Levoketoconazole is also contraindicated in patients with a prolonged QTcF interval of greater than 470 msec at baseline, history of torsades de pointes, ventricular tachycardia, ventricular fibrillation, or long QT syndrome (including first-degree family history). Use caution in patients with other risk factors for QT prolongation including congestive heart failure, bradyarrhythmias, and uncorrected electrolyte abnormalities. Consider more frequent ECG monitoring. Prior to starting levoketoconazole, obtain a baseline ECG and correct hypokalemia or hypomagnesemia. If a patient develops QT prolongation with a QTc interval greater than 500 msec, temporarily discontinue levoketoconazole. After resolution of prolonged QTc interval, levoketoconazole may be resumed at a lower dose. If QTc interval prolongation recurs, permanently discontinue levoketoconazole.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: During phase 1 and 2 studies, which excluded patients with baseline QTcF interval greater than 470 msec, 4 (2.4%) patients experienced QTcF > 500 msec, and 23 (14.7%) patients experienced change-from-baseline QTcF > 60 msec.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
RECORLEV |
There are 20 severe interactions.
These drug interactions can produce serious consequences in most patients. Actions required for severe interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration scheduling, and providing additional patient monitoring. Review the full interaction monograph for more information.
Drug Interaction | Drug Names |
---|---|
Ivabradine/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: QT prolongation may be exacerbated by ivabradine-induced reduction in heart rate.(1) CLINICAL EFFECTS: Concurrent use of ivabradine and agents known to prolong the QT interval may exacerbate QT prolongation.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The UK, AU, and Canadian manufacturer of ivabradine states that concurrent use with cardiovascular and non-cardiovascular QT prolonging agents should be avoided.(1,4,5) The Canadian manufacturer states that if concurrent therapy is deemed necessary, close cardiac monitoring (12-lead ECG) is required. Depending on the ECG results, ivabradine dosing may need to be decreased or stopped.(4) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
CORLANOR, IVABRADINE HCL |
Lopinavir/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Lopinavir has been shown to prolong the QTc interval by 5 msec. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of lopinavir with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The US manufacturer of lopinavir states that the concurrent administration of other drugs that are known to prolong the QTc interval should be avoided.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a randomized, placebo and active controlled crossover study in 39 healthy subjects designed to evaluated QTc intervals, lopinavir/ritonavir increased QTc by 5.3 msec and 15.2 msec for 400/100 mg twice daily and 800/200 mg twice daily, respectively.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
KALETRA, LOPINAVIR-RITONAVIR |
Anagrelide/Aspirin SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Anagrelide may affect platelet function in a way that synergizes with low-dose aspirin.(1) CLINICAL EFFECTS: Concurrent use of anagrelide and aspirin may increase the risk of hemorrhage.(1,2) PREDISPOSING FACTORS: The risk for bleeding episodes may be greater in patients with disease-associated factors (e.g. thrombocytopenia). Drug associated risk factors include concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism and/or have an inherent risk for bleeding (e.g. NSAIDs). PATIENT MANAGEMENT: The concurrent use of anagrelide and aspirin should be approached with caution, especially in patients with a high risk profile for hemorrhage.(2) If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. DISCUSSION: In healthy subjects, the administration of of single dose anagrelide (1 mg) and aspirin (900 mg) or multiple dose anagrelide (1 mg daily) and aspirin (75 mg daily) resulted in greater anti-platelet aggregation effects than aspirin alone. Concurrent single doses of both anagrelide and aspirin had no effects on bleeding time, prothrombin time, or activated partial thromboplastin time.(2) A study in 809 patients with essential thrombocythemia compared the combination of low-dose aspirin with hydroxyurea to the combination of low-dose aspirin with anagrelide. While patients receiving low-dose aspirin with anagrelide had lower rates of venous thromboembolism, the combination was associated with increased rates of arterial myelofibrosis, serious hemorrhage, and transformation to myelofibrosis.(1) |
ACETYL SALICYLIC ACID, ASA-BUTALB-CAFFEINE-CODEINE, ASCOMP WITH CODEINE, ASPIRIN, ASPIRIN-DIPYRIDAMOLE ER, BUTALBITAL-ASPIRIN-CAFFEINE, CARISOPRODOL-ASPIRIN, CARISOPRODOL-ASPIRIN-CODEINE, DURLAZA, NORGESIC, NORGESIC FORTE, ORPHENADRINE-ASPIRIN-CAFFEINE, ORPHENGESIC FORTE, YOSPRALA |
Anagrelide/Possible QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of anagrelide with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of anagrelide with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of anagrelide states that anagrelide should not be used in patients taking medications known to prolong the QT interval.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a thorough QT study, dose-related QT changes were observed with anagrelide. The maximum mean change in QTcI (95% CI) in comparison to placebo was 7.0 (9.8) ms and 13.0 (15.7) msec following doses of 0.5 mg and 2.5mg, respectively.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) One or more of the drug pairs linked to this monograph have been included in a list of interactions that should be considered "high-priority" for inclusion and should not be inactivated in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
ADVAIR DISKUS, ADVAIR HFA, AIRDUO DIGIHALER, AIRDUO RESPICLICK, ALFUZOSIN HCL ER, APOKYN, APOMORPHINE HCL, ASTAGRAF XL, ATOMOXETINE HCL, BARHEMSYS, CLOZAPINE, CLOZAPINE ODT, CLOZARIL, DANZITEN, EGATEN, ELLENCE, ENVARSUS XR, EPIRUBICIN HCL, ERIBULIN MESYLATE, FARYDAK, FLUTICASONE-SALMETEROL, FLUTICASONE-SALMETEROL HFA, GALANTAMINE ER, GALANTAMINE HBR, GALANTAMINE HYDROBROMIDE, GATIFLOXACIN SESQUIHYDRATE, GEODON, GRANISETRON HCL, HALAVEN, IGALMI, ISTODAX, ISTURISA, LAPATINIB, LENVIMA, NEXAVAR, NILOTINIB HCL, NOXAFIL, OFLOXACIN, ONAPGO, ONDANSETRON HCL, ONDANSETRON HCL-0.9% NACL, PAZOPANIB HCL, POSACONAZOLE, PROGRAF, QUETIAPINE FUMARATE, QUETIAPINE FUMARATE ER, RALDESY, ROMIDEPSIN, RUBRACA, RYDAPT, SANCUSO, SEREVENT DISKUS, SEROQUEL, SEROQUEL XR, SORAFENIB, STRATTERA, SUNITINIB MALATE, SUSTOL, SUTENT, TACROLIMUS, TACROLIMUS XL, TASIGNA, TOLTERODINE TARTRATE, TOLTERODINE TARTRATE ER, TRAZODONE HCL, TYKERB, UROXATRAL, VERSACLOZ, VFEND, VFEND IV, VIBATIV, VORICONAZOLE, VOTRIENT, WIXELA INHUB, XALKORI, XOLREMDI, ZELBORAF, ZIPRASIDONE HCL, ZIPRASIDONE MESYLATE, ZUNVEYL, ZYKADIA |
Osimertinib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Osimertinib prolongs the QTc interval.(1) Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(2,3) CLINICAL EFFECTS: The concurrent use of osimertinib with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(2,3) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: Osimertinib prolongs the QT interval. Premarket clinical trials excluded patients with a baseline QTc > or = 470 msec. In these trials 11 patients (2.7%) had increase in QTc greater than 60 msec.(1) Manufacturer recommendations: when feasible, avoid concurrent administrations of osimertinib with drugs known to prolong the QTc interval. Conduct baseline and periodic monitoring with ECGs in patients with congenital long QTc syndrome, congestive heart failure, electrolyte abnormalities (e.g. serum calcium, magnesium, and potassium), or those taking medications known to prolong the QT interval.(1) Dose adjustments (1): - If QTc is greater than 500 msec on at least 2 separate ECGs, withhold osimertinib until QTc is < 481 msec or recovery to baseline (if baseline QTc was greater than or equal to 481 msec), then resume osimertinib at 40 mg per day. - For QTc prolongation with signs or symptoms of life threatening arrhythmia, permanently discontinue osimertinib. During concomitant therapy with another QT prolonging agent, monitor patients closely for prolongation of the QT interval.(1) Obtain serum calcium, magnesium, and potassium levels and monitoring ECG at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: A retrospective review of 618 cancer patients treated with 902 administrations of tyrosine kinase inhibitors were evaluated for rate and incidence of QTc prolongation. In patients who received osimertinib, QTc prolongation was identified in 4 (25%) with 1 (25%) having Grade 1 (QTc 450-480 ms) and 1 (25%) having Grade 2 (QTc 480-500 ms). Grade 3 events occurred in 1 (25%) having QTc greater than or equal to 500 ms and 1 (25%) having QTc change greater than or equal to 60 ms. No patients had ventricular tachycardia, sudden cardiac death, or TdP.(4) In clinical studies of 1813 patients treated with osimertinib monotherapy, 1.1% of patients were found to have a QTc interval greater than 500 ms and 4.3% of patients had an increase from baseline QTc > 60 ms.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
TAGRISSO |
Bedaquiline/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of bedaquiline with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The use of bedaquiline patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Bedaquiline should be used with caution in patients receiving therapy with agents that prolong the QT interval. Patients should receive a baseline electrocardiogram (ECG) before initiation, 2 weeks after initiation, during treatment as clinically indicated, and at the expected time of maximum increase of the QT interval when receiving concurrent agents that prolong the QT interval. Bedaquiline and other QT prolonging agents should be discontinued if the patient develops a clinically significant ventricular arrhythmia or a QTcF of greater than 500 msec confirmed by repeat ECGs. If a patient develops syncope, perform an ECG.(1) Also consider obtaining serum calcium, magnesium, and potassium levels at baseline and regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a clinical trial, mean increases in QTc were greater in patients treated with bedaquiline than with placebo. At Week 1, bedaquiline increased QTc by an average of 9.9 msec, compared with 2.5 msec for placebo. At Week 24, bedaquiline increased QTc by an average of 15.7 msec, compared with 6.2 msec for placebo. In another clinical trial in which patients received bedaquiline with other QT prolonging agents, QT prolongation was additive and proportional to the number of QT prolonging drugs used. Patients receiving bedaquiline alone averaged a QTc increase of 23.7 msec over baseline, while patients receiving bedaquiline with at least one other QT prolonging agent averaged a QTc increase of 30.7 msec.(1) In a study, bedaquiline was coadministered with QTc prolonging agents clofazimine and levofloxacin. In the study, 5% of patients had a QTc >= 500 ms and 43% of patients had an increase in QTc >= 60 ms from baseline.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
SIRTURO |
Pimavanserin/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Pimavanserin prolongs the QTc interval.(1) Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(2,3) CLINICAL EFFECTS: The concurrent use of pimavanserin with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(2,3) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: Avoid the use of pimavanserin in patients receiving QT prolonging agents.(1) During concomitant therapy with another QT prolonging agent, monitor patients closely for prolongation of the QT interval.(1) Obtain serum calcium, magnesium, and potassium levels and monitoring ECG at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In thorough-QT study, pimavanserin (at twice the therapeutic dose) found that the maximum mean change was 13.5 (16.6) msec. In placebo-controlled effectiveness studies, mean increases of 5-8 msec were observed with normal dosages of 37 mg daily. Sporadic QTcF values of equal to or greater than 500 msec and change from baseline values equal to or greater than 60 msec were observed at this dose as well.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
NUPLAZID |
Hydroxyzine/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of hydroxyzine with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1-4) CLINICAL EFFECTS: The concurrent use of hydroxyzine with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1-4) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(5) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(5) Doses of hydroxyzine greater than 100 mg/day may also increase the risk.(1,2) PATIENT MANAGEMENT: Concurrent use of hydroxyzine with agents known to prolong the QT interval is contraindicated in Canada(1,2) and the UK.(3) The US manufacturer states that concurrent use should be approached with caution.(4) If concurrent therapy is deemed medically necessary, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In vitro data indicates that hydroxyzine blocks the hERG channel, which results in the potential risk of QT interval prolongation.(6) In a placebo controlled, non-thorough QT study, 10 patients in the placebo group (n=152) had a change in QT interval from baseline between 30 ms and 60 ms and one patient presented a change from baseline higher than 60 ms. In the hydroxyzine group (n=148), 14 subjects had a change in QT interval from baseline between 30 and 60 ms and were considered to have a potential risk factor for risk of QT interval prolongation and TdP due to relevant medical history, concomitant medication potentially associated with the induction of prolongation of QT interval, and/or polymedication.(6) Health Canada reviewed 61 cases of QT interval prolongation or torsades de pointes with hydroxyzine. In a majority of cases, patients had additional risk factors for QT prolongation. Three reports provided enough data for a more detailed review. Hydroxyzine was found to be either "possible" or "probably" contribution to QT prolongation/torsades in these reports.(1) The European Medicines Agency's Pharmacovigilance Risk Assessment Committee (PRAC) reviewed 190 case reports found in a search of "torsade de pointes/QT prolongation with hydroxyzine". Forty-two non-fatality cases were subdivided into torsades (n=16), QT prolongation (n=21), and ventricular tachycardia (n=5). All included risk factors for QT interval prolongation and TdP (cardiac disorders, hypokalemia, long QT syndrome, bradycardia, concomitant drugs which are known to prolong the QT interval). Dosages ranged from <= 100 mg/day (n=10), > 100 mg/day to <=300 mg/day (n=4), > 300 mg/day (n=8), overdosages (n=11), and premedication (n=9). Twenty-one cases involving fatalities had at least one risk factor for QT prolongation. The PRAC concluded that post-marketing cases of QT interval prolongation, TdP and ventricular tachycardia confirm the findings of the hERG studies suggesting that hydroxyzine blocks hERG channels. No difference in the risk of QT interval prolongation could be observed based on the indication, age of the subject, or dose.(6) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(7) |
HYDROXYZINE HCL, HYDROXYZINE PAMOATE |
Ribociclib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of ribociclib with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of ribociclib with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Avoid concurrent use of ribociclib with agents known to prolong the QT interval.(1) If concurrent therapy is deemed medically necessary, monitor patients closely. Obtain serum calcium, magnesium, and potassium levels and correct any electrolyte abnormalities at the beginning of each ribociclib cycle. Monitor ECG at baseline, Day 14 of the first cycle, at the beginning of the second cycle, and as necessary. If a prolonged QTc is noted, refer to ribociclib prescribing information for current dose modification and management instructions. Ribociclib may need to be interrupted, reduced, or discontinued.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Ribociclib has been shown to prolong the QTc interval in a concentration-dependent manner. At steady state, the mean increase in QTc interval exceeded 20 msec.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
KISQALI |
Inotuzumab Ozogamicin/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of inotuzumab ozogamicin with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of inotuzumab ozogamicin with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: When possible, discontinue QT prolonging agents prior to therapy with inotuzumab ozogamicin or use alternative agents during inotuzumab ozogamicin therapy.(1) When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy.(1) Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting.(1) DISCUSSION: Inotuzumab ozogamicin was shown to prolong the QT interval in clinical trials. In the INO-VATE trial, 3% (4/162) of patients experienced an increase in QTc equal to or greater than 60 msec. No patients has QTc values greater than 500 msec. Grade 2 QT prolongation was reported in 1% (2/164) patients. There were no reports of Grade 3 QT prolongation or Torsade de Pointes.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
BESPONSA |
Lofexidine/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Lofexidine has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1,2) CLINICAL EFFECTS: Concurrent use of lofexidine and agents known to prolong the QT interval may exacerbate QT prolongation.(1,2) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, advanced age,(3) renal impairment, and/or hepatic impairment.(1,2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The UK manufacturer of lofexidine states that concurrent use of lofexidine and QT prolonging agents should be avoided.(1) The US manufacturer states that ECGs should be monitored in patients receiving concurrent therapy with lofexidine and agents that are known to prolong the QT interval.(2) Consider obtaining serum calcium, magnesium, and potassium levels at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a study of healthy volunteers, lofexidine 1.44 mg to 1.8 mg had a change from baseline in QTc of 14.4 msec and 13.6 msec, respectively.(2) In a dose response study, lofexidine had a mean QTc prolongation of 7.3 msec and 9.3 msec at doses of 2.16 mg/day and 2.88 mg/day, respectively.(2) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(4) |
LOFEXIDINE HCL, LUCEMYRA |
Encorafenib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of encorafenib with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of encorafenib with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Avoid the concurrent use of encorafenib with medications that prolong the QT interval.(1) Recommended dosage modifications for encorafenib and QTc prolongation adverse reactions include: - QTcF greater than 500 ms and less than or equal to 60 ms increase from baseline: Withhold encorafenib until QTcF less than or equal to 500 ms. Resume at reduced dose. If more than one recurrence, permanently discontinue encorafenib. - QTcF greater than 500 ms and greater than 60 ms increase from baseline: Permanently discontinue encorafenib.(1) See prescribing information for additional information regarding dose reductions.(1) When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Encorafenib has been associated with a dose-dependent QTc interval prolongation. Following administration of encorafenib in combination with binimetinib, the largest mean (90% CI) QTcF change from baseline was 18 ms (14-22 ms), based on central tendency analysis.(1) Following administration of encorafenib in combination with cetuximab and mFOLFOX6, an increase of QTcF >500 ms was measured in 3.6% (8/222) of patients.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
BRAFTOVI |
Ivosidenib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of ivosidenib with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of ivosidenib with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Avoid the concurrent use of ivosidenib with medications that prolong the QT interval.(1) When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. If QTc prolongation develops: ---Monitor and supplement electrolytes as clinically indicated ---Review and adjust concomitant QT prolonging medications ---Interrupt ivosidenib therapy ---Monitor ECGs at least weekly for 2 weeks following resolution of QTc prolongation ---Follow labeling recommendations regarding restarting ivosidenib.(1) DISCUSSION: In clinical trials of ivosidenib, 9% of patients experienced a QTc interval greater than 500 msec and 14% of patients had an increased from baseline QTc interval of greater than 60 msec. Patients with a baseline QTc of equal to or greater than 450 msec without pre-existing bundle branch block, or with a history of long QT syndrome were excluded from this trial.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
TIBSOVO |
Glasdegib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of glasdegib with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of glasdegib with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Avoid the concurrent use of glasdegib with medications that prolong the QT interval.(1) When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. If QTc prolongation develops: ---Monitor and supplement electrolytes as clinically indicated ---Review and adjust concomitant QT prolonging medications ---Interrupt glasdegib therapy for QTc interval greater than 500 ms. ---Monitor ECGs at least weekly for 2 weeks following resolution of QTc prolongation ---Follow labeling recommendations regarding restarting glasdegib.(1) DISCUSSION: In a randomized, single-dose, double-blind, 4-way cross-over, placebo- and open-label moxifloxacin-controlled study in 36 healthy subjects, the largest placebo and baseline-adjusted QTc interval change was 8 msec (90% CI: 6-10 msec) with a single 150 mg dose of glasdegib (The 150 mg single dose was used to achieve therapeutic plasma concentrations). With two-fold therapeutic plasma concentrations (achieved with a 300 mg single dose), the QTc change was 13 msec (90% CI: 11-16 msec).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
DAURISMO |
Entrectinib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of entrectinib with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of entrectinib with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Avoid the concurrent use of entrectinib with medications that prolong the QT interval.(1) When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. If QTc prolongation develops: ---Monitor and supplement electrolytes as clinically indicated ---Review and adjust concomitant QT prolonging medications ---Interrupt entrectinib therapy for QTc interval greater than 500 ms. ---Follow labeling recommendations regarding restarting entrectinib.(1) If torsade de pointes, polymorphic ventricular tachycardia, and/or signs/symptoms of serious arrhythmia occur, permanently discontinue entrectinib.(1) DISCUSSION: In clinical trials, 3.1% of patients with at least one post-baseline ECG experienced QTcF prolongation of greater than 60 msec after starting entrectinib..(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
ROZLYTREK |
Lefamulin/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of lefamulin with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of lefamulin with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Avoid the concurrent use of lefamulin with medications that prolong the QT interval.(1) When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy. Correct any electrolyte abnormalities.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a thorough QT study, intravenous lefamulin increased the QTcF 13.6 msec (90% CI = 15.5 msec) and oral lefamulin increased the QTcF by 9.3 msec (90% CI = 10.9 msec).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
XENLETA |
Selpercatinib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Selpercatinib prolongs the QTc interval.(1) Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(2,3) CLINICAL EFFECTS: The concurrent use of selpercatinib with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(2,3) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: Selpercatinib prolongs the QT interval. An increase in QT interval to > 500 ms was measured in 6% of patients and increase in the QT interval of at least 60 ms over baseline was measured in 15% of patients. Monitor patients at significant risk of developing QT prolongation, including patients with known long QT syndromes, clinically significant bradyarrhythmias, and severe or uncontrolled heart failure. Assess QT interval, electrolytes, and TSH at baseline and periodically during treatment. Correct hypokalemia, hypomagnesemia, and hypocalcemia prior to initiation and during treatment. Dose adjustments (1): For grade 3 QT interval prolongation, withhold selpercatinib until recovery to baseline or grade 0 or 1. Resume at a reduced dose. -1st dose reduction: For patients weighing less than 50 kg: 80 mg twice daily. For patients weighing 50 kg or greater: 120 mg twice daily. -2nd dose reduction: For patients weighing less than 50 kg: 40 mg twice daily. For patients weighing 50 kg or greater: 80 mg twice daily. -3rd dose reduction: For patients weighing less than 50 kg: 40 mg once daily. For patients weighing 50 kg or greater: 40 mg twice daily. -For grade 4 QT prolongation, discontinue selpercatinib. DISCUSSION: The effect of selpercatinib on the QT interval was evaluated in a thorough QT study in healthy subjects. The largest mean increase in QT is predicted to be 10.6 ms (upper 90% confidence interval: 12.1 ms) at the mean steady state maximum concentration (Cmax) observed in patients after administration of 160 mg twice daily. The increase in QT was concentration-dependent. Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
RETEVMO |
Sodium Iodide I 131/Myelosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Sodium iodide I 131 can cause depression of the hematopoetic system. Myelosuppressives and immunomodulators also suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of sodium iodide I 131 with agents that cause bone marrow depression, including myelosuppressives or immunomodulators, may result in an enhanced risk of hematologic disorders, including anemia, blood dyscrasias, bone marrow depression, leukopenia, and thrombocytopenia. Bone marrow depression may increase the risk of serious infections and bleeding.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of sodium iodide I 131 states that concurrent use with bone marrow depressants may enhance the depression of the hematopoetic system caused by large doses of sodium iodide I 131.(1) Sodium iodide I 131 causes a dose-dependent bone marrow suppression, including neutropenia or thrombocytopenia, in the 3 to 5 weeks following administration. Patients may be at increased risk of infections or bleeding during this time. Monitor complete blood counts within one month of therapy. If results indicate leukopenia or thrombocytopenia, dosimetry should be used to determine a safe sodium iodide I 131 activity.(1) DISCUSSION: Hematologic disorders including death have been reported with sodium iodide I 131. The most common hematologic disorders reported include anemia, blood dyscrasias, bone marrow depression, leukopenia, and thrombocytopenia.(1) |
HICON, SODIUM IODIDE I-131 |
Pacritinib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Pacritinib has been observed to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of pacritinib with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of pacritinib states concurrent use with agents known to prolong the QT interval should be avoided. Avoid the use of pacritinib in patients with a baseline QTc > 480 msec. Correct hypokalemia prior to initiation and during therapy with pacritinib.(1) If patients develop QTc prolongation >500 msec or >60 msec from baseline, hold pacritinib. If QTc prolongation resolves to <=480 msec or to baseline within 1 week, resume pacritinib at the same dose. If time to resolution of the QTc interval takes greater than 1 week to resolve, reduce the pacritinib dose.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a 24 week clinical study, patients treatment with pacritinib 200 mg twice daily had a change in QTc from baseline of 11 msec (90% CI: 5-17).(1) Pacritinib has been associated with QTc interval prolongation. In clinical trials, patients with QTc prolongation >500 msec occurred in 1.4% of patients in the treatment arm compared to 1% in the control arm. The treatment arm had a greater incidence of an increase in QTc > 60 msec from baseline than the control arm (1.9% vs 1%, respectively). QTc prolongation adverse reactions were higher in the treatment arm than the control group (3.8% vs 2%, respectively).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
VONJO |
Givinostat/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Givinostat may prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of givinostat with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of givinostat states that the concurrent use of QT prolonging agents should be avoided. If concurrent use cannot be avoided, obtain ECGs prior to initiating givinostat, during concomitant use, and as clinically indicated.(1) If the QTc interval is greater than 500 ms or the change from baseline is greater than 60 ms, withhold givinostat therapy.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a QT study, the largest mean increase in QTc interval of 13.6 ms (upper confidence interval of 17.1 ms) occurred 5 hours after administration of givinostat 265.8 mg (approximately 5 times the recommended 53.2 mg dose in patients weighing 60 kg or more).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
DUVYZAT |
There are 7 moderate interactions.
The clinician should assess the patient’s characteristics and take action as needed. Actions required for moderate interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration.
Drug Interaction | Drug Names |
---|---|
Fingolimod/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Fingolimod is a sphingosine 1-phosphate (S1P) receptor modulator. Initiation of fingolimod has a negative chronotropic effect leading to a mean decrease in heart rate of 13 beats per minute (bpm) after the first dose. The first dose has also been associated with heart block.(1-3) Fingolimod blocks the capacity of lymphocytes to egress from lymph nodes, reducing the number of lymphocytes in peripheral blood. The mechanism by which fingolimod exerts therapeutic effects in multiple sclerosis is unknown but may involve the reduction of lymphocyte migration into the central nervous system.(1-3) CLINICAL EFFECTS: The heart rate lowering effect of fingolimod is biphasic with an initial decrease usually within 6 hours, followed by a second decrease 12 to 24 hours after the first dose. Symptomatic bradycardia and heart block, including third degree block, have been observed. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes. There is no consistent signal of increased incidence of QTc outliers, either absolute or change from baseline, associated with fingolimod treatment.(1-3) PREDISPOSING FACTORS: Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to fingolimod initiation, factors associated with QTc prolongation (e.g. hypokalemia, hypomagnesemia), or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to fingolimod. The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: Patients with a baseline QTc interval greater than or equal to 500 milliseconds should not be started on fingolimod. Patients with pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, or a prolonged QTc interval prior to fingolimod initiation should receive cardiologist consultation to evaluate the risks of fingolimod therapy. In all patients, first dose monitoring is recommended to monitor for bradycardia for the first 6 hours. Check blood pressure and pulse hourly. ECG monitoring is recommended prior to dosing and at the end of the observation period. US monitoring recommendations include additional monitoring for the following patients:(1) If heart rate (HR) is less than 45 beats per minute (bpm), the heart rate 6 hours postdose is at the lowest value postdose, or if the ECG shows new onset of second degree or higher AV block at the end of the monitoring period, then monitoring should continue until the finding has resolved. Continuous overnight ECG monitoring is recommended in patients requiring pharmacologic intervention for symptomatic bradycardia, some preexisting heart and cerebrovascular conditions, prolonged QTc before dosing or during 6 hours observation, concurrent therapy with QT prolonging drugs, or concurrent therapy with drugs that slow heart rate or AV conduction. Consult the prescribing information for full monitoring recommendations. United Kingdom recommendations:(3) Obtain a 12-lead ECG prior to initiating fingolimod therapy. Consult a cardiologist for pretreatment risk-benefit assessment if patient has a resting heart rate less than 55 bpm, history of syncope, second degree or greater AV block, sick-sinus syndrome, concurrent therapy with beta-blockers, Class Ia, or Class III antiarrhythmics, heart failure or other significant cardiovascular disease. Perform continuous ECG monitoring, measure blood pressure and heart rate every hour, and perform a 12-lead ECG 6 hours after the first dose. Monitoring should be extended beyond 6 hours if symptomatic bradycardia or new onset of second degree AV block, Mobitz Type II or third degree AV block has occurred at any time during the monitoring period. If heart rate 6 hours after the first dose is less than 40 bpm, has decreased more than 20 bpm compared with baseline, or if a new onset second degree AV block, Mobitz Type I (Wenckebach) persists, then monitoring should also be continued. If fingolimod treatment is discontinued for more than two weeks, the effects on heart rate and conduction could recur. Thus, first dose monitoring precautions should be followed upon reintroduction of fingolimod. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: After the first dose of fingolimod, heart rate decrease may begin within an hour. Decline is usually maximal at approximately 6 hours followed by a second decrease 12 to 24 hours after the first dose. The second dose may further decrease heart rate, but the magnitude of change is smaller than the first dose. With continued, chronic dosing, heart rate gradually returns to baseline in about one month.(1,2) In a thorough QT interval study of doses of 1.25 or 2.5 mg fingolimod at steady-state, when a negative chronotropic effect of fingolimod was still present, fingolimod treatment resulted in a prolongation of QTc, with the upper boundary of the 90% confidence interval (CI) of 14.0 msec. The cause of death in a patient who died within 24 hour after taking the first dose of fingolimod was not conclusive; however a link to fingolimod or a drug interaction with fingolimod could not be ruled out.(1) |
FINGOLIMOD, GILENYA, TASCENSO ODT |
Efavirenz/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Efavirenz has been observed to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of efavirenz with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) CYP2B6 genotype may also increase the risk of this interaction. Patients who are most susceptible to this interaction are patients who are CYP2B6 poor metabolizers with CYP2B6 *6/*6 allele.(3) PATIENT MANAGEMENT: The US manufacturer of efavirenz states alternatives should be considered when concurrent administration with a drug with a known risk of Torsade de Pointes or when administered to patients at higher risk of Torsade de Pointes. Limited information is available on the potential pharmacodynamic interaction between efavirenz and drugs that prolong the QT interval; however, QT prolongation has been observed with efavirenz.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: A thorough QT study was conducted in the general population in 120 healthy subjects receiving efavirenz 600 mg daily. Time-matched differences in QTc with efavirenz compared to placebo was evaluated on day 11, at 6 hours post dose. The mean change in QTc was 5.2 msec and no change in QTc was greater than 10 msec.(4) In addition to the thorough QT study, the effect of efavirenz on the QTc interval was evaluated in 58 healthy subjects based on CYP2B6 genotype. CYP2B6 polymorphism was evaluated for each patient and results were the following: 65% with *1/*1 or *1/*4 allele (wild-type metabolizers), 26% with *1/*6 allele (intermediate metabolizers) and 9% with *6/*6 allele (slow metabolizers). Subjects with 2 copies of the CYP2B6*6 allele had significantly higher efavirenz exposure at steady-state (p<0.05). At steady-state concentrations of efavirenz, patients with CYP2B6 *1/*1 or *1/*6 alleles had no change in the QTc interval (p>0.05). However, patients with CYP2B6 *6/*6 allele had an increase in QTc mean +/- SD from 406 +/- 16.4 to 423 +/- 11.8 msec (p=0.02).(3) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(5) |
EFAVIRENZ, EFAVIRENZ-EMTRIC-TENOFOV DISOP, EFAVIRENZ-LAMIVU-TENOFOV DISOP, SYMFI, SYMFI LO |
Gilteritinib/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of gilteritinib with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of gilteritinib with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(1) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(1) PATIENT MANAGEMENT: When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. Prior to initiation of therapy with gilteritinib, obtain baseline ECG and on days 8 and 15 of cycle 1, and prior to the start of the next two subsequent cycles. If QTc prolongation develops: ---Monitor and supplement electrolytes as clinically indicated ---Review and adjust concomitant QT prolonging medications For a QTc interval greater than 500 msec: ---Interrupt gilteritinib therapy ---Resume gilteritinib therapy at 80 mg when the QTc interval returns to within 30 msec of baseline or <= 480 msec. For QTc interval increased by > 30 msec on ECG on Day 8 of cycle 1: ---Confirm with ECG on Day 9 ---If confirmed, consider dose reduction to 80 mg.(2) DISCUSSION: In the gilteritinib clinical trial, 1.4% of patients developed a QTc interval greater than 500 msec and 7% of patients had an increase QTc greater than 60 msec.(2) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
XOSPATA |
Pitolisant/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of pitolisant with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of pitolisant with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: Patients who are CYP2D6 poor metabolizers or on concurrent use with CYP2D6 inhibitors are at increased risk for higher systemic exposure to pitolisant and may be at increased risk of QT prolongation.(1) The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting.(2) DISCUSSION: In two dedicated QT prolongation studies, supra-therapeutic doses of pitolisant at 3-6 times the therapeutic dose (108-216 mg) were seen to cause mild to moderate QTc prolongation (10-13 ms). A study in patients who were CYP2D6 poor metabolizers had higher systemic exposure up to 3-fold compared to CYP2D6 extensive metabolizers.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
WAKIX |
Siponimod/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Siponimod is a sphingosine-1-phosphate (S1P) receptor modulator. Initiation of siponimod has a negative chronotropic effect. Siponimod blocks the capacity of lymphocytes to egress from lymph nodes, reducing the number of lymphocytes in peripheral blood. The mechanism by which siponimod exerts therapeutic effects in multiple sclerosis is unknown, but may involve reduction of lymphocyte migration into the central nervous system.(1,2) CLINICAL EFFECTS: The heart rate lowering effect of siponimod starts within an hour, and the Day 1 decline is maximal at approximately 3-4 hours. This leads to a mean decrease in heart rate of 5-6 beats per minute after the first dose. The first dose has also been associated with heart block. With continued up-titration, further heart rate decreases are seen on subsequent days, with maximal decrease from Day 1-baseline reached on Day 5-6. Symptomatic bradycardia has been observed. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes.(1) PREDISPOSING FACTORS: Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to siponimod initiation, factors associated with QTc prolongation (e.g. hypokalemia, hypomagnesemia), or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to siponimod. The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: Prior to initiation of siponimod, obtain an ECG to determine if preexisting conduction abnormalities are present.(1) Advice from a cardiologist is recommended in patients with preexisting heart and cerebrovascular conditions, prolonged QTc interval before or during the 6 hour observation, risk factors for QT prolongation, concurrent therapy with QT prolonging drugs or drugs that slow the heart rate or AV conduction.(1) In patients with heart rate (HR) less than 55 beats per minute (bpm), first- or second-degree AV block, or history of myocardial infarction or heart failure, first dose monitoring is recommended with hourly pulse and blood pressure to monitor for bradycardia for the first 6 hours. ECG monitoring is recommended prior to dosing and at the end of the observation period.(1) Additional US monitoring recommendations include: If HR is less than 45 bpm, the heart rate 6 hours postdose is at the lowest value postdose or if the ECG shows new onset of second degree or higher AV block at the end of the monitoring period, then monitoring should continue until the finding has resolved. If patient requires treatment for symptomatic bradycardia, second-degree or higher AV block, or QTc interval greater than or equal to 500 msec, perform continuous overnight ECG monitoring. Repeat the first dose monitoring strategy for the second dose of siponimod. If a titration dose is missed or if 4 or more consecutive daily doses are missed during maintenance treatment, reinitiate Day 1 of the dose titration and follow titration monitoring recommendations. Patient will need to be observed in the doctor's office or other facility for at least 6 hours after the first dose and after reinitiation if treatment is interrupted or discontinued for certain periods. Consult the prescribing information for full monitoring recommendations. United Kingdom recommendations:(3) In certain patients, it is recommended that an electrocardiogram (ECG) is obtained prior to dosing and at the end of the observation period. If post-dose bradyarrhythmia or conduction-related symptoms occur or if ECG 6 hours post-dose shows new onset second-degree or higher AV block or QTc > 500 msec, appropriate management should be initiated and observation continued until the symptoms/findings have resolved. If pharmacological treatment is required, monitoring should be continued overnight and 6-hour monitoring should be repeated after the second dose. During the first 6 days of treatment, if a titration dose is missed on one day, treatment needs to be re-initiated with a new titration pack. If there is a missed dose after day 6 the prescribed dose should be taken at the next scheduled time; the next dose should not be doubled. If maintenance treatment is interrupted for 4 or more consecutive daily doses, siponimod needs to be re-initiated with a new titration pack.(1,2) DISCUSSION: After the first dose of siponimod, heart rate decrease may begin within an hour. Decline is usually maximal at approximately 3-4 hours. With continued, chronic dosing, heart rate gradually returns to baseline in about 10 days.(1,2) A transient, dose-dependent decrease in heart rate was observed during the initial dosing phase of siponimod, which plateaued at doses greater than or equal to 5 mg, and bradyarrhythmic events (AV blocks and sinus pauses) were detected at a higher incidence under siponimod treatment than placebo. AV blocks and sinus pauses occurred above the recommended dose of 2 mg, with notably higher incidence under non-titrated conditions compared to dose titration conditions.(1) |
MAYZENT |
Ponesimod/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Ponesimod is a sphingosine 1-phosphate (S1P) receptor 1 modulator. Initiation of ponesimod has a negative chronotropic effect leading to a mean decrease in heart rate of 6 beats per minute (bpm) after the first dose. The first dose has also been associated with heart block.(1) CLINICAL EFFECTS: After a dose of ponesimod, a decrease in heart rate typically begins within an hour and reaches its nadir within 2-4 hours. The heart rate typically recovers to baseline levels 4-5 hours after administration. All patients recovered from bradycardia. The conduction abnormalities typically were transient, asymptomatic, and resolved within 24 hours. Second- and third-degree AV blocks were not reported. With up-titration after Day 1, the post-dose decrease in heart rate is less pronounced. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes.(1,2) PREDISPOSING FACTORS: Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to ponesimod initiation, factors associated with QTc prolongation, or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to ponesimod.(1) The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Prior to initiation of ponesimod, obtain an ECG to determine if preexisting conduction abnormalities are present. Ponesimod is generally not recommended in patients who are receiving concurrent treatment with a QT prolonging agent, anti-arrhythmic drugs, or drugs that may decrease heart rate. Consultation with a cardiologist is recommended.(1) In patients with heart rate (HR) less than 55 beats per minute (bpm), first- or second-degree AV block, or history of myocardial infarction or heart failure, monitor patients for 4 hours after the first dose for signs and symptoms of bradycardia with a minimum of hourly pulse and blood pressure measurements. Obtain an ECG in these patients prior to dosing and at the end of the 4-hour observation period.(1) Additional US monitoring recommendations include: If HR is less than 45 bpm, the heart rate 4 hours post-dose is at the lowest value post-dose or if the ECG shows new onset of second degree or higher AV block at the end of the monitoring period, then monitoring should continue until the finding has resolved. If patient requires treatment for symptomatic bradycardia, second-degree or higher AV block, or QTc interval greater than or equal to 500 msec, perform continuous overnight ECG monitoring and repeat the first dose monitoring strategy for the second dose of ponesimod. Consult the prescribing information for full monitoring recommendations. If fewer than 4 consecutive doses are missed during titration: resume treatment with the first missed titration dose and resume the titration schedule at that dose and titration day. If fewer than 4 consecutive doses are missed during maintenance: resume treatment with the maintenance dosage. If 4 or more consecutive daily doses are missed during treatment initiation or maintenance treatment, reinitiate Day 1 of the dose titration (new starter pack) and follow first-dose monitoring recommendations. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: After the first dose of ponesimod, heart rate decrease may begin within the first hour. Decline is usually maximal at approximately 4 hours. With continued, chronic dosing, post-dose decrease in heart rate is less pronounced. Heart rate gradually returns to baseline in about 4-5 hours.(1) |
PONVORY |
Ozanimod/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Ozanimod is a sphingosine 1-phosphate (S1P) receptor modulator. Initiation of ozanimod has a negative chronotropic effect leading to a mean decrease in heart rate of 13 beats per minute (bpm) after the first dose. The first dose has also been associated with heart block.(1,2) Ozanimod blocks the capacity of lymphocytes to egress from lymph nodes, reducing the number of lymphocytes in peripheral blood. The mechanism by which ozanimod exerts therapeutic effects in multiple sclerosis is unknown but may involve the reduction of lymphocyte migration into the central nervous system. CLINICAL EFFECTS: The initial heart rate lowering effect of ozanimod usually occurs within 5 hours. With continued up-titration, the maximal heart rate effect of ozanimod occurred on Day 8. Symptomatic bradycardia and heart block, including third degree block, have been observed. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes.(1,2) PREDISPOSING FACTORS: Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to ozanimod initiation, factors associated with QTc prolongation (e.g. hypokalemia, hypomagnesemia), or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to ozanimod.(1,2) The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: Prior to initiation of ozanimod, obtain an ECG to determine if preexisting conduction abnormalities are present. Patients with preexisting cardiac conditions, significant QT prolongation (QTc >450 msec in males, >470 msec in females), concurrent Class Ia or Class III antiarrhythmics, or receiving concurrent treatment with a QT prolonging agent at the time ozanimod is initiated or resumed should be referred to a cardiologist.(1) The US recommendations state: Dose titration is recommended with initiation of ozanimod due to transient decrease in heart rate and AV conduction delays.(1) United Kingdom recommendations:(2) Due to the risk of transient decreases in HR with the initiation of ozanimod, first dose, 6-hour monitoring for signs and symptoms of symptomatic bradycardia is recommended in patients with resting HR <55 bpm, second-degree [Mobitz type I] AV block or a history of myocardial infarction or heart failure. Patients should be monitored with hourly pulse and blood pressure measurement during this 6-hour period. An ECG prior to and at the end of this 6-hour period is recommended. Additional monitoring after 6 hours is recommended in patients with: heart rate less than 45 bpm, heart rate at the lowest value post-dose (suggesting that the maximum decrease in HR may not have occurred yet), evidence of a new onset second-degree or higher AV block at the 6-hour post dose ECG, or QTc interval greater than 500 msec. In these cases, appropriate management should be initiated and observation continued until the symptoms/findings have resolved. Instruct patients to report any irregular heartbeat, dizziness, or fainting.(2,3) DISCUSSION: After the first dose of ozanimod heart rate decline is usually maximal at approximately 5 hours, returning to baseline at 6 hours. With continued, chronic dosing, maximum heart rate effect occurred on day 8.(1,2) |
ZEPOSIA |
The following contraindication information is available for AGRYLIN (anagrelide hcl):
Drug contraindication overview.
Severe hepatic impairment.
Severe hepatic impairment.
There are 7 contraindications.
Absolute contraindication.
Contraindication List |
---|
Cerebral amyloid angiopathy |
Congenital long QT syndrome |
Glucose-galactose malabsorption |
Lactation |
Prolonged QT interval |
Torsades de pointes |
Ventricular tachycardia |
There are 9 severe contraindications.
Adequate patient monitoring is recommended for safer drug use.
Severe List |
---|
Child-pugh class B hepatic impairment |
Chronic heart failure |
Disease of liver |
Eosinophilic pneumonia |
Hypocalcemia |
Hypokalemia |
Hypomagnesemia |
Increased risk of bleeding |
Interstitial lung disease |
There are 4 moderate contraindications.
Clinically significant contraindication, where the condition can be managed or treated before the drug may be given safely.
Moderate List |
---|
Anemia |
Increased cardiovascular event risk |
Pulmonary hypertension |
Thrombocytopenic disorder |
The following adverse reaction information is available for AGRYLIN (anagrelide hcl):
Adverse reaction overview.
Headache, palpitations, diarrhea, asthenia, edema, nausea, abdominal pain, dizziness, pain, dyspnea, flatulence, vomiting, fever, peripheral edema, rash, chest pain, anorexia, tachycardia, pharyngitis, malaise, cough, paresthesia, back pain, pruritus, dyspepsia.
Headache, palpitations, diarrhea, asthenia, edema, nausea, abdominal pain, dizziness, pain, dyspnea, flatulence, vomiting, fever, peripheral edema, rash, chest pain, anorexia, tachycardia, pharyngitis, malaise, cough, paresthesia, back pain, pruritus, dyspepsia.
There are 34 severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Pulmonary infiltrates |
Acute myocardial infarction Angina Asthma Atrial fibrillation Bronchitis Cardiac arrhythmia Cardiomegaly Cardiomyopathy Cerebrovascular accident Chronic heart failure Complete atrioventricular block Gastrointestinal hemorrhage Hemorrhage Pericarditis Pneumonia Thrombocytopenic disorder |
Rare/Very Rare |
---|
Abnormal hepatic function tests Eosinophilic pneumonia Gastrointestinal ulcer Hepatitis Interstitial lung disease Interstitial nephritis Leukocytosis Pancreatitis Pleural effusions Prolonged QT interval Pulmonary fibrosis Pulmonary hypertension Renal failure Seizure disorder Supraventricular tachycardia Torsades de pointes Ventricular tachycardia |
There are 61 less severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Acute abdominal pain Anorexia Back pain Chest pain Cough Diarrhea Dizziness Dyspepsia Dyspnea Edema Fever Flatulence General weakness Headache disorder Malaise Nausea Pain Palpitations Paresthesia Peripheral edema Pruritus of skin Tachycardia Vomiting |
Acute cognitive impairment Anemia Aphthous stomatitis Arthralgia Black tarry stools Chills Constipation Cramps in legs Dehydration Depression Diplopia Drowsy Dysuria Ecchymosis Epistaxis Eructation Flu-like symptoms Gastritis Hematuria Hypertension Hypotension Insomnia Lymphadenopathy Memory impairment Myalgia Nervousness Orthostatic hypotension Pharyngitis Rhinitis Skin photosensitivity Skin rash Syncope Tinnitus Toxic amblyopia Vasodilation of blood vessels Visual changes |
Rare/Very Rare |
---|
Alopecia Hypoesthesia |
The following precautions are available for AGRYLIN (anagrelide hcl):
Evaluated in a limited number of children and adolescents 7-14 years of age with thrombocythemia secondary to myeloproliferative disorders; preliminary data suggest no overall differences in dosage or adverse effects relative to adults.
Contraindicated
Severe Precaution
Management or Monitoring Precaution
Contraindicated
None |
Severe Precaution
None |
Management or Monitoring Precaution
None |
Category C. (See Users Guide.)
Not known whether anagrelide is distributed into human milk. Discontinue nursing or drug because of potential risk in nursing infants.
Response in patients 65 years of age or older does not appear to differ from that in younger adults. Use with caution because of age-related decreases in hepatic, renal, and/or cardiac function.
The following prioritized warning is available for AGRYLIN (anagrelide hcl):
No warning message for this drug.
No warning message for this drug.
The following icd codes are available for AGRYLIN (anagrelide hcl)'s list of indications:
Essential thrombocytosis | |
D47.3 | Essential (hemorrhagic) thrombocythemia |
Thrombocytosis in myeloproliferative disease | |
D47.1 | Chronic myeloproliferative disease |
D47.3 | Essential (hemorrhagic) thrombocythemia |
Formulary Reference Tool