Please wait while the formulary information is being retrieved.
Drug overview for VISTARIL (hydroxyzine pamoate):
Generic name: HYDROXYZINE PAMOATE (hye-DROX-i-zeen PAM-oh-ate)
Drug class: Antianxiety Agents
Therapeutic class: Central Nervous System Agents
Hydroxyzine is a piperazine-derivative antihistamine.
Hydroxyzine is used for the symptomatic management of anxiety and tension associated with psychoneuroses and as an adjunct in patients with organic disease states who have associated anxiety; for the management of pruritus caused by allergic conditions such as chronic urticaria or atopic or contact dermatoses, and in histamine-mediated pruritus; and for its sedative effects before and after general anesthesia. The efficacy of hydroxyzine as an anxiolytic agent during long-term administration (i.e., longer than 4 months) has not been established; most clinicians believe that benzodiazepines, barbiturates, and meprobamate are more effective than hydroxyzine for anxiety. Patients with a history of long-term therapy with hydroxyzine should be evaluated periodically to determine the efficacy and need for further treatment.
Hydroxyzine should not be used as the sole agent for the treatment of depression or psychoses. Hydroxyzine has also been used for the management of agitation caused by acute alcohol withdrawal; to reduce opiate analgesic dosage; to control motion sickness; and to control nausea and vomiting of various etiologies (e.g., postoperative). Safe use of hydroxyzine for the prevention and treatment of nausea and vomiting of pregnancy has not been established, and the drug is contraindicated during early pregnancy.
Generic name: HYDROXYZINE PAMOATE (hye-DROX-i-zeen PAM-oh-ate)
Drug class: Antianxiety Agents
Therapeutic class: Central Nervous System Agents
Hydroxyzine is a piperazine-derivative antihistamine.
Hydroxyzine is used for the symptomatic management of anxiety and tension associated with psychoneuroses and as an adjunct in patients with organic disease states who have associated anxiety; for the management of pruritus caused by allergic conditions such as chronic urticaria or atopic or contact dermatoses, and in histamine-mediated pruritus; and for its sedative effects before and after general anesthesia. The efficacy of hydroxyzine as an anxiolytic agent during long-term administration (i.e., longer than 4 months) has not been established; most clinicians believe that benzodiazepines, barbiturates, and meprobamate are more effective than hydroxyzine for anxiety. Patients with a history of long-term therapy with hydroxyzine should be evaluated periodically to determine the efficacy and need for further treatment.
Hydroxyzine should not be used as the sole agent for the treatment of depression or psychoses. Hydroxyzine has also been used for the management of agitation caused by acute alcohol withdrawal; to reduce opiate analgesic dosage; to control motion sickness; and to control nausea and vomiting of various etiologies (e.g., postoperative). Safe use of hydroxyzine for the prevention and treatment of nausea and vomiting of pregnancy has not been established, and the drug is contraindicated during early pregnancy.
DRUG IMAGES
- VISTARIL 25 MG CAPSULE
The following indications for VISTARIL (hydroxyzine pamoate) have been approved by the FDA:
Indications:
Allergic dermatitis
Anxiety
Pruritus of skin
Sedation as adjunct to anesthesia
Urticaria
Professional Synonyms:
Adjunct sedation
Cnidosis
Itching wheals
Itchy skin eruption
Nettle rash
Pruritic dermatitis
Uredo
Urticarial rash
Urtication
Weal
Indications:
Allergic dermatitis
Anxiety
Pruritus of skin
Sedation as adjunct to anesthesia
Urticaria
Professional Synonyms:
Adjunct sedation
Cnidosis
Itching wheals
Itchy skin eruption
Nettle rash
Pruritic dermatitis
Uredo
Urticarial rash
Urtication
Weal
The following dosing information is available for VISTARIL (hydroxyzine pamoate):
Dosage of hydroxyzine hydrochloride or pamoate is expressed in terms of the hydrochloride. Dosage must be carefully adjusted according to individual requirements and response, using the lowest possible effective dosage.
For the symptomatic management of anxiety and tension associated with psychoneuroses and as an adjunct in patients with organic disease states who have associated anxiety, the usual adult oral dosage of hydroxyzine is 50-100 mg 4 times daily. The usual oral dosage of hydroxyzine for the symptomatic management of anxiety and tension associated with psychoneuroses and as an adjunct in organic disease states in children 6 years of age or older is 50-100 mg daily given in divided doses; for children younger than 6 years of age, the usual oral dosage is 50 mg daily given in divided doses.
For prompt control of acutely disturbed or hysterical patients and for the management of agitation caused by alcohol withdrawal, the usual adult IM dose of hydroxyzine is 50-100 mg. This dose may be repeated every 4-6 hours, as needed to control symptoms.
For the management of pruritus caused by allergic conditions such as chronic urticaria or atopic or contact dermatoses, and in histamine-mediated pruritus, the usual adult oral dosage of hydroxyzine is 25 mg 3 or 4 times daily. The usual oral dosage of hydroxyzine for the management of pruritus caused by allergic conditions in children 6 years of age or older is 50-100 mg daily given in divided doses; for children younger than 6 years of age, the usual oral dosage is 50 mg daily given in divided doses.
For sedation before and following general anesthesia, the usual adult dose of hydroxyzine is 50-100 mg orally or 25-100 mg IM. When used as a sedative before and following general anesthesia in children, the usual dose of hydroxyzine is 0.6 mg/kg orally or 1.1
mg/kg IM.
For control of nausea and vomiting (excluding nausea and vomiting of pregnancy), the usual initial IM dose of hydroxyzine is 25-100 mg in adults and 1.1 mg/kg in children. Subsequent dosage should be adjusted according to individual requirements and response.
For control of emesis, to permit reduction in opiate dosage, or to allay anxiety in prepartum and postpartum states, the usual initial adult IM dose of hydroxyzine is 25-100 mg. Subsequent dosage should be adjusted according to individual requirements and response.
For the symptomatic management of anxiety and tension associated with psychoneuroses and as an adjunct in patients with organic disease states who have associated anxiety, the usual adult oral dosage of hydroxyzine is 50-100 mg 4 times daily. The usual oral dosage of hydroxyzine for the symptomatic management of anxiety and tension associated with psychoneuroses and as an adjunct in organic disease states in children 6 years of age or older is 50-100 mg daily given in divided doses; for children younger than 6 years of age, the usual oral dosage is 50 mg daily given in divided doses.
For prompt control of acutely disturbed or hysterical patients and for the management of agitation caused by alcohol withdrawal, the usual adult IM dose of hydroxyzine is 50-100 mg. This dose may be repeated every 4-6 hours, as needed to control symptoms.
For the management of pruritus caused by allergic conditions such as chronic urticaria or atopic or contact dermatoses, and in histamine-mediated pruritus, the usual adult oral dosage of hydroxyzine is 25 mg 3 or 4 times daily. The usual oral dosage of hydroxyzine for the management of pruritus caused by allergic conditions in children 6 years of age or older is 50-100 mg daily given in divided doses; for children younger than 6 years of age, the usual oral dosage is 50 mg daily given in divided doses.
For sedation before and following general anesthesia, the usual adult dose of hydroxyzine is 50-100 mg orally or 25-100 mg IM. When used as a sedative before and following general anesthesia in children, the usual dose of hydroxyzine is 0.6 mg/kg orally or 1.1
mg/kg IM.
For control of nausea and vomiting (excluding nausea and vomiting of pregnancy), the usual initial IM dose of hydroxyzine is 25-100 mg in adults and 1.1 mg/kg in children. Subsequent dosage should be adjusted according to individual requirements and response.
For control of emesis, to permit reduction in opiate dosage, or to allay anxiety in prepartum and postpartum states, the usual initial adult IM dose of hydroxyzine is 25-100 mg. Subsequent dosage should be adjusted according to individual requirements and response.
Hydroxyzine hydrochloride and hydroxyzine pamoate are administered orally; hydroxyzine hydrochloride may also be administered by IM injection. Because severe adverse effects may occur, the drug must not be administered by subcutaneous, intra-arterial, or IV injection. (See Cautions: Local Effects.) Oral therapy should replace IM therapy as soon as possible.
For IM administration, the commercially available hydroxyzine injection is used without further dilution. The Z-track technique of injection may be used to prevent subcutaneous infiltration. For IM administration in adults, injection should be made preferably deep into the upper outer quadrant of the gluteus maximus or the midlateral thigh.
The deltoid area should be used with caution and only if well developed, in order to avoid radial nerve injury. IM injections should not be made into the lower and mid-third of the upper arm. For IM administration in children, injections should be made preferably into the midlateral muscles of the thigh; in infants and small children, the periphery of the upper outer quadrant of the gluteus maximus should be used only when necessary (e.g., burn patients), in order to minimize the possibility of damage to the sciatic nerve.
For IM administration, the commercially available hydroxyzine injection is used without further dilution. The Z-track technique of injection may be used to prevent subcutaneous infiltration. For IM administration in adults, injection should be made preferably deep into the upper outer quadrant of the gluteus maximus or the midlateral thigh.
The deltoid area should be used with caution and only if well developed, in order to avoid radial nerve injury. IM injections should not be made into the lower and mid-third of the upper arm. For IM administration in children, injections should be made preferably into the midlateral muscles of the thigh; in infants and small children, the periphery of the upper outer quadrant of the gluteus maximus should be used only when necessary (e.g., burn patients), in order to minimize the possibility of damage to the sciatic nerve.
No dosing information available.
DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
---|---|---|
HYDROXYZINE PAM 25 MG CAP | Maintenance | Adults take 1 capsule (25 mg) by oral route 4 times per day |
The following drug interaction information is available for VISTARIL (hydroxyzine pamoate):
There are 0 contraindications.
There are 10 severe interactions.
These drug interactions can produce serious consequences in most patients. Actions required for severe interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration scheduling, and providing additional patient monitoring. Review the full interaction monograph for more information.
Drug Interaction | Drug Names |
---|---|
Ziprasidone/Selected QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ziprasidone has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of ziprasidone with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(1,3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The manufacturer of ziprasidone states under contraindications that ziprasidone should not be used with other drugs that prolong the QT interval such as dofetilide, sotalol, quinidine, other Class Ia and III anti-arrhythmics, mesoridazine, thioridazine, chlorpromazine, droperidol, pimozide, sparfloxacin, gatifloxacin, moxifloxacin, halofantrine, mefloquine, pentamidine, arsenic trioxide, levomethadyl acetate, dolasetron mesylate, probucol or tacrolimus.(1) It would be prudent to avoid the use of ziprasidone with medicines suspected of prolonging the QT interval. If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
GEODON, ZIPRASIDONE HCL, ZIPRASIDONE MESYLATE |
Solid Oral Potassium Tablets/Anticholinergics SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concentrated potassium may damage the lining of the GI tract. Anticholinergics delay gastric emptying, resulting in the potassium product remaining in the gastrointestinal tract for a longer period of time.(1-16) CLINICAL EFFECTS: Use of solid oral dosage forms of potassium in patients treated with anticholinergics may result in gastrointestinal erosions, ulcers, stenosis and bleeding.(1-16) PREDISPOSING FACTORS: Diseases or conditions which may increase risk for GI damage include: preexisting dysphagia, strictures, cardiomegaly, diabetic gastroparesis, elderly status, or insufficient oral intake to allow dilution of potassium.(1-10,21) Other drugs which may add to risk for GI damage include: nonsteroidal anti-inflammatory drugs (NSAIDs), bisphosphonates, or tetracyclines.(21) PATIENT MANAGEMENT: Regulatory agency and manufacturer recommendations regarding this interaction: - In the US, all solid oral dosage forms (including tablets and extended release capsules) of potassium are contraindicated in patients receiving anticholinergics at sufficient dosages to result in systemic effects.(2-8) Patients receiving such anticholinergic therapy should use a liquid form of potassium chloride.(2) - In Canada, solid oral potassium is contraindicated in any patient with a cause for arrest or delay in tablet/capsule passage through the gastrointestinal tract and the manufacturers recommend caution with concurrent anticholinergic medications.(1,9-10) Evaluate each patient for predisposing factors which may increase risk for GI damage. In patients with multiple risk factors for harm, consider use of liquid potassium supplements, if tolerated. For patients receiving concomitant therapy, assure any potassium dose form is taken after meals with a large glass of water or other fluid. To decrease potassium concentration in the GI tract, limit each dose to 20 meq; if more than 20 meq daily is required, give in divided doses.(2) If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. Patients should be instructed to immediately report any difficulty swallowing, abdominal pain, distention, severe vomiting, or gastrointestinal bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. DISCUSSION: In clinical trials, there was a higher incidence of gastric and duodenal lesions in patients receiving a high dose of a wax-matrix controlled-release formulation with a concurrent anticholinergic agent. Some lesions were asymptomatic and not accompanied by bleeding, as shown by a lack of positive Hemoccult tests.(1-17) Several studies suggest that the incidence of gastric and duodenal lesions may be less with the microencapsulated formulation of potassium chloride.(14-17) |
KLOR-CON 10, KLOR-CON 8, KLOR-CON M10, KLOR-CON M15, KLOR-CON M20, POTASSIUM CHLORIDE, POTASSIUM CITRATE ER, UROCIT-K |
Solid Oral Potassium Capsules/Anticholinergics SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concentrated potassium may damage the lining of the GI tract. Anticholinergics delay gastric emptying, resulting in the potassium product remaining in the gastrointestinal tract for a longer period of time.(1-16)) CLINICAL EFFECTS: Use of solid oral dosage forms of potassium in patients treated with anticholinergics may result in gastrointestinal erosions, ulcers, stenosis and bleeding.(1-16) PREDISPOSING FACTORS: Diseases or conditions which may increase risk for GI damage include: preexisting dysphagia, strictures, cardiomegaly, diabetic gastroparesis, elderly status, or insufficient oral intake to allow dilution of potassium.(1-10,21) Other drugs which may add to risk for GI damage include: nonsteroidal anti-inflammatory drugs (NSAIDs), bisphosphonates, or tetracyclines.(21) PATIENT MANAGEMENT: Regulatory agency and manufacturer recommendations regarding this interaction: - In the US, all solid oral dosage forms (including tablets and extended release capsules) of potassium are contraindicated in patients receiving anticholinergics at sufficient dosages to result in systemic effects.(2-8) Patients receiving such anticholinergic therapy should use a liquid form of potassium chloride.(2) - In Canada, solid oral potassium is contraindicated in any patient with a cause for arrest or delay in tablet/capsule passage through the gastrointestinal tract and the manufacturers recommend caution with concurrent anticholinergic medications.(1,9-10) Evaluate each patient for predisposing factors which may increase risk for GI damage. In patients with multiple risk factors for harm, consider use of liquid potassium supplements, if tolerated. For patients receiving concomitant therapy, assure any potassium dose form is taken after meals with a large glass of water or other fluid. To decrease potassium concentration in the GI tract, limit each dose to 20 meq; if more than 20 meq daily is required, give in divided doses.(2) If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. Patients should be instructed to immediately report any difficulty swallowing, abdominal pain, distention, severe vomiting, or gastrointestinal bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. DISCUSSION: In clinical trials, there was a higher incidence of gastric and duodenal lesions in patients receiving a high dose of a wax-matrix controlled-release formulation with a concurrent anticholinergic agent. The lesions were asymptomatic and not accompanied by bleeding, as shown by a lack of positive Hemoccult tests.(1-17) Several studies suggest that the incidence of gastric and duodenal lesions may be less with the microencapsulated formulation of potassium chloride.(14-17) |
POTASSIUM CHLORIDE |
Radioactive Iodide/Agents that Affect Iodide SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Many compounds can affect iodide protein binding and alter iodide pharmacokinetics and pharmacodynamics.(1) CLINICAL EFFECTS: Compounds that affect iodide pharmacokinetics and pharmacodynamics may impact the effectiveness of radioactive iodide.(1) PREDISPOSING FACTORS: Compounds that affect iodide pharmacokinetics and pharmacodynamics are expected to have the most impact during therapy using radioactive iodide. Diagnostic procedures would be expected to be impacted less. PATIENT MANAGEMENT: Discuss the use of agents that affect iodide pharmacokinetics and pharmacodynamics with the patient's oncologist.(1) Because indocyanine green contains sodium iodide, the iodine-binding capacity of thyroid tissue may be reduced for at least one week following administration. Do not perform radioactive iodine uptake studies for at least one week following administration of indocyanine green.(2) The manufacturer of iopamidol states administration may interfere with thyroid uptake of radioactive iodine and decrease therapeutic and diagnostic efficacy. Avoid thyroid therapy or testing for up to 6 weeks post administration of iopamidol.(3) DISCUSSION: Many agents interact with radioactive iodine. The average duration of effect is: anticoagulants - 1 week antihistamines - 1 week anti-thyroid drugs, e.g: carbimazole, methimazole, propylthiouracil - 3-5 days corticosteroids - 1 week iodide-containing medications, e.g: amiodarone - 1-6 months expectorants - 2 weeks Lugol solution - 3 weeks saturated solution of potassium iodine - 3 weeks vitamins - 10-14 days iodide-containing X-ray contrast agents - up to 1 year lithium - 4 weeks phenylbutazone - 1-2 weeks sulfonamides - 1 week thyroid hormones (natural or synthetic), e.g.: thyroxine - 4 weeks tri-iodothyronine - 2 weeks tolbutamide - 1 week topical iodide - 1-9 months (1) |
ADREVIEW, JEANATOPE, MEGATOPE, SODIUM IODIDE I-123 |
Hydroxyzine/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of hydroxyzine with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1-4) CLINICAL EFFECTS: The concurrent use of hydroxyzine with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1-4) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(5) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(5) Doses of hydroxyzine greater than 100 mg/day may also increase the risk.(1,2) PATIENT MANAGEMENT: Concurrent use of hydroxyzine with agents known to prolong the QT interval is contraindicated in Canada(1,2) and the UK.(3) The US manufacturer states that concurrent use should be approached with caution.(4) If concurrent therapy is deemed medically necessary, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In vitro data indicates that hydroxyzine blocks the hERG channel, which results in the potential risk of QT interval prolongation.(6) In a placebo controlled, non-thorough QT study, 10 patients in the placebo group (n=152) had a change in QT interval from baseline between 30 ms and 60 ms and one patient presented a change from baseline higher than 60 ms. In the hydroxyzine group (n=148), 14 subjects had a change in QT interval from baseline between 30 and 60 ms and were considered to have a potential risk factor for risk of QT interval prolongation and TdP due to relevant medical history, concomitant medication potentially associated with the induction of prolongation of QT interval, and/or polymedication.(6) Health Canada reviewed 61 cases of QT interval prolongation or torsades de pointes with hydroxyzine. In a majority of cases, patients had additional risk factors for QT prolongation. Three reports provided enough data for a more detailed review. Hydroxyzine was found to be either "possible" or "probably" contribution to QT prolongation/torsades in these reports.(1) The European Medicines Agency's Pharmacovigilance Risk Assessment Committee (PRAC) reviewed 190 case reports found in a search of "torsade de pointes/QT prolongation with hydroxyzine". Forty-two non-fatality cases were subdivided into torsades (n=16), QT prolongation (n=21), and ventricular tachycardia (n=5). All included risk factors for QT interval prolongation and TdP (cardiac disorders, hypokalemia, long QT syndrome, bradycardia, concomitant drugs which are known to prolong the QT interval). Dosages ranged from <= 100 mg/day (n=10), > 100 mg/day to <=300 mg/day (n=4), > 300 mg/day (n=8), overdosages (n=11), and premedication (n=9). Twenty-one cases involving fatalities had at least one risk factor for QT prolongation. The PRAC concluded that post-marketing cases of QT interval prolongation, TdP and ventricular tachycardia confirm the findings of the hERG studies suggesting that hydroxyzine blocks hERG channels. No difference in the risk of QT interval prolongation could be observed based on the indication, age of the subject, or dose.(6) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(7) |
ADLARITY, AGRYLIN, AMIODARONE HCL, AMIODARONE HCL-D5W, ANAGRELIDE HCL, ARICEPT, ARSENIC TRIOXIDE, AVELOX IV, AZITHROMYCIN, BETAPACE, BETAPACE AF, CAPRELSA, CELEXA, CESIUM CHLORIDE, CHLOROQUINE PHOSPHATE, CHLORPROMAZINE HCL, CILOSTAZOL, CIPRO, CIPROFLOXACIN, CIPROFLOXACIN HCL, CIPROFLOXACIN-D5W, CITALOPRAM HBR, CLARITHROMYCIN, CLARITHROMYCIN ER, CORVERT, DIFLUCAN, DIPRIVAN, DISKETS, DISOPYRAMIDE PHOSPHATE, DOFETILIDE, DONEPEZIL HCL, DONEPEZIL HCL ODT, DROPERIDOL, E.E.S. 200, E.E.S. 400, ERY-TAB, ERYPED 200, ERYPED 400, ERYTHROCIN LACTOBIONATE, ERYTHROCIN STEARATE, ERYTHROMYCIN, ERYTHROMYCIN ESTOLATE, ERYTHROMYCIN ETHYLSUCCINATE, ERYTHROMYCIN LACTOBIONATE, ESCITALOPRAM OXALATE, FLECAINIDE ACETATE, FLUCONAZOLE, FLUCONAZOLE-NACL, GATIFLOXACIN SESQUIHYDRATE, HALDOL DECANOATE 100, HALDOL DECANOATE 50, HALOPERIDOL, HALOPERIDOL DECANOATE, HALOPERIDOL DECANOATE 100, HALOPERIDOL LACTATE, HYDROXYCHLOROQUINE SULFATE, IBUTILIDE FUMARATE, KRAZATI, LANSOPRAZOL-AMOXICIL-CLARITHRO, LEVOFLOXACIN, LEVOFLOXACIN HEMIHYDRATE, LEVOFLOXACIN-D5W, LEXAPRO, MEMANTINE HCL-DONEPEZIL HCL ER, METHADONE HCL, METHADONE HCL-0.9% NACL, METHADONE HCL-NACL, METHADONE INTENSOL, METHADOSE, MOXIFLOXACIN, MOXIFLOXACIN HCL, MULTAQ, NAMZARIC, NEXTERONE, NORPACE, NORPACE CR, NUEDEXTA, OMECLAMOX-PAK, OXALIPLATIN, PACERONE, PENTAM 300, PENTAMIDINE ISETHIONATE, PIMOZIDE, PLAQUENIL, PROCAINAMIDE HCL, PROPOFOL, QUINIDINE GLUCONATE, QUINIDINE SULFATE, REVUFORJ, SEVOFLURANE, SOTALOL, SOTALOL AF, SOTALOL HCL, SOTYLIZE, SOVUNA, THIORIDAZINE HCL, THIORIDAZINE HYDROCHLORIDE, TIKOSYN, TRISENOX, ULTANE, VANFLYTA, VOQUEZNA TRIPLE PAK, ZITHROMAX, ZITHROMAX TRI-PAK, ZOKINVY |
Clozapine/Anticholinergics that Prolong QT SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of clozapine with anticholinergic agents that prolong the QTc interval may result in additive effects on the QTc interval and increased risk of anticholinergic toxicity.(1) In particular, the anticholinergic agents may compound the anticholinergic and anti-serotonergic effects of clozapine to inhibit gastrointestinal (GI) smooth muscle contraction, resulting in decreased peristalsis.(1-6) CLINICAL EFFECTS: The use of clozapine in patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) Concurrent use of clozapine with anticholinergic agents may increase the risk of constipation (common) and serious bowel complications (uncommon), including complete bowel obstruction, fecal impaction, paralytic ileus and intestinal ischemia or infarction.(1-6) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(7) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(7) The risk for serious bowel complications is higher with increasing age and in patients on multiple anticholinergic agents.(5) PATIENT MANAGEMENT: Avoid the use of other QT-prolonging anticholinergic agents with clozapine. If concurrent therapy is necessary, approach the use of this combination with caution.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. In addition, evaluate the patient's bowel function regularly. Monitor for symptoms of constipation and GI hypomotility, including having bowel movements less than three times weekly or less than usual, difficulty having a bowel movement or passing gas, nausea, vomiting, and abdominal pain or distention.(2) Consider a prophylactic laxative in those with a history of constipation or bowel obstruction.(2) Review patient medication list for other anticholinergic agents. When possible, decrease the dosage or number of prescribed anticholinergic agents, particularly in the elderly. Counsel the patient about the importance of maintaining adequate hydration. Encourage regular exercise and eating a high-fiber diet.(2) DISCUSSION: Treatment with clozapine has been associated with QT prolongation as well as ventricular arrythmia, Torsades de Pointes, cardiac arrest, and sudden death.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(8) In a prospective cohort study of 26,720 schizophrenic patients in the Danish Central Psychiatric Research Registry, the odds ratio (OR) for ileus was 1.99 with clozapine and 1.48 with anticholinergics. The OR for fatal ileus was 6.73 with clozapine and 5.88 with anticholinergics. Use of anticholinergics with 1st generation antipsychotics (FGA) increased the risk of ileus compare to FGA alone, but this analysis was not done with clozapine.(5) A retrospective cohort study of 24,970 schizophrenic patients from the Taiwanese National Health Insurance Research Database found that the hazard ratio (HR) for clozapine-induced constipation increased from 1.64 when clozapine is used alone, to 2.15 when used concomitantly with anticholinergics. However, there was no significant difference in the HR for ileus when clozapine is used with and without anticholinergics (1.95 and 2.02, respectively).(6) In the French Pharmacovigilance Database, 7 of 38 cases of antipsychotic-associated ischemic colitis or intestinal necrosis involved clozapine, and 5 of these cases involved use of concomitant anticholinergic agents. Three patients died, one of whom was on concomitant anticholinergics.(3) In a case series, 4 of 9 cases of fatal clozapine-associated GI dysfunction involved concurrent anticholinergic agents.(4) |
CLOZAPINE, CLOZAPINE ODT, CLOZARIL, VERSACLOZ |
Eluxadoline/Anticholinergics; Opioids SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Eluxadoline is a mixed mu-opioid and kappa-opioid agonist and delta-opioid antagonist and may alter or slow down gastrointestinal transit.(1) CLINICAL EFFECTS: Constipation related adverse events that sometimes required hospitalization have been reported, including the development of intestinal obstruction, intestinal perforation, and fecal impaction.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid use with other drugs that may cause constipation. If concurrent use is necessary, evaluate the patient's bowel function regularly. Monitor for symptoms of constipation and GI hypomotility, including having bowel movements less than three times weekly or less than usual, difficulty having a bowel movement or passing gas, nausea, vomiting, and abdominal pain or distention.(1) Instruct patients to stop eluxadoline and immediately contact their healthcare provider if they experience severe constipation. Loperamide may be used occasionally for acute management of severe diarrhea, but must be discontinued if constipation develops.(1) DISCUSSION: In phase 3 clinical trials, constipation was the most commonly reported adverse reaction (8%). Approximately 50% of constipation events occurred within the first 2 weeks of treatment while the majority occurred within the first 3 months of therapy. Rates of severe constipation were less than 1% in patients receiving eluxadoline doses of 75 mg and 100 mg.(1) |
VIBERZI |
Levoketoconazole/Possible QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Levoketoconazole has been observed to prolong the QTc interval in a dose-dependent manner. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of levoketoconazole with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of levoketoconazole states that levoketoconazole is contraindicated with other agents that prolong the QT interval.(1) Levoketoconazole is also contraindicated in patients with a prolonged QTcF interval of greater than 470 msec at baseline, history of torsades de pointes, ventricular tachycardia, ventricular fibrillation, or long QT syndrome (including first-degree family history). Use caution in patients with other risk factors for QT prolongation including congestive heart failure, bradyarrhythmias, and uncorrected electrolyte abnormalities. Consider more frequent ECG monitoring. Prior to starting levoketoconazole, obtain a baseline ECG and correct hypokalemia or hypomagnesemia. If a patient develops QT prolongation with a QTc interval greater than 500 msec, temporarily discontinue levoketoconazole. After resolution of prolonged QTc interval, levoketoconazole may be resumed at a lower dose. If QTc interval prolongation recurs, permanently discontinue levoketoconazole.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: During phase 1 and 2 studies, which excluded patients with baseline QTcF interval greater than 470 msec, 4 (2.4%) patients experienced QTcF > 500 msec, and 23 (14.7%) patients experienced change-from-baseline QTcF > 60 msec.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
RECORLEV |
Glucagon (Diagnostic)/Anticholinergics SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Glucagon and anticholinergic agents may have additive effects on inhibition of gastrointestinal motility.(1) CLINICAL EFFECTS: Concurrent use of glucagon with anticholinergic agents may increase the risk of gastrointestinal hypomotility, including constipation and bowel complications.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Concurrent use of glucagon as a diagnotic aid is not recommended with the use of anticholinergic agents.(1) If concurrent use is necessary, evaluate the patient's bowel function. Monitor for symptoms of constipation and gastrointestinal hypomotility. DISCUSSION: Both glucagon and anticholinergic agents may have additive effects on inhibition of gastrointestinal motility and increase the risk of gastrointestinal adverse effects.(1) |
GLUCAGON HCL |
Sodium Iodide I 131/Agents that Affect Iodide SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Many compounds can affect iodide protein binding and alter iodide pharmacokinetics and pharmacodynamics.(1,2) CLINICAL EFFECTS: Compounds that affect iodide pharmacokinetics and pharmacodynamics may impact the effectiveness of radioactive iodide.(1,2) PREDISPOSING FACTORS: Compounds that affect iodide pharmacokinetics and pharmacodynamics are expected to have the most impact during therapy using radioactive iodide. Diagnostic procedures would be expected to be impacted less. PATIENT MANAGEMENT: Discuss the use of agents that affect iodide pharmacokinetics and pharmacodynamics with the patient's oncologist.(1,2) Because indocyanine green contains sodium iodide, the iodine-binding capacity of thyroid tissue may be reduced for at least one week following administration. Do not perform radioactive iodine uptake studies for at least one week following administration of indocyanine green.(3) The manufacturer of iopamidol states administration may interfere with thyroid uptake of radioactive iodine and decrease therapeutic and diagnostic efficacy. Avoid thyroid therapy or testing for up to 6 weeks post administration of iopamidol.(4) DISCUSSION: Many agents interact with radioactive iodine. The average duration of effect is: anticoagulants - 1 week antihistamines - 1 week anti-thyroid drugs, e.g: carbimazole, methimazole, propylthiouracil - 3-5 days corticosteroids - 1 week iodide-containing medications, e.g: amiodarone - 1-6 months expectorants - 2 weeks Lugol solution - 3 weeks saturated solution of potassium iodine - 3 weeks vitamins - 10-14 days iodide-containing X-ray contrast agents - up to 1 year lithium - 4 weeks phenylbutazone - 1-2 weeks sulfonamides - 1 week thyroid hormones (natural or synthetic), e.g.: thyroxine - 4 weeks tri-iodothyronine - 2 weeks tolbutamide - 1 week topical iodide - 1-9 months (1,2) |
HICON, SODIUM IODIDE I-131 |
There are 20 moderate interactions.
The clinician should assess the patient’s characteristics and take action as needed. Actions required for moderate interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration.
Drug Interaction | Drug Names |
---|---|
Voriconazole/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of voriconazole with agents known to prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: Concurrent use may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes. PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of voriconazole states concurrent use with agents known to prolong the QT interval should be administered with caution.(1) In patients maintained on voriconazole and other agents known to prolong the QT interval, consider a baseline ECG prior to administration to assess the risk/benefit of therapy. Consider obtaining serum calcium, magnesium, and potassium levels at baseline and at regular intervals. Correct any electrolyte abnormalities prior to initiation of therapy. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: A placebo-controlled, randomized, crossover study to evaluate the effect on the QT interval of healthy male and female subjects was conducted with three single oral doses of voriconazole and ketoconazole. The placebo-adjusted mean maximum increases in QTc from baseline after 800 mg, 1200 mg, and 1600 mg of voriconazole and after ketoconazole 800 mg were all <10 msec. No subject experienced an interval exceeding the potentially clinically relevant threshold of 500 msec.(1) In a retrospective study of 2,735 patients with a prolonged QTc interval, voriconazole use was associated with an increased risk of torsades de pointes.(4) |
VFEND, VFEND IV, VORICONAZOLE |
Fingolimod/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Fingolimod is a sphingosine 1-phosphate (S1P) receptor modulator. Initiation of fingolimod has a negative chronotropic effect leading to a mean decrease in heart rate of 13 beats per minute (bpm) after the first dose. The first dose has also been associated with heart block.(1-3) Fingolimod blocks the capacity of lymphocytes to egress from lymph nodes, reducing the number of lymphocytes in peripheral blood. The mechanism by which fingolimod exerts therapeutic effects in multiple sclerosis is unknown but may involve the reduction of lymphocyte migration into the central nervous system.(1-3) CLINICAL EFFECTS: The heart rate lowering effect of fingolimod is biphasic with an initial decrease usually within 6 hours, followed by a second decrease 12 to 24 hours after the first dose. Symptomatic bradycardia and heart block, including third degree block, have been observed. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes. There is no consistent signal of increased incidence of QTc outliers, either absolute or change from baseline, associated with fingolimod treatment.(1-3) PREDISPOSING FACTORS: Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to fingolimod initiation, factors associated with QTc prolongation (e.g. hypokalemia, hypomagnesemia), or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to fingolimod. The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: Patients with a baseline QTc interval greater than or equal to 500 milliseconds should not be started on fingolimod. Patients with pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, or a prolonged QTc interval prior to fingolimod initiation should receive cardiologist consultation to evaluate the risks of fingolimod therapy. In all patients, first dose monitoring is recommended to monitor for bradycardia for the first 6 hours. Check blood pressure and pulse hourly. ECG monitoring is recommended prior to dosing and at the end of the observation period. US monitoring recommendations include additional monitoring for the following patients:(1) If heart rate (HR) is less than 45 beats per minute (bpm), the heart rate 6 hours postdose is at the lowest value postdose, or if the ECG shows new onset of second degree or higher AV block at the end of the monitoring period, then monitoring should continue until the finding has resolved. Continuous overnight ECG monitoring is recommended in patients requiring pharmacologic intervention for symptomatic bradycardia, some preexisting heart and cerebrovascular conditions, prolonged QTc before dosing or during 6 hours observation, concurrent therapy with QT prolonging drugs, or concurrent therapy with drugs that slow heart rate or AV conduction. Consult the prescribing information for full monitoring recommendations. United Kingdom recommendations:(3) Obtain a 12-lead ECG prior to initiating fingolimod therapy. Consult a cardiologist for pretreatment risk-benefit assessment if patient has a resting heart rate less than 55 bpm, history of syncope, second degree or greater AV block, sick-sinus syndrome, concurrent therapy with beta-blockers, Class Ia, or Class III antiarrhythmics, heart failure or other significant cardiovascular disease. Perform continuous ECG monitoring, measure blood pressure and heart rate every hour, and perform a 12-lead ECG 6 hours after the first dose. Monitoring should be extended beyond 6 hours if symptomatic bradycardia or new onset of second degree AV block, Mobitz Type II or third degree AV block has occurred at any time during the monitoring period. If heart rate 6 hours after the first dose is less than 40 bpm, has decreased more than 20 bpm compared with baseline, or if a new onset second degree AV block, Mobitz Type I (Wenckebach) persists, then monitoring should also be continued. If fingolimod treatment is discontinued for more than two weeks, the effects on heart rate and conduction could recur. Thus, first dose monitoring precautions should be followed upon reintroduction of fingolimod. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: After the first dose of fingolimod, heart rate decrease may begin within an hour. Decline is usually maximal at approximately 6 hours followed by a second decrease 12 to 24 hours after the first dose. The second dose may further decrease heart rate, but the magnitude of change is smaller than the first dose. With continued, chronic dosing, heart rate gradually returns to baseline in about one month.(1,2) In a thorough QT interval study of doses of 1.25 or 2.5 mg fingolimod at steady-state, when a negative chronotropic effect of fingolimod was still present, fingolimod treatment resulted in a prolongation of QTc, with the upper boundary of the 90% confidence interval (CI) of 14.0 msec. The cause of death in a patient who died within 24 hour after taking the first dose of fingolimod was not conclusive; however a link to fingolimod or a drug interaction with fingolimod could not be ruled out.(1) |
FINGOLIMOD, GILENYA, TASCENSO ODT |
Hydroxyzine/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of hydroxyzine with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1-4) CLINICAL EFFECTS: The concurrent use of hydroxyzine with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1-4) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(5) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(5) Doses of hydroxyzine greater than 100 mg/day may also increase the risk.(1,2) PATIENT MANAGEMENT: Concurrent use of hydroxyzine with agents known to prolong the QT interval is contraindicated in Canada(1,2) and the UK.(3) The US manufacturer states that concurrent use should be approached with caution.(4) If concurrent therapy is deemed medically necessary, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In vitro data indicates that hydroxyzine blocks the hERG channel, which results in the potential risk of QT interval prolongation.(6) In a placebo controlled, non-thorough QT study, 10 patients in the placebo group (n=152) had a change in QT interval from baseline between 30 ms and 60 ms and one patient presented a change from baseline higher than 60 ms. In the hydroxyzine group (n=148), 14 subjects had a change in QT interval from baseline between 30 and 60 ms and were considered to have a potential risk factor for risk of QT interval prolongation and TdP due to relevant medical history, concomitant medication potentially associated with the induction of prolongation of QT interval, and/or polymedication.(6) Health Canada reviewed 61 cases of QT interval prolongation or torsades de pointes with hydroxyzine. In a majority of cases, patients had additional risk factors for QT prolongation. Three reports provided enough data for a more detailed review. Hydroxyzine was found to be either "possible" or "probably" contribution to QT prolongation/torsades in these reports.(1) The European Medicines Agency's Pharmacovigilance Risk Assessment Committee (PRAC) reviewed 190 case reports found in a search of "torsade de pointes/QT prolongation with hydroxyzine". Forty-two non-fatality cases were subdivided into torsades (n=16), QT prolongation (n=21), and ventricular tachycardia (n=5). All included risk factors for QT interval prolongation and TdP (cardiac disorders, hypokalemia, long QT syndrome, bradycardia, concomitant drugs which are known to prolong the QT interval). Dosages ranged from <= 100 mg/day (n=10), > 100 mg/day to <=300 mg/day (n=4), > 300 mg/day (n=8), overdosages (n=11), and premedication (n=9). Twenty-one cases involving fatalities had at least one risk factor for QT prolongation. The PRAC concluded that post-marketing cases of QT interval prolongation, TdP and ventricular tachycardia confirm the findings of the hERG studies suggesting that hydroxyzine blocks hERG channels. No difference in the risk of QT interval prolongation could be observed based on the indication, age of the subject, or dose.(6) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(7) |
ALFUZOSIN HCL ER, APOKYN, APOMORPHINE HCL, ASPRUZYO SPRINKLE, ASTAGRAF XL, ATOMOXETINE HCL, DANZITEN, DASATINIB, ELLENCE, ENVARSUS XR, EPIRUBICIN HCL, ERIBULIN MESYLATE, ERZOFRI, FANAPT, FARESTON, FARYDAK, GRANISETRON HCL, HALAVEN, INVEGA, INVEGA HAFYERA, INVEGA SUSTENNA, INVEGA TRINZA, ISRADIPINE, LAPATINIB, NEXAVAR, NILOTINIB HCL, OFLOXACIN, ONAPGO, ONDANSETRON HCL, ONDANSETRON HCL-0.9% NACL, PALIPERIDONE ER, PAZOPANIB HCL, PROGRAF, QUETIAPINE FUMARATE, QUETIAPINE FUMARATE ER, RANOLAZINE ER, RUBRACA, RYDAPT, SANCUSO, SEROQUEL, SEROQUEL XR, SIGNIFOR, SIGNIFOR LAR, SIRTURO, SORAFENIB, SPRYCEL, STRATTERA, SUNITINIB MALATE, SUSTOL, SUTENT, TACROLIMUS, TACROLIMUS XL, TASIGNA, TOLTERODINE TARTRATE, TOLTERODINE TARTRATE ER, TOREMIFENE CITRATE, TYKERB, UROXATRAL, VIBATIV, VOTRIENT, XALKORI, ZELBORAF, ZYKADIA |
Ribociclib/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of ribociclib with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of ribociclib with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Avoid concurrent use of ribociclib with agents known to prolong the QT interval.(1) If concurrent therapy is deemed medically necessary, monitor patients closely. Obtain serum calcium, magnesium, and potassium levels and correct any electrolyte abnormalities at the beginning of each ribociclib cycle. Monitor ECG at baseline, Day 14 of the first cycle, at the beginning of the second cycle, and as necessary. If a prolonged QTc is noted, refer to ribociclib prescribing information for current dose modification and management instructions. Ribociclib may need to be interrupted, reduced, or discontinued.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Ribociclib has been shown to prolong the QTc interval in a concentration-dependent manner. At steady state, the mean increase in QTc interval exceeded 20 msec.(1) In MONALEESA-7, an increase of greater than 60 ms from baseline in the QTcF interval was observed in 14/87 (16%) of patients in the ribociclib and tamoxifen combination group.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
KISQALI |
Encorafenib/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of encorafenib with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of encorafenib with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Avoid the concurrent use of encorafenib with medications that prolong the QT interval.(1) Recommended dosage modifications for encorafenib and QTc prolongation adverse reactions include: - QTcF greater than 500 ms and less than or equal to 60 ms increase from baseline: Withhold encorafenib until QTcF less than or equal to 500 ms. Resume at reduced dose. If more than one recurrence, permanently discontinue encorafenib. - QTcF greater than 500 ms and greater than 60 ms increase from baseline: Permanently discontinue encorafenib.(1) See prescribing information for additional information regarding dose reductions.(1) When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Encorafenib has been associated with a dose-dependent QTc interval prolongation. Following administration of encorafenib in combination with binimetinib, the largest mean (90% CI) QTcF change from baseline was 18 ms (14-22 ms), based on central tendency analysis.(1) Following administration of encorafenib in combination with cetuximab and mFOLFOX6, an increase of QTcF >500 ms was measured in 3.6% (8/222) of patients.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
BRAFTOVI |
Amisulpride/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Amisulpride has been shown to prolong the QT interval. Concurrent use with QT prolonging agents may result in additive effects on the QT interval.(1) CLINICAL EFFECTS: The concurrent use of amisulpride with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Use caution when using amisulpride concurrently with other agents that can prolong the QT interval. Amisulpride may cause a dose and concentration dependent increase in the QTc interval. When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy. ECG monitoring is recommended in patients with pre-existing arrhythmias or cardiac conduction disorders; electrolyte abnormalities; congestive heart failure; or in patients taking medications or with other medical conditions known to prolong the QT interval. Correct any electrolyte abnormalities.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting.(2) DISCUSSION: QT prolongation and torsades de pointes have been reported with amisulpride. In a study in 40 patients with post operative nausea and vomiting, amisulpride increased baseline QTcF by 5 msec after a 2-minute intravenous infusion of 5 mg and by 23.4 msec after an 8-minute intravenous infusion of 40 mg. Based on an exposure-response relationship, it is expected that a 10 mg intravenous infusion over 1 minute may increase the QTcF by 13.4 msec.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
BARHEMSYS |
Osilodrostat/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Osilodrostat has been shown to prolong the QT interval. Concurrent use with QT prolonging agents may result in additive effects on the QT interval.(1) CLINICAL EFFECTS: The concurrent use of osilodrostat with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Use caution when using osilodrostat concurrently with other agents that can prolong the QT interval and consider more frequent ECG monitoring. A dose-dependent QT interval prolongation was noted in clinical studies. Prior to initiating therapy with osilodrostat, obtain a baseline ECG and monitor for QTc interval changes thereafter. Consider temporary discontinuation of therapy if the QTc interval increases > 480 msec. When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting.(2) DISCUSSION: QTc prolongation has been reported with osilodrostat. In a thorough QT study in 86 healthy patients, osilodrostat increased baseline QTcF by 1.73 msec at a 10 mg dose and 25.38 msec at a 150 mg dose (up to 2.5 times the maximum recommended dosage). The predicted mean placebo-corrected QTcF at the highest recommended dose in clinical practice (30 mg twice daily) was estimated as 5.3 msec.(1) In a clinical study, five patients (4%) were reported to have an event of QT prolongation, three patients (2%) had a QTcF increase of > 60 msec from baseline, and 18 patients (13%) had a new QTcF value of > 450 msec.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
ISTURISA |
Selpercatinib/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Selpercatinib prolongs the QTc interval.(1) Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(2,3) CLINICAL EFFECTS: The concurrent use of selpercatinib with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(2,3) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: Selpercatinib prolongs the QT interval. An increase in QT interval to > 500 ms was measured in 6% of patients and increase in the QT interval of at least 60 ms over baseline was measured in 15% of patients. Monitor patients at significant risk of developing QT prolongation, including patients with known long QT syndromes, clinically significant bradyarrhythmias, and severe or uncontrolled heart failure. Assess QT interval, electrolytes, and TSH at baseline and periodically during treatment. Correct hypokalemia, hypomagnesemia, and hypocalcemia prior to initiation and during treatment. Dose adjustments (1): For grade 3 QT interval prolongation, withhold selpercatinib until recovery to baseline or grade 0 or 1. Resume at a reduced dose. -1st dose reduction: For patients weighing less than 50 kg: 80 mg twice daily. For patients weighing 50 kg or greater: 120 mg twice daily. -2nd dose reduction: For patients weighing less than 50 kg: 40 mg twice daily. For patients weighing 50 kg or greater: 80 mg twice daily. -3rd dose reduction: For patients weighing less than 50 kg: 40 mg once daily. For patients weighing 50 kg or greater: 40 mg twice daily. -For grade 4 QT prolongation, discontinue selpercatinib. DISCUSSION: The effect of selpercatinib on the QT interval was evaluated in a thorough QT study in healthy subjects. The largest mean increase in QT is predicted to be 10.6 ms (upper 90% confidence interval: 12.1 ms) at the mean steady state maximum concentration (Cmax) observed in patients after administration of 160 mg twice daily. The increase in QT was concentration-dependent. Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
RETEVMO |
Zonisamide/Anticholinergics SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Zonisamide can cause decreased sweating and elevated body temperature. Agents with anticholinergic activity can predispose patients to heat-related disorders.(1-2) CLINICAL EFFECTS: Concurrent use of zonisamide with agents with anticholinergic activity may increase the incidence of oligohidrosis and hyperthermia, especially in pediatric or adolescent patients.(1-2) Overheating and dehydration can lead to brain damage and death. PREDISPOSING FACTORS: Pediatric and adolescent patients and patients with dehydration may be more likely to experience heat-related disorders.(1) PATIENT MANAGEMENT: The UK and US manufacturers of zonisamide state that caution should be used in adults when zonisamide is prescribed with other medicinal products that predispose to heat-related disorders, such as agents with anticholinergic activity.(1-2) Pediatric and adolescent patients must not take anticholinergic agents (e.g. clomipramine, hydroxyzine, diphenhydramine, haloperidol, imipramine, and oxybutynin) concurrently with zonisamide.(1) Monitor for signs and symptoms of heat stroke: skin feels very hot with little or no sweating, confusion, muscle cramps, rapid heartbeat, or rapid breathing. Monitor for signs and symptoms of dehydration: dry mouth, urinating less than usual, dark-colored urine, dry skin, feeling tired, dizziness, or irritability. If signs or symptoms of dehydration, oligohidrosis, or elevated body temperature occur, discontinuation of zonisamide should be considered. DISCUSSION: Case reports of decreased sweating and elevated temperature have been reported, especially in pediatric patients. Some cases resulted in heat stroke that required hospital treatment and resulted in death.(1) |
ZONEGRAN, ZONISADE, ZONISAMIDE |
Topiramate/Anticholinergics SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Topiramate can cause decreased sweating and elevated body temperature. Agents with anticholinergic activity can predispose patients to heat-related disorders.(1-2) CLINICAL EFFECTS: Concurrent use of topiramate with agents with anticholinergic activity may increase the incidence of oligohidrosis and hyperthermia, especially in pediatric or adolescent patients.(1-2) Overheating and dehydration can lead to brain damage and death. PREDISPOSING FACTORS: Pediatric and adolescent patients and patients with dehydration may be more likely to experience heat-related disorders.(1) PATIENT MANAGEMENT: The manufacturer of topiramate states that caution should be used when topiramate is prescribed with other medicinal products that predispose to heat-related disorders, such as agents with anticholinergic activity (e.g. clomipramine, hydroxyzine, diphenhydramine, haloperidol, imipramine, and oxybutynin) concurrently with zonisamide.(1) Monitor for signs and symptoms of heat stroke: skin feels very hot with little or no sweating, confusion, muscle cramps, rapid heartbeat, or rapid breathing. Monitor for signs and symptoms of dehydration: dry mouth, urinating less than usual, dark-colored urine, dry skin, feeling tired, dizziness, or irritability. If signs or symptoms of dehydration, oligohidrosis, or elevated body temperature occur, discontinuation of zonisamide should be considered. DISCUSSION: Case reports of decreased sweating and elevated temperature have been reported, especially in pediatric patients. Some cases resulted in heat stroke that required hospital treatment.(1) A 64-year old woman developed non-exertional hyperthemia while taking multiple psychiatric medications with topiramate.(2) |
EPRONTIA, QSYMIA, TOPAMAX, TOPIRAMATE, TOPIRAMATE ER, TOPIRAMATE ER SPRINKLE, TROKENDI XR |
Galantamine/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Galantamine may reduce heart rate by increasing acetylcholine in the heart and increasing vagal tone. Bradycardia has been associated with increased risk of QTc interval prolongation.(1) Concurrent use of galantamine with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(2) CLINICAL EFFECTS: The use of galantamine in patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(2) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, advanced age or when receiving concomitant treatment with an inhibitor of CYP3A4.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The UK manufacturer of galantamine states that it should be used with caution in patients treated with drugs that affect the QTc interval.(2) If concurrent therapy is warranted, monitor ECG more frequently and consider obtaining serum calcium, magnesium, and potassium levels at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Therapeutic doses of galantamine have been reported to cause QTc prolongation in patients.(2) An 85 year old male with dementia was restarted on galantamine 8 mg daily after a 2-week treatment interruption due to a syncopal episode that occurred 3 months previously. During his prior syncopal episode, he was hypotensive and bradycardic, but QTc interval was normal. After restarting galantamine, he was found to be hypotension and bradycardiac again, and QTc interval was significantly prolonged to 503 msec, over 60 msec longer than when he was off galantamine. Galantamine was discontinued and his QTc interval returned to baseline.(4) A 47 year old schizophrenic male experienced prolongation of the QTc interval to 518 msec after galantamine was increased from 8 mg daily to 12 mg daily. Although he was also on quetiapine and metoprolol, he had been stable on his other medications. His QTc interval normalized after galantamine was stopped.(5) The European pharmacovigilance (Eudravigilance) database contains 14 reports of torsades de pointe in patients on galantamine as of October 2019.(1) A pharmacovigilance study based on the FDA Adverse Event Reporting System (FAERS) database found that, of a total of 33,626 cases of TdP/QT prolongation reported between January 2004 and September 2022, 54 cases occurred in patients on galantamine. The disproportionality analysis found a ROR = 5.12, 95% CI (3.92,6.68) and a PRR = 5.11, chi-square = 175.44.(6) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(7) |
GALANTAMINE ER, GALANTAMINE HBR, GALANTAMINE HYDROBROMIDE, ZUNVEYL |
Siponimod/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Siponimod is a sphingosine-1-phosphate (S1P) receptor modulator. Initiation of siponimod has a negative chronotropic effect. Siponimod blocks the capacity of lymphocytes to egress from lymph nodes, reducing the number of lymphocytes in peripheral blood. The mechanism by which siponimod exerts therapeutic effects in multiple sclerosis is unknown, but may involve reduction of lymphocyte migration into the central nervous system.(1,2) CLINICAL EFFECTS: The heart rate lowering effect of siponimod starts within an hour, and the Day 1 decline is maximal at approximately 3-4 hours. This leads to a mean decrease in heart rate of 5-6 beats per minute after the first dose. The first dose has also been associated with heart block. With continued up-titration, further heart rate decreases are seen on subsequent days, with maximal decrease from Day 1-baseline reached on Day 5-6. Symptomatic bradycardia has been observed. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes.(1) PREDISPOSING FACTORS: Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to siponimod initiation, factors associated with QTc prolongation (e.g. hypokalemia, hypomagnesemia), or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to siponimod. The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: Prior to initiation of siponimod, obtain an ECG to determine if preexisting conduction abnormalities are present.(1) Advice from a cardiologist is recommended in patients with preexisting heart and cerebrovascular conditions, prolonged QTc interval before or during the 6 hour observation, risk factors for QT prolongation, concurrent therapy with QT prolonging drugs or drugs that slow the heart rate or AV conduction.(1) In patients with heart rate (HR) less than 55 beats per minute (bpm), first- or second-degree AV block, or history of myocardial infarction or heart failure, first dose monitoring is recommended with hourly pulse and blood pressure to monitor for bradycardia for the first 6 hours. ECG monitoring is recommended prior to dosing and at the end of the observation period.(1) Additional US monitoring recommendations include: If HR is less than 45 bpm, the heart rate 6 hours postdose is at the lowest value postdose or if the ECG shows new onset of second degree or higher AV block at the end of the monitoring period, then monitoring should continue until the finding has resolved. If patient requires treatment for symptomatic bradycardia, second-degree or higher AV block, or QTc interval greater than or equal to 500 msec, perform continuous overnight ECG monitoring. Repeat the first dose monitoring strategy for the second dose of siponimod. If a titration dose is missed or if 4 or more consecutive daily doses are missed during maintenance treatment, reinitiate Day 1 of the dose titration and follow titration monitoring recommendations. Patient will need to be observed in the doctor's office or other facility for at least 6 hours after the first dose and after reinitiation if treatment is interrupted or discontinued for certain periods. Consult the prescribing information for full monitoring recommendations. United Kingdom recommendations:(3) In certain patients, it is recommended that an electrocardiogram (ECG) is obtained prior to dosing and at the end of the observation period. If post-dose bradyarrhythmia or conduction-related symptoms occur or if ECG 6 hours post-dose shows new onset second-degree or higher AV block or QTc > 500 msec, appropriate management should be initiated and observation continued until the symptoms/findings have resolved. If pharmacological treatment is required, monitoring should be continued overnight and 6-hour monitoring should be repeated after the second dose. During the first 6 days of treatment, if a titration dose is missed on one day, treatment needs to be re-initiated with a new titration pack. If there is a missed dose after day 6 the prescribed dose should be taken at the next scheduled time; the next dose should not be doubled. If maintenance treatment is interrupted for 4 or more consecutive daily doses, siponimod needs to be re-initiated with a new titration pack.(1,2) DISCUSSION: After the first dose of siponimod, heart rate decrease may begin within an hour. Decline is usually maximal at approximately 3-4 hours. With continued, chronic dosing, heart rate gradually returns to baseline in about 10 days.(1,2) A transient, dose-dependent decrease in heart rate was observed during the initial dosing phase of siponimod, which plateaued at doses greater than or equal to 5 mg, and bradyarrhythmic events (AV blocks and sinus pauses) were detected at a higher incidence under siponimod treatment than placebo. AV blocks and sinus pauses occurred above the recommended dose of 2 mg, with notably higher incidence under non-titrated conditions compared to dose titration conditions.(1) |
MAYZENT |
Ponesimod/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Ponesimod is a sphingosine 1-phosphate (S1P) receptor 1 modulator. Initiation of ponesimod has a negative chronotropic effect leading to a mean decrease in heart rate of 6 beats per minute (bpm) after the first dose. The first dose has also been associated with heart block.(1) CLINICAL EFFECTS: After a dose of ponesimod, a decrease in heart rate typically begins within an hour and reaches its nadir within 2-4 hours. The heart rate typically recovers to baseline levels 4-5 hours after administration. All patients recovered from bradycardia. The conduction abnormalities typically were transient, asymptomatic, and resolved within 24 hours. Second- and third-degree AV blocks were not reported. With up-titration after Day 1, the post-dose decrease in heart rate is less pronounced. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes.(1,2) PREDISPOSING FACTORS: Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to ponesimod initiation, factors associated with QTc prolongation, or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to ponesimod.(1) The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Prior to initiation of ponesimod, obtain an ECG to determine if preexisting conduction abnormalities are present. Ponesimod is generally not recommended in patients who are receiving concurrent treatment with a QT prolonging agent, anti-arrhythmic drugs, or drugs that may decrease heart rate. Consultation with a cardiologist is recommended.(1) In patients with heart rate (HR) less than 55 beats per minute (bpm), first- or second-degree AV block, or history of myocardial infarction or heart failure, monitor patients for 4 hours after the first dose for signs and symptoms of bradycardia with a minimum of hourly pulse and blood pressure measurements. Obtain an ECG in these patients prior to dosing and at the end of the 4-hour observation period.(1) Additional US monitoring recommendations include: If HR is less than 45 bpm, the heart rate 4 hours post-dose is at the lowest value post-dose or if the ECG shows new onset of second degree or higher AV block at the end of the monitoring period, then monitoring should continue until the finding has resolved. If patient requires treatment for symptomatic bradycardia, second-degree or higher AV block, or QTc interval greater than or equal to 500 msec, perform continuous overnight ECG monitoring and repeat the first dose monitoring strategy for the second dose of ponesimod. Consult the prescribing information for full monitoring recommendations. If fewer than 4 consecutive doses are missed during titration: resume treatment with the first missed titration dose and resume the titration schedule at that dose and titration day. If fewer than 4 consecutive doses are missed during maintenance: resume treatment with the maintenance dosage. If 4 or more consecutive daily doses are missed during treatment initiation or maintenance treatment, reinitiate Day 1 of the dose titration (new starter pack) and follow first-dose monitoring recommendations. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: After the first dose of ponesimod, heart rate decrease may begin within the first hour. Decline is usually maximal at approximately 4 hours. With continued, chronic dosing, post-dose decrease in heart rate is less pronounced. Heart rate gradually returns to baseline in about 4-5 hours.(1) |
PONVORY |
Ozanimod/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Ozanimod is a sphingosine 1-phosphate (S1P) receptor modulator. Initiation of ozanimod has a negative chronotropic effect leading to a mean decrease in heart rate of 13 beats per minute (bpm) after the first dose. The first dose has also been associated with heart block.(1,2) Ozanimod blocks the capacity of lymphocytes to egress from lymph nodes, reducing the number of lymphocytes in peripheral blood. The mechanism by which ozanimod exerts therapeutic effects in multiple sclerosis is unknown but may involve the reduction of lymphocyte migration into the central nervous system. CLINICAL EFFECTS: The initial heart rate lowering effect of ozanimod usually occurs within 5 hours. With continued up-titration, the maximal heart rate effect of ozanimod occurred on Day 8. Symptomatic bradycardia and heart block, including third degree block, have been observed. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes.(1,2) PREDISPOSING FACTORS: Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to ozanimod initiation, factors associated with QTc prolongation (e.g. hypokalemia, hypomagnesemia), or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to ozanimod.(1,2) The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: Prior to initiation of ozanimod, obtain an ECG to determine if preexisting conduction abnormalities are present. Patients with preexisting cardiac conditions, significant QT prolongation (QTc >450 msec in males, >470 msec in females), concurrent Class Ia or Class III antiarrhythmics, or receiving concurrent treatment with a QT prolonging agent at the time ozanimod is initiated or resumed should be referred to a cardiologist.(1) The US recommendations state: Dose titration is recommended with initiation of ozanimod due to transient decrease in heart rate and AV conduction delays.(1) United Kingdom recommendations:(2) Due to the risk of transient decreases in HR with the initiation of ozanimod, first dose, 6-hour monitoring for signs and symptoms of symptomatic bradycardia is recommended in patients with resting HR <55 bpm, second-degree [Mobitz type I] AV block or a history of myocardial infarction or heart failure. Patients should be monitored with hourly pulse and blood pressure measurement during this 6-hour period. An ECG prior to and at the end of this 6-hour period is recommended. Additional monitoring after 6 hours is recommended in patients with: heart rate less than 45 bpm, heart rate at the lowest value post-dose (suggesting that the maximum decrease in HR may not have occurred yet), evidence of a new onset second-degree or higher AV block at the 6-hour post dose ECG, or QTc interval greater than 500 msec. In these cases, appropriate management should be initiated and observation continued until the symptoms/findings have resolved. Instruct patients to report any irregular heartbeat, dizziness, or fainting.(2,3) DISCUSSION: After the first dose of ozanimod heart rate decline is usually maximal at approximately 5 hours, returning to baseline at 6 hours. With continued, chronic dosing, maximum heart rate effect occurred on day 8.(1,2) |
ZEPOSIA |
Pacritinib/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Pacritinib has been observed to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of pacritinib with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of pacritinib states concurrent use with agents known to prolong the QT interval should be avoided. Avoid the use of pacritinib in patients with a baseline QTc > 480 msec. Correct hypokalemia prior to initiation and during therapy with pacritinib.(1) If patients develop QTc prolongation >500 msec or >60 msec from baseline, hold pacritinib. If QTc prolongation resolves to <=480 msec or to baseline within 1 week, resume pacritinib at the same dose. If time to resolution of the QTc interval takes greater than 1 week to resolve, reduce the pacritinib dose.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a 24 week clinical study, patients treatment with pacritinib 200 mg twice daily had a change in QTc from baseline of 11 msec (90% CI: 5-17).(1) Pacritinib has been associated with QTc interval prolongation. In clinical trials, patients with QTc prolongation >500 msec occurred in 1.4% of patients in the treatment arm compared to 1% in the control arm. The treatment arm had a greater incidence of an increase in QTc > 60 msec from baseline than the control arm (1.9% vs 1%, respectively). QTc prolongation adverse reactions were higher in the treatment arm than the control group (3.8% vs 2%, respectively).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
VONJO |
Triclabendazole/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Triclabendazole has been observed to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) Triclabendazole is partially metabolized by CYP1A2. Ciprofloxacin, propafenone, and vemurafenib are CYP1A2 inhibitors and may inhibit the CYP1A2 mediated metabolism of triclabendazole. CLINICAL EFFECTS: The concurrent use of triclabendazole with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) Hepatic impairment and concurrent use of CYP1A2 inhibitors may raise triclabendazole levels and increase the risk of QT prolongation.(1) PATIENT MANAGEMENT: The manufacturer of triclabendazole states concurrent use with agents known to prolong the QT interval should be used with caution. Monitor ECG in patients with a history of QTc prolongation, symptoms of long QT interval, electrolyte imbalances, concurrent CYP1A2 inhibitors, or hepatic impairment. If signs of a cardiac arrhythmia develop, stop treatment with triclabendazole and monitor ECG.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a thorough QT study, a dose-dependent prolongation in the QTc interval was observed with triclabendazole. The largest placebo-corrected mean increase in QTc was 9.2 msec (upper limit of confidence interval (UCI): 12.2 msec) following oral administration of 10 mg/kg triclabendazole twice daily (at the recommended dose), and the largest placebo-corrected mean increase in QTc was 21.7 msec (UCI: 24.7 msec) following oral administration of 10 mg/kg triclabendazole twice daily for 3 days (3 times the approved recommended dosing duration).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
EGATEN |
Etrasimod/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Etrasimod is a sphingosine-1-phosphate (S1P) receptor modulator. Initiation of etrasimod has a negative chronotropic effect, which may increase the risk of developing QT prolongation. CLINICAL EFFECTS: Initiation of etrasimod may result in a transient decrease in heart rate. A mean decrease in heart rate of 7.2 (8.98) beats per minute was seen 2 to 3 hours after the first dose. The first dose has also been associated with heart block. Symptomatic bradycardia has been observed. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes.(1) PREDISPOSING FACTORS: Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to etrasimod initiation, factors associated with QTc prolongation (e.g. hypokalemia, hypomagnesemia), or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to etrasimod. The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Prior to initiation of etrasimod, obtain an ECG to determine if preexisting conduction abnormalities are present.(1) Advice from a cardiologist is recommended in patients with preexisting heart and cerebrovascular conditions, prolonged QTc interval, risk factors for QT prolongation, concurrent therapy with QT prolonging drugs or drugs that slow the heart rate or AV conduction.(1) Monitor blood pressure during treatment.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Initiation of etrasimod may result in a transient decrease in heart rate or transient AV conduction delays.(1) A transient decrease in heart rate was observed during the initial dosing phase of etrasimod and bradyarrhythmic events (AV blocks) were detected at a higher incidence under etrasimod treatment than placebo.(1) |
VELSIPITY |
Dexmedetomidine Sublingual/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Dexmedetomidine sublingual has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of dexmedetomidine sublingual with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of dexmedetomidine sublingual states that concurrent use should be avoided with other agents known to prolong the QTc interval.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a QT study, dexmedetomidine sublingual had a concentration dependent effect on the QT interval. The mean QTc (95% confidence interval) increased from baseline by 6 (7) msec with a 120 mcg single dose, 8 (9) msec with 120 mcg followed by 2 additional doses of 60 mcg (total 3 doses), 8 (11) msec with a single 180 mcg dose, and 11 (14) msec with 180 mcg followed by 2 additional doses of 90 mcg (total 3 doses), respectively.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
IGALMI |
Mavorixafor/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Mavorixafor has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of mavorixafor with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of mavorixafor states that concurrent use of mavorixafor with other agents known to prolong the QTc interval should be approached with caution. ECG monitoring is recommended prior to initiation, during concurrent therapy, and as clinically indicated with other agents known to prolong the QTc interval.(1) If QT prolongation occurs, a dose reduction or discontinuation of mavorixafor may be required.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a thorough QT study, a dose of mavorixafor 800 mg increased the mean QTc 15.6 msec (upper 90% CI = 19.9 msec). The dose of mavorixafor was 2 times the recommended maximum daily dose.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
XOLREMDI |
Givinostat/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Givinostat may prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of givinostat with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of givinostat states that the concurrent use of QT prolonging agents should be avoided. If concurrent use cannot be avoided, obtain ECGs prior to initiating givinostat, during concomitant use, and as clinically indicated.(1) If the QTc interval is greater than 500 ms or the change from baseline is greater than 60 ms, withhold givinostat therapy.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a QT study, the largest mean increase in QTc interval of 13.6 ms (upper confidence interval of 17.1 ms) occurred 5 hours after administration of givinostat 265.8 mg (approximately 5 times the recommended 53.2 mg dose in patients weighing 60 kg or more).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
DUVYZAT |
The following contraindication information is available for VISTARIL (hydroxyzine pamoate):
Drug contraindication overview.
No enhanced Contraindications information available for this drug.
No enhanced Contraindications information available for this drug.
There are 1 contraindications.
Absolute contraindication.
Contraindication List |
---|
Porphyria |
There are 10 severe contraindications.
Adequate patient monitoring is recommended for safer drug use.
Severe List |
---|
Acute myocardial infarction |
Bladder outflow obstruction |
Chronic heart failure |
Congenital long QT syndrome |
Hypokalemia |
Hypomagnesemia |
Pregnancy |
Prolonged QT interval |
Pyloroduodenal obstruction |
Stenosing peptic ulcer |
There are 3 moderate contraindications.
Clinically significant contraindication, where the condition can be managed or treated before the drug may be given safely.
Moderate List |
---|
Benign prostatic hyperplasia |
Constipation |
Urinary retention |
The following adverse reaction information is available for VISTARIL (hydroxyzine pamoate):
Adverse reaction overview.
No enhanced Common Adverse Effects information available for this drug.
No enhanced Common Adverse Effects information available for this drug.
There are 5 severe adverse reactions.
More Frequent | Less Frequent |
---|---|
None. | None. |
Rare/Very Rare |
---|
Acute generalized exanthematous pustulosis Hallucinations Prolonged QT interval Seizure disorder Torsades de pointes |
There are 8 less severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Drowsy Xerostomia |
None. |
Rare/Very Rare |
---|
Accidental fall Headache disorder Pruritus of skin Skin rash Tremor Urticaria |
The following precautions are available for VISTARIL (hydroxyzine pamoate):
No enhanced Pediatric Use information available for this drug.
Contraindicated
Severe Precaution
Management or Monitoring Precaution
Contraindicated
None |
Severe Precaution
None |
Management or Monitoring Precaution
None |
Although there are no adequate and controlled studies to date in humans, hydroxyzine has been shown to be teratogenic in mice, rats, and rabbits when given at dosages substantially greater than the therapeutic human dosage. Pending accumulation of further data regarding safety in pregnant women, hydroxyzine is contraindicated during early pregnancy.
It is not known whether hydroxyzine is distributed into milk. The manufacturers recommend that hydroxyzine not be given to nursing women.
No enhanced Geriatric Use information available for this drug.
The following prioritized warning is available for VISTARIL (hydroxyzine pamoate):
No warning message for this drug.
No warning message for this drug.
The following icd codes are available for VISTARIL (hydroxyzine pamoate)'s list of indications:
Allergic dermatitis | |
L20 | Atopic dermatitis |
L20.0 | Besnier's prurigo |
L20.8 | Other atopic dermatitis |
L20.81 | Atopic neurodermatitis |
L20.82 | Flexural eczema |
L20.83 | Infantile (acute) (chronic) eczema |
L20.84 | Intrinsic (allergic) eczema |
L20.89 | Other atopic dermatitis |
L20.9 | Atopic dermatitis, unspecified |
L23 | Allergic contact dermatitis |
L23.0 | Allergic contact dermatitis due to metals |
L23.1 | Allergic contact dermatitis due to adhesives |
L23.2 | Allergic contact dermatitis due to cosmetics |
L23.3 | Allergic contact dermatitis due to drugs in contact with skin |
L23.4 | Allergic contact dermatitis due to dyes |
L23.5 | Allergic contact dermatitis due to other chemical products |
L23.6 | Allergic contact dermatitis due to food in contact with the skin |
L23.7 | Allergic contact dermatitis due to plants, except food |
L23.8 | Allergic contact dermatitis due to other agents |
L23.81 | Allergic contact dermatitis due to animal (cat) (dog) dander |
L23.89 | Allergic contact dermatitis due to other agents |
L23.9 | Allergic contact dermatitis, unspecified cause |
Anxiety | |
F06.4 | Anxiety disorder due to known physiological condition |
F10.180 | Alcohol abuse with alcohol-induced anxiety disorder |
F10.280 | Alcohol dependence with alcohol-induced anxiety disorder |
F10.980 | Alcohol use, unspecified with alcohol-induced anxiety disorder |
F12.180 | Cannabis abuse with cannabis-induced anxiety disorder |
F12.280 | Cannabis dependence with cannabis-induced anxiety disorder |
F12.980 | Cannabis use, unspecified with anxiety disorder |
F14.180 | Cocaine abuse with cocaine-induced anxiety disorder |
F14.280 | Cocaine dependence with cocaine-induced anxiety disorder |
F14.980 | Cocaine use, unspecified with cocaine-induced anxiety disorder |
F15.180 | Other stimulant abuse with stimulant-induced anxiety disorder |
F15.280 | Other stimulant dependence with stimulant-induced anxiety disorder |
F15.980 | Other stimulant use, unspecified with stimulant-induced anxiety disorder |
F16.180 | Hallucinogen abuse with hallucinogen-induced anxiety disorder |
F16.280 | Hallucinogen dependence with hallucinogen-induced anxiety disorder |
F16.980 | Hallucinogen use, unspecified with hallucinogen-induced anxiety disorder |
F18.180 | Inhalant abuse with inhalant-induced anxiety disorder |
F18.280 | Inhalant dependence with inhalant-induced anxiety disorder |
F18.980 | Inhalant use, unspecified with inhalant-induced anxiety disorder |
F19.180 | Other psychoactive substance abuse with psychoactive substance-induced anxiety disorder |
F19.280 | Other psychoactive substance dependence with psychoactive substance-induced anxiety disorder |
F19.980 | Other psychoactive substance use, unspecified with psychoactive substance-induced anxiety disorder |
F40 | Phobic anxiety disorders |
F40.0 | Agoraphobia |
F40.00 | Agoraphobia, unspecified |
F40.01 | Agoraphobia with panic disorder |
F40.02 | Agoraphobia without panic disorder |
F40.1 | Social phobias |
F40.10 | Social phobia, unspecified |
F40.11 | Social phobia, generalized |
F40.8 | Other phobic anxiety disorders |
F40.9 | Phobic anxiety disorder, unspecified |
F41 | Other anxiety disorders |
F41.0 | Panic disorder [episodic paroxysmal anxiety] |
F41.1 | Generalized anxiety disorder |
F41.3 | Other mixed anxiety disorders |
F41.8 | Other specified anxiety disorders |
F41.9 | Anxiety disorder, unspecified |
F93.0 | Separation anxiety disorder of childhood |
Pruritus of skin | |
L29.8 | Other pruritus |
L29.81 | Cholestatic pruritus |
L29.89 | Other pruritus |
L29.9 | Pruritus, unspecified |
Urticaria | |
L50 | Urticaria |
L50.0 | Allergic urticaria |
L50.1 | Idiopathic urticaria |
L50.2 | Urticaria due to cold and heat |
L50.3 | Dermatographic urticaria |
L50.4 | Vibratory urticaria |
L50.5 | Cholinergic urticaria |
L50.6 | Contact urticaria |
L50.8 | Other urticaria |
L50.9 | Urticaria, unspecified |
L56.3 | Solar urticaria |
O26.86 | Pruritic urticarial papules and plaques of pregnancy (PUPPp) |
Formulary Reference Tool