Please wait while the formulary information is being retrieved.
DRUG IMAGES
- COMPAZINE 25 MG SUPPOSITORY
The following indications for COMPAZINE (prochlorperazine maleate) have been approved by the FDA:
Indications:
Cancer chemotherapy-induced nausea and vomiting
Nausea and vomiting
Professional Synonyms:
Chemotherapy-induced nausea and vomiting
Indications:
Cancer chemotherapy-induced nausea and vomiting
Nausea and vomiting
Professional Synonyms:
Chemotherapy-induced nausea and vomiting
The following dosing information is available for COMPAZINE (prochlorperazine maleate):
Dosage of prochlorperazine and its salts is expressed in terms of prochlorperazine. Dosage must be carefully adjusted according to individual requirements and response, using the lowest possible effective dosage. Dosage should be increased more gradually in debilitated, emaciated, or geriatric patients.
Since geriatric patients may be more susceptible to hypotension and neuromuscular reactions, these patients should be observed closely; in general, dosages in the lower end of the range are sufficient for most geriatric patients. Since children appear to be more prone to extrapyramidal reactions, even at moderate dosages, they should receive the lowest possible effective dosage and parents should be instructed not to exceed the prescribed dosage.
For the control of severe nausea and vomiting in patients who can tolerate oral administration of the drug, the usual adult oral dosage of prochlorperazine is 5 or 10 mg 3 or 4 times daily. Alternatively, a dosage of 15 mg (as the extended-release Spansule(R)) once daily upon arising or 10 mg (as the extended-release Spansule(R)) every 12 hours may be used; some patients subsequently may require a dosage of 30 mg (using the appropriate number of 10- or 15-mg extended-release Spansules(R)) once daily in the morning. Oral dosages exceeding 40 mg daily should be used only in resistant cases.
The usual adult rectal dosage of prochlorperazine for the control of severe nausea and vomiting is 25 mg twice daily. The usual initial adult IM dose of prochlorperazine for the control of severe nausea and vomiting is 5-10 mg. If necessary, the initial IM dose may be repeated every 3 or 4 hours, but total IM dosage should not exceed 40 mg daily.
For the control of severe nausea and vomiting, the usual adult IV dose of prochlorperazine is 2.5-10 mg; single IV doses of the drug should not exceed 10 mg and total IV dosage should not exceed 40 mg daily. For the control of severe nausea and vomiting in children older than 2 years of age and weighing more than 9 kg, the usual oral or rectal dosage of prochlorperazine is 0.4
mg/kg or 10 mg/m2 daily given in 3 or 4 divided doses. Alternatively, the oral or rectal dosage of prochlorperazine for the control of severe nausea and vomiting in children older than 2 years of age and weighing 9.1-13.2
kg is 2.5 mg once or twice daily, but not exceeding 7.5 mg daily; children weighing 13.6-17.7
kg may receive 2.5 mg 2 or 3 times daily, but no more than 10 mg daily; and children weighing 18.2-38.6
kg may receive 2.5 mg 3 times daily or 5 mg twice daily, but no more than 15 mg daily. Generally, it is not necessary to continue oral or rectal therapy for longer than 24 hours in most pediatric patients.
The usual IM dose of prochlorperazine for the control of severe nausea and vomiting in children 2 years of age or older and weighing more than 9 kg is 0.13 mg/kg. Generally, a single IM dose is sufficient to control nausea and vomiting in most pediatric patients.
For the control of severe nausea and vomiting during surgery, the usual initial adult IM dose of prochlorperazine is 5-10 mg given 1-2 hours before induction of anesthesia. If necessary, the initial IM dose may be repeated once, 30 minutes after the initial dose. To control acute symptoms during or after surgery, the usual adult IM dose is 5-10 mg, repeated once in 30 minutes, if necessary.
For the control of severe nausea and vomiting during surgery, the usual adult IV dose of prochlorperazine is 5-10 mg given 15-30 minutes before induction of anesthesia. If necessary, the initial IV dose may be repeated once before surgery. To control acute symptoms during or after surgery, the usual adult IV dose is 5-10 mg, repeated once, if necessary; however, single IV doses of the drug should not exceed 10 mg.
For the control of severe nausea and vomiting during surgery, prochlorperazine also may be given by IV infusion. For IV infusion, an infusion containing prochlorperazine 20 mg/L is begun 15-30 minutes before induction of anesthesia. Prochlorperazine is not recommended for the control of severe nausea and vomiting during surgery in children.
For further information on chemistry and stability, pharmacology, pharmacokinetics, uses, cautions, acute toxicity, drug interactions, laboratory test interferences, and dosage and administration of prochlorperazine, see the Phenothiazines General Statement 28:16.08.24.
For information on the use of prochlorperazine in psychiatric disorders, see 28:16.08.24.
Dosage of prochlorperazine and its salts is expressed in terms of prochlorperazine. Dosage must be carefully adjusted according to individual requirements and response, using the lowest possible effective dosage. Dosage should be increased more gradually in debilitated, emaciated, or geriatric patients.
Since geriatric patients may be more susceptible to hypotension and neuromuscular reactions, these patients should be observed closely; in general, dosages in the lower end of the range are sufficient for most geriatric patients. Because of the risk of adverse reactions associated with cumulative effects of phenothiazines, patients with a history of long-term therapy with prochlorperazine and/or other antipsychotic agents should be evaluated periodically to determine whether maintenance dosage could be decreased or drug therapy discontinued. Since children appear to be more prone to extrapyramidal reactions, even at moderate dosages, they should receive the lowest possible effective dosage, and parents should be instructed not to exceed the prescribed dosage.
Since geriatric patients may be more susceptible to hypotension and neuromuscular reactions, these patients should be observed closely; in general, dosages in the lower end of the range are sufficient for most geriatric patients. Since children appear to be more prone to extrapyramidal reactions, even at moderate dosages, they should receive the lowest possible effective dosage and parents should be instructed not to exceed the prescribed dosage.
For the control of severe nausea and vomiting in patients who can tolerate oral administration of the drug, the usual adult oral dosage of prochlorperazine is 5 or 10 mg 3 or 4 times daily. Alternatively, a dosage of 15 mg (as the extended-release Spansule(R)) once daily upon arising or 10 mg (as the extended-release Spansule(R)) every 12 hours may be used; some patients subsequently may require a dosage of 30 mg (using the appropriate number of 10- or 15-mg extended-release Spansules(R)) once daily in the morning. Oral dosages exceeding 40 mg daily should be used only in resistant cases.
The usual adult rectal dosage of prochlorperazine for the control of severe nausea and vomiting is 25 mg twice daily. The usual initial adult IM dose of prochlorperazine for the control of severe nausea and vomiting is 5-10 mg. If necessary, the initial IM dose may be repeated every 3 or 4 hours, but total IM dosage should not exceed 40 mg daily.
For the control of severe nausea and vomiting, the usual adult IV dose of prochlorperazine is 2.5-10 mg; single IV doses of the drug should not exceed 10 mg and total IV dosage should not exceed 40 mg daily. For the control of severe nausea and vomiting in children older than 2 years of age and weighing more than 9 kg, the usual oral or rectal dosage of prochlorperazine is 0.4
mg/kg or 10 mg/m2 daily given in 3 or 4 divided doses. Alternatively, the oral or rectal dosage of prochlorperazine for the control of severe nausea and vomiting in children older than 2 years of age and weighing 9.1-13.2
kg is 2.5 mg once or twice daily, but not exceeding 7.5 mg daily; children weighing 13.6-17.7
kg may receive 2.5 mg 2 or 3 times daily, but no more than 10 mg daily; and children weighing 18.2-38.6
kg may receive 2.5 mg 3 times daily or 5 mg twice daily, but no more than 15 mg daily. Generally, it is not necessary to continue oral or rectal therapy for longer than 24 hours in most pediatric patients.
The usual IM dose of prochlorperazine for the control of severe nausea and vomiting in children 2 years of age or older and weighing more than 9 kg is 0.13 mg/kg. Generally, a single IM dose is sufficient to control nausea and vomiting in most pediatric patients.
For the control of severe nausea and vomiting during surgery, the usual initial adult IM dose of prochlorperazine is 5-10 mg given 1-2 hours before induction of anesthesia. If necessary, the initial IM dose may be repeated once, 30 minutes after the initial dose. To control acute symptoms during or after surgery, the usual adult IM dose is 5-10 mg, repeated once in 30 minutes, if necessary.
For the control of severe nausea and vomiting during surgery, the usual adult IV dose of prochlorperazine is 5-10 mg given 15-30 minutes before induction of anesthesia. If necessary, the initial IV dose may be repeated once before surgery. To control acute symptoms during or after surgery, the usual adult IV dose is 5-10 mg, repeated once, if necessary; however, single IV doses of the drug should not exceed 10 mg.
For the control of severe nausea and vomiting during surgery, prochlorperazine also may be given by IV infusion. For IV infusion, an infusion containing prochlorperazine 20 mg/L is begun 15-30 minutes before induction of anesthesia. Prochlorperazine is not recommended for the control of severe nausea and vomiting during surgery in children.
For further information on chemistry and stability, pharmacology, pharmacokinetics, uses, cautions, acute toxicity, drug interactions, laboratory test interferences, and dosage and administration of prochlorperazine, see the Phenothiazines General Statement 28:16.08.24.
For information on the use of prochlorperazine in psychiatric disorders, see 28:16.08.24.
Dosage of prochlorperazine and its salts is expressed in terms of prochlorperazine. Dosage must be carefully adjusted according to individual requirements and response, using the lowest possible effective dosage. Dosage should be increased more gradually in debilitated, emaciated, or geriatric patients.
Since geriatric patients may be more susceptible to hypotension and neuromuscular reactions, these patients should be observed closely; in general, dosages in the lower end of the range are sufficient for most geriatric patients. Because of the risk of adverse reactions associated with cumulative effects of phenothiazines, patients with a history of long-term therapy with prochlorperazine and/or other antipsychotic agents should be evaluated periodically to determine whether maintenance dosage could be decreased or drug therapy discontinued. Since children appear to be more prone to extrapyramidal reactions, even at moderate dosages, they should receive the lowest possible effective dosage, and parents should be instructed not to exceed the prescribed dosage.
Prochlorperazine edisylate is administered orally, by deep IM injection, or by direct IV injection or by IV infusion. When administered by direct IV injection, prochlorperazine is administered at a rate not exceeding 5 mg/minute; the drug should not be given as a bolus injection. Subcutaneous administration of the drug is not recommended because of local irritation.
Prochlorperazine maleate is administered orally. Prochlorperazine is administered rectally. For IV infusion, 20 mg (4 mL) of prochlorperazine injection should be diluted in 1 L of a compatible IV infusion solution (e.g., 0.9% sodium chloride).
For psychiatric use, prochlorperazine edisylate is administered orally or by deep IM injection. Subcutaneous administration of the drug is not recommended because of local irritation. Prochlorperazine maleate is administered orally.
Prochlorperazine is administered rectally. Prochlorperazine edisylate is also administered by direct IV injection or by IV infusion in the management of severe nausea and vomiting. (See 56:22.08.)
Prochlorperazine maleate is administered orally. Prochlorperazine is administered rectally. For IV infusion, 20 mg (4 mL) of prochlorperazine injection should be diluted in 1 L of a compatible IV infusion solution (e.g., 0.9% sodium chloride).
For psychiatric use, prochlorperazine edisylate is administered orally or by deep IM injection. Subcutaneous administration of the drug is not recommended because of local irritation. Prochlorperazine maleate is administered orally.
Prochlorperazine is administered rectally. Prochlorperazine edisylate is also administered by direct IV injection or by IV infusion in the management of severe nausea and vomiting. (See 56:22.08.)
DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
---|---|---|
COMPAZINE 5 MG TABLET | Maintenance | Adults take 1 tablet (5 mg) by oral route every 4 hours as needed for nausea and vomiting |
COMPAZINE 10 MG TABLET | Maintenance | Adults take 1 tablet (10 mg) by oral route 3 times per day |
COMPAZINE 25 MG SUPPOSITORY | Maintenance | Adults insert 1 suppository (25 mg) by rectal route 2 times per day |
DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
---|---|---|
PROCHLORPERAZINE 5 MG TABLET | Maintenance | Adults take 1 tablet (5 mg) by oral route every 4 hours as needed for nauseaand vomiting |
PROCHLORPERAZINE 25 MG SUPP | Maintenance | Adults insert 1 suppository (25 mg) by rectal route 2 times per day |
PROCHLORPERAZINE 10 MG TAB | Maintenance | Adults take 1 tablet (10 mg) by oral route 3 times per day |
The following drug interaction information is available for COMPAZINE (prochlorperazine maleate):
There are 3 contraindications.
These drug combinations generally should not be dispensed or administered to the same patient. A manufacturer label warning that indicates the contraindication warrants inclusion of a drug combination in this category, regardless of clinical evidence or lack of clinical evidence to support the contraindication.
Drug Interaction | Drug Names |
---|---|
Pimozide/Phenothiazines SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Concurrent use may possibly result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: Concurrent use may result in prolongation of the QTc interval, which may result in potentially life-threatening arrhythmias.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.e. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Concurrent therapy with pimozide and phenothiazines should be avoided. The manufacturer of pimozide states that concurrent therapy with agents that prolong the QTc interval is contraindicated.(1) If concurrent therapy is deemed medically necessary, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Pimozide has been shown to prolong the QTc interval. Therefore, the manufacturer of pimozide states that concurrent therapy with agents that prolong the QTc interval is contraindicated because of the risk of additive effects on the QTc interval.(1) No other clinical documentation is available. One or more of the drug pairs linked to this monograph have been included in a list of interactions that should be considered "high-priority" for inclusion and should not be inactivated in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
PIMOZIDE |
Dofetilide/Prochlorperazine SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: The active tubular secretion of dofetilide may be inhibited by prochlorperazine.(1) CLINICAL EFFECTS: The concurrent administration of dofetilide with prochlorperazine may result in elevated levels and increased effects of dofetilide, including QT prolongation or torsades de pointes.(1) PREDISPOSING FACTORS: Renal impairment may increase risk for excessive QTc prolongation as dofetilide is primarily renally eliminated. To prevent increased serum levels and risk for ventricular arrhythmias, dofetilide must be dose adjusted for creatinine clearance < or = to 60 mL/min.(1) The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of dofetilide states that prochlorperazine should not be used in patients on dofetilide. If dofetilide is to be discontinued, a washout of at least 2 days is recommended prior to starting prochlorperazine.(1) DISCUSSION: Dofetilide is primarily excreted in the urine via both glomerular filtration and active tubular secretion via the cation transport system. Prochlorperazine is believed to inhibit the cation transport system. Other agents that inhibit this system, including cimetidine, ketoconazole, trimethoprim, and verapamil, have been shown to increase dofetilide levels. Therefore, the manufacturer of dofetilide states that prochlorperazine should not be used in patients on dofetilide.(1) |
DOFETILIDE, TIKOSYN |
Iomeprol/Neuroleptics SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Neuroleptics may lower seizure threshold.(1) CLINICAL EFFECTS: Use of iomeprol in a patient receiving a neuroleptic may increase the risk of seizure.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of iomeprol states that neuroleptics should be discontinued 48 hours before iomeprol use. Treatment with a neuroleptic should not be resumed until 24 hours post-procedure.(1) DISCUSSION: Because neuroleptics may lower seizure threshold, neuroleptics should be discontinued 48 hours before iomeprol use. Treatment with a neuroleptic should not be resumed until 24 hours post-procedure.(1) |
IOMERON 350 |
There are 7 severe interactions.
These drug interactions can produce serious consequences in most patients. Actions required for severe interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration scheduling, and providing additional patient monitoring. Review the full interaction monograph for more information.
Drug Interaction | Drug Names |
---|---|
Cabergoline/Selected Dopamine Blockers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Dopamine (D2) blockers such as the phenothiazines, butyrophenones, thioxanthenes and atypical antipsychotics may decrease the effects of cabergoline, a dopamine agonist.(1) CLINICAL EFFECTS: Concurrent administration of cabergoline with dopamine blockers (e.g. phenothiazines, butyrophenones, or thio xanthines) may decrease the effectiveness of cabergoline.(1) Cabergoline may decrease the effectiveness of antipsychotic treatment. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of cabergoline states cabergoline(1) should not be administered concurrently with dopamine antagonists. Avoid concurrent use when possible. If cabergoline is started in a patient receiving long term antipsychotic treatment, monitor closely for loss of antipsychotic efficacy. If an antipsychotic is required for a patient on long term cabergoline therapy, consider use of a shorter half-life, less potent dopamine (D2) blocking atypical antipsychotic (e.g. clozapine, quetiapine) and monitor closely. DISCUSSION: The manufacturer of cabergoline state that it should not be administered concurrently with dopamine antagonists. |
CABERGOLINE |
Metoclopramide/Prochlorperazine SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Both metoclopramide and prochlorperazine block dopamine (D2) receptors. D2 blockade can cause extrapyramidal reactions, such acute dystonic reactions, pseudoparkinsonian tremors, akathisia, or tardive dyskinesia. Neuroleptic malignant syndrome may also occur in patients receiving D2 blockers. The risk of these adverse effects may be increased by concurrent use.(1-3) CLINICAL EFFECTS: Concurrent use may increase the risk of extrapyramidal reactions (e.g. acute dystonic reactions, pseudoparkinsonian tremors, akathisia, or tardive dyskinesia) and neuroleptic malignant syndrome. Tardive dyskinesia, which may be permanent, typically affects the facial muscles and may result in uncontrollable lip smacking, chewing, puckering of the mouth, frowning or scowling, sticking out the tongue, blinking and moving the eyes, and shaking of the arms and/or legs.(1-3) Symptoms of neuroleptic malignant syndrome include hyperpyrexia, muscle rigidity, altered mental status, an autonomic instability (irregular pulse or blood pressure, tachycardia, diaphoresis, and cardiac arrhythmias), elevated creatine phosphokinase, myoglobinuria (rhabdomyolysis), and acute renal failure.(1) PREDISPOSING FACTORS: Patients with Parkinson's or Lewy Body Disease may be more likely to have extrapyramidal reactions or unmasking of their primary disease symptoms. The risk of extrapyramidal symptoms is also increased in patients on metoclopramide for longer than 12 weeks. Elderly patients, especially elderly women, and diabetics are at higher risk of developing tardive dyskinesia. Other extrapyramidal symptoms, like acute dystonia, have occurred more frequently in patients younger than 30 years old.(1) PATIENT MANAGEMENT: The concurrent use of metoclopramide and agents likely to cause extrapyramidal reactions should be avoided.(1) If concurrent use is warranted, monitor patients closely for extrapyramidal reactions and neuroleptic malignant syndrome. The manufacturer of metoclopramide says to avoid treatment with metoclopramide for longer than 12 weeks, and to use the lowest possible dose.(1) Discontinue therapy if symptoms occur. Instruct patients to seek immediate medical attention if symptoms develop. Symptoms of extrapyramidal reactions, including tardive dyskinesia, include involuntary movements of limbs and facial grimacing, torticollis, oculogyric crisis, rhythmic protrusion of the tongue, bulbar type of speech, trismus, and/or dystonic reactions resembling tetanus/stridor/dyspnea. DISCUSSION: Both metoclopramide and phenothiazines can cause extrapyramidal reactions, such as tardive dyskinesia, and neuroleptic malignant syndrome. The risk may be increased by concurrent use.(1,2) Extrapyramidal symptoms have been reported with concurrent metoclopramide and neuroleptics, prochlorperazine, and chlorpromazine.(3-6) |
GIMOTI, METOCLOPRAMIDE HCL, REGLAN |
Selected Dopamine Agonists/Selected Antiemetics SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Selected dopamine agonists are used to treat neurologic conditions such as Parkinson Disease (PD)or restless legs syndrome (RLS), and endocrine disorders such as hyperprolactinemia by directly or indirectly increasing dopamine concentrations at dopamine-2 (D2) receptors in the central nervous system (CNS). Antiemetic agents which block CNS D2 receptors may counteract this effect.(1-5) CLINICAL EFFECTS: The efficacy of the dopamine agonist may be decreased, leading to exacerbation of the disease being treated. In patients with Parkinson disease motor symptoms may worsen, increasing the risk for falls, dysphagia or aspiration.(5) Patients with other conditions such as restless legs syndrome may also experience symptom exacerbation due to this combination. PREDISPOSING FACTORS: Patients with Parkinson or Diffuse Lewy Body (DLB) disease are particularly susceptible to adverse effects of dopamine blockade. PATIENT MANAGEMENT: Reassess antiemetic therapy and use an antiemetic without dopamine (D2) blocking effects if possible. If clinically appropriate and available, consider the use of a 5HT3 blocker (e.g. ondansetron) or domperidone (not available in the US).(4) If concomitant treatment is needed, monitor for loss of efficacy for the disease being treated by the dopamine agonist (e.g. Parkinson disease, restless legs syndrome) and adjust medication(s) or dosage if needed.(1-4) Counsel patients to report symptoms of disease exacerbation. DISCUSSION: Patients with Parkinson or DLB disease are particularly susceptible to adverse effects of dopamine blockade. The European Academy of Neurology guideline for late Parkinson disease states that metoclopramide, cinnarizine and prochlorperazine must be avoided. Ondansetron or domperidone(not available in the US) may be used for nausea and vomiting.(5) Prescribing information for dopamine agonists warn of the risk for disease exacerbation when dopamine blocking agents are co-prescribed.(1-4) |
APOKYN, APOMORPHINE HCL, BROMOCRIPTINE MESYLATE, CARBIDOPA-LEVODOPA, CARBIDOPA-LEVODOPA ER, CARBIDOPA-LEVODOPA-ENTACAPONE, CREXONT, CYCLOSET, DHIVY, DUOPA, INBRIJA, LEVODOPA, MIRAPEX ER, NEUPRO, ONAPGO, PRAMIPEXOLE DIHYDROCHLORIDE, PRAMIPEXOLE ER, ROPINIROLE ER, ROPINIROLE HCL, RYTARY, SINEMET, VYALEV |
Opioids (Cough and Cold)/Antipsychotics; Phenothiazines SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of opioids and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Avoid prescribing opioid-including cough medications for patients taking CNS depressants such as antipsychotics, including phenothiazine derivatives.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) If concurrent use is necessary, monitor patients for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
HYCODAN, HYDROCODONE-CHLORPHENIRAMNE ER, HYDROCODONE-HOMATROPINE MBR, HYDROMET, PROMETHAZINE-CODEINE, TUXARIN ER |
Aminolevulinic Acid/Selected Photosensitizers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Aminolevulinic acid, anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides are all known photosensitizers.(1) CLINICAL EFFECTS: Concurrent use of aminolevulinic acid in patients taking anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides may increase the risk of phototoxicity.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer states that aminolevulinic acid should be avoided in patients receiving photosensitizers including anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides for 24 hours before and after administration of aminolevulinic acid.(1) DISCUSSION: Because of the risk of increased photosensitivity, the US manufacturer states that aminolevulinic acid should be avoided in patients receiving photosensitizers including anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides for 24 hours before and after administration of aminolevulinic acid.(1) |
AMINOLEVULINIC ACID HCL, GLEOLAN |
Porfimer/Selected Photosensitizers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Porfimer causes photosensitivity due to residual drug which is present in all parts of the skin. Anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides are other known photosensitizers.(1) CLINICAL EFFECTS: Concurrent use of porfimer in patients taking anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides may increase the risk of phototoxicity.(1) PREDISPOSING FACTORS: Patients with any hepatic impairment and patients with severe renal impairment have reduced drug elimination and may remain photosensitive for 90 days or longer.(1) PATIENT MANAGEMENT: The US manufacturer of porfimer states that concurrent use of porfimer with photosensitizers including anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides should be avoided.(1) Since the photosensitive effect of porfimer may persist for at least 30 days (and for 90 days in some patients), it would be prudent to avoid other photosensitizing agents for at least 30 days after administration of porfimer. DISCUSSION: All patients who have received porfimer become photosensitive. It is unknown what the risk of photosensitivity reactions is when porfimer is used concurrently with other photosensitizing agents. When porfimer was used in clinical trials, photosensitivity reactions occurred in about 20% of cancer patients and in 69% of high-grade dysplasia in Barretts esophagus patients. Most of the reactions were mild to moderate erythema, but they also included swelling, pruritus, burning sensation, feeling hot, or blisters. The majority of reactions occurred within 90 days of porfimer administration.(1) |
PHOTOFRIN |
Methoxsalen/Selected Photosensitizers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Methoxsalen causes photosensitivity due to residual drug which is present in all parts of the skin from photopheresis. Anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides are other known photosensitizers.(1) CLINICAL EFFECTS: Concurrent use of methoxsalen in patients taking anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides may increase the risk of phototoxicity.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of methoxsalen states that concurrent use of methoxsalen with anthralin, coal tar and derivatives, fluoroquinolones, griseofulvin, organic staining dyes (such as methylene blue, rose bengal, or toluidine blue), phenothiazines, selected NSAIDs (such as diclofenac, ketoprofen, nabumetone, naproxen, piroxicam, and tiaprofenic acid), St. John's wort, sulfonamides, sulfonylureas, tetracyclines, and thiazides should be avoided.(1) DISCUSSION: All patients who have received methoxsalen become photosensitive. It is unknown what the risk of photosensitivity reactions is when methoxsalen is used concurrently with other photosensitizing agents.(1) |
METHOXSALEN, UVADEX |
There are 11 moderate interactions.
The clinician should assess the patient’s characteristics and take action as needed. Actions required for moderate interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration.
Drug Interaction | Drug Names |
---|---|
Guanethidine; Guanadrel/Phenothiazines SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Phenothiazines may inhibit uptake of guanethidine at the adrenergic neuron. CLINICAL EFFECTS: Decreased antihypertensive effectiveness. Effects may be seen for several days after discontinuation of the phenothiazine. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid concomitant administration of these drugs. If both drugs are administered, adjust the guanethidine dose as needed based on blood pressure. Consider giving molindone in place of the phenothiazine. Available data indicate that hydralazine or minoxidil do not interact with phenothiazines. Severe hypertension was reported in one patient during concurrent use of methyldopa and the phenothiazine trifluoperazine. However, this interaction was not substantiated in animals. DISCUSSION: Documentation supports routine monitoring of this interaction. The antihypertensive effect of guanethidine/guanadrel usually reverses over several days to more than one week after starting concurrent phenothiazine and guanethidine therapy. When the phenothiazine is stopped, an initial rebound increase in blood pressure may occur. |
GUANETHIDINE HEMISULFATE |
Bupropion/Antipsychotics SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Both bupropion and the antipsychotics are known to lower the seizure threshold.(1,2) Bupropion is also a strong inhibitor of CYP2D6.(3) CLINICAL EFFECTS: Concurrent use of bupropion and an antipsychotic may result in additive effects on the seizure threshold, increasing the risk of seizures.(1,2) PREDISPOSING FACTORS: The risk of seizures may be increased in patients with a history of head trauma or prior seizure; CNS tumor; severe hepatic cirrhosis; excessive use of alcohol or sedatives; addiction to opiates, cocaine, or stimulants; use of over-the-counter stimulants an anorectics; a total daily dose of bupropion greater than 450 mg or single doses greater than 150 mg; rapid escalation of bupropion dosage; diabetics treated with oral hypoglycemics or insulin; or with concomitant medications known to lower seizure threshold (antidepressants, theophylline, systemic steroids).(1,2) The risk of anticholinergic toxicities including cognitive decline, delirium, falls and fractures is increased in geriatric patients using more than one medicine with anticholinergic properties.(3) PATIENT MANAGEMENT: The concurrent use of bupropion and antipsychotics should be undertaken only with extreme caution and with low initial bupropion dosing and small gradual dosage increases.(1,2) Single doses should not exceed 150 mg.(1,2) The maximum daily dose of bupropion should not exceed 300 mg for smoking cessation(2) or 450 mg for depression.(1) DISCUSSION: Because of the risk of seizure from concurrent bupropion and other agents that lower seizure threshold, the manufacturer of bupropion states that the concurrent use of bupropion and antipsychotics should be undertaken only with extreme caution and with low initial bupropion dosing and small gradual dosage increases.(1) |
APLENZIN, AUVELITY, BUPROPION HCL, BUPROPION HCL SR, BUPROPION XL, CONTRAVE, FORFIVO XL, WELLBUTRIN SR, WELLBUTRIN XL |
Barbiturates/Phenothiazines SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The concurrent administration of phenothiazines and barbiturates may result in additive CNS depressant effects. Some barbiturates may induce the metabolism of phenothiazines. Primidone is metabolized to phenobarbital. CLINICAL EFFECTS: Concurrent use of phenothiazines without barbiturate dosage adjustment may result in potentiation of CNS depression, which may result in hypotension, increased sedation, and respiratory depression. Phenothiazines do not intensify the anti-convulsant effects of barbiturates. Some barbiturates may reduce the effectiveness of phenothiazines. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Respiration and blood pressure should be closely monitored in patients receiving concurrent barbiturate and phenothiazine therapy. The dosage of the barbiturate may need to be adjusted in patients receiving barbiturates for indications other than anticonvulsant use. One US manufacturer of chlorpromazine recommends a barbiturate dosage reduction of one-fourth to one-half in patients receiving barbiturates for indications other than as an anticonvulsant. In patients taking barbiturates as an anticonvulsant, start chlorpromazine at a low dose and increase as needed. One US manufacturer of promethazine recommends a barbiturate dosage reduction by at least one one-half. DISCUSSION: A study in rats found increased sleeping time with concurrent chlorpromazine and pentobarbital. Another study in rats found an increase in pentobarbital concentrations with concurrent chlorpromazine. In a study in 10 subjects, the addition of phenobarbital to chlorpromazine therapy increased chlorpromazine excretion by 37%. In another study, the addition of phenobarbital decreased chlorpromazine levels. In a case report, the addition of phenobarbital to a patient maintained on chlorpromazine resulted in decreased chlorpromazine levels and effectiveness. In a study in patients, phenobarbital decreased thioridazine levels. In contrast, another study found increased thioridazine levels following the addition of phenobarbital and another found no affect on thioridazine levels but decreased mesoridazine levels. |
ASA-BUTALB-CAFFEINE-CODEINE, ASCOMP WITH CODEINE, BUTALB-ACETAMINOPH-CAFF-CODEIN, BUTALBITAL, BUTALBITAL-ACETAMINOPHEN, BUTALBITAL-ACETAMINOPHEN-CAFFE, BUTALBITAL-ASPIRIN-CAFFEINE, DONNATAL, FIORICET, FIORICET WITH CODEINE, MYSOLINE, PENTOBARBITAL SODIUM, PHENOBARBITAL, PHENOBARBITAL SODIUM, PHENOBARBITAL-BELLADONNA, PHENOBARBITAL-HYOSC-ATROP-SCOP, PHENOHYTRO, PRIMIDONE, SEZABY, TENCON |
Deferoxamine/Prochlorperazine SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Although the exact mechanism is unclear, the combination of deferoxamine and prochlorperazine appears to have additive or synergistic pharmacodynamic effects on central nervous system(CNS) dopamine activity.(1) Iron is required for normal dopamine cycling in central nervous system (CNS) neurons; iron deficiency has been associated with dopamine-mediated neuropsychiatric disease.(2-5) Deferoxamine chelation of iron in dopamine neurons may lead to diminished neural activity(1) while prochlorperazine may further decrease dopamine activity via blockade of dopamine binding sites.(6) CLINICAL EFFECTS: Concurrent treatment with therapeutic doses of deferoxamine and prochlorperazine has resulted in loss of consciousness.(7,8) PREDISPOSING FACTORS: Patients with normal or low iron stores may have an increased risk for toxicity.(7) The elderly are more susceptible to adverse effects from prochlorperazine.(6) PATIENT MANAGEMENT: Although the incidence of this interaction is unknown given the potential severity of the interaction it would be prudent, particularly in patients with normal or low iron stores, to use alternative antiemetics (e.g. ondansetron or other 5-HT3 receptor antagonists) in patients receiving deferoxamine. DISCUSSION: In a pilot study,(7) deferoxamine was prescribed for patients with progressive rheumatologic disease based upon proposed antiinflammatory effects. Deferoxamine was administered subcutaneously over 8-12 hours, 5 days per week, for a maximum of 3 weeks. Two patients who experienced nausea received prochlorperazine resulting in a loss of consciousness. Case details: - A 75 year old woman with symmetrical synovitis had pretreatment tests which included C-reactive protein (CRP) 155 mg/L, ferritin 88 mcg/L, hemoglobin (Hb) 9.2 g/dL. She received 42 grams of deferoxamine over three weeks. During the last day of treatment she complained of nausea and took 5 doses of 5 mg oral prochlorperazine over 29 hours. Twelve hours after the last dose she became drowsy, progressing to a significant impairment of consciousness; at times she was only partially responsive to painful stimuli. Electrolyte, liver function, blood glucose tests and CT of the brain were normal during this time. The patient recovered after 3 days without apparent long term sequelae. - A 58 year old, 67kg man with severe peripheral polyarthritis had pretreatment tests which included CRP 10 mg/L, ferritin 78 mcg/L and Hb 15 g/dL. He received twelve 3 gram deferoxamine infusions during the study period. On the last day of treatment he complained of nausea during the infusion and received 2 doses of prochlorperazine 12.5mg IM in a 13 hour period. The deferoxamine was stopped early due to mental status changes. He gradually lost consciousness over a 6 hour period and was only minimally responsive to painful stimuli for 2 days. During this time brisk reflexes, spontaneous limb movement and clonus were observed. Electrolyte, liver function and blood glucose tests, lumbar puncture, and CT of the brain were normal during this time. Subsequently he gradually returned to normal over a 4 day period. These cases of unexpected toxicity prompted an interaction study with iron-deficient and iron-replete rats who were given intraperitoneal deferoxamine and prochlorperazine. Given individually, neither drug impaired consciousness, but the combination led to either movement only in response to stimuli, or total loss of consciousness. Consciousness was regained by 36 hours in the iron-deficient group and 12 hours in the iron-replete group.(7) |
DEFEROXAMINE MESYLATE, DESFERAL MESYLATE |
Opioids (Extended Release)/Antipsychotics; Phenothiazines SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics with CNS depressants such as antipsychotics, including phenothiazine derivatives, to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
BUPRENORPHINE, BUTRANS, CONZIP, FENTANYL, HYDROCODONE BITARTRATE ER, HYDROMORPHONE ER, HYSINGLA ER, MORPHINE SULFATE ER, MS CONTIN, NUCYNTA ER, OXYCODONE HCL ER, OXYCONTIN, OXYMORPHONE HCL ER, TRAMADOL HCL ER, XTAMPZA ER |
Slt Opioids (Immediate Release)/Antipsychotics;Phenothiazine SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics with CNS depressants such as antipsychotics, including phenothiazine derivatives, to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
APADAZ, BELBUCA, BELLADONNA-OPIUM, BENZHYDROCODONE-ACETAMINOPHEN, BUPRENORPHINE HCL, BUTORPHANOL TARTRATE, DILAUDID, DSUVIA, DURAMORPH, ENDOCET, FENTANYL CITRATE, FENTANYL CITRATE-0.9% NACL, FENTANYL CITRATE-D5W, FENTANYL CITRATE-STERILE WATER, FENTANYL CITRATE-WATER, FENTANYL-BUPIVACAINE-0.9% NACL, FENTANYL-BUPIVACAINE-NACL, FENTANYL-ROPIVACAINE-0.9% NACL, FENTANYL-ROPIVACAINE-NACL, HYDROCODONE BITARTRATE, HYDROCODONE-ACETAMINOPHEN, HYDROCODONE-IBUPROFEN, HYDROMORPHONE HCL, HYDROMORPHONE HCL-0.9% NACL, HYDROMORPHONE HCL-D5W, HYDROMORPHONE HCL-NACL, HYDROMORPHONE HCL-WATER, INFUMORPH, MITIGO, MORPHINE SULFATE, MORPHINE SULFATE-0.9% NACL, MORPHINE SULFATE-NACL, NALBUPHINE HCL, NALOCET, NUCYNTA, OLINVYK, OPIUM TINCTURE, OXYCODONE HCL, OXYCODONE HYDROCHLORIDE, OXYCODONE-ACETAMINOPHEN, OXYMORPHONE HCL, PENTAZOCINE-NALOXONE HCL, PERCOCET, PRIMLEV, PROLATE, REMIFENTANIL HCL, ROXICODONE, ROXYBOND, SUFENTANIL CITRATE, ULTIVA |
Selected Opioids for MAT/Antipsychotics SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids and antipsychotics may result in additive CNS depression.(1-3) Levomethadone is an enantiomer of methadone.(4) CLINICAL EFFECTS: Concurrent use of opioids and other CNS depressants, such as antipsychotics, may result in profound sedation, respiratory depression, coma, and/or death.(1-3) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Medication assisted treatment (MAT) with buprenorphine, diacetylmorphine, or methadone is not contraindicated in patients taking CNS depressants; however, gradual tapering or decreasing to the lowest effective dose of the CNS depressant may be appropriate. Ensure that other health care providers prescribing other CNS depressants are aware of the patient's buprenorphine, diacetylmorphine, or methadone treatment.(2) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(5) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(6) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(7) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(8) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(9) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(10) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(11) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(12) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(13) |
BRIXADI, BUPRENORPHINE HCL, BUPRENORPHINE-NALOXONE, DISKETS, METHADONE HCL, METHADONE INTENSOL, METHADOSE, SUBLOCADE, SUBOXONE, ZUBSOLV |
Meperidine (IR)/Selected Antipsychotics; Phenothiazines SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids such as meperidine and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids such as meperidine and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics such as meperidine with CNS depressants such as antipsychotics, including phenothiazine derivatives, to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
DEMEROL, MEPERIDINE HCL, MEPERIDINE HCL-0.9% NACL |
Codeine; Levorphanol (IR)/Slt Antipsychotics; Phenothiazines SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids such as codeine and levorphanol and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids such as codeine and levorphanol and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics such as codeine and levorphanol with CNS depressants such as antipsychotics, including phenothiazine derivatives, to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
ACETAMIN-CAFF-DIHYDROCODEINE, ACETAMINOPHEN-CODEINE, ASA-BUTALB-CAFFEINE-CODEINE, ASCOMP WITH CODEINE, BUTALB-ACETAMINOPH-CAFF-CODEIN, CARISOPRODOL-ASPIRIN-CODEINE, CODEINE PHOSPHATE, CODEINE SULFATE, DIHYDROCODEINE BITARTRATE, FIORICET WITH CODEINE, HYDROCODONE BITARTRATE, LEVORPHANOL TARTRATE, TREZIX |
Methadone (non MAT)/Selected Antipsychotics; Phenothiazines SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids such as methadone and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids such as methadone and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics such as methadone with CNS depressants such as antipsychotics, including phenothiazine derivatives, to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
METHADONE HCL, METHADONE HCL-0.9% NACL, METHADONE HCL-NACL |
Tramadol (IR)/Selected Antipsychotics; Phenothiazines SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids such as tramadol and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids such as tramadol and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics such as tramadol with CNS depressants such as antipsychotics, including phenothiazine derivatives, to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
QDOLO, TRAMADOL HCL, TRAMADOL HCL-ACETAMINOPHEN |
The following contraindication information is available for COMPAZINE (prochlorperazine maleate):
Drug contraindication overview.
No enhanced Contraindications information available for this drug.
No enhanced Contraindications information available for this drug.
There are 5 contraindications.
Absolute contraindication.
Contraindication List |
---|
Coma |
Extrapyramidal disease |
Neuroleptic malignant syndrome |
Parkinsonism |
Stupor |
There are 12 severe contraindications.
Adequate patient monitoring is recommended for safer drug use.
Severe List |
---|
Acute myocardial infarction |
Benign prostatic hyperplasia |
Disease of liver |
Glaucoma |
Metabolic syndrome x |
Myocardial ischemia |
Organophos insecticide poisoning |
Pheochromocytoma |
Pregnancy |
Senile dementia |
Tardive dyskinesia |
Urinary retention |
There are 12 moderate contraindications.
Clinically significant contraindication, where the condition can be managed or treated before the drug may be given safely.
Moderate List |
---|
Alcohol use disorder |
Anemia |
Angina |
Hyperglycemia |
Hyperprolactinemia |
Leukopenia |
Neutropenic disorder |
Obesity |
Orthostatic hypotension |
Seizure disorder |
Thrombocytopenic disorder |
Weight gain |
The following adverse reaction information is available for COMPAZINE (prochlorperazine maleate):
Adverse reaction overview.
No enhanced Common Adverse Effects information available for this drug.
No enhanced Common Adverse Effects information available for this drug.
There are 22 severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Akathisia Extrapyramidal disease Hypotension Tardive dyskinesia |
Acquired dystonia |
Rare/Very Rare |
---|
Accidental fall Agranulocytosis Exfoliative dermatitis Hemolytic anemia Hyperthermia Idiopathic thrombocytopenic purpura Leukopenia Lupus-like syndrome Neuroleptic malignant syndrome Neutropenic disorder Obstructive hyperbilirubinemia Oculogyric crisis Parkinsonism Pigmentary retinopathy Priapism Seizure disorder Thrombocytopenic disorder |
There are 27 less severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Blurred vision Constipation Dizziness Drowsy Nasal congestion Orthostatic hypotension Sedation Xerostomia |
Abnormal sexual function Amenorrhea Anticholinergic toxicity Dyskinesia Erectile dysfunction Galactorrhea not associated with childbirth Gynecomastia Hyperprolactinemia Hypertonia Irregular menstrual periods Nervousness Skin photosensitivity Symptoms of anxiety Weight gain |
Rare/Very Rare |
---|
Agitation Fever Hyperglycemia Peripheral edema Skin pigmentation enhancement |
The following precautions are available for COMPAZINE (prochlorperazine maleate):
No enhanced Pediatric Use information available for this drug.
Contraindicated
Severe Precaution
Management or Monitoring Precaution
Contraindicated
None |
Severe Precaution
None |
Management or Monitoring Precaution
None |
No enhanced Pregnancy information available for this drug.
No enhanced Lactation information available for this drug.
No enhanced Geriatric Use information available for this drug.
The following prioritized warning is available for COMPAZINE (prochlorperazine maleate):
WARNING: There may be a slightly increased risk of serious, possibly fatal side effects (such as heart failure, fast/irregular heartbeat, pneumonia) when this medication is used by older adults with dementia. This medication is not approved for the treatment of dementia-related behavior problems. Discuss the risks and benefits of this medication with the doctor.
WARNING: There may be a slightly increased risk of serious, possibly fatal side effects (such as heart failure, fast/irregular heartbeat, pneumonia) when this medication is used by older adults with dementia. This medication is not approved for the treatment of dementia-related behavior problems. Discuss the risks and benefits of this medication with the doctor.
The following icd codes are available for COMPAZINE (prochlorperazine maleate)'s list of indications:
Cancer chemotherapy-induced nausea and vomiting | |
R11.2 | Nausea with vomiting, unspecified |
Z51.11 | Encounter for antineoplastic chemotherapy |
Nausea and vomiting | |
R11 | Nausea and vomiting |
R11.2 | Nausea with vomiting, unspecified |
Formulary Reference Tool