Please wait while the formulary information is being retrieved.
Drug overview for PENTAZOCINE-NALOXONE HCL (pentazocine hcl/naloxone hcl):
Generic name: PENTAZOCINE HCL/NALOXONE HCL (pen-TAZZ-oh-seen/nal-OX-own)
Drug class: Opioid Antagonists
Therapeutic class: Analgesic, Anti-inflammatory or Antipyretic
Naloxone hydrochloride is an opioid antagonist. Pentazocine is a synthetic opiate partial agonist analgesic.
Pentazocine is used as an analgesic for relief of moderate to severe pain. The drug has been used in the management of postoperative pain, including that associated with dental surgery, orthopedic pain, pain associated with cancer, and renal or biliary colic. Pentazocine also has been used parenterally (pentazocine lactate injection is no longer commercially available in the US) to provide preoperative sedation and analgesia, as an adjunct to surgical anesthesia, and for obstetrical analgesia during labor.
Although there have been many clinical studies comparing the analgesic effect of pentazocine with other analgesics, it is difficult to assess the relative efficacy of the drugs because of varying methodology and premedications used in these studies. Clear differences in analgesic efficacy between pentazocine and other opiate partial agonist analgesics such as butorphanol or nalbuphine have not been demonstrated. In general, usual parenteral doses of pentazocine are as effective in relieving moderate to severe pain as usual parenteral doses of morphine, meperidine, butorphanol, or nalbuphine.
The duration of analgesia of IM pentazocine appears to be shorter than that of IM morphine. The analgesic activity of 50 mg of oral pentazocine is about equal to that of 60 mg of oral codeine or 600 mg or oral aspirin. Pentazocine hydrochloride and aspirin in combination for oral administration results in additive analgesic effects.
The oral dosage form of pentazocine was reformulated in the 1980s to contain a small amount of the opiate antagonist, naloxone hydrochloride. The reformulation, pentazocine and naloxone hydrochlorides tablets, potentially eliminates the misuse of the oral preparation in combination with the antihistamine, tripelennamine (no longer commercially available in the US); the combination, known as T's and blues, has been misused via parenteral injection by opiate addicts and drug abusers since its effect was purported to be similar to IV diacetylmorphine (heroin). Since naloxone is inactive when administered orally in the amount (0.5 mg) present in this formulation, its presence does not affect the efficacy of pentazocine when the tablets are administered orally; however, if the tablets are ground up and solubilized for parenteral administration, the naloxone will antagonize the effects of pentazocine and will precipitate withdrawal symptoms in drug abusers who are dependent on opiates.
The reformulated preparation is still subject to misuse and abuse by the oral route. Because it does not suppress the abstinence syndrome and may induce withdrawal in opiate-dependent patients, pentazocine cannot be substituted for opiates after physical dependence has been established without prior detoxification. For further information on the role of opiate analgesics in the management of acute or chronic pain, see Uses: Pain, in the Opiate Agonists General Statement 28:08.08.
Generic name: PENTAZOCINE HCL/NALOXONE HCL (pen-TAZZ-oh-seen/nal-OX-own)
Drug class: Opioid Antagonists
Therapeutic class: Analgesic, Anti-inflammatory or Antipyretic
Naloxone hydrochloride is an opioid antagonist. Pentazocine is a synthetic opiate partial agonist analgesic.
Pentazocine is used as an analgesic for relief of moderate to severe pain. The drug has been used in the management of postoperative pain, including that associated with dental surgery, orthopedic pain, pain associated with cancer, and renal or biliary colic. Pentazocine also has been used parenterally (pentazocine lactate injection is no longer commercially available in the US) to provide preoperative sedation and analgesia, as an adjunct to surgical anesthesia, and for obstetrical analgesia during labor.
Although there have been many clinical studies comparing the analgesic effect of pentazocine with other analgesics, it is difficult to assess the relative efficacy of the drugs because of varying methodology and premedications used in these studies. Clear differences in analgesic efficacy between pentazocine and other opiate partial agonist analgesics such as butorphanol or nalbuphine have not been demonstrated. In general, usual parenteral doses of pentazocine are as effective in relieving moderate to severe pain as usual parenteral doses of morphine, meperidine, butorphanol, or nalbuphine.
The duration of analgesia of IM pentazocine appears to be shorter than that of IM morphine. The analgesic activity of 50 mg of oral pentazocine is about equal to that of 60 mg of oral codeine or 600 mg or oral aspirin. Pentazocine hydrochloride and aspirin in combination for oral administration results in additive analgesic effects.
The oral dosage form of pentazocine was reformulated in the 1980s to contain a small amount of the opiate antagonist, naloxone hydrochloride. The reformulation, pentazocine and naloxone hydrochlorides tablets, potentially eliminates the misuse of the oral preparation in combination with the antihistamine, tripelennamine (no longer commercially available in the US); the combination, known as T's and blues, has been misused via parenteral injection by opiate addicts and drug abusers since its effect was purported to be similar to IV diacetylmorphine (heroin). Since naloxone is inactive when administered orally in the amount (0.5 mg) present in this formulation, its presence does not affect the efficacy of pentazocine when the tablets are administered orally; however, if the tablets are ground up and solubilized for parenteral administration, the naloxone will antagonize the effects of pentazocine and will precipitate withdrawal symptoms in drug abusers who are dependent on opiates.
The reformulated preparation is still subject to misuse and abuse by the oral route. Because it does not suppress the abstinence syndrome and may induce withdrawal in opiate-dependent patients, pentazocine cannot be substituted for opiates after physical dependence has been established without prior detoxification. For further information on the role of opiate analgesics in the management of acute or chronic pain, see Uses: Pain, in the Opiate Agonists General Statement 28:08.08.
DRUG IMAGES
- No Image Available
The following indications for PENTAZOCINE-NALOXONE HCL (pentazocine hcl/naloxone hcl) have been approved by the FDA:
Indications:
Pain
Professional Synonyms:
None.
Indications:
Pain
Professional Synonyms:
None.
The following dosing information is available for PENTAZOCINE-NALOXONE HCL (pentazocine hcl/naloxone hcl):
Naloxone is used for the complete or partial reversal of opioid-induced depression, including respiratory depression, caused by natural and synthetic opioids (e.g., codeine, diphenoxylate, fentanyl citrate, heroin, hydromorphone, levorphanol, meperidine, methadone, morphine, oxymorphone, concentrated opium alkaloids, propoxyphene) and certain opioid partial agonists (e.g., butorphanol, nalbuphine, pentazocine). Reversal of respiratory depression resulting from overdosage of opioid partial agonists (e.g., buprenorphine, pentazocine) may be incomplete and require higher or more frequent doses of naloxone.
The availability of naloxone as prefilled syringes and as nasal spray formulations facilitates administration by family members or other caregivers; such treatment is not a substitute for emergency medical care. Administration of naloxone should be accompanied by other resuscitative measures such as administration of oxygen, mechanical ventilation, or artificial respiration. When administering naloxone outside of a supervised medical setting, always seek emergency medical assistance after the first dose is administered.
Naloxone is used in both adults and pediatric adults (including neonates) to reverse the effects of opioids. Naloxone has been given to the mother shortly before delivery+, but it is preferable to administer the drug directly to the neonate if needed after delivery.
Naloxone hydrochloride injection containing 5 mg per 0.5 mL (Zimhi(R)) is a higher concentration of the drug for IM or subcutaneous use in adults and pediatric patients for emergency treatment of known or suspected opioid overdose. The preparation is commercially available as single-dose prefilled syringes that are administered using a delivery device.
Naloxone hydrochloride 5 mg/0.5 mL was developed in response to increasing reports indicating that multiple 2-mg doses of naloxone have been required in resuscitations. Efficacy of this preparation for community use is supported by pharmacokinetic bridging studies.
Naloxone is used for the diagnosis of suspected or known acute opioid Dosage of pentazocine hydrochloride is expressed in terms of pentazocine. overdosage. Pentazocine and naloxone hydrochlorides tablets are labeled in terms of the
bases.
Opiate analgesics should be given at the lowest effective dosage and for the shortest duration of therapy consistent with the treatment goals of the patient. Dosage of pentazocine should be adjusted according to the severity of pain, physical status of the patient, and other drugs that the patient is receiving. If concomitant therapy with other CNS depressants is required, the lowest effective dosages and shortest possible duration of concomitant therapy should be used.
(See Drug Interactions: Benzodiazepines and Other CNS Depressants.)
In the treatment of general pain states, the usual initial adult oral dosage of pentazocine recommended by the manufacturer is 50 mg every 3-4 hours. The dose may be increased to 100 mg when needed. The manufacturer recommends that total dosage not exceed 600 mg daily.
For acute pain not related to trauma or surgery, the prescribed quantity should be limited to the amount needed for the expected duration of pain severe enough to require opiate analgesia (generally 3 days or less and rarely more than 7 days).
When opiate analgesics are used for the management of chronic noncancer pain, the US Centers for Disease Control and Prevention (CDC) recommends that primary care clinicians carefully reassess individual benefits and risks before prescribing dosages equivalent to 50 mg or more of morphine sulfate daily and avoid dosages equivalent to 90 mg or more of morphine sulfate daily or carefully justify their decision to titrate the dosage to such levels. Other experts recommend consulting a pain management specialist before exceeding a dosage equivalent to 80-120 mg of morphine sulfate daily. Some states have set prescribing limits (e.g., maximum daily dosages that can be prescribed, dosage thresholds at which consultation with a specialist is mandated or recommended).
For further information on the management of opiate analgesic therapy, see Dosage and Administration: Dosage, in the Opiate Agonists General Statement 28:08.08.
In patients with impaired hepatic function (e.g., cirrhosis), doses and/or frequency of administration of pentazocine may need to be decreased, particularly when the drug is administered orally. (See Pharmacokinetics.)
Naloxone is commercially available as naloxone hydrochloride; dosage is expressed in terms of the salt.
The manufacturers make no specific recommendations at this time for dosage in diagnosis of suspected or known acute opioid overdosage. However, if no response is observed after administration of 10 mg of naloxone, the diagnosis of opioid-induced toxicity should be questioned.
Following the use of opioids during surgery, excessive doses of naloxone hydrochloride may result in significant reversal of analgesia and cause agitation.
The availability of naloxone as prefilled syringes and as nasal spray formulations facilitates administration by family members or other caregivers; such treatment is not a substitute for emergency medical care. Administration of naloxone should be accompanied by other resuscitative measures such as administration of oxygen, mechanical ventilation, or artificial respiration. When administering naloxone outside of a supervised medical setting, always seek emergency medical assistance after the first dose is administered.
Naloxone is used in both adults and pediatric adults (including neonates) to reverse the effects of opioids. Naloxone has been given to the mother shortly before delivery+, but it is preferable to administer the drug directly to the neonate if needed after delivery.
Naloxone hydrochloride injection containing 5 mg per 0.5 mL (Zimhi(R)) is a higher concentration of the drug for IM or subcutaneous use in adults and pediatric patients for emergency treatment of known or suspected opioid overdose. The preparation is commercially available as single-dose prefilled syringes that are administered using a delivery device.
Naloxone hydrochloride 5 mg/0.5 mL was developed in response to increasing reports indicating that multiple 2-mg doses of naloxone have been required in resuscitations. Efficacy of this preparation for community use is supported by pharmacokinetic bridging studies.
Naloxone is used for the diagnosis of suspected or known acute opioid Dosage of pentazocine hydrochloride is expressed in terms of pentazocine. overdosage. Pentazocine and naloxone hydrochlorides tablets are labeled in terms of the
bases.
Opiate analgesics should be given at the lowest effective dosage and for the shortest duration of therapy consistent with the treatment goals of the patient. Dosage of pentazocine should be adjusted according to the severity of pain, physical status of the patient, and other drugs that the patient is receiving. If concomitant therapy with other CNS depressants is required, the lowest effective dosages and shortest possible duration of concomitant therapy should be used.
(See Drug Interactions: Benzodiazepines and Other CNS Depressants.)
In the treatment of general pain states, the usual initial adult oral dosage of pentazocine recommended by the manufacturer is 50 mg every 3-4 hours. The dose may be increased to 100 mg when needed. The manufacturer recommends that total dosage not exceed 600 mg daily.
For acute pain not related to trauma or surgery, the prescribed quantity should be limited to the amount needed for the expected duration of pain severe enough to require opiate analgesia (generally 3 days or less and rarely more than 7 days).
When opiate analgesics are used for the management of chronic noncancer pain, the US Centers for Disease Control and Prevention (CDC) recommends that primary care clinicians carefully reassess individual benefits and risks before prescribing dosages equivalent to 50 mg or more of morphine sulfate daily and avoid dosages equivalent to 90 mg or more of morphine sulfate daily or carefully justify their decision to titrate the dosage to such levels. Other experts recommend consulting a pain management specialist before exceeding a dosage equivalent to 80-120 mg of morphine sulfate daily. Some states have set prescribing limits (e.g., maximum daily dosages that can be prescribed, dosage thresholds at which consultation with a specialist is mandated or recommended).
For further information on the management of opiate analgesic therapy, see Dosage and Administration: Dosage, in the Opiate Agonists General Statement 28:08.08.
In patients with impaired hepatic function (e.g., cirrhosis), doses and/or frequency of administration of pentazocine may need to be decreased, particularly when the drug is administered orally. (See Pharmacokinetics.)
Naloxone is commercially available as naloxone hydrochloride; dosage is expressed in terms of the salt.
The manufacturers make no specific recommendations at this time for dosage in diagnosis of suspected or known acute opioid overdosage. However, if no response is observed after administration of 10 mg of naloxone, the diagnosis of opioid-induced toxicity should be questioned.
Following the use of opioids during surgery, excessive doses of naloxone hydrochloride may result in significant reversal of analgesia and cause agitation.
Pentazocine hydrochloride is administered orally; pentazocine lactate has been administered by IM, IV, or subcutaneous injection; however, a parenteral dosage form no longer is commercially available in the US. Naloxone may be administered by IV, subcutaneous, or IM injection; by IV infusion; or intranasally. The drug also has been administered via endotracheal tube+ and by intraosseous+ (IO) injection.
DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
---|---|---|
PENTAZOCINE-NALOXONE TABLET | Maintenance | Adults take 1 tablet by oral route every 3-4 hours as needed |
DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
---|---|---|
PENTAZOCINE-NALOXONE TABLET | Maintenance | Adults take 1 tablet by oral route every 3-4 hours as needed |
The following drug interaction information is available for PENTAZOCINE-NALOXONE HCL (pentazocine hcl/naloxone hcl):
There are 1 contraindications.
These drug combinations generally should not be dispensed or administered to the same patient. A manufacturer label warning that indicates the contraindication warrants inclusion of a drug combination in this category, regardless of clinical evidence or lack of clinical evidence to support the contraindication.
Drug Interaction | Drug Names |
---|---|
Opioid Antagonists/Opioid Analgesics SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Naltrexone, nalmefene, and samidorphan are opioid antagonists and thus inhibit the effects of opioid analgesics.(1-3) CLINICAL EFFECTS: Concurrent administration or the administration of naltrexone within 7-10 days of opioids may induce acute abstinence syndrome or exacerbate a pre-existing subclinical abstinence syndrome.(1,4) Patients taking naltrexone may not experience beneficial effects of opioid-containing medications.(4) Samidorphan can precipitate opioid withdrawal in patients who are dependent on opioids. In patients who use opioids, delay initiation of samidorphan for a minimum of 7 days after last use of short-acting opioids and 14 days after last use of long-acting opioids.(3) Concurrent use of nalmefene tablets with opioid agonists may prevent the beneficial effects of the opioid.(2) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of naltrexone states that the administration of naltrexone concurrently with opioids or to patients dependent on opioids is contraindicated.(1,4) Patients previously dependent on short-acting opioids should be opioid-free for a minimum of seven to ten days before beginning naltrexone therapy. Patients previously on buprenorphine or methadone may be vulnerable to withdrawal symptoms for as long as 2 weeks.(1,4) The manufacturer of naltrexone states that the naloxone challenge test, described in the naltrexone prescribing information, can be administered to determine if patients are opioid free.(1) The manufacturer of samidorphan states the concurrent use of samidorphan in patients using opioids or undergoing acute opioid withdrawal is contraindicated. Prior to initiating samidorphan, there should be at least a 7-day opioid free interval from the last use of short-acting opioids, and at least a 14-day opioid free interval from the last use of long-acting opioids.(3) The UK manufacturer of nalmefene tablets (for reduction of alcohol consumption) states the concurrent use of opioid analgesics is contraindicated.(2) Suspend the use of nalmefene tablets for 7 days prior to the anticipated use of opioids (e.g., elective surgery).(2) DISCUSSION: A double-blind, randomized, placebo-control study evaluated pain relief and side effects of 35 opioid-naive patients undergoing cesarean section. All patients received spinal anesthesia (bupivacaine and morphine) and were randomized to also receive placebo, naltrexone 3 mg, or naltrexone 6 mg. Patients treated with naltrexone experienced shorter duration of pain relief (not statistically significant), however incidence of opioid-induced side effects was reduced. Patients in the naltrexone 6 mg group had lower rates of pruritus, vomiting, and somnolence (all statistically significant) compared to the placebo group.(5) In a double-blind, randomized, placebo-control trial ten recreational opioid users were studied to determine the effects of hydromorphone (4 mg and 16 mg), tramadol (87.5 mg, 175 mg, and 350 mg), and placebo after pretreatment with naltrexone (50 mg) or placebo. Results show that lower doses of hydromorphone and tramadol acted similar to placebo. Hydromorphone 16 mg alone caused euphoria and miosis which were blocked by naltrexone. Tramadol 350 mg produced a lower magnitude of euphoria and miosis compared to hydromorphone. Naltrexone partially diminished the euphoria caused by tramadol, while it enhanced some of the unpleasant monoaminergic effects (flushing, malaise, vomiting).(6) A case report describes a 28 year-old ex-heroin addict who was stable on methadone 100 mg daily and simultaneously stopped using heroin and began drinking alcohol. He was admitted to the hospital for alcohol detoxification and, by mistake, was given naltrexone 100 mg instead of methadone 100 mg. The patient experienced withdrawal symptoms including chills, agitation, muscle and abdominal pain, generalized piloerection, and dilated pupils. Treatment of withdrawal was titrated to treat symptoms and required administration 78 mg of parenteral hydromorphone, after which the patient experienced relief for the following six hours.(8) Intentional administration of an opioid antagonist, naloxone, with opioid analgesics has been performed with close monitoring to lower required opioid dose by inducing withdrawal. Three case reports describe patients who had improved pain relief on significantly reduced doses of opioid analgesics.(8) In a double-blind controlled trial, 267 trauma patients were randomized to receive 0.05 mg/kg intravenous morphine either alone or in combination with 5 mg naltrexone oral suspension. Evaluated endpoints include reduction of pain and incidence of side effects. Results indicate that ultra-low dose naltrexone does not alter opioid requirements for pain control, but does lower incidence of nausea [2 (1.16%) vs 16 (11.6%), p<0.001].(9) |
CONTRAVE, LOTREXONE, LYBALVI, NALTREX, NALTREXONE BASE MONOHYDRATE, NALTREXONE HCL, NALTREXONE HCL DIHYDRATE, NALTREXONE HCL MICRONIZED, OPVEE, VIVITROL |
There are 6 severe interactions.
These drug interactions can produce serious consequences in most patients. Actions required for severe interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration scheduling, and providing additional patient monitoring. Review the full interaction monograph for more information.
Drug Interaction | Drug Names |
---|---|
Selected Opioids/MAOIs SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Selected opioids inhibit neuronal reuptake of serotonin. Non-selective MAOIs increase neuronal serotonin concentration via inhibition of MAO-A. CLINICAL EFFECTS: The concurrent use of some opioids with MAOIs has resulted in serotonin syndrome. Symptoms of serotonin syndrome may include tremor, agitation, diaphoresis, hyperreflexia, clonus, tachycardia, hyperthermia, and muscle rigidity.(1) PREDISPOSING FACTORS: Treatment with multiple medications which increase serotonin levels or inhibit the metabolism of serotonin are risk factors for serotonin syndrome. Higher opioid concentrations, as may occur due to inhibition of opioid clearance, patient specific genomic factors (e.g. poor metabolizer status for a P450 enzyme), or high opioid dosage may increase the risk for an interaction. PATIENT MANAGEMENT: Use an alternative analgesic when possible. If concurrent therapy is warranted, patients should be monitored for signs and symptoms of serotonin syndrome. Instruct patients to report muscle twitching, tremors, shivering and stiffness, fever, heavy sweating, heart palpitations, restlessness, confusion, agitation, trouble with coordination, or severe diarrhea. DISCUSSION: Although documentation is lacking for some opioids, the FDA recommends health professionals monitor and advise patients to report symptoms of serotonin syndrome in patients receiving analgesic opioids and serotonergic agents.(2) The interaction between meperidine and MAOIs has been well documented. There are two reports of potential interactions between MAOIs and dextromethorphan.(3,4) In another case report, the concurrent use of propoxyphene and phenylzine resulted in sedation and somnolence. The patient had previously taken both agents alone with no adverse effects.(5) Although some studies have shown that morphine does not interact with MAOIs,(6,7) other data indicates that MAOIs markedly potentiate the effect of morphine.(8) One study indicates that methadone does not interact with MAOIs;(7) however, the UK manufacturer of methadone states that concurrent use is contraindicated.(9) US manufacturers recommend sensitivity tests with small, incremental doses of methadone in patients maintained on MAOIs with careful observation of vital signs.(11) Selected opioids linked to this monograph include: alfentanil, anileridine (not available in US/CA), diphenoxin, meptazinol (not available in US/CA), pentazocine, phenoperidine (not available in US/CA), propoxyphene (not available in US/CA), remifentanil, and sufentanil. Furazolidone and linezolid are known to be monoamine oxidase inhibitors. Methylene blue, when administered intravenously, has been shown to reach sufficient concentrations to be a potent inhibitor of MAO-A.(12,13) |
FURAZOLIDONE, LINEZOLID, LINEZOLID-0.9% NACL, LINEZOLID-D5W, MARPLAN, MATULANE, METHYLENE BLUE, NARDIL, PARNATE, PHENELZINE SULFATE, PROCARBAZINE HCL, PROVAYBLUE, TRANYLCYPROMINE SULFATE, ZYVOX |
Selected Opioids/Rasagiline; Selegiline SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Selected opioids may inhibit neuronal reuptake of serotonin. MAOIs increase neuronal serotonin concentration via inhibition of MAO-A. CLINICAL EFFECTS: The concurrent use of some opioids with MAOIs has resulted in serotonin syndrome. Symptoms of serotonin syndrome may include tremor, agitation, diaphoresis, hyperreflexia, clonus, tachycardia, hyperthermia, and muscle rigidity.(1-3) PREDISPOSING FACTORS: High doses or concurrent use of multiple drugs which increase CNS serotonin levels may increase risk for serotonin syndrome. PATIENT MANAGEMENT: This combination should be avoided if possible. If concurrent therapy is warranted, patients should be monitored for signs and symptoms of serotonin syndrome. Instruct patients to report muscle twitching, tremors, shivering and stiffness, fever, heavy sweating, heart palpitations, restlessness, confusion, agitation, trouble with coordination, or severe diarrhea. DISCUSSION: Although documentation is lacking for some opioids, the FDA recommends health professionals monitor and advise patients to report symptoms of serotonin syndrome in patients receiving analgesic opioids and serotonergic agents.(2) Selected opioids linked to this monograph include: alfentanil, anileridine (not available in US/CA), diphenoxin, meptazinol (not available in US/CA), pentazocine, phenoperidine (not available in US/CA), propoxyphene (not available in US/CA), remifentanil, and sufentanil. |
AZILECT, EMSAM, RASAGILINE MESYLATE, SELEGILINE HCL, ZELAPAR |
Sodium Oxybate/Agents that May Cause Respiratory Depression SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Oxybate by itself may be associated with severe somnolence or respiratory depression. Concurrent use with other CNS depressants may further increase the risk for respiratory depression or loss of consciousness.(1-3) CLINICAL EFFECTS: Concurrent use of sodium oxybate and sedative hypnotics or alcohol may further increase the risk for profound sedation, respiratory depression, coma, and/or death.(1,2) Fatalities have been reported.(3) PREDISPOSING FACTORS: Based upon FDA evaluation of deaths in patients taking sodium oxybate, risk factors may include: use of multiple drugs which depress the CNS, more rapid than recommended oxybate dose titration, exceeding the maximum recommended oxybate dose, and prescribing for unapproved uses such as fibromyalgia, insomnia or migraine. Note that in oxybate clinical trials for narcolepsy 78% - 85% of patients were also receiving concomitant CNS stimulants.(1-3) PATIENT MANAGEMENT: Avoid use of concomitant opioids, benzodiazepines, sedating antidepressants, sedating antipsychotics, general anesthetics, or muscle relaxants, particularly when predisposing risk factors are present. If combination use is required, dose reduction or discontinuation of one or more CNS depressants should be considered. If short term use of an opioid or general anesthetic is required, consider interruption of sodium oxybate treatment.(1,2) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(4) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(5) DISCUSSION: The FDA evaluated sodium oxybate postmarket fatal adverse event reports from the FDA Adverse Event Reporting System(AERS)and from the manufacturer. Although report documentation was not always optimal or complete, useful information was obtained. Factors which may have contributed to fatal outcome: concomitant use of one or more drugs which depress the CNS, more rapid than recommended oxybate dose titration, exceeding the maximum recommended oxybate dose, and prescribing for unapproved uses such as fibromyalgia, insomnia or migraine. Many deaths occurred in patients with serious psychiatric disorders such as depression and substance abuse. Other concomitant diseases may have also contributed to respiratory and CNS depressant effects of oxybate.(3) |
LUMRYZ, LUMRYZ STARTER PACK, SODIUM OXYBATE, XYREM, XYWAV |
Chronic Opioids/Buprenorphine; Pentazocine SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Buprenorphine antagonizes mu-opiate receptors.(1) Pentazocine is a mixed agonist-antagonist at opiate receptors.(2) Other opioids agonize mu-opiate receptors. CLINICAL EFFECTS: Concurrent use of buprenorphine or pentazocine with other opioids in opioid dependent patients may result in withdrawal symptoms. Concurrent use in other patients may result in additive or decreased analgesia, decreased opioid side effects, and/or renarcotization. PREDISPOSING FACTORS: Patients dependent on opioids or taking higher doses of opioids may be more likely to experience withdrawal symptoms with concurrent use. PATIENT MANAGEMENT: Use buprenorphine and pentazocine with caution in patients maintained or dependent on other opioids and monitor for signs of withdrawal. In other patients, also monitor for changes in analgesic effects. The manufacturer of Sublocade states buprenorphine may precipitate opioid withdrawal in patients who are currently physically dependent on full opioid agonists. The risk of withdrawal may be increased if buprenorphine is given less than 6 hours after short-acting opioids (such as heroin, morphine) and less than 24 hours after long-acting opioids (such as methadone).(3) DISCUSSION: In clinical trials, administration of buprenorphine injection produced withdrawal symptoms in patients maintained on methadone (30 mg daily) when administered 2 hours post-methadone,(4) but not when administered 20 hours post-methadone.(5) In another study, sublingual buprenorphine produced withdrawal symptoms in patients maintained on methadone. Symptoms were more pronounced in patients maintained on 60 mg daily doses than in patients maintained on 30 mg daily doses.(6) In a study of 10 patients maintained on methadone (100 mg daily), only three were able to tolerate escalating sublingual doses of buprenorphine/naloxone up to 32/8 mg. Split doses produced less withdrawal symptoms than full doses.(7) In a case report, a heroin-user maintained in a buprenorphine-maintenance program began stockpiling his buprenorphine instead of ingesting it and began using heroin. He then decided to re-initiate treatment on his own and ingested between 80 and 88 mg of buprenorphine over a two day period and experienced extreme withdrawal symptoms, despite restarting heroin during these symptoms. Methadone relieved his withdrawal symptoms.(8) |
CONZIP, DISKETS, FENTANYL, FENTANYL CITRATE, HYDROCODONE BITARTRATE ER, HYDROMORPHONE ER, HYDROMORPHONE HCL, HYSINGLA ER, METHADONE HCL, METHADONE HCL-0.9% NACL, METHADONE HCL-NACL, METHADONE INTENSOL, METHADOSE, MORPHINE SULFATE, MORPHINE SULFATE ER, MS CONTIN, NUCYNTA ER, OXYCODONE HCL ER, OXYCONTIN, OXYMORPHONE HCL ER, TRAMADOL HCL ER, XTAMPZA ER |
Eluxadoline/Anticholinergics; Opioids SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Eluxadoline is a mixed mu-opioid and kappa-opioid agonist and delta-opioid antagonist and may alter or slow down gastrointestinal transit.(1) CLINICAL EFFECTS: Constipation related adverse events that sometimes required hospitalization have been reported, including the development of intestinal obstruction, intestinal perforation, and fecal impaction.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid use with other drugs that may cause constipation. If concurrent use is necessary, evaluate the patient's bowel function regularly. Monitor for symptoms of constipation and GI hypomotility, including having bowel movements less than three times weekly or less than usual, difficulty having a bowel movement or passing gas, nausea, vomiting, and abdominal pain or distention.(1) Instruct patients to stop eluxadoline and immediately contact their healthcare provider if they experience severe constipation. Loperamide may be used occasionally for acute management of severe diarrhea, but must be discontinued if constipation develops.(1) DISCUSSION: In phase 3 clinical trials, constipation was the most commonly reported adverse reaction (8%). Approximately 50% of constipation events occurred within the first 2 weeks of treatment while the majority occurred within the first 3 months of therapy. Rates of severe constipation were less than 1% in patients receiving eluxadoline doses of 75 mg and 100 mg.(1) |
VIBERZI |
Selected Serotonergic Opioids/Metaxalone SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of serotonergic opioids and metaxalone, a weak monoamine oxidase (MAO) inhibitor, may result in additive CNS depression and additive serotonergic effects.(1-4) CLINICAL EFFECTS: Concurrent use of opioids and metaxalone may result in profound sedation, respiratory depression, coma, and/or death.(3,4) The concurrent use of some opioids with serotonergic properties with metaxalone may result in serotonin syndrome. Symptoms of serotonin syndrome may include tremor, agitation, diaphoresis, hyperreflexia, clonus, tachycardia, hyperthermia, and muscle rigidity.(1-2,5) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. Treatment with multiple medications which increase serotonin levels or inhibit the metabolism of serotonin are risk factors for serotonin syndrome. Higher opioid concentrations, as may occur due to inhibition of opioid clearance, patient specific genomic factors (e.g. poor metabolizer status for a P450 enzyme), or high opioid dosage may increase the risk for an interaction. PATIENT MANAGEMENT: Use an alternative analgesic when possible. If concurrent therapy is warranted, patients should be monitored for signs and symptoms of serotonin syndrome. Instruct patients to report muscle twitching, tremors, shivering and stiffness, fever, heavy sweating, heart palpitations, restlessness, confusion, agitation, trouble with coordination, or severe diarrhea. If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(3,4) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(6) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(3,4) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(7) DISCUSSION: Although documentation is lacking for some opioids, the FDA recommends health professionals monitor and advise patients to report symptoms of serotonin syndrome in patients receiving analgesic opioids and serotonergic agents.(4) In a case report, the concurrent use of propoxyphene and phenelzine resulted in sedation and somnolence. The patient had previously taken both agents alone with no adverse effects.(8) Metaxalone is a weak inhibitor of MAO.(1,2) |
METAXALONE |
There are 11 moderate interactions.
The clinician should assess the patient’s characteristics and take action as needed. Actions required for moderate interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration.
Drug Interaction | Drug Names |
---|---|
Selected Opioid Analgesics/Cimetidine SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The metabolism of selected opioid analgesics may be inhibited by cimetidine.(1-15) At doses of 800-2400 mg daily, cimetidine is a moderate inhibitor of CYP3A4 and a weak inhibitor of CYP1A2, CYP2C19, CYP2C9, and CYP2D6.(16) Benzhydrocodone is a prodrug of hydrocodone.(12) CLINICAL EFFECTS: The effect of selected opioid analgesics may be increased including profound sedation, respiratory depression, coma, and/or death. Opioid analgesics have been associated with histamine release and is dependent on dose, route of administration, and rate of administration. Histamine release can cause arteriole dilation and contribute to a profound decrease in systemic blood pressure. The cardiovascular effects of histamine release occurring with the opioid analgesics may be decreased by giving cimetidine concurrently.() PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Cimetidine use at higher doses of 200-400 mg four times daily would have an increased risk of inhibiting the metabolism of opioid analgesics. Lower doses and over-the-counter doses of cimetidine would be expected to have a diminished effect. Consider using alternative H2 antagonists when long-term concurrent therapy with opioid analgesics is indicated. The manufacturer of sufentanil sublingual tablets states that if concomitant use with CYP3A4 inhibitors is necessary, consider use of an alternate agent that allows dose adjustment.(15) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with agents that may increase opioid drug levels.(17) Monitor the patient for increased adverse effects of the opioid analgesic including respiratory and central nervous system depression, unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness. Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(18) DISCUSSION: Severe respiratory depression has been reported with the concurrent administration of opioid analgesics and cimetidine. Systemic levels of opioid analgesics metabolized by CYP3A4 may be increased during concurrent use with cimetidine, a CYP3A4 inhibitor.(1-15) In a study of 6 healthy subjects, the effects of ketoconazole (a strong CYP3A4 inhibitor) 400 mg daily for 3 days on alfentanil were studied. The maximum concentration (Cmax) and area-under-curve (AUC) of alfentanil were increased with both sequential and simultaneous dosing of alfentanil with concurrent ketoconazole.(19) In a study of 16 healthy subjects, the effects of ketoconazole 300 mg twice daily for 2 days on fentanyl 5 mcg/kg single dose were examined. Fentanyl AUC was increased by 133% and clearance was reduced to 78%. The metabolism of fentanyl to norfentanyl by CYP3A4 was delayed and partial metabolic clearance decreased by 18% with concurrent ketoconazole.(20) In vitro results of the effects of ketoconazole on hydrocodone confirmed CYP3A4 is responsible for the metabolism of hydrocodone to norhydrocodone.(21) A review discussed the metabolism of hydrocodone by CYP2D6 to O-demethylated hydromorphone and by CYP3A4 to N-demethylated norhydrocodone. CYP3A4 activity is reported as higher in women resulting in higher fractions of the norhydrocodone metabolite in women than in men.(22) A case report of a 46 year old hemodialysis patient was on routine therapy with phenytoin 100 mg three times daily and cimetidine 300 mg three times daily. Four days after starting cimetidine, morphine 15 mg IM every 4 hours was initiated for pain. After the sixth dose of morphine, the patient was apneic with a respiratory rate of 3 breaths/minute and had a grand mal seizure. The patient responded to naloxone 0.4 mg IV single dose with improvement in respiratory rate to 12 breaths/minute. Cimetidine was stopped and phenytoin decreased to 100 mg twice daily with improvement after 80 hours from initial episode. A month later the patient required surgery and was given cimetidine 150 mg twice daily followed by Pantopon 15 mg IM every 3-6 hours postoperatively for pain. The patient again became apneic, confused, and developed muscle twitching which responded to naloxone 0.4 mg for 4 doses over the next 24 hours with complete recovery.(23) In a study of 8 healthy subjects, the effects of cimetidine on morphine were studied. Subjects were evaluated in three study periods: morphine 10 mg IM single dose; cimetidine 600 mg oral given one hour before morphine 10 mg IM single dose; and cimetidine 600 mg oral single dose. Morphine reduced resting ventilation and increased end-tidal CO2 with peak effects at 120 minutes and resolution at 12 hours. Morphine with cimetidine pretreatment had similar effects on resting ventilation and end-tidal CO2, however the recovery ratio from 120 to 720 minutes was significantly different than morphine alone (p<0.05).(24) In a study of 7 healthy subjects, the effects of cimetidine 300 mg oral four times daily for 4 days on morphine 10 mg IV single dose were evaluated. No significant differences were found in morphine concentrations at any time point from zero to ten hours after dose administration with and without cimetidine. Morphine elimination half-life (t1/2), systemic clearance, volume of distribution, and AUC with and without cimetidine had no statistical differences.(25) In a study of 40 patients undergoing elective coronary artery bypass graft surgery were randomized to receive either cimetidine 4 mg/kg, diphenhydramine 1 mg/kg, a combination of both cimetidine and diphenhydramine, or placebo, followed by morphine 1 mg/kg. Patients were randomized to one of four groups: 1. placebo plus morphine; 2. cimetidine plus morphine; 3. diphenhydramine plus morphine; or 4. cimetidine plus diphenhydramine plus morphine. Patients in group 1 had a 10-fold increase in plasma histamine levels within 2 minutes of morphine with a decrease in mean BP, diastolic BP, and systemic vascular resistance (SVR). Group 2 has similar effects with a peak change in SVR and plasma histamine rise within 2 minutes of morphine. The change in SVR was significant when compared to placebo but less than group 1. Group 3 patients had an increase in heart rate (HR) from diphenhydramine alone as well as peak effects within 2 minutes of morphine with decreases in BP and SVR but were less than morphine alone. Group 4 patients had a 7-fold increase in histamine with a significant increase in HR, diastolic BP, and BP. When group 4 is compared to group 1, patients had a decrease in SVR and diastolic BP that was significantly less despite comparable increases in plasma histamine.(26) In vitro testing of oxycodone and methadone, cimetidine caused a greater than 50% inhibition in all pathways: CYP2B6, CYP3A4, CYP2C18, and CYP2D6. Cimetidine was found to be a weak reversible inhibitor in vitro. Extrapolation of the data to in vivo inhibition is unlikely to produce significant inhibition unless concentrations exceed normal doses by 10-fold.(27) Two studies examined the effects of CYP2D6 and CYP3A4 on the metabolism of oxycodone as well as genetic polymorphism influences. After concurrent administration of oxycodone with ketoconazole, the Cmax of the metabolites noroxycodone and noroxymorphone were decreased by 80% from baseline.(28,29) A review discussed the metabolism of oxycodone by CYP3A4 to noroxycodone, the major metabolite with weak antinociceptive properties, and by CYP2D6 to the active minor metabolite oxymorphone.() In a study of 8 male subjects, effects of cimetidine 600 mg twice daily for seven days on pethidine 70 mg IV single dose was evaluated. Concurrent use with cimetidine was associated with a 22% decrease in clearance, 11% decrease in elimination rate, and a 13% decrease in volume of distribution of pethidine. Changes were also seen in norpethidine, the primary metabolite, with a 23% decrease in AUC and 29% decrease in Cmax.(30) Opioid analgesics linked to this monograph include: alfentanil, benzhydrocodone, dihydrocodeine, fentanyl, hydrocodone, meperidine, meptazinol, nalbuphine, oxycodone, oxymorphone, pentazocine, propoxyphene, and sufentanil. |
CIMETIDINE |
Gabapentinoids/Opioids (IR & ER) SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Opioid-induced reduction in GI motility may increase the absorption of gabapentin and pregabalin.(1) Gabapentin and pregabalin may reverse opioid-induced tolerance of respiratory depression.(2) Concurrent use may result in profound sedation, respiratory depression, coma, and/or death.(3) CLINICAL EFFECTS: Concurrent use of opioids may result in elevated levels of and toxicity from gabapentin and pregabalin, including profound sedation, respiratory depression, coma, and/or death.(1-7) PREDISPOSING FACTORS: Patients who are elderly, are taking other CNS depressants, have decreased renal function, and/or have conditions that reduce lung function (e.g. Chronic Obstructive Pulmonary Disease [COPD]) may be at a higher risk of this interaction. PATIENT MANAGEMENT: Limit prescribing opioid analgesics and gabapentinoids to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a gabapentinoid with an opioid analgesic, prescribe a lower initial dose of the gabapentinoid than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a gabapentinoid, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(8) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(9) DISCUSSION: In a study in 12 healthy males, administration of a single dose of morphine (60 mg sustained release) increased the area-under-curve (AUC) of a single dose of gabapentin (600 mg) by 44%.(1,3,4) There were no affects on the pharmacokinetics of morphine.(1,3,4) The combination of gabapentin plus morphine increased pain tolerance over the combination of morphine plus placebo. Side effects were not significantly different between morphine plus placebo and morphine plus gabapentin.(1) A retrospective, case-control study of opioid users in Ontario, Canada between August 1, 1997 and December 31, 2013 who died of an opioid-related cause matched cases to up to 4 controls who also used opioids. Use of gabapentin in the 120 days prior to death resulted in a significant increase in odds of opioid-related death (OR 1.99, CI=1.61-2.47, p<0.001), compared to opioid use alone. Use of moderate dose (900 mg to 1,799 mg daily) or high dose (>= 1,800 mg daily) gabapentin increased the odds of opioid-related death 60% compared to opioid use without gabapentin. Review of gabapentin prescriptions from calendar year 2013 found that 46% of gabapentin users received at least 1 opioid prescription.(3) Among 49 case reports submitted to FDA over a 5 year period (2012-2017), 12 people died from respiratory depression with gabapentinoids. Two randomized, double-blind, placebo-controlled clinical trials in healthy people, three observational studies, and several studies in animals were reviewed. A trial showed that using pregabalin alone and using it with an opioid pain reliever can depress breathing function. Three observational studies showed a relationship between gabapentinoids given before surgery and respiratory depression occurring after surgery. Several animal studies also showed that pregabalin plus opioids can depress respiratory function.(7) A retrospective cohort study evaluated the risk of mortality among Medicare beneficiaries aged 65 and older who were taking gabapentin with or without concurrent use of opioids. All-cause mortality in gabapentin users compared to duloxetine users was 12.16 per 1,000 person years vs. 9.94 per 1,000 person years, respectively. Adjusted for covariates, the risk of all-cause mortality among gabapentin users on high-dose opioids was more than double the control group (hazard ratio (HR) 2.03, CI=1.19-3.46).(10) |
GABAPENTIN, GABAPENTIN ER, GABARONE, GRALISE, HORIZANT, LYRICA, LYRICA CR, NEURONTIN, PREGABALIN, PREGABALIN ER |
Opioids (Immediate Release)/Benzodiazepines SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids and benzodiazepines may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids and other CNS depressants, such as benzodiazepines, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics with CNS depressants such as benzodiazepines to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(4) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(5) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(6) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(7) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(8) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(9) A study of 315,428 privately insured patients who filled at least one prescription for an opioid from 2001 to 2013 were enrolled in a retrospective study. Concurrent use of a benzodiazepine was recorded as having at least one day of overlap in a given calendar year. Baseline characteristics among opioid users with concurrent use of a benzodiazepine were older (44.5 v. 42.4, p<0.001), less likely to be men (35% v. 43%, p<0.001), and had a higher prevalence rate of every comorbidity examined (p<0.001). The proportion of opioid users with concurrent benzodiazepine use nearly doubled from 9% in 2001 to 17% in 2013. The primary outcome was an emergency room visit or inpatient admission for opioid overdose within a calendar year. Among all opioid users, the annual adjusted incidence for the primary outcome was 1.16% without concurrent benzodiazepine use compared to 2.42% with concurrent benzodiazepine use (OR 2.14; 95% CI 2.05-2.24; p<0.001). Intermittent opioid users (1.45% v. 1.02%; OR 1.42; 95% CI 1.33-1.51; p<0.001) and chronic opioid users (5.36% v. 3.13%; OR 1.81; 95% CI 1.67-1.96; p<0.001) also experienced a higher adjusted incidence of the primary outcome with concurrent benzodiazepine use compared to without concurrent benzodiazepine use, respectively.(10) In a nested case-control study of adults with a new opioid dispensing between 2010-2018, patients with concurrent use of an opioid with a benzodiazepine were significantly more likely to have opioid-related overdose compared to patients receiving opioids, benzodiazepines, or neither (OR 9.28; 95% CI 7.87, 10.93). Longer concurrent use of 1-7, 8-30, and 31-90 days was associated with 4.6, 12.1, and 26.7-fold higher likelihood of opioid-related overdose (p<0.01). Patients with overlapping prescriptions during previous 0-30, 31-60, and 61-90 days were 13.2, 6.0, and 3.2-times more likely to experience an overdose (p<0.01).(11) |
ALPRAZOLAM, ALPRAZOLAM ER, ALPRAZOLAM INTENSOL, ALPRAZOLAM ODT, ALPRAZOLAM XR, ATIVAN, BYFAVO, CHLORDIAZEPOXIDE HCL, CHLORDIAZEPOXIDE-AMITRIPTYLINE, CHLORDIAZEPOXIDE-CLIDINIUM, CLOBAZAM, CLONAZEPAM, CLORAZEPATE DIPOTASSIUM, DIAZEPAM, DORAL, ESTAZOLAM, FLURAZEPAM HCL, HALCION, KLONOPIN, LIBRAX, LORAZEPAM, LORAZEPAM INTENSOL, LOREEV XR, MIDAZOLAM, MIDAZOLAM HCL, MIDAZOLAM HCL-0.8% NACL, MIDAZOLAM HCL-0.9% NACL, MIDAZOLAM HCL-D5W, MIDAZOLAM HCL-NACL, MIDAZOLAM-0.9% NACL, MIDAZOLAM-NACL, MKO (MIDAZOLAM-KETAMINE-ONDAN), NAYZILAM, ONFI, OXAZEPAM, QUAZEPAM, RESTORIL, SYMPAZAN, TEMAZEPAM, TRIAZOLAM, VALIUM, VALTOCO, XANAX, XANAX XR |
Opioids (Immediate Release)/Sleep Drugs SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids and sleep drugs may result in additive CNS depression and sleep-related disorders.(1) CLINICAL EFFECTS: Concurrent use of opioids and other CNS depressants, such as sleep drugs, may result in profound sedation, respiratory depression, coma, and/or death.(1) Concurrent use of opioids with eszopiclone, zaleplon, or zolpidem may increase the risk of sleep-related disorders including central sleep apnea and sleep-related hypoxemia and complex sleep behaviors like sleepwalking, sleep driving, and other activities while not fully awake. Rarely, serious injuries or death have resulted from complex sleep behaviors.(2) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics with CNS depressants such as sleep drugs to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(3) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Eszopiclone, zaleplon, and zolpidem are contraindicated in patients who have had a previous episode of complex sleep behavior.(2) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(4) DISCUSSION: Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) As of April 2019, the FDA had identified 66 cases of complex sleep behaviors with eszopiclone, zaleplon, or zolpidem, of which 20 cases resulted in death and the remainder resulted in serious injuries. It was not reported how many of the cases involved concomitant use of other CNS depressants.(2) |
AMBIEN, AMBIEN CR, BELSOMRA, DAYVIGO, EDLUAR, ESZOPICLONE, LUNESTA, QUVIVIQ, RAMELTEON, ROZEREM, ZALEPLON, ZOLPIDEM TARTRATE, ZOLPIDEM TARTRATE ER |
Opioids (Immediate Release)/Muscle Relaxants SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids and muscle relaxants may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids and other CNS depressants, such as muscle relaxants, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics with CNS depressants such as muscle relaxants to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(4) A retrospective cohort study compared the risk of opioid overdose associated with concomitant use of opioids and skeletal muscle relaxants versus opioid use alone. The study examined two types of opioid users (naive opioid use and prevalent opioid use) with and without exposure to skeletal muscle relaxants. The adjusted hazard ratios (HR) were 1.09 and 1.26 in the naive and prevalent opioid user cohorts, respectively, generating a combined estimate of 1.21. The risk increased with treatment duration (less than or equal to 14 days: 0.91; 15-60 days: 1.37; and greater than 60 days: 1.80) and for the use of baclofen and carisoprodol (HR 1.83 and 1.84, respectively). Elevated risk was associated with concomitant users with daily opioid dose greater than 50 mg and benzodiazepine use (HR 1.50 and 1.39, respectively).(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
BACLOFEN, CARISOPRODOL, CARISOPRODOL-ASPIRIN, CARISOPRODOL-ASPIRIN-CODEINE, CHLORZOXAZONE, DANTRIUM, DANTROLENE SODIUM, FLEQSUVY, LORZONE, LYVISPAH, MEPROBAMATE, METHOCARBAMOL, NORGESIC, NORGESIC FORTE, ORPHENADRINE CITRATE, ORPHENADRINE CITRATE ER, ORPHENADRINE-ASPIRIN-CAFFEINE, ORPHENGESIC FORTE, OZOBAX, OZOBAX DS, REVONTO, ROBAXIN, RYANODEX, SOMA, TANLOR, TIZANIDINE HCL, VANADOM, ZANAFLEX |
Slt Opioids (Immediate Release)/Antipsychotics;Phenothiazine SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics with CNS depressants such as antipsychotics, including phenothiazine derivatives, to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
ABILIFY, ABILIFY ASIMTUFII, ABILIFY MAINTENA, ADASUVE, ARIPIPRAZOLE, ARIPIPRAZOLE ODT, ARISTADA, ARISTADA INITIO, ASENAPINE MALEATE, BARHEMSYS, CAPLYTA, CHLORPROMAZINE HCL, CLOZAPINE, CLOZAPINE ODT, CLOZARIL, COMPAZINE, COMPRO, DROPERIDOL, ERZOFRI, FANAPT, FLUPHENAZINE DECANOATE, FLUPHENAZINE HCL, HALDOL DECANOATE 100, HALDOL DECANOATE 50, HALOPERIDOL, HALOPERIDOL DECANOATE, HALOPERIDOL DECANOATE 100, HALOPERIDOL LACTATE, INVEGA, INVEGA HAFYERA, INVEGA SUSTENNA, INVEGA TRINZA, LATUDA, LOXAPINE, LURASIDONE HCL, MOLINDONE HCL, NUPLAZID, OLANZAPINE, OLANZAPINE ODT, OLANZAPINE-FLUOXETINE HCL, OPIPZA, PALIPERIDONE ER, PERPHENAZINE, PERPHENAZINE-AMITRIPTYLINE, PERSERIS, PHENERGAN, PIMOZIDE, PROCHLORPERAZINE, PROCHLORPERAZINE EDISYLATE, PROCHLORPERAZINE MALEATE, PROMETHAZINE HCL, PROMETHAZINE HCL-0.9% NACL, PROMETHAZINE VC, PROMETHAZINE-CODEINE, PROMETHAZINE-DM, PROMETHAZINE-PHENYLEPHRINE HCL, PROMETHEGAN, QUETIAPINE FUMARATE, QUETIAPINE FUMARATE ER, REXULTI, RISPERDAL, RISPERDAL CONSTA, RISPERIDONE, RISPERIDONE ER, RISPERIDONE ODT, RYKINDO, SAPHRIS, SECUADO, SEROQUEL, SEROQUEL XR, THIORIDAZINE HCL, THIORIDAZINE HYDROCHLORIDE, THIOTHIXENE, TRIFLUOPERAZINE HCL, UZEDY, VERSACLOZ, VRAYLAR, ZYPREXA |
Desmopressin/Agents with Hyponatremia Risk SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Carbamazepine, chlorpromazine, lamotrigine, NSAIDs, opioids, SSRIs, thiazide diuretics, and/or tricyclic antidepressants increase the risk of hyponatremia.(1-3) CLINICAL EFFECTS: Concurrent use may increase the risk of hyponatremia with desmopressin.(1-3) PREDISPOSING FACTORS: Predisposing factors for hyponatremia include: polydipsia, renal impairment (eGFR < 50 ml/min/1.73m2), illnesses that can cause fluid/electrolyte imbalances, age >=65, medications that cause water retention and/or increase the risk of hyponatremia (glucocorticoids, loop diuretics). PATIENT MANAGEMENT: The concurrent use of agents with a risk of hyponatremia with desmopressin may increase the risk of hyponatremia. If concurrent use is deemed medically necessary, make sure serum sodium levels are normal before beginning therapy and consider using the desmopressin nasal 0.83 mcg dose. Consider measuring serum sodium levels more frequently than the recommended intervals of: within 7 days of concurrent therapy initiation, one month after concurrent therapy initiation and periodically during treatment. Counsel patients to report symptoms of hyponatremia, which may include: headache, nausea/vomiting, feeling restless, fatigue, drowsiness, dizziness, muscle cramps, changes in mental state (confusion, decreased awareness/alertness), seizures, coma, and trouble breathing. Counsel patients to limit the amount of fluids they drink in the evening and night-time and to stop taking desmopressin if they develop a stomach/intestinal virus with nausea/vomiting or any nose problems (blockage, stuffy/runny nose, drainage).(1) DISCUSSION: In clinical trials of desmopressin for the treatment of nocturia, 4 of 5 patients who developed severe hyponatremia (serum sodium <= 125 mmol/L) were taking systemic or inhaled glucocorticoids. Three of these patients were also taking NSAIDs and one was receiving a thiazide diuretic.(2) Drugs associated with hyponatremia may increase the risk, including loop diuretics, carbamazepine, chlorpromazine, glucocorticoids, lamotrigine, NSAIDs, opioids, SSRIs, thiazide diuretics, and/or tricyclic antidepressants.(1,3-4) |
DDAVP, DESMOPRESSIN ACETATE, NOCDURNA |
Opioids (Immediate Release)/Selected Stimulants SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Opioids and stimulants exhibit opposing effects on the CNS. CLINICAL EFFECTS: Concurrent use of opioids and stimulants may have unpredictable effects and may mask overdose symptoms of the opioid, such as drowsiness and inability to focus. PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics with CNS stimulants such as amphetamines to patients for whom alternatives are inadequate. If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with stimulants.(1) Monitor patients receiving concurrent therapy for signs of substance abuse. DISCUSSION: A total of 70,237 persons died from drug overdoses in the United States in 2017; approximately two thirds of these deaths involved an opioid.(2). The CDC analyzed 2016-2017 changes in age-adjusted death rates involving cocaine and psychostimulants by demographic characteristics, urbanization levels, U.S. Census region, 34 states, and the District of Columbia (DC). The CDC also examined trends in age-adjusted cocaine-involved and psychostimulant-involved death rates from 2003 to 2017 overall, as well as with and without co-involvement of opioids. Among all 2017 drug overdose deaths, 13,942 (19.8%) involved cocaine, and 10,333 (14.7%) involved psychostimulants. Death rates increased from 2016 to 2017 for both drug categories across demographic characteristics, urbanization levels, Census regions, and states. In 2017, opioids were involved in 72.7% and 50.4% of cocaine-involved and psychostimulant-involved overdoses, respectively, and the data suggest that increases in cocaine-involved overdose deaths from 2012 to 2017 were driven primarily by synthetic opioids.(3) There was opioid co-involvement in 72.7 percent of cocaine and 50.4 percent of stimulant-involved overdose deaths. This was largely driven by synthetic opioids such as fentanyl. However, stimulant-involved overdose without opioid co-involvement is also increasing.(2) |
ADDERALL, ADDERALL XR, ADZENYS XR-ODT, AMPHETAMINE SULFATE, APTENSIO XR, AZSTARYS, CONCERTA, COTEMPLA XR-ODT, DAYTRANA, DESOXYN, DEXEDRINE, DEXMETHYLPHENIDATE HCL, DEXMETHYLPHENIDATE HCL ER, DEXTROAMPHETAMINE SULFATE, DEXTROAMPHETAMINE SULFATE ER, DEXTROAMPHETAMINE-AMPHET ER, DEXTROAMPHETAMINE-AMPHETAMINE, DYANAVEL XR, EVEKEO, FOCALIN, FOCALIN XR, JORNAY PM, LISDEXAMFETAMINE DIMESYLATE, METADATE CD, METADATE ER, METHAMPHETAMINE HCL, METHYLIN, METHYLPHENIDATE, METHYLPHENIDATE ER, METHYLPHENIDATE ER (LA), METHYLPHENIDATE HCL, METHYLPHENIDATE HCL CD, METHYLPHENIDATE HCL ER (CD), MYDAYIS, PROCENTRA, QUILLICHEW ER, QUILLIVANT XR, RELEXXII, RITALIN, RITALIN LA, VYVANSE, XELSTRYM, ZENZEDI |
Opioids (Immediate Release)/Cyclobenzaprine SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids and cyclobenzaprine may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids and other CNS depressants, such as cyclobenzaprine, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics with CNS depressants such as muscle relaxants to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(4) A retrospective cohort study compared the risk of opioid overdose associated with concomitant use of opioids and skeletal muscle relaxants versus opioid use alone. The study examined two types of opioid users (naive opioid use and prevalent opioid use) with and without exposure to skeletal muscle relaxants. The adjusted hazard ratios (HR) were 1.09 and 1.26 in the naive and prevalent opioid user cohorts, respectively, generating a combined estimate of 1.21. The risk increased with treatment duration (less than or equal to 14 days: 0.91; 15-60 days: 1.37; and greater than 60 days: 1.80) and for the use of baclofen and carisoprodol (HR 1.83 and 1.84, respectively). Elevated risk was associated with concomitant users with daily opioid dose greater than 50 mg and benzodiazepine use (HR 1.50 and 1.39, respectively).(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
AMRIX, CYCLOBENZAPRINE HCL, CYCLOBENZAPRINE HCL ER, CYCLOPAK, CYCLOTENS, FEXMID |
Select Opioids (Immediate Release)/Select Tranquilizers SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids and tranquilizers may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids and other CNS depressants such as tranquilizers may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics with CNS depressants such as tranquilizers to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(4) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(5) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(6) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(7) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(8) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(9) |
PENTOBARBITAL SODIUM |
Selected Serotonergic Opioids/Ziprasidone SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of serotonergic opioids such as meperidine or tramadol and antipsychotics such as ziprasidone may result in additive CNS depression or additive risk of serotonin syndrome.(1) CLINICAL EFFECTS: Concurrent use of serotonergic opioids such as meperidine or tramadol and antipsychotics such as ziprasidone may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. Serotonin syndrome risk is dose-related. Higher systemic concentrations of either drug would be predicted to increase risk for serotonin toxicity. Concomitant therapy with multiple agents which increase brain serotonin concentrations may also increase risk for serotonin syndrome.(2) PATIENT MANAGEMENT: Limit prescribing opioid analgesics such as meperidine or tramadol with CNS depressants such as antipsychotics, including ziprasidone, to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness,(1) as well as for signs of serotonin syndrome. Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) Several cases of serotonin syndrome have been reported in patients receiving ziprasidone.(12-14) |
GEODON, ZIPRASIDONE HCL, ZIPRASIDONE MESYLATE |
The following contraindication information is available for PENTAZOCINE-NALOXONE HCL (pentazocine hcl/naloxone hcl):
Drug contraindication overview.
*Patients with known hypersensitivity to the drug or any ingredient in the formulation.
*Patients with known hypersensitivity to the drug or any ingredient in the formulation.
There are 1 contraindications.
Absolute contraindication.
Contraindication List |
---|
Acute asthma attack |
There are 31 severe contraindications.
Adequate patient monitoring is recommended for safer drug use.
Severe List |
---|
Alcohol intoxication |
Alcohol withdrawal delirium |
Benign prostatic hyperplasia |
Bradycardia |
Cardiac arrhythmia |
Coma |
Cor pulmonale |
Debilitation |
Dehydration |
Drug abuse |
Exacerbation of chronic obstructive pulmonary disease |
Familial dysautonomia |
Gastrointestinal tract surgery |
History of opioid overdose |
Hypotension |
Inflammatory bowel disease |
Intracranial hypertension |
Morbid obesity |
Neoplasm of brain |
Primary adrenocortical insufficiency |
Pulmonary emphysema |
Respiratory depression |
Seizure disorder |
Shock |
Sleep apnea |
Suicidal ideation |
Systemic mastocytosis |
Toxic psychosis |
Ulcerative colitis |
Urethral stricture |
Urinary retention |
There are 8 moderate contraindications.
Clinically significant contraindication, where the condition can be managed or treated before the drug may be given safely.
Moderate List |
---|
Acute abdominal pain |
Biliary spasm |
Constipation |
Disease of liver |
Gallbladder disease |
Kidney disease with reduction in glomerular filtration rate (GFr) |
Mood changes |
Untreated hypothyroidism |
The following adverse reaction information is available for PENTAZOCINE-NALOXONE HCL (pentazocine hcl/naloxone hcl):
Adverse reaction overview.
Intranasal naloxone: Adverse effects reported in clinical trials of intranasally administered naloxone include abdominal pain, asthenia, dizziness, headache, increased blood pressure, constipation, toothache, muscle spasms, musculoskeletal pain, nasal congestion, nasal discomfort, nasal dryness, nasal edema, nasal inflammation, presyncope, rhinalgia, and xeroderma. Parenteral naloxone: Adverse effects, including serious and fatal cases, reported in clinical trials of parenterally administered naloxone for postoperative patients include cardiac arrest, dyspnea, hypotension, hypertension, pulmonary edema, and ventricular tachycardia and fibrillation. Excessive doses of naloxone in postoperative patients may result in agitation caused by significant reversal of analgesia.
Adverse effects reported in clinical trials of parenterally administered naloxone after abrupt reversal of dependence are related to acute withdrawal syndrome, which may include the following signs and symptoms: abdominal cramps, body aches, diarrhea, fever, increased blood pressure, nausea or vomiting, nervousness, runny nose, piloerection, restlessness or irritability, shivering or trembling, sneezing, sweating, tachycardia, weakness, yawning. Abrupt reversal of opioid depression may result in cardiac arrest, increased blood pressure, nausea, pulmonary edema, seizures, sweating, tachycardia, tremulousness, ventricular tachycardia and fibrillation, and vomiting. In the neonate, opioid withdrawal may also include convulsions, excessive crying, and hyperactive reflexes. Adverse effects reported in clinical trials of naloxone hydrochloride injection for IM or subcutaneous use (Zimhi(R)) included dizziness, elevated bilirubin, lightheadedness, and nausea.
Intranasal naloxone: Adverse effects reported in clinical trials of intranasally administered naloxone include abdominal pain, asthenia, dizziness, headache, increased blood pressure, constipation, toothache, muscle spasms, musculoskeletal pain, nasal congestion, nasal discomfort, nasal dryness, nasal edema, nasal inflammation, presyncope, rhinalgia, and xeroderma. Parenteral naloxone: Adverse effects, including serious and fatal cases, reported in clinical trials of parenterally administered naloxone for postoperative patients include cardiac arrest, dyspnea, hypotension, hypertension, pulmonary edema, and ventricular tachycardia and fibrillation. Excessive doses of naloxone in postoperative patients may result in agitation caused by significant reversal of analgesia.
Adverse effects reported in clinical trials of parenterally administered naloxone after abrupt reversal of dependence are related to acute withdrawal syndrome, which may include the following signs and symptoms: abdominal cramps, body aches, diarrhea, fever, increased blood pressure, nausea or vomiting, nervousness, runny nose, piloerection, restlessness or irritability, shivering or trembling, sneezing, sweating, tachycardia, weakness, yawning. Abrupt reversal of opioid depression may result in cardiac arrest, increased blood pressure, nausea, pulmonary edema, seizures, sweating, tachycardia, tremulousness, ventricular tachycardia and fibrillation, and vomiting. In the neonate, opioid withdrawal may also include convulsions, excessive crying, and hyperactive reflexes. Adverse effects reported in clinical trials of naloxone hydrochloride injection for IM or subcutaneous use (Zimhi(R)) included dizziness, elevated bilirubin, lightheadedness, and nausea.
There are 22 severe adverse reactions.
More Frequent | Less Frequent |
---|---|
None. |
Allergic dermatitis Angioedema Hypertension Tachycardia Urticaria |
Rare/Very Rare |
---|
Accidental fall Acute cognitive impairment Adrenocortical insufficiency Agranulocytosis Anaphylaxis Biliary spasm Depression Drug dependence Dyspnea Erythema multiforme Hallucinations Intracranial hypertension Respiratory depression Seizure disorder Stevens-johnson syndrome Toxic epidermal necrolysis Urinary retention |
There are 41 less severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Diarrhea Dizziness Drowsy Euphoria Hyperhidrosis Nausea Sedation Vomiting |
Blurred vision Constipation Flushing Headache disorder Hypotension Irritability Nightmares Paresthesia Pruritus of skin Skin rash Syncope Visual changes Xerostomia |
Rare/Very Rare |
---|
Androgen deficiency Anorexia Chills Erectile dysfunction Excitement Gastrointestinal irritation General weakness Infertility Injection site sequelae Insomnia Libido changes Nystagmus Opioid induced allodynia Opioid induced hyperalgesia Orthostatic hypotension Palpitations Sleep apnea Tinnitus Tremor Vasodilation of blood vessels |
The following precautions are available for PENTAZOCINE-NALOXONE HCL (pentazocine hcl/naloxone hcl):
Naloxone hydrochloride injection may be used to reverse the effects of opioids in pediatric patients, including neonates. In addition, safety and efficacy of naloxone hydrochloride prefilled syringes for IM or subcutaneous use (Zimhi(R)) or nasal spray (e.g., Narcan(R), Kloxxado(R)) have been established in pediatric patients of all ages for the emergency treatment of known or suspected opioid overdosage manifested by respiratory and/or CNS depression. Use of naloxone for reversal of opioid effects in pediatric patients is supported by adult bioequivalence studies and evidence from the safe and effective use of other naloxone hydrochloride products.
As in adults, naloxone may precipitate opiate withdrawal in pediatric patients who are physically dependent on opiates; however, unlike opiate withdrawal in adults, neonatal opiate withdrawal may be life-threatening and should be treated according to protocols developed by neonatology experts. To avoid abrupt precipitation of neonatal opiate withdrawal syndrome, use of a naloxone preparation that can be dosed based on weight and titrated to effect may be preferred over a preparation that delivers a fixed dose of the drug (e.g., auto-injector, nasal spray) in neonates with known or suspected exposure to maternally administered opiates. Absorption of naloxone following intranasal administration or IM or subcutaneous injection in pediatric patients may be erratic or delayed.
Pediatric patients who have responded to naloxone must be carefully monitored for at least 24 hours, since relapse may occur as the opioid antagonist is metabolized. Safety and efficacy of naloxone hydrochloride injection in the management of hypotension associated with septic shock have not been established in pediatric patients. In a study of 2 neonates with septic shock, treatment with naloxone produced a positive pressor response; however, one patient subsequently died after intractable seizures.
Contraindicated
Severe Precaution
Management or Monitoring Precaution
As in adults, naloxone may precipitate opiate withdrawal in pediatric patients who are physically dependent on opiates; however, unlike opiate withdrawal in adults, neonatal opiate withdrawal may be life-threatening and should be treated according to protocols developed by neonatology experts. To avoid abrupt precipitation of neonatal opiate withdrawal syndrome, use of a naloxone preparation that can be dosed based on weight and titrated to effect may be preferred over a preparation that delivers a fixed dose of the drug (e.g., auto-injector, nasal spray) in neonates with known or suspected exposure to maternally administered opiates. Absorption of naloxone following intranasal administration or IM or subcutaneous injection in pediatric patients may be erratic or delayed.
Pediatric patients who have responded to naloxone must be carefully monitored for at least 24 hours, since relapse may occur as the opioid antagonist is metabolized. Safety and efficacy of naloxone hydrochloride injection in the management of hypotension associated with septic shock have not been established in pediatric patients. In a study of 2 neonates with septic shock, treatment with naloxone produced a positive pressor response; however, one patient subsequently died after intractable seizures.
Contraindicated
None |
Severe Precaution
None |
Management or Monitoring Precaution
None |
Animal reproduction studies to date using pentazocine have not shown teratogenic or embryotoxic effects. Safe use of pentazocine in pregnant women (except during labor) has not been established. The drug should not be administered to women who are pregnant unless the potential benefits outweigh the possible risks to the fetus.
Alterations (usually increases) in the rate and strength of uterine contractions may occur following parenteral administration of pentazocine during labor. In addition, respiratory depression and transient apnea may occur in the neonate when pentazocine is administered during labor and delivery. Rarely, there have been reports of possible abstinence (withdrawal) syndrome in neonates after prolonged maternal use of pentazocine during pregnancy.
Signs and symptoms of withdrawal have also been reported in neonates born to women who abused the combination of pentazocine and tripelennamine (T's and blues). For information on the management of neonatal opiate abstinence syndrome, see Uses: Neonatal Opiate Withdrawal, in the Opiate Agonists General Statement 28:08.08.
There are limited data to date on use of naloxone in pregnant women. Naloxone should be used during pregnancy only when clearly needed. Reproduction studies in mice and rats using naloxone hydrochloride dosages of 4 and 8 times, respectively, a human dosage of 10 mg daily in a 50-kg individual demonstrated no embryotoxic or teratogenic effects.
Furthermore, no adverse effects were reported in the offspring of rats receiving naloxone hydrochloride subcutaneously at dosages of 2 or 10 mg/kg (up to 12 times a human dosage of 8 mg daily) from gestation day 15 to postnatal day 21. No embryotoxic or teratogenic effects were observed in mice and rats during the period of organogenesis with the 8 mg/0.1 mL nasal spray at doses 3 and 6 times a human dose of 16 mg.
The risk-benefit ratio must be considered before naloxone is administered to a pregnant woman who is known or suspected to be dependent on opioids, since maternal dependence may often be accompanied by fetal dependence. Naloxone crosses the placenta and may precipitate withdrawal symptoms in both the fetus and the pregnant woman. Use of naloxone in opioid-dependent pregnant women should be accompanied by monitoring for fetal distress.
It is not known if naloxone affects the duration of labor and/or delivery. However, published reports indicate that administration of naloxone during labor did not adversely affect maternal or neonatal status. Carefully monitor patients with mild to moderate hypertension who receive naloxone during labor, as severe hypertension may occur.
Alterations (usually increases) in the rate and strength of uterine contractions may occur following parenteral administration of pentazocine during labor. In addition, respiratory depression and transient apnea may occur in the neonate when pentazocine is administered during labor and delivery. Rarely, there have been reports of possible abstinence (withdrawal) syndrome in neonates after prolonged maternal use of pentazocine during pregnancy.
Signs and symptoms of withdrawal have also been reported in neonates born to women who abused the combination of pentazocine and tripelennamine (T's and blues). For information on the management of neonatal opiate abstinence syndrome, see Uses: Neonatal Opiate Withdrawal, in the Opiate Agonists General Statement 28:08.08.
There are limited data to date on use of naloxone in pregnant women. Naloxone should be used during pregnancy only when clearly needed. Reproduction studies in mice and rats using naloxone hydrochloride dosages of 4 and 8 times, respectively, a human dosage of 10 mg daily in a 50-kg individual demonstrated no embryotoxic or teratogenic effects.
Furthermore, no adverse effects were reported in the offspring of rats receiving naloxone hydrochloride subcutaneously at dosages of 2 or 10 mg/kg (up to 12 times a human dosage of 8 mg daily) from gestation day 15 to postnatal day 21. No embryotoxic or teratogenic effects were observed in mice and rats during the period of organogenesis with the 8 mg/0.1 mL nasal spray at doses 3 and 6 times a human dose of 16 mg.
The risk-benefit ratio must be considered before naloxone is administered to a pregnant woman who is known or suspected to be dependent on opioids, since maternal dependence may often be accompanied by fetal dependence. Naloxone crosses the placenta and may precipitate withdrawal symptoms in both the fetus and the pregnant woman. Use of naloxone in opioid-dependent pregnant women should be accompanied by monitoring for fetal distress.
It is not known if naloxone affects the duration of labor and/or delivery. However, published reports indicate that administration of naloxone during labor did not adversely affect maternal or neonatal status. Carefully monitor patients with mild to moderate hypertension who receive naloxone during labor, as severe hypertension may occur.
Since it is not known if pentazocine is distributed into milk, the drug should be used with caution in nursing women. It is not known whether naloxone is distributed into milk or has any effect on the breast-fed infant or on milk production; use naloxone with caution in nursing women. The drug does not affect prolactin or oxytocin concentrations in nursing women, and oral bioavailability of naloxone is minimal.
Clinical studies of naloxone did not include sufficient numbers of patients 65 years of age and older to determine whether geriatric patients respond differently than younger patients. While other clinical experience has not revealed age-related differences in response, drug dosage generally should be titrated carefully in geriatric patients, usually initiating therapy at the low end of the dosage range. The greater frequency of decreased hepatic, renal, and/or cardiac function and of concomitant disease and drug therapy observed in the elderly also should be considered.
The following prioritized warning is available for PENTAZOCINE-NALOXONE HCL (pentazocine hcl/naloxone hcl):
WARNING: Pentazocine has a risk for abuse and addiction, which can lead to overdose and death. Pentazocine may also cause severe, possibly fatal, breathing problems. To lower your risk, your doctor should have you take the smallest dose of pentazocine that works, and take it for the shortest possible time.
See also How to Use section for more information about addiction. Ask your doctor or pharmacist if you should have other forms of naloxone available to treat opioid overdose. Teach your family or household members about the signs of an opioid overdose and how to treat it.
The risk for severe breathing problems is higher when you start this medication and after a dose increase, or if you take the wrong dose/strength. Taking this medication with alcohol or other drugs that can cause drowsiness or breathing problems may cause very serious side effects, including death. Be sure you know how to take this medication and what other drugs you should avoid taking with it.
See also Drug Interactions section. Get medical help right away if any of these very serious side effects occur: slow/shallow breathing, unusual lightheadedness, severe drowsiness/dizziness, difficulty waking up. This medication should only be taken by mouth.
Do not try to dissolve and inject the tablets. Injecting this product, alone or with other substances, may cause serious, possibly fatal, side effects. Keep this medicine in a safe place to prevent theft, misuse, or abuse.
If someone accidentally swallows this drug, get medical help right away. Before using this medication, women of childbearing age should talk with their doctor(s) about the risks and benefits. Tell your doctor if you are pregnant or if you plan to become pregnant.
During pregnancy, this medication should be used only when clearly needed. It may slightly increase the risk of birth defects if used during the first two months of pregnancy. Also, using it for a long time or in high doses near the expected delivery date may harm the unborn baby.
To lessen the risk, take the smallest effective dose for the shortest possible time. Babies born to mothers who use this drug for a long time may develop severe (possibly fatal) withdrawal symptoms. Tell the doctor right away if you notice any symptoms in your newborn baby such as crying that doesn't stop, slow/shallow breathing, irritability, shaking, vomiting, diarrhea, poor feeding, or difficulty gaining weight.
WARNING: Pentazocine has a risk for abuse and addiction, which can lead to overdose and death. Pentazocine may also cause severe, possibly fatal, breathing problems. To lower your risk, your doctor should have you take the smallest dose of pentazocine that works, and take it for the shortest possible time.
See also How to Use section for more information about addiction. Ask your doctor or pharmacist if you should have other forms of naloxone available to treat opioid overdose. Teach your family or household members about the signs of an opioid overdose and how to treat it.
The risk for severe breathing problems is higher when you start this medication and after a dose increase, or if you take the wrong dose/strength. Taking this medication with alcohol or other drugs that can cause drowsiness or breathing problems may cause very serious side effects, including death. Be sure you know how to take this medication and what other drugs you should avoid taking with it.
See also Drug Interactions section. Get medical help right away if any of these very serious side effects occur: slow/shallow breathing, unusual lightheadedness, severe drowsiness/dizziness, difficulty waking up. This medication should only be taken by mouth.
Do not try to dissolve and inject the tablets. Injecting this product, alone or with other substances, may cause serious, possibly fatal, side effects. Keep this medicine in a safe place to prevent theft, misuse, or abuse.
If someone accidentally swallows this drug, get medical help right away. Before using this medication, women of childbearing age should talk with their doctor(s) about the risks and benefits. Tell your doctor if you are pregnant or if you plan to become pregnant.
During pregnancy, this medication should be used only when clearly needed. It may slightly increase the risk of birth defects if used during the first two months of pregnancy. Also, using it for a long time or in high doses near the expected delivery date may harm the unborn baby.
To lessen the risk, take the smallest effective dose for the shortest possible time. Babies born to mothers who use this drug for a long time may develop severe (possibly fatal) withdrawal symptoms. Tell the doctor right away if you notice any symptoms in your newborn baby such as crying that doesn't stop, slow/shallow breathing, irritability, shaking, vomiting, diarrhea, poor feeding, or difficulty gaining weight.
The following icd codes are available for PENTAZOCINE-NALOXONE HCL (pentazocine hcl/naloxone hcl)'s list of indications:
Pain | |
G43 | Migraine |
G43.0 | Migraine without aura |
G43.00 | Migraine without aura, not intractable |
G43.001 | Migraine without aura, not intractable, with status migrainosus |
G43.009 | Migraine without aura, not intractable, without status migrainosus |
G43.01 | Migraine without aura, intractable |
G43.011 | Migraine without aura, intractable, with status migrainosus |
G43.019 | Migraine without aura, intractable, without status migrainosus |
G43.1 | Migraine with aura |
G43.10 | Migraine with aura, not intractable |
G43.101 | Migraine with aura, not intractable, with status migrainosus |
G43.109 | Migraine with aura, not intractable, without status migrainosus |
G43.11 | Migraine with aura, intractable |
G43.111 | Migraine with aura, intractable, with status migrainosus |
G43.119 | Migraine with aura, intractable, without status migrainosus |
G43.4 | Hemiplegic migraine |
G43.40 | Hemiplegic migraine, not intractable |
G43.401 | Hemiplegic migraine, not intractable, with status migrainosus |
G43.409 | Hemiplegic migraine, not intractable, without status migrainosus |
G43.41 | Hemiplegic migraine, intractable |
G43.411 | Hemiplegic migraine, intractable, with status migrainosus |
G43.419 | Hemiplegic migraine, intractable, without status migrainosus |
G43.5 | Persistent migraine aura without cerebral infarction |
G43.50 | Persistent migraine aura without cerebral infarction, not intractable |
G43.501 | Persistent migraine aura without cerebral infarction, not intractable, with status migrainosus |
G43.509 | Persistent migraine aura without cerebral infarction, not intractable, without status migrainosus |
G43.51 | Persistent migraine aura without cerebral infarction, intractable |
G43.511 | Persistent migraine aura without cerebral infarction, intractable, with status migrainosus |
G43.519 | Persistent migraine aura without cerebral infarction, intractable, without status migrainosus |
G43.6 | Persistent migraine aura with cerebral infarction |
G43.60 | Persistent migraine aura with cerebral infarction, not intractable |
G43.601 | Persistent migraine aura with cerebral infarction, not intractable, with status migrainosus |
G43.609 | Persistent migraine aura with cerebral infarction, not intractable, without status migrainosus |
G43.61 | Persistent migraine aura with cerebral infarction, intractable |
G43.611 | Persistent migraine aura with cerebral infarction, intractable, with status migrainosus |
G43.619 | Persistent migraine aura with cerebral infarction, intractable, without status migrainosus |
G43.7 | Chronic migraine without aura |
G43.70 | Chronic migraine without aura, not intractable |
G43.701 | Chronic migraine without aura, not intractable, with status migrainosus |
G43.709 | Chronic migraine without aura, not intractable, without status migrainosus |
G43.71 | Chronic migraine without aura, intractable |
G43.711 | Chronic migraine without aura, intractable, with status migrainosus |
G43.719 | Chronic migraine without aura, intractable, without status migrainosus |
G43.8 | Other migraine |
G43.80 | Other migraine, not intractable |
G43.801 | Other migraine, not intractable, with status migrainosus |
G43.809 | Other migraine, not intractable, without status migrainosus |
G43.81 | Other migraine, intractable |
G43.811 | Other migraine, intractable, with status migrainosus |
G43.819 | Other migraine, intractable, without status migrainosus |
G43.82 | Menstrual migraine, not intractable |
G43.821 | Menstrual migraine, not intractable, with status migrainosus |
G43.829 | Menstrual migraine, not intractable, without status migrainosus |
G43.83 | Menstrual migraine, intractable |
G43.831 | Menstrual migraine, intractable, with status migrainosus |
G43.839 | Menstrual migraine, intractable, without status migrainosus |
G43.9 | Migraine, unspecified |
G43.90 | Migraine, unspecified, not intractable |
G43.901 | Migraine, unspecified, not intractable, with status migrainosus |
G43.909 | Migraine, unspecified, not intractable, without status migrainosus |
G43.91 | Migraine, unspecified, intractable |
G43.911 | Migraine, unspecified, intractable, with status migrainosus |
G43.919 | Migraine, unspecified, intractable, without status migrainosus |
G43.B | Ophthalmoplegic migraine |
G43.B0 | Ophthalmoplegic migraine, not intractable |
G43.B1 | Ophthalmoplegic migraine, intractable |
G43.C | Periodic headache syndromes in child or adult |
G43.C0 | Periodic headache syndromes in child or adult, not intractable |
G43.C1 | Periodic headache syndromes in child or adult, intractable |
G43.D | Abdominal migraine |
G43.D0 | Abdominal migraine, not intractable |
G43.D1 | Abdominal migraine, intractable |
G43.E | Chronic migraine with aura |
G43.E0 | Chronic migraine with aura, not intractable |
G43.E01 | Chronic migraine with aura, not intractable, with status migrainosus |
G43.E09 | Chronic migraine with aura, not intractable, without status migrainosus |
G43.E1 | Chronic migraine with aura, intractable |
G43.E11 | Chronic migraine with aura, intractable, with status migrainosus |
G43.E19 | Chronic migraine with aura, intractable, without status migrainosus |
G44 | Other headache syndromes |
G44.00 | Cluster headache syndrome, unspecified |
G44.001 | Cluster headache syndrome, unspecified, intractable |
G44.009 | Cluster headache syndrome, unspecified, not intractable |
G44.01 | Episodic cluster headache |
G44.011 | Episodic cluster headache, intractable |
G44.019 | Episodic cluster headache, not intractable |
G44.02 | Chronic cluster headache |
G44.021 | Chronic cluster headache, intractable |
G44.029 | Chronic cluster headache, not intractable |
G44.03 | Episodic paroxysmal hemicrania |
G44.031 | Episodic paroxysmal hemicrania, intractable |
G44.039 | Episodic paroxysmal hemicrania, not intractable |
G44.04 | Chronic paroxysmal hemicrania |
G44.041 | Chronic paroxysmal hemicrania, intractable |
G44.049 | Chronic paroxysmal hemicrania, not intractable |
G44.05 | Short lasting unilateral neuralgiform headache with conjunctival injection and tearing (SUNCt) |
G44.051 | Short lasting unilateral neuralgiform headache with conjunctival injection and tearing (SUNCt), intractable |
G44.059 | Short lasting unilateral neuralgiform headache with conjunctival injection and tearing (SUNCt), not intractable |
G44.1 | Vascular headache, not elsewhere classified |
G44.2 | Tension-type headache |
G44.20 | Tension-type headache, unspecified |
G44.201 | Tension-type headache, unspecified, intractable |
G44.209 | Tension-type headache, unspecified, not intractable |
G44.21 | Episodic tension-type headache |
G44.211 | Episodic tension-type headache, intractable |
G44.219 | Episodic tension-type headache, not intractable |
G44.22 | Chronic tension-type headache |
G44.221 | Chronic tension-type headache, intractable |
G44.229 | Chronic tension-type headache, not intractable |
G44.3 | Post-traumatic headache |
G44.30 | Post-traumatic headache, unspecified |
G44.301 | Post-traumatic headache, unspecified, intractable |
G44.309 | Post-traumatic headache, unspecified, not intractable |
G44.31 | Acute post-traumatic headache |
G44.311 | Acute post-traumatic headache, intractable |
G44.319 | Acute post-traumatic headache, not intractable |
G44.32 | Chronic post-traumatic headache |
G44.321 | Chronic post-traumatic headache, intractable |
G44.329 | Chronic post-traumatic headache, not intractable |
G44.4 | Drug-induced headache, not elsewhere classified |
G44.40 | Drug-induced headache, not elsewhere classified, not intractable |
G44.41 | Drug-induced headache, not elsewhere classified, intractable |
G44.5 | Complicated headache syndromes |
G44.51 | Hemicrania continua |
G44.52 | New daily persistent headache (NDPh) |
G44.53 | Primary thunderclap headache |
G44.59 | Other complicated headache syndrome |
G44.8 | Other specified headache syndromes |
G44.81 | Hypnic headache |
G44.82 | Headache associated with sexual activity |
G44.83 | Primary cough headache |
G44.84 | Primary exertional headache |
G44.85 | Primary stabbing headache |
G44.86 | Cervicogenic headache |
G44.89 | Other headache syndrome |
G50.1 | Atypical facial pain |
G89 | Pain, not elsewhere classified |
G89.0 | Central pain syndrome |
G89.1 | Acute pain, not elsewhere classified |
G89.11 | Acute pain due to trauma |
G89.12 | Acute post-thoracotomy pain |
G89.18 | Other acute postprocedural pain |
G89.2 | Chronic pain, not elsewhere classified |
G89.21 | Chronic pain due to trauma |
G89.22 | Chronic post-thoracotomy pain |
G89.28 | Other chronic postprocedural pain |
G89.29 | Other chronic pain |
G89.3 | Neoplasm related pain (acute) (chronic) |
G89.4 | Chronic pain syndrome |
G90.5 | Complex regional pain syndrome I (CRPS i) |
G90.50 | Complex regional pain syndrome i, unspecified |
G90.51 | Complex regional pain syndrome I of upper limb |
G90.511 | Complex regional pain syndrome I of right upper limb |
G90.512 | Complex regional pain syndrome I of left upper limb |
G90.513 | Complex regional pain syndrome I of upper limb, bilateral |
G90.519 | Complex regional pain syndrome I of unspecified upper limb |
G90.52 | Complex regional pain syndrome I of lower limb |
G90.521 | Complex regional pain syndrome I of right lower limb |
G90.522 | Complex regional pain syndrome I of left lower limb |
G90.523 | Complex regional pain syndrome I of lower limb, bilateral |
G90.529 | Complex regional pain syndrome I of unspecified lower limb |
G90.59 | Complex regional pain syndrome I of other specified site |
H57.1 | Ocular pain |
H57.10 | Ocular pain, unspecified eye |
H57.11 | Ocular pain, right eye |
H57.12 | Ocular pain, left eye |
H57.13 | Ocular pain, bilateral |
H92 | Otalgia and effusion of ear |
H92.0 | Otalgia |
H92.01 | Otalgia, right ear |
H92.02 | Otalgia, left ear |
H92.03 | Otalgia, bilateral |
H92.09 | Otalgia, unspecified ear |
K14.6 | Glossodynia |
M25.5 | Pain in joint |
M25.50 | Pain in unspecified joint |
M25.51 | Pain in shoulder |
M25.511 | Pain in right shoulder |
M25.512 | Pain in left shoulder |
M25.519 | Pain in unspecified shoulder |
M25.52 | Pain in elbow |
M25.521 | Pain in right elbow |
M25.522 | Pain in left elbow |
M25.529 | Pain in unspecified elbow |
M25.53 | Pain in wrist |
M25.531 | Pain in right wrist |
M25.532 | Pain in left wrist |
M25.539 | Pain in unspecified wrist |
M25.54 | Pain in joints of hand |
M25.541 | Pain in joints of right hand |
M25.542 | Pain in joints of left hand |
M25.549 | Pain in joints of unspecified hand |
M25.55 | Pain in hip |
M25.551 | Pain in right hip |
M25.552 | Pain in left hip |
M25.559 | Pain in unspecified hip |
M25.56 | Pain in knee |
M25.561 | Pain in right knee |
M25.562 | Pain in left knee |
M25.569 | Pain in unspecified knee |
M25.57 | Pain in ankle and joints of foot |
M25.571 | Pain in right ankle and joints of right foot |
M25.572 | Pain in left ankle and joints of left foot |
M25.579 | Pain in unspecified ankle and joints of unspecified foot |
M25.59 | Pain in other specified joint |
M26.62 | Arthralgia of temporomandibular joint |
M26.621 | Arthralgia of right temporomandibular joint |
M26.622 | Arthralgia of left temporomandibular joint |
M26.623 | Arthralgia of bilateral temporomandibular joint |
M26.629 | Arthralgia of temporomandibular joint, unspecified side |
M54 | Dorsalgia |
M54.2 | Cervicalgia |
M54.4 | Lumbago with sciatica |
M54.40 | Lumbago with sciatica, unspecified side |
M54.41 | Lumbago with sciatica, right side |
M54.42 | Lumbago with sciatica, left side |
M54.5 | Low back pain |
M54.50 | Low back pain, unspecified |
M54.51 | Vertebrogenic low back pain |
M54.59 | Other low back pain |
M54.6 | Pain in thoracic spine |
M54.8 | Other dorsalgia |
M54.89 | Other dorsalgia |
M54.9 | Dorsalgia, unspecified |
M77.4 | Metatarsalgia |
M77.40 | Metatarsalgia, unspecified foot |
M77.41 | Metatarsalgia, right foot |
M77.42 | Metatarsalgia, left foot |
M79.1 | Myalgia |
M79.10 | Myalgia, unspecified site |
M79.11 | Myalgia of mastication muscle |
M79.12 | Myalgia of auxiliary muscles, head and neck |
M79.18 | Myalgia, other site |
M79.6 | Pain in limb, hand, foot, fingers and toes |
M79.60 | Pain in limb, unspecified |
M79.601 | Pain in right arm |
M79.602 | Pain in left arm |
M79.603 | Pain in arm, unspecified |
M79.604 | Pain in right leg |
M79.605 | Pain in left leg |
M79.606 | Pain in leg, unspecified |
M79.609 | Pain in unspecified limb |
M79.62 | Pain in upper arm |
M79.621 | Pain in right upper arm |
M79.622 | Pain in left upper arm |
M79.629 | Pain in unspecified upper arm |
M79.63 | Pain in forearm |
M79.631 | Pain in right forearm |
M79.632 | Pain in left forearm |
M79.639 | Pain in unspecified forearm |
M79.64 | Pain in hand and fingers |
M79.641 | Pain in right hand |
M79.642 | Pain in left hand |
M79.643 | Pain in unspecified hand |
M79.644 | Pain in right finger(s) |
M79.645 | Pain in left finger(s) |
M79.646 | Pain in unspecified finger(s) |
M79.65 | Pain in thigh |
M79.651 | Pain in right thigh |
M79.652 | Pain in left thigh |
M79.659 | Pain in unspecified thigh |
M79.66 | Pain in lower leg |
M79.661 | Pain in right lower leg |
M79.662 | Pain in left lower leg |
M79.669 | Pain in unspecified lower leg |
M79.67 | Pain in foot and toes |
M79.671 | Pain in right foot |
M79.672 | Pain in left foot |
M79.673 | Pain in unspecified foot |
M79.674 | Pain in right toe(s) |
M79.675 | Pain in left toe(s) |
M79.676 | Pain in unspecified toe(s) |
N23 | Unspecified renal colic |
N64.4 | Mastodynia |
N94 | Pain and other conditions associated with female genital organs and menstrual cycle |
N94.0 | Mittelschmerz |
N94.3 | Premenstrual tension syndrome |
N94.4 | Primary dysmenorrhea |
N94.5 | Secondary dysmenorrhea |
N94.6 | Dysmenorrhea, unspecified |
R07 | Pain in throat and chest |
R07.0 | Pain in throat |
R07.1 | Chest pain on breathing |
R07.2 | Precordial pain |
R07.81 | Pleurodynia |
R07.82 | Intercostal pain |
R07.89 | Other chest pain |
R07.9 | Chest pain, unspecified |
R10 | Abdominal and pelvic pain |
R10.0 | Acute abdomen |
R10.1 | Pain localized to upper abdomen |
R10.10 | Upper abdominal pain, unspecified |
R10.11 | Right upper quadrant pain |
R10.12 | Left upper quadrant pain |
R10.2 | Pelvic and perineal pain |
R10.3 | Pain localized to other parts of lower abdomen |
R10.30 | Lower abdominal pain, unspecified |
R10.31 | Right lower quadrant pain |
R10.32 | Left lower quadrant pain |
R10.33 | Periumbilical pain |
R10.8 | Other abdominal pain |
R10.83 | Colic |
R10.84 | Generalized abdominal pain |
R10.9 | Unspecified abdominal pain |
R51 | Headache |
R51.0 | Headache with orthostatic component, not elsewhere classified |
R51.9 | Headache, unspecified |
R52 | Pain, unspecified |
R68.84 | Jaw pain |
T82.84 | Pain due to cardiac and vascular prosthetic devices, implants and grafts |
T82.847 | Pain due to cardiac prosthetic devices, implants and grafts |
T82.847A | Pain due to cardiac prosthetic devices, implants and grafts, initial encounter |
T82.847D | Pain due to cardiac prosthetic devices, implants and grafts, subsequent encounter |
T82.848 | Pain due to vascular prosthetic devices, implants and grafts |
T82.848A | Pain due to vascular prosthetic devices, implants and grafts, initial encounter |
T82.848D | Pain due to vascular prosthetic devices, implants and grafts, subsequent encounter |
T83.84 | Pain due to genitourinary prosthetic devices, implants and grafts |
T83.84xA | Pain due to genitourinary prosthetic devices, implants and grafts, initial encounter |
T83.84xD | Pain due to genitourinary prosthetic devices, implants and grafts, subsequent encounter |
T84.84 | Pain due to internal orthopedic prosthetic devices, implants and grafts |
T84.84xA | Pain due to internal orthopedic prosthetic devices, implants and grafts, initial encounter |
T84.84xD | Pain due to internal orthopedic prosthetic devices, implants and grafts, subsequent encounter |
T85.84 | Pain due to internal prosthetic devices, implants and grafts, not elsewhere classified |
T85.840 | Pain due to nervous system prosthetic devices, implants and grafts |
T85.840A | Pain due to nervous system prosthetic devices, implants and grafts, initial encounter |
T85.840D | Pain due to nervous system prosthetic devices, implants and grafts, subsequent encounter |
T85.848 | Pain due to other internal prosthetic devices, implants and grafts |
T85.848A | Pain due to other internal prosthetic devices, implants and grafts, initial encounter |
T85.848D | Pain due to other internal prosthetic devices, implants and grafts, subsequent encounter |
Formulary Reference Tool