Please wait while the formulary information is being retrieved.
Drug overview for SCEMBLIX (asciminib hydrochloride):
Generic name: asciminib hydrochloride (as-KIM-i-nib)
Drug class: Antineoplastic - Protein-Tyrosine Kinase Inhibitors
Therapeutic class: Antineoplastics
Asciminib hydrochloride, a kinase inhibitor, is an antineoplastic agent.
No enhanced Uses information available for this drug.
Generic name: asciminib hydrochloride (as-KIM-i-nib)
Drug class: Antineoplastic - Protein-Tyrosine Kinase Inhibitors
Therapeutic class: Antineoplastics
Asciminib hydrochloride, a kinase inhibitor, is an antineoplastic agent.
No enhanced Uses information available for this drug.
DRUG IMAGES
- No Image Available
The following indications for SCEMBLIX (asciminib hydrochloride) have been approved by the FDA:
Indications:
Chronic phase Philadelphia chromosome positive chronic myelocytic leukemia with T315I mutation
Chronic phase Philadelphia chromosome positive chronic myelocytic leukemia
Professional Synonyms:
Chronic phase Ph(+) chronic myeloid leukemia with T315I mutation
Chronic phase Ph(+) CML with T315I mutation
Chronic phase Ph(+) CML
Chronic phase Ph1(+) CML with T315I mutation
Chronic phase Ph1(+) CML
Chronic phase Philadelphia chromosome positive chronic myeloid leukemia
Chronic phase, BCR/ABL positive CML with T315I mutation
Chronic phase, BCR/ABL positive CML
Ph(+) CML, chronic phase with T315I mutation
Ph(+) CML, chronic phase
Ph1(+) CML, chronic phase with T315I mutation
Ph1(+) CML, chronic phase
Indications:
Chronic phase Philadelphia chromosome positive chronic myelocytic leukemia with T315I mutation
Chronic phase Philadelphia chromosome positive chronic myelocytic leukemia
Professional Synonyms:
Chronic phase Ph(+) chronic myeloid leukemia with T315I mutation
Chronic phase Ph(+) CML with T315I mutation
Chronic phase Ph(+) CML
Chronic phase Ph1(+) CML with T315I mutation
Chronic phase Ph1(+) CML
Chronic phase Philadelphia chromosome positive chronic myeloid leukemia
Chronic phase, BCR/ABL positive CML with T315I mutation
Chronic phase, BCR/ABL positive CML
Ph(+) CML, chronic phase with T315I mutation
Ph(+) CML, chronic phase
Ph1(+) CML, chronic phase with T315I mutation
Ph1(+) CML, chronic phase
The following dosing information is available for SCEMBLIX (asciminib hydrochloride):
Dosage of asciminib hydrochloride is expressed in terms of asciminib.
If adverse reactions occur during asciminib therapy, dosage reduction, interruption, and/or permanent discontinuance of the drug may be necessary. For recommended dosage reductions for adverse events, see Table 1, and for recommended interventions for specific adverse events see Table 2.
Table 1: Recommended Dosage Reductions for Asciminib for Adverse Reactions
Dosage Reduction Dosage for Chronic Phase Dosage for Chronic Phase CML in Patients CML in Patients with Previously Treated with T315I mutation >=2 TKIs First 40 mg once daily OR 20 160 mg twice daily mg twice daily Subsequent Permanently discontinue Permanently discontinue asciminib in patients asciminib in patients unable to tolerate 40 mg unable to tolerate 160 once daily OR 20 mg mg twice daily twice daily
Table 2: Recommended Asciminib Dosage Modifications for the Management of Adverse Reactions
Adverse Reaction Dosage Modification Thrombocytopenia and/or neutropenia Absolute neutrophil count (ANC) Withhold drug until ANC resolves to <1,000/mm3 and/or platelet count >=1,000/mm3 and/or platelet count <50,000/mm3 >=50,000/mm3 If resolved within 2 weeks, resume asciminib at starting dosage If resolved after more than 2 weeks, resume asciminib at reduced dosage For severe, recurrent thrombocytopenia and/or neutropenia, withhold asciminib until ANC recovers to >=1,000/mm3 and platelet count >=50,000/mm3, then resume at reduced dosage Asymptomatic amylase and/or lipase elevation Elevation>2 x upper limit of normal Withhold drug until resolves to <1.5 (ULN) x ULN If resolved, resume asciminib at a reduced dosage; if events reoccur at the reduced dosage, permanently discontinue therapy If not resolved, permanently discontinue asciminib; perform diagnostic workup to exclude pancreatitis Non-hematologic adverse reactions Grade 3 or higher Withhold drug until recovery to grade <=1 If resolved, resume asciminib at reduced dosage If not resolved, permanently discontinue asciminib
Based on Common Terminology Criteria for Adverse Events (CTCAE) v 4.03.
If adverse reactions occur during asciminib therapy, dosage reduction, interruption, and/or permanent discontinuance of the drug may be necessary. For recommended dosage reductions for adverse events, see Table 1, and for recommended interventions for specific adverse events see Table 2.
Table 1: Recommended Dosage Reductions for Asciminib for Adverse Reactions
Dosage Reduction Dosage for Chronic Phase Dosage for Chronic Phase CML in Patients CML in Patients with Previously Treated with T315I mutation >=2 TKIs First 40 mg once daily OR 20 160 mg twice daily mg twice daily Subsequent Permanently discontinue Permanently discontinue asciminib in patients asciminib in patients unable to tolerate 40 mg unable to tolerate 160 once daily OR 20 mg mg twice daily twice daily
Table 2: Recommended Asciminib Dosage Modifications for the Management of Adverse Reactions
Adverse Reaction Dosage Modification Thrombocytopenia and/or neutropenia Absolute neutrophil count (ANC) Withhold drug until ANC resolves to <1,000/mm3 and/or platelet count >=1,000/mm3 and/or platelet count <50,000/mm3 >=50,000/mm3 If resolved within 2 weeks, resume asciminib at starting dosage If resolved after more than 2 weeks, resume asciminib at reduced dosage For severe, recurrent thrombocytopenia and/or neutropenia, withhold asciminib until ANC recovers to >=1,000/mm3 and platelet count >=50,000/mm3, then resume at reduced dosage Asymptomatic amylase and/or lipase elevation Elevation>2 x upper limit of normal Withhold drug until resolves to <1.5 (ULN) x ULN If resolved, resume asciminib at a reduced dosage; if events reoccur at the reduced dosage, permanently discontinue therapy If not resolved, permanently discontinue asciminib; perform diagnostic workup to exclude pancreatitis Non-hematologic adverse reactions Grade 3 or higher Withhold drug until recovery to grade <=1 If resolved, resume asciminib at reduced dosage If not resolved, permanently discontinue asciminib
Based on Common Terminology Criteria for Adverse Events (CTCAE) v 4.03.
Administer asciminib hydrochloride orally. Swallow tablets whole. Do not break, crush, or chew the tablets.
Take asciminib without food. Avoid food for at least 2 hours before and 1 hour after taking asciminib. Missed dose in patients taking once daily regimens: If a dose of asciminib is missed by more than 12 hours, skip the dose and take the next dose as scheduled.
Missed dose in patients taking twice daily regimens: If a dose is missed by more than 6 hours, skip the dose and take the next dose as scheduled. Store asciminib tablets between 20-25degreesC (excursions permitted between 15-30degreesC). Store in original container to protect the drug from moisture.
Take asciminib without food. Avoid food for at least 2 hours before and 1 hour after taking asciminib. Missed dose in patients taking once daily regimens: If a dose of asciminib is missed by more than 12 hours, skip the dose and take the next dose as scheduled.
Missed dose in patients taking twice daily regimens: If a dose is missed by more than 6 hours, skip the dose and take the next dose as scheduled. Store asciminib tablets between 20-25degreesC (excursions permitted between 15-30degreesC). Store in original container to protect the drug from moisture.
DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
---|---|---|
SCEMBLIX 20 MG TABLET | Maintenance | Adults take 2 tablets (40 mg) by oral route once daily |
SCEMBLIX 40 MG TABLET | Maintenance | Adults take 2 tablets (80 mg) by oral route once daily |
SCEMBLIX 100 MG TABLET | Maintenance | Adults take 2 tablets (200 mg) by oral route every 12 hours |
No generic dosing information available.
The following drug interaction information is available for SCEMBLIX (asciminib hydrochloride):
There are 8 contraindications.
These drug combinations generally should not be dispensed or administered to the same patient. A manufacturer label warning that indicates the contraindication warrants inclusion of a drug combination in this category, regardless of clinical evidence or lack of clinical evidence to support the contraindication.
Drug Interaction | Drug Names |
---|---|
Efalizumab; Natalizumab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Natalizumab,(1-3) efalizumab,(4) immunosuppressives, and immunomodulators all suppress the immune system. CLINICAL EFFECTS: Concurrent use of natalizumab(1-3) or efalizumab(4) with immunosuppressives or immunomodulators may result in an increased risk of infections, including progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV). PREDISPOSING FACTORS: Previous JCV infection, longer duration of natalizumab treatment - especially if greater than 2 years, and prior or concomitant treatment with immunosuppressant medication are all independent risk factors which increase the risk for PML.(1,5) The FDA has estimated PML incidence stratified by risk factors: If anti-JCV antibody positive, no prior immunosuppressant use and natalizumab treatment less than 25 months, incidence <1/1,000. If anti-JCV antibody positive, history of prior immunosuppressant use and natalizumab treatment less than 25 months, incidence 2/1,000 If anti-JCV antibody positive, no prior immunosuppressant use and natalizumab treatment 25-48 months, incidence 4/1,000 If anti-JCV antibody positive, history of prior immunosuppressant use and natalizumab treatment 25-48 months, incidence 11/1,000. PATIENT MANAGEMENT: The US manufacturer of natalizumab states patients with Crohn's disease should not receive concurrent immunosuppressants, with the exception of limited overlap of corticosteroids, due to the increased risk for PML. For new natalizumab patients currently receiving chronic oral corticosteroids for Crohn's Disease, begin corticosteroid taper when therapeutic response to natalizumab has occurred. If corticosteroids cannot be discontinued within six months of starting natalizumab, discontinue natalizumab.(3) The US manufacturer of natalizumab states that natalizumab should not ordinarily be used in multiple sclerosis patients receiving immunosuppressants or immunomodulators due to the increased risk for PML. Immunosuppressives include, but are not limited to azathioprine, cyclophosphamide, cyclosporine, mercaptopurine, methotrexate, mitoxantrone, mycophenolate, and corticosteroids.(3,6) The UK manufacturer of natalizumab states that concurrent use with immunosuppressives or antineoplastic agents is contraindicated.(1) The Canadian manufacturer of natalizumab states that natalizumab should not be used with immunosuppressive or immunomodulatory agents.(2) The US manufacturer of certolizumab states that concurrent therapy with natalizumab is not recommended.(7) DISCUSSION: Progressive multifocal leukoencephalopathy has been reported in patients receiving concurrent natalizumab were recently or concomitantly taking immunomodulators or immunosuppressants.(1-5,8,9) In a retrospective cohort study of multiple sclerosis patients newly initiated on a disease-modifying therapy, use of high-efficacy agents (alemtuzumab, natalizumab, or ocrelizumab) resulted in the same risk of overall infections as moderate-efficacy agents, but there was an elevated risk of serious infections (adjusted hazard ratio [aHR] = 1.24, 95% confidence interval (CI) = 1.06-1.44) and UTIs (aHR = 1.21, 95% CI = 1.14-1.30).(10) |
TYSABRI |
Live Vaccines; Live BCG/Selected Immunosuppressive Agents SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: A variety of disease modifying agents suppress the immune system. Immunocompromised patients may be at increased risk for uninhibited replication after administration of live, attenuated vaccines or intravesicular BCG. Immune response to vaccines may be decreased during periods of immunocompromise.(1) CLINICAL EFFECTS: The expected serum antibody response may not be obtained and/or the vaccine may result in illness.(1) After instillation of intravesicular BCG, immunosuppression may interfere with local immune response, or increase the severity of mycobacterial infection following inadvertent systemic exposure.(2) PREDISPOSING FACTORS: Immunosuppressive diseases (e.g. hematologic malignancies, HIV disease), treatments (e.g. radiation) and drugs may all increase the magnitude of immunodeficiency. PATIENT MANAGEMENT: The Centers for Disease Control(CDC) Advisory Committee on Immunization Practices (ACIP) states that live-virus and live, attenuated vaccines should not be administered to patients who are immunocompromised. The magnitude of immunocompromise and associated risks should be determined by a physician.(1) For patients scheduled to receive chemotherapy, vaccination should ideally precede the initiation of chemotherapy by 14 days. Patients vaccinated while on immunosuppressive therapy or in the 2 weeks prior to starting therapy should be considered unimmunized and should be revaccinated at least 3 months after discontinuation of therapy.(1) Patients who receive anti-B cell therapies should not receive live vaccines for at least 6 months after such therapies due to a prolonged duration of immunosuppression. An exception is the Zoster vaccine, which can be given at least 1 month after receipt of anti-B cell therapies.(1) The US manufacturer of abatacept states live vaccines should not be given during or for up to 3 months after discontinuation of abatacept.(2) The US manufacturer of live BCG for intravesicular treatment of bladder cancer states use is contraindicated in immunosuppressed patients.(3) The US manufacturer of daclizumab states live vaccines are not recommended during and for up to 4 months after discontinuation of treatment.(4) The US manufacturer of guselkumab states that live vaccines should be avoided during treatment with guselkumab.(5) The US manufacturer of inebilizumab-cdon states that live vaccines are not recommended during treatment and after discontinuation until B-cell repletion. Administer all live vaccinations at least 4 weeks prior to initiation of inebilizumab-cdon.(6) The US manufacturer of ocrelizumab states that live vaccines are not recommended during treatment and until B-cell repletion occurs after discontinuation of therapy. Administer all live vaccines at least 4 weeks prior to initiation of ocrelizumab.(7) The US manufacturer of ozanimod states that live vaccines should be avoided during and for up to 3 months after discontinuation of ozanimod.(8) The US manufacturer of siponimod states that live vaccines are not recommended during treatment and for up to 4 weeks after discontinuation of treatment.(9) The US manufacturer of ustekinumab states BCG vaccines should not be given in the year prior to, during, or the year after ustekinumab therapy.(10) The US manufacturer of satralizumab-mwge states that live vaccines are not recommended during treatment and should be administered at least four weeks prior to initiation of satralizumab-mwge.(11) The US manufacturer of ublituximab-xiiy states that live vaccines are not recommended during treatment and until B-cell recovery. Live vaccines should be administered at least 4 weeks prior to initiation of ublituximab-xiiy.(12) The US manufacturer of etrasimod states that live vaccines should be avoided during and for 5 weeks after treatment. Live vaccines should be administered at least 4 weeks prior to initiation of etrasimod.(13) The US manufacturer of emapalumab-lzsg states that live vaccines should not be administered to patients receiving emapalumab-lzsg and for at least 4 weeks after the last dose of emapalumab-lzsg. The safety of immunization with live vaccines during or following emapalumab-lzsg therapy has not been studied.(14) DISCUSSION: Killed or inactivated vaccines do not pose a danger to immunocompromised patients.(1) Patients with a history of leukemia who are in remission and have not received chemotherapy for at least 3 months are not considered to be immunocompromised.(1) |
ACAM2000 (NATIONAL STOCKPILE), ADENOVIRUS TYPE 4, ADENOVIRUS TYPE 4 AND TYPE 7, ADENOVIRUS TYPE 7, BCG (TICE STRAIN), BCG VACCINE (TICE STRAIN), DENGVAXIA, ERVEBO (NATIONAL STOCKPILE), FLUMIST TRIVALENT 2024-2025, IXCHIQ, M-M-R II VACCINE, PRIORIX, PROQUAD, ROTARIX, ROTATEQ, STAMARIL, VARIVAX VACCINE, VAXCHORA ACTIVE COMPONENT, VAXCHORA VACCINE, VIVOTIF, YF-VAX |
Talimogene laherparepvec/Selected Immunosuppressants SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Talimogene laherparepvec is a live, attenuated herpes simplex virus.(1) CLINICAL EFFECTS: Concurrent use of talimogene laherparepvec in patients receiving immunosuppressive therapy may cause a life-threatening disseminated herpetic infection.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Talimogene laherparepvec is contraindicated in immunosuppressed patients.(1) The magnitude of immunocompromise and associated risks due to immunosuppressant drugs should be determined by a physician. DISCUSSION: Concurrent use of talimogene laherparepvec in patients receiving immunosuppressive therapy may cause a life-threatening disseminated herpetic infection.(1) |
IMLYGIC |
Elbasvir-Grazoprevir/OATP1B1-3 Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Inhibitors of OATP1B1/3 may decrease the hepatocyte uptake and increase the plasma concentrations of elbasvir and grazoprevir.(1-3) CLINICAL EFFECTS: Concurrent use of an inhibitor of OATP1B1/3 may result in elevated levels of grazoprevir and an increased risk of ALT elevations.(1-3) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Concurrent use of elbasvir-grazoprevir and OATP1B1/3 inhibitors is contraindicated.(1-2,4) If concurrent use is deemed medically necessary, monitor the patient for toxicity and elevated AST levels. DISCUSSION: In a study in 10 subjects, atazanavir/ritonavir (300/100 mg daily) increased the maximum concentration (Cmax), area-under-curve (AUC), and minimum concentration (Cmin) of elbasvir (50 mg daily) by 4.15-fold, 4.76-fold, and 6.45-fold, respectively. There were no clinically significant effects on atazanavir levels.(1,2) In a study in 12 subjects, atazanavir/ritonavir (300/100 mg daily) increased the Cmax, AUC, and Cmin of grazoprevir (200 mg daily) by 6.24-fold, 10.58-fold, and 11.64-fold, respectively. There were no clinically significant effects on atazanavir levels.(1,2) In a study in 14 subjects, cyclosporine (400 mg single dose) increased the Cmax, AUC, and Cmin of elbasvir (50 mg daily) by 1.95-fold, 1.98-fold, and 2.21-fold, respectively. The Cmax, AUC, and Cmin of grazoprevir (200 mg daily) increased by 17-fold, 15.21-fold, and 3.39-fold, respectively. There were no clinically significant effects on cyclosporine levels.(1,2) In a study in 10 subjects, darunavir/ritonavir (600/100 mg twice daily) increased the Cmax, AUC, and Cmin of elbasvir (50 mg daily) by 1.67-fold, 1.66-fold, and 1.82-fold, respectively. There were no clinically significant effects on darunavir levels.(1,2) In a study in 13 subjects, darunavir/ritonavir (600/100 mg twice daily) increased the Cmax, AUC, and Cmin of grazoprevir (200 mg daily) by 5.27-fold, 7.50-fold, and 8.05-fold, respectively. There were no clinically significant effects on darunavir levels.(1,2) In a study in 10 subjects, lopinavir/ritonavir (400/100 mg twice daily) increased the Cmax, AUC, and Cmin of elbasvir (50 mg daily) by 2.87-fold, 3.71-fold, and 4.58-fold, respectively. There were no clinically significant effects on lopinavir levels.(1,2) In a study in 13 subjects, lopinavir/ritonavir (400/100 mg twice daily) increased the Cmax, AUC, and Cmin of grazoprevir (200 mg daily) by 7.31-fold, 12.86-fold, and 21.70-fold, respectively. There were no clinically significant effects on lopinavir levels.(1,2) In single dose studies, rifampin increased levels of both elbasvir and grazoprevir. In a study in 14 subjects, rifampin (600 mg single IV dose) increased the Cmax, AUC, and Cmin of a single dose of elbasvir (50 mg) by 41%, 22%, and 31%, respectively. In a study in 14 subjects, rifampin (600 mg single oral dose) increased the Cmax, AUC, and Cmin of a single dose of elbasvir (50 mg) by 29%, 17%, and 21%, respectively. In a study in 12 subjects, rifampin (600 mg single IV dose) increased the Cmax, AUC, and Cmin of a single dose of grazoprevir (200 mg) by 10.94-fold, 10.21-fold, and 1.77-fold, respectively. In a study in 12 subjects, rifampin (600 mg single oral dose) increased the Cmax, AUC, and Cmin of a single dose of grazoprevir (200 mg) by 6.52-fold, 8.35-fold, and 1.61-fold, respectively.(1) OATP1B1/3 inhibitors include asciminib, atazanavir, belumosudil, cyclosporine, darunavir, fostemsavir, letermovir, lopinavir, nirmatrelvir/ritonavir, paritaprevir, resmetirom, roxadustat, saquinavir, tipranavir, vadadustat, and voclosporin.(1-3) |
ZEPATIER |
Elagolix/Strong OATP1B1 Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Strong inhibitors of OATP1B1 may decrease the hepatic uptake of elagolix.(1,2) CLINICAL EFFECTS: Concurrent use of an inhibitor of OATP1B1 may result in elevated levels of and side effects from elagolix, including an increased risk of ALT elevations.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Concurrent use of elagolix and strong OATP1B1 inhibitors is contraindicated.(1) DISCUSSION: Strong OATP1B1 inhibitors linked to this monograph include asciminib, belumosudil, cyclosporine, encorafenib, gemfibrozil, letermovir, paritaprevir, resmetirom, roxadustat, and vadadustat.(1,2) |
ORIAHNN, ORILISSA |
Lemborexant (Greater Than 5 mg)/Weak CYP3A4 Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Inhibitors of CYP3A4 may inhibit the metabolism of lemborexant.(1) CLINICAL EFFECTS: Concurrent use of an inhibitor of CYP3A4 may result in increased levels of and effects from lemborexant, including somnolence, fatigue, CNS depressant effects, daytime impairment, headache, and nightmare or abnormal dreams.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The maximum recommended dose of lemborexant with concurrent use of a weak CYP3A4 inhibitors should not exceed 5 mg per dose.(1) DISCUSSION: Lemborexant is a CYP3A4 substrate. In a PKPB model, concurrent use of lemborexant with itraconazole increased area-under-curve (AUC) and concentration maximum (Cmax) by 3.75-fold and 1.5-fold, respectively. Concurrent use of lemborexant with fluconazole increased AUC and Cmax by 4.25-fold and 1.75-fold, respectively.(1) Weak inhibitors of CYP3A4 include: alprazolam, amiodarone, amlodipine, asciminib, azithromycin, Baikal skullcap, belumosudil, berberine, bicalutamide, blueberry, brodalumab, cannabidiol, capivasertib, chlorzoxazone, cilostazol, cimetidine, ciprofloxacin, clotrimazole, cranberry, cyclosporine, daclatasvir, daridorexant, delavirdine, dihydroberberine, diosmin, everolimus, flibanserin, fosaprepitant, fostamatinib, gepotidacin, ginkgo, givinostat, glecaprevir/pibrentasvir, goldenseal, grazoprevir, isoniazid, istradefylline, ivacaftor, lacidipine, lapatinib, larotrectinib, lazertinib, leflunomide, levamlodipine, linagliptin, lomitapide, lurasidone, mavorixafor, olaparib, osilodrostat, palbociclib, pazopanib, peppermint oil, piperine, propiverine, propofol, ranitidine, ranolazine, remdesivir, resveratrol, roxithromycin, rucaparib, selpercatinib, simeprevir, sitaxsentan, skullcap, suvorexant, teriflunomide, ticagrelor, tolvaptan, trofinetide, viloxazine, and vonoprazan.(1,2) |
DAYVIGO |
Nadofaragene Firadenovec/Selected Immunosuppressants SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Nadofaragene firadenovec may contain low levels of replication-competent adenovirus.(1) CLINICAL EFFECTS: Concurrent use of nadofaragene firadenovec in patients receiving immunosuppressive therapy may cause disseminated adenovirus infection.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Individuals who are immunosuppressed or immune-deficient should not receive nadofaragene firadenovec.(1) DISCUSSION: Nadofaragene firadenovec is a non-replicating adenoviral vector-based gene therapy but may contain low levels of replication-competent adenovirus. Immunocompromised persons, including those receiving immunosuppressant therapy, may be at risk for disseminated adenovirus infection.(1) |
ADSTILADRIN |
Colchicine (for Cardioprotection)/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: P-glycoprotein (P-gp) inhibitors may affect the transport of colchicine, a P-gp substrate.(1,2) CLINICAL EFFECTS: Concurrent use of a P-gp inhibitor may result in elevated levels of and toxicity from colchicine. Symptoms of colchicine toxicity include abdominal pain; nausea or vomiting; severe diarrhea; muscle weakness or pain; numbness or tingling in the fingers or toes; myelosuppression; feeling weak or tired; increased infections; and pale or gray color of the lips, tongue, or palms of hands.(1,2) PREDISPOSING FACTORS: This interaction is expected to be more severe in patients with renal or hepatic impairment.(1,2) PATIENT MANAGEMENT: The manufacturer of colchicine used for cardiovascular risk reduction states that concurrent use of colchicine with P-gp inhibitors is contraindicated.(1) DISCUSSION: There are several reports of colchicine toxicity(3-5) and death(6,7) following the addition of clarithromycin to therapy. In a retrospective review of 116 patients who received clarithromycin and colchicine during the same hospitalization, 10.2% (9/88) of patients who received simultaneous therapy died, compared to 3.6% (1/28) of patients who received sequential therapy.(8) An FDA review of 117 colchicine-related deaths that were not attributable to overdose found that 60 deaths (51%) involved concurrent use of clarithromycin.(2) There is one case report of colchicine toxicity with concurrent erythromycin.(9) In a study in 20 subjects, pretreatment with diltiazem (240 mg daily for 7 days) increased the maximum concentration (Cmax) and area-under-curve (AUC) of a single dose of colchicine (0.6 mg) by 44.2% (range -46.6% to 318.3%) and by 93.4% (range -30.2% to 338.6%), respectively.(1) In a study in 24 subjects, pretreatment with verapamil (240 mg twice daily for 7 days) increased the Cmax and AUC of a single dose of colchicine (0.6 mg) by 40.1% (range -47.1% to 149.5%) and by 103.3% (range -9.8% to 217.2%), respectively.(1) Colchicine toxicity has been reported with concurrent use of CYP3A4 and P-gp inhibitors such as clarithromycin, cyclosporine, diltiazem, erythromycin, and verapamil.(1,2) P-gp inhibitors include abrocitinib, amiodarone, asciminib, asunaprevir, azithromycin, belumosudil, capmatinib, carvedilol, cimetidine, cyclosporine, danicopan, daridorexant, diltiazem, diosmin, dronedarone, erythromycin, flibanserin, fluvoxamine, fostamatinib, glecaprevir/pibrentasvir, lapatinib, ledipasvir, mavorixafor, neratinib, osimertinib, pirtobrutinib, propafenone, quinidine, ranolazine, schisandra, selpercatinib, sotorasib, tepotinib, tezacaftor, valbenazine, velpatasvir, vemurafenib, verapamil, vimseltinib, and voclosporin.(1,10,11) |
LODOCO |
There are 36 severe interactions.
These drug interactions can produce serious consequences in most patients. Actions required for severe interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration scheduling, and providing additional patient monitoring. Review the full interaction monograph for more information.
Drug Interaction | Drug Names |
---|---|
Topotecan/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of P-glycoprotein may increase the absorption of topotecan.(1) CLINICAL EFFECTS: The concurrent administration of topotecan with an inhibitor of P-glycoprotein may result in elevated levels of topotecan and signs of toxicity. These signs may include but are not limited to anemia, diarrhea, and thrombocytopenia.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of topotecan states that the use of topotecan and P-glycoprotein inhibitors should be avoided. If concurrent use is warranted, carefully monitor patients for adverse effects.(1) DISCUSSION: In clinical studies, the combined use of elacridar (100 mg to 1000 mg) increased the area-under-curve (AUC) of topotecan approximately 2.5-fold.(1) Oral cyclosporine (15 mg/kg) increased the AUC of topotecan lactone and total topotecan to 2-fold to 3-fold of the control group, respectively.(1) P-gp inhibitors linked to this monograph include: adagrasib, amiodarone, asciminib, asunaprevir, azithromycin, belumosudil, bosutinib, capmatinib, carvedilol, cimetidine, clarithromycin, cobicistat, conivaptan, cyclosporine, danicopan, daridorexant, diltiazem, diosmin, dronedarone, erythromycin, flibanserin, fostamatinib, ginseng, hydroquinidine, isavuconazonium, itraconazole, ivacaftor, josamycin, ketoconazole, ledipasvir, lonafarnib, mavorixafor, neratinib, osimertinib, pibrentasvir/glecaprevir, pirtobrutinib, propafenone, quinidine, ranolazine, ritonavir, selpercatinib, sotorasib, tezacaftor, tepotinib, tucatinib, valbenazine, velpatasvir, vemurafenib, verapamil, vimseltinib, and voclosporin.(2,3) |
HYCAMTIN |
Deferiprone/Selected Myelosuppressive Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of deferiprone with other drugs known to be associated with neutropenia or agranulocytosis may increase the frequency or risk for severe toxicity.(1) CLINICAL EFFECTS: Concurrent use of deferiprone and myelosuppressive agents may result in severe neutropenia or agranulocytosis, which may be fatal. PREDISPOSING FACTORS: Agranulocytosis may be less common in patients receiving deferiprone for thalassemia, and more common in patients treated for other systemic iron overload conditions (e.g. myelodysplastic syndromes, sickle cell disease).(2,3) Inadequate monitoring appears to increase the risk for severe outcomes. Manufacturer post market surveillance found that in all fatal cases of agranulocytosis reported between 1999 and 2005, data on weekly white blood count (WBC) monitoring was missing. In three fatal cases, deferiprone was continued for two to seven days after the detection of neutropenia or agranulocytosis.(2) PATIENT MANAGEMENT: If possible, discontinue one of the drugs associated with risk for neutropenia or agranulocytosis. If alternative therapy is not available, documentation and adherence to the deferiprone monitoring protocol is essential. Baseline absolute neutrophil count (ANC) must be at least 1,500/uL prior to starting deferiprone. Monitor ANC weekly during therapy. If infection develops, interrupt deferiprone therapy and monitor ANC more frequently. If ANC is less than 1,500/uL but greater than 500/uL, discontinue deferiprone and any other drugs possibly associated with neutropenia. Initiate ANC and platelet counts daily until recovery (i.e. ANC at least 1,500/uL). If ANC is less than 500/uL, discontinue deferiprone, evaluate patient and hospitalize if appropriate. Do not resume deferiprone unless potential benefits outweigh potential risks.(1) DISCUSSION: Drugs linked to this monograph have an FDA Boxed Warning for risk of neutropenia, agranulocytosis, or pancytopenia, or have > 5% risk for neutropenia and/or warnings describing risk for myelosuppression in manufacturer prescribing information.(1-25) In pooled clinical studies submitted to the FDA, 6.1% of deferiprone patients met criteria for neutropenia and 1.7% of patients developed agranulocytosis.(1) The time to onset of agranulocytosis was highly variable with a range of 65 days to 9.2 years (median, 161 days).(3) |
DEFERIPRONE, DEFERIPRONE (3 TIMES A DAY), FERRIPROX, FERRIPROX (2 TIMES A DAY), FERRIPROX (3 TIMES A DAY) |
Tofacitinib/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of tofacitinib and azathioprine, other biologic disease-modifying antirheumatic drugs (DMARDs), or potent immunosuppressants may result in additive or synergistic effects on the immune system.(1) CLINICAL EFFECTS: Concurrent use of tofacitinib and azathioprine, other biologic DMARDs, or potent immunosuppressants use may increase the risk of serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Tofacitinib should not be used concurrently with azathioprine, other biologic DMARDs, or cyclosporine.(1) Patient should be monitored for decreases in lymphocytes and neutrophils. Therapy should be adjusted based on the indication. - For all indications: If absolute neutrophil count (ANC) or lymphocyte count is less than 500 cells/mm3, discontinue tofacitinib. - For rheumatoid arthritis or psoriatic arthritis and absolute neutrophil count (ANC) 500 to 1000 cells/mm3: interrupt dosing. When ANC is greater than 1000 cells/mm3, resume Xeljanz 5 mg twice daily or Xeljanz XR 11 mg once daily. - For ulcerative colitis and ANC 500 to 1000 cells/mm3: -If taking Xeljanz 10 mg twice daily, decrease to 5 mg twice daily. When ANC is greater than 1000 cells/mm3, increase to 10 mg twice daily based on clinical response. -If taking Xeljanz 5 mg twice daily, interrupt dosing. When ANC is greater than 1000 cells/mm3, resume 5 mg twice daily. -If taking Xeljanz XR 22 mg once daily, decrease to 11 mg once daily. When ANC is greater than 1000 cells/mm3, increase to 22 mg once daily based on clinical response. -If taking Xeljanz XR 11 mg once daily, interrupt dosing. When ANC is greater than 1000 cells/mm3, resume 11 mg once daily. - For polyarticular course juvenile idiopathic arthritis (pcJIA) and ANC 500 to 1000 cells/mm3: interrupt dosing until ANC is greater than 1000 cells/mm3.(1) DISCUSSION: Concurrent use of tofacitinib and azathioprine, other biologic DMARDs, or potent immunosuppressants may increase the risk of infection.(1) |
TOFACITINIB CITRATE, XELJANZ, XELJANZ XR |
Clopidogrel/Selected CYP2C19 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Clopidogrel is a prodrug and is converted to its active metabolite via a 2 step process. The first conversion step is mediated by CYP2C19, CYP1A2 and CYP2B6, while the second step is mediated by CYP3A4, CYP2B6 and CYP2C19.(1,2) CYP2C19 contributes to both steps and is thought to be the more important enzyme involved in formation of the pharmacologically active metabolite.(1) Inhibitors of CYP2C19 may decrease the conversion of clopidogrel to its active metabolite.(1) CLINICAL EFFECTS: Concurrent use of CYP2C19 inhibitors may result in decreased clopidogrel effectiveness, resulting in increased risk of adverse cardiac events. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Evaluate medication list or interaction alerts to determine if patient is receiving additional drugs which may also inhibit clopidogrel active metabolite formation. The US manufacturer of clopidogrel states that alternatives to clopidogrel should be considered in patients who are poor metabolizers of CYP2C19.(1) It would be prudent to assume that patients taking strong inhibitors of CYP2C19 are poor metabolizers of this isoenzyme. Moderate or weak inhibitors of CYP2C19 may have less of an effect on this interaction. Consider alternatives to CYP2C19 inhibitors in patients stabilized on clopidogrel and alternatives to clopidogrel in patients stabilized on CYP2C19 inhibitors. If concurrent therapy is warranted, consider appropriate testing to assure adequate inhibition of platelet reactivity. DISCUSSION: Clopidogrel is a prodrug and requires conversion to the active metabolite by CYP2C19. Clopidogrel is not a sensitive substrate for CYP2C19 as CYP3A4, CYP2B6 and CYP1A2 also participate in active metabolite formation. Studies have not evaluated this specific drug combination; the actual magnitude of this interaction is not known. Given the possible consequences of clopidogrel treatment failure, it would be prudent to avoid concomitant use of clopidogrel and CYP2C19 inhibitors when possible. Selected CYP2C19 inhibitors include: armodafinil, asciminib, berotralstat, cenobamate, elagolix, enasidenib, eslicarbazepine, fedratinib, fexinidazole, givosiran, lonafarnib, moclobemide, modafinil, obeticholic acid, osilodrostat, piperine, pirtobrutinib, rolapitant, rucaparib, tecovirimat, treosulfan, and triclabendazole.(4,5) |
CLOPIDOGREL, CLOPIDOGREL BISULFATE, PLAVIX |
Lomitapide (Less Than or Equal To 30 mg)/Weak CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Weak inhibitors of CYP3A4 may inhibit the metabolism of lomitapide.(1) Lomitapide is very susceptible to CYP3A4 inhibition. For example, in an interaction study with a strong CYP3A4 inhibitor (ketoconazole) lomitapide exposure was increased 27-fold.(2) Thus even weak CYP3A4 inhibitors may affect lomitapide exposure (AUC, area-under-curve). CLINICAL EFFECTS: Concurrent use of a weak inhibitor of CYP3A4 may result in 2-fold increases in lomitapide levels and toxicity from lomitapide.(1) PREDISPOSING FACTORS: This interaction may be more severe in patients with hepatic impairment or with end-stage renal disease.(1) PATIENT MANAGEMENT: The maximum lomitapide dose should be 30 mg daily for patients taking concomitant weak CYP3A4 inhibitors. Due to lomitapide's long half-life, it may take 1 to 2 weeks to see the full effect of this interaction. When initiating a weak CYP3A4 inhibitor in patients taking lomitapide 10 mg daily or more, decrease the dose of lomitapide by 50%. In patients taking lomitapide 5 mg daily, continue current dose. DISCUSSION: Lomitapide is very susceptible to CYP3A4 inhibition. For example, in an interaction study with a strong CYP3A4 inhibitor (ketoconazole) lomitapide exposure was increased 27-fold.(2) Based upon interactions with stronger inhibitors, weak inhibitors of CYP3A4 are predicted to increase lomitapide area-under-curve(AUC) 2-fold.(1) Weak CYP3A4 inhibitors linked to this interaction include alprazolam, amiodarone, amlodipine, asciminib, atorvastatin, azithromycin, Baikal skullcap, belumosudil, bicalutamide, blueberry juice, brodalumab, cannabidiol, capivasertib, cilostazol, cimetidine, ciprofloxacin, chlorzoxazone, clotrimazole, cranberry juice, cyclosporine, daridorexant, delavirdine, diosmin, everolimus, flibanserin, fosaprepitant, fostamatinib, gepotidacin, ginkgo, givinostat, glecaprevir/pibrentasvir, goldenseal, grazoprevir, isoniazid, istradefylline, ivacaftor, larotrectinib, lacidipine, lapatinib, lazertinib, leflunomide, levamlodipine, linagliptin, lurasidone, maribavir, mavorixafor, olaparib, osilodrostat, palbociclib, pazopanib, peppermint oil, piperine, propiverine, propofol, ranitidine, ranolazine, remdesivir, resveratrol, roxithromycin, rucaparib, selpercatinib, sitaxsentan, skullcap, teriflunomide, ticagrelor, tolvaptan, trofinetide, viloxazine, vonoprazan, and zileuton.(1-3) |
JUXTAPID |
Clozapine/Selected Myelosuppressive Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Clozapine and other myelosuppressive agents may be associated with neutropenia or agranulocytosis.(2) CLINICAL EFFECTS: Moderate neutropenia, even if due to combination therapy, may require abrupt discontinuation of clozapine resulting in decompensation of the patient's psychiatric disorder (e.g. schizophrenia). The disease treated by the myelosuppressive agent may be compromised if myelosuppression requires dose reduction, delay, or discontinuation of the myelosuppressive agent. Undetected severe neutropenia or agranulocytosis may be fatal. PREDISPOSING FACTORS: Low white blood counts prior to initiation of the myelosuppressive agent may increase risk for clinically significant neutropenia. PATIENT MANAGEMENT: If a patient stabilized on clozapine therapy requires treatment with a myelosuppressive agent, the clozapine prescriber should consult with prescriber of the myelosuppressive agent (e.g. oncologist) to discuss treatment and monitoring options.(2) More frequent ANC monitoring or treatment alternatives secondary to neutropenic episodes may need to be considered. Clozapine is only available through a restricted distribution system which requires documentation of the absolute neutrophil count (ANC) prior to dispensing.(1-2) For most clozapine patients, clozapine treatment must be interrupted for a suspected clozapine-induced ANC < 1000 cells/microliter. For patients with benign ethnic neutropenia (BEN), treatment must be interrupted for suspected clozapine-induced neutropenia < 500 cells/microliter.(2) DISCUSSION: Clozapine is only available through a restricted distribution system which requires documentation of the ANC prior to dispensing.(1) Agents linked to this interaction generally have > 5% risk for neutropenia and/or warnings describing risk for myelosuppression in manufacturer prescribing information.(3-26) |
CLOZAPINE, CLOZAPINE ODT, CLOZARIL, VERSACLOZ |
Eluxadoline/OATP1B1 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: OATP1B1 inhibitors may decrease the hepatic uptake of eluxadoline.(1) CLINICAL EFFECTS: Concurrent use of OATP1B1 inhibitors may result in elevated levels of and side effects from eluxadoline, including constipation, nausea, abdominal pain, and impaired mental and physical abilities.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Patients receiving concurrent OATP1B1 inhibitors should receive a dose of eluxadoline of 75 mg twice daily. Monitor patients for impaired mental or physical abilities, abdominal pain, nausea, and constipation.(1) DISCUSSION: Concurrent administration of a single dose (600 mg) of cyclosporine, an OATP1B1 inhibitor, increased the maximum concentration (Cmax) and area-under-curve (AUC) of a single dose of eluxadoline (100 mg) by 4.4-fold and 6.2-fold, respectively.(1) OATP1B1 inhibitors include asciminib, atazanavir, belumosudil, boceprevir, cyclosporine, darunavir, encorafenib, eltrombopag, erythromycin, gemfibrozil, leflunomide, letermovir, lopinavir, paritaprevir, resmetirom, rifampin, ritonavir, roxadustat, saquinavir, simeprevir, telaprevir, teriflunomide, tipranavir, vadadustat, and voclosporin.(1,2) |
VIBERZI |
Selected Multiple Sclerosis Agents/Immunosuppressants; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ocrelizumab or ofatumumab in combination with immunosuppressives and immune-modulators all suppress the immune system.(1,2) CLINICAL EFFECTS: Concurrent use of ocrelizumab or ofatumumab with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1,2) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: The ocrelizumab US prescribing information states: - Ocrelizumab and other immune-modulating or immunosuppressive therapies, (including immunosuppressant doses of corticosteroids) are expected to increase the risk of immunosuppression, and the risk of additive immune system effects must be considered if these therapies are coadministered with ocrelizumab. When switching from drugs with prolonged immune effects, such as daclizumab, fingolimod, natalizumab, teriflunomide, or mitoxantrone, the duration and mode of action of these drugs must be considered to avoid unintended additive immunosuppressive effects when initiating ocrelizumab.(1) The ofatumumab US prescribing information states: - Ofatumumab and other immunosuppressive therapies (including systemic corticosteroids) may have the potential for increased immunosuppressive effects and increase the risk of infection. When switching between therapies, the duration and mechanism of action of each therapy should be considered due to the potential for additive immunosuppressive effects. Ofatumumab for MS therapy has not been studied in combination with other MS agents that suppress the immune system.(2) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1,2) In a retrospective cohort study of multiple sclerosis patients newly initiated on a disease-modifying therapy, use of high-efficacy agents (alemtuzumab, natalizumab, or ocrelizumab) resulted in the same risk of overall infections as moderate-efficacy agents, but there was an elevated risk of serious infections (adjusted hazard ratio [aHR] = 1.24, 95% confidence interval (CI) = 1.06-1.44) and UTIs (aHR = 1.21, 95% CI = 1.14-1.30).(3) |
KESIMPTA PEN, OCREVUS, OCREVUS ZUNOVO |
Pazopanib/Selected Inhibitors of P-gp or BCRP SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of P-glycoprotein (P-gp) or BCRP may increase the absorption of pazopanib.(1) CLINICAL EFFECTS: The concurrent administration of pazopanib with an inhibitor of P-glycoprotein or BCRP may result in elevated levels of pazopanib and signs of toxicity.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of pazopanib states concurrent use of P-gp inhibitors or BCRP inhibitors should be avoided.(1) Monitor patients for increased side effects from pazopanib. If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Pazopanib is a substrate of P-gp and BCRP. Inhibitors of these transporters are expected to increase pazopanib levels.(1) BCRP inhibitors linked to this monograph include: asciminib, belumosudil, clopidogrel, cyclosporine, darolutamide, eltrombopag, gefitinib, grazoprevir, lazertinib, leflunomide, momelotinib, oteseconazole, rolapitant, roxadustat, tafamidis, teriflunomide, and vadadustat.(1,3-5) P-glycoprotein inhibitors linked to this monograph include: asunaprevir, belumosudil, capmatinib, carvedilol, cyclosporine, danicopan, daridorexant, diltiazem, flibanserin, fostamatinib, ginseng, glecaprevir/pibrentasvir, isavuconazonium, ivacaftor, ledipasvir, neratinib, sofosbuvir/velpatasvir/voxilaprevir, tepotinib, tezacaftor, ticagrelor, valbenazine, verapamil, vimseltinib, and voclosporin.(3,4) |
PAZOPANIB HCL, VOTRIENT |
Colchicine (for Gout & FMF)/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: P-glycoprotein (P-gp) inhibitors may affect the transport of colchicine, a P-gp substrate.(1,2) CLINICAL EFFECTS: Concurrent use of a P-gp inhibitor may result in elevated levels of and toxicity from colchicine. Symptoms of colchicine toxicity include abdominal pain; nausea or vomiting; severe diarrhea; muscle weakness or pain; numbness or tingling in the fingers or toes; myelosuppression; feeling weak or tired; increased infections; and pale or gray color of the lips, tongue, or palms of hands.(1,2) PREDISPOSING FACTORS: This interaction is expected to be more severe in patients with renal and/or hepatic impairment(1,2) and in patients who receive concurrent therapy. PATIENT MANAGEMENT: The concurrent use of colchicine with P-gp inhibitors is contraindicated in patients with renal or hepatic impairment.(1-3) Avoid concurrent use in other patients, if possible.(3) In patients without renal or hepatic impairment who are currently taking or have taken a P-gp inhibitor in the previous 14 days, the dosage of colchicine should be reduced. For gout flares, the recommended dosage is 0.6 mg (1 tablet) for one dose. This dose should be repeated no earlier than in 3 days.(1,2) For gout prophylaxis, if the original dosage was 0.6 mg twice daily, use 0.3 mg daily. If the original dosage was 0.6 mg daily, use 0.3 mg every other day.(3-12) For Familial Mediterranean fever (FMF), the recommended maximum daily dose is 0.6 mg (may be given as 0.3 mg twice a day).(1,2) Patients should be instructed to immediately report any signs of colchicine toxicity, such as abdominal pain, nausea/significant diarrhea, vomiting; muscle weakness/pain; numbness/tingling in fingers/toes; unusual bleeding or bruising, infections, weakness/tiredness, or pale/gray color of the lips/tongue/palms of hands. DISCUSSION: There are several reports of colchicine toxicity(4-6) and death(7,8) following the addition of clarithromycin to therapy. In a retrospective review of 116 patients who received clarithromycin and colchicine during the same hospitalization, 10.2% (9/88) of patients who received simultaneous therapy died, compared to 3.6% (1/28) of patients who received sequential therapy.(9) An FDA review of 117 colchicine-related deaths that were not attributable to overdose found that 60 deaths (51%) involved concurrent use of clarithromycin.(2) There is one case report of colchicine toxicity with concurrent erythromycin.(10) In a study in 20 subjects, pretreatment with diltiazem (240 mg daily for 7 days) increased the maximum concentration (Cmax) and area-under-curve (AUC) of a single dose of colchicine (0.6 mg) by 44.2% (range -46.6% to 318.3%) and by 93.4% (range -30.2% to 338.6%), respectively.(1) In a study in 24 subjects, pretreatment with verapamil (240 mg twice daily for 7 days) increased the Cmax and AUC of a single dose of colchicine (0.6 mg) by 40.1% (range -47.1% to 149.5%) and by 103.3% (range -9.8% to 217.2%), respectively.(1) Colchicine toxicity has been reported with concurrent use of CYP3A4 and P-gp inhibitors such as clarithromycin, cyclosporine, diltiazem, erythromycin, and verapamil.(1,2) P-gp inhibitors include abrocitinib, amiodarone, asciminib, asunaprevir, azithromycin, belumosudil, capmatinib, carvedilol, cimetidine, danicopan, daridorexant, diltiazem, diosmin, dronedarone, erythromycin, flibanserin, fluvoxamine, fostamatinib, glecaprevir/pibrentasvir, lapatinib, ledipasvir, mavorixafor, neratinib, osimertinib, pirtobrutinib, propafenone, quinidine, ranolazine, schisandra, selpercatinib, sotorasib, tepotinib, tezacaftor, valbenazine, velpatasvir, vemurafenib, verapamil, vimseltinib, and voclosporin.(1,11,12) |
COLCHICINE, COLCRYS, GLOPERBA, MITIGARE, PROBENECID-COLCHICINE |
Voxilaprevir/Selected OATP1B1-3 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: OATP1B1 and OATP1B3 inhibitors may increase exposure to voxilaprevir.(1) CLINICAL EFFECTS: Concurrent use of OATP1B1 and OATP1B3 inhibitors may result in increased levels of and toxicity from voxilaprevir.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Concurrent administration of voxilaprevir with OATP1B1 and OATP1B3 inhibitors is not recommended.(1,4) If concurrent therapy is warranted, monitor patients for adverse effects. The American Society of Transplantation guidelines state that the combination of voxilaprevir and cyclosporine is contraindicated.(3) DISCUSSION: In a study in 25 subjects, cyclosporine (600 mg single dose) increased the maximum concentration (Cmax) and area-under-curve (AUC) of voxilaprevir (100 mg single dose) by 19.02-fold and 9.39-fold, respectively. There were no significant effects on cyclosporine levels.(1) OATP inhibitors include asciminib, atazanavir, belumosudil, cyclosporine, encorafenib, fostemsavir, letermovir, lopinavir, paritaprevir, resmetirom, roxadustat, vadadustat, and voclosporin.(1,2,4) |
VOSEVI |
Bosentan/Strong and Moderate CYP2C9 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Bosentan is metabolized by CYP2C9 and CYP3A4. It is also an inducer of these enzymes. With regular dosing bosentan auto-induces its own metabolism.(1) Strong and moderate CYP2C9 inhibitors may inhibit the CYP2C9 mediated metabolism of bosentan.(2) CLINICAL EFFECTS: Concurrent use of bosentan with an inhibitor of CYP2C9 may result in elevated levels of and toxicity from bosentan.(3) PREDISPOSING FACTORS: Concurrent use of bosentan, a CYP2C9 inhibitor and a CYP3A4 inhibitor (e.g. aprepitant, boceprevir, ceritinib, ciprofloxacin, clarithromycin, conivaptan, crizotinib, cyclosporine, darunavir, diltiazem, dronedarone, erythromycin, fluconazole, fosaprepitant, idelalisib, imatinib, isavuconazole, itraconazole, ketoconazole, letermovir, mibefradil, nefazodone, netupitant, nilotinib, posaconazole, ribociclib, telaprevir, telithromycin, troleandomycin, verapamil, and voriconazole)(3) could lead to blockade of both major metabolic pathways for bosentan, resulting in large increases in bosentan plasma concentrations.(3) PATIENT MANAGEMENT: Review medication list to see if patient is also receiving a CYP3A4 inhibitor (e.g. aprepitant, boceprevir, ceritinib, ciprofloxacin, clarithromycin, conivaptan, crizotinib, cyclosporine, darunavir, diltiazem, dronedarone, erythromycin, fluconazole, fosaprepitant, idelalisib, imatinib, isavuconazole, itraconazole, ketoconazole, letermovir, mibefradil, nefazodone, netupitant, nilotinib, posaconazole, ribociclib, telaprevir, telithromycin, troleandomycin, verapamil, and voriconazole). Concomitant use of both a CYP2C9 and CYP3A4 inhibitor is not recommended by the manufacturer as the combination may lead to large increases in bosentan plasma concentrations.(1) For patients stabilized on bosentan when a CYP2C9 inhibitor is initiated, monitor tolerance to concomitant therapy and adjust bosentan dose if needed. DISCUSSION: Concurrent use with CYP2C9 inhibitors has not been studied. In a study in healthy subjects, concurrent bosentan and ketoconazole, a strong CYP3A4 inhibitor, administration increased bosentan steady-state maximum concentrations (Cmax) and area-under-curve (AUC) by 2.1-fold and 2.3-fold, respectively.(2) Strong CYP2C9 inhibitors linked to this monograph include: miconazole.(3) Moderate CYP2C9 inhibitors linked to this monograph include: amiodarone, apazone, asciminib, benzbromarone, cannabidiol, nitisinone, oxandrolone, piperine, sulfaphenazole, and phenylbutazone.(3) |
BOSENTAN, TRACLEER |
Eliglustat/Weak CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Weak inhibitors of CYP3A4 may inhibit the metabolism of eliglustat. If the patient is also taking an inhibitor of CYP2D6, eliglustat metabolism can be further inhibited.(1) CLINICAL EFFECTS: Concurrent use of an agent that is a weak inhibitor of CYP3A4 may result in elevated levels of and clinical effects of eliglustat, including prolongation of the PR, QTc, and/or QRS intervals, which may result in life-threatening cardiac arrhythmias.(1) PREDISPOSING FACTORS: If the patient is also taking an inhibitor of CYP2D6, is a poor metabolizer of CYP2D6, and/or has hepatic impairment, eliglustat metabolism can be further inhibited.(1) The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The concurrent use of eliglustat with weak inhibitors of CYP3A4 in poor metabolizers of CYP2D6 should be avoided.(1) The dosage of eliglustat with weak inhibitors of CYP3A4 in extensive metabolizers of CYP2D6 with mild (Child-Pugh Class A) hepatic impairment should be limited to 84 mg daily.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Ketoconazole (400 mg daily), a strong inhibitor of CYP3A4, increased eliglustat (84 mg BID) maximum concentration (Cmax) and area-under-curve (AUC) by 4-fold and 4.4-fold, respectively, in extensive metabolizers. Physiologically-based pharmacokinetic (PKPB) models suggested ketoconazole would increase eliglustat Cmax and AUC by 4.4-fold and 5.4-fold, respectively, in intermediate metabolizers. PKPB models suggested ketoconazole may increase the Cmax and AUC of eliglustat (84 mg daily) by 4.3-fold and 6.2-fold, respectively, in poor metabolizers.(1) PKPB models suggested fluconazole, a moderate inhibitor of CYP3A4, would increase eliglustat Cmax and AUC by 2.8-fold and 3.2-fold, respectively, in extensive metabolizers and by 2.5-fold and 2.9-fold, respectively in intermediate metabolizers. PKPB models suggest that concurrent eliglustat (84 mg BID), paroxetine (a strong inhibitor of CYP2D6), and ketoconazole would increase eliglustat Cmax and AUC by 16.7-fold and 24.2-fold, respectively, in extensive metabolizers. In intermediate metabolizers, eliglustat Cmax and AUC would be expected to increase 7.5-fold and 9.8-fold, respectively.(1) PKPB models suggest that concurrent eliglustat (84 mg BID), terbinafine (a moderate inhibitor of CYP2D6), and ketoconazole would increase eliglustat Cmax and AUC by 10.2-fold and 13.6-fold, respectively, in extensive metabolizers. In intermediate metabolizers, eliglustat Cmax and AUC would be expected to increase 4.2-fold and 5-fold, respectively.(1) Weak inhibitors of CYP3A4 include: alprazolam, amlodipine, asciminib, azithromycin, Baikal skullcap, belumosudil, berberine, bicalutamide, blueberry, brodalumab, cannabidiol, chlorzoxazone, cilostazol, cimetidine, ciprofloxacin, clotrimazole, cranberry, cyclosporine, daclatasvir, daridorexant, delavirdine, dihydroberberine, diosmin, everolimus, flibanserin, fosaprepitant, fostamatinib, gepotidacin, ginkgo, givinostat, glecaprevir/pibrentasvir, goldenseal, grazoprevir, isoniazid, istradefylline, ivacaftor, lacidipine, lapatinib, larotrectinib, lazertinib, leflunomide, levamlodipine, linagliptin, lomitapide, lurasidone, olaparib, osilodrostat, palbociclib, pazopanib, peppermint oil, piperine, propiverine, propofol, ranolazine, remdesivir, resveratrol, roxithromycin, rucaparib, selpercatinib, simeprevir, sitaxsentan, skullcap, suvorexant, teriflunomide, ticagrelor, tolvaptan, trofinetide, and vonoprazan.(3,4) |
CERDELGA |
Siponimod/Selected Moderate CYP2C9 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of CYP2C9 may inhibit the metabolism of siponimod.(1) CLINICAL EFFECTS: Concurrent use of an inhibitor of CYP2C9 may result in elevated levels of and clinical effects of siponimod, including immunosuppression and increased risk of infection.(1) Concurrent use of siponimod with immunosuppressive or immune-modulating agents, such as asciminib, may result in an additive risk and increased risk of serious infections. PREDISPOSING FACTORS: Concurrent use of a strong or moderate inhibitor of CYP3A4 may increase the effects of the interaction. PATIENT MANAGEMENT: Concurrent use of an inhibitor of CYP2C9 with siponimod is not recommended in patients also taking a strong or moderate inhibitor of CYP3A4.(1) Review the patient's therapy for concurrent use of strong or moderate inhibitors of CYP3A4 prior to initiating siponimod. DISCUSSION: Siponimod is metabolized by CYP2C9 (79.3%) and CYP3A4 (18.5%). Concurrent use of fluconazole (a dual moderate inhibitor of CYP2C9 and CYP3A4, 200 mg at steady state) in healthy subjects with the CYP2C9*1/*1 genotype increased the area-under-curve (AUC) of siponimod (4 mg single dose) by 2-fold. Siponimod half-life increased by 50%. Fluconazole increased siponimod AUC by 2-fold to 4-fold across all CYP2C9 genotypes.(1) Selected moderate CYP2C9 inhibitors linked to this monograph include: apazone, asciminib, benzbromarone, cannabidiol, felbamate, miconazole, milk thistle, nitisinone, oxandrolone, phenylbutazone, piperine, silibinin, and sulfaphenazole.(2) |
MAYZENT |
Upadacitinib/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Upadacitinib, immunosuppressives, and immunomodulators all suppress the immune system. CLINICAL EFFECTS: Concurrent use of upadacitinib with immunosuppressives or immunomodulators may result in an increased risk of serious infections. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of upadacitinib states that concurrent use of upadacitinib with immunosuppressives or immunomodulators is not recommended. DISCUSSION: Serious infections have been reported in patients receiving upadacitinib. Reported infections included pneumonia, cellulitis, tuberculosis, multidermatomal herpes zoster, oral/esophageal candidiasis, cryptococcosis. Reports of viral reactivation, including herpes virus reactivation and hepatitis B reactivation, were reported in clinical studies with upadacitinib.(1) |
RINVOQ, RINVOQ LQ |
Inebilizumab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inebilizumab, immunosuppressives, and immunomodulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of inebilizumab with immunosuppressive or immunomodulating agents may result in myelosuppression including neutropenia resulting in an increased risk for serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of inebilizumab states that the concurrent use of inebilizumab with immunosuppressive agents, including systemic corticosteroids, may increase the risk of infection. If concurrent therapy is warranted, consider the risk of additive immune suppression and monitor based on prescribing information for both agents.(1) DISCUSSION: Inebilizumab has not been studied in combination with other immunosuppressants. If concurrent therapy is warranted, consider the potential for increased immunosuppressive risks from both agents. The most common infections reported by inebilizumab treated patients in the randomized and open-label clinical trial periods included urinary tract infections (20%), nasopharyngitis (13%), upper respiratory tract infections (8%), and influenza (7%). Although there been no cases of Hepatitis B virus reactivation or progressive multifocal leukoencephalopathy reported in patients taking inebilizumab, these infections have been observed in patients taking other B-cell-depleting antibodies.(1) |
UPLIZNA |
Baricitinib/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of baricitinib with other biologic disease-modifying antirheumatic drugs (DMARDs) or potent immunosuppressants such as azathioprine or cyclosporine may result in additive or synergistic effects on the immune system. CLINICAL EFFECTS: Concurrent use of baricitinib with other biologic DMARDs or potent immunosuppressants such as azathioprine or cyclosporine may increase the risk of serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of baricitinib states that concurrent use of baricitinib with biologic DMARDs or potent immunosuppressants is not recommended.(1) DISCUSSION: Most patients who developed serious infections while being treated with baricitinib were on concomitant immunosuppressants like methotrexate and corticosteroids. The combination of baricitinib with other biologic DMARDs has not been studied.(1) |
OLUMIANT |
Leflunomide; Teriflunomide/Selected Immunosuppressants SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of leflunomide or teriflunomide and potent immunosuppressants may result in additive or synergistic effects on the immune system.(1,2) Leflunomide is a prodrug and is converted to its active metabolite teriflunomide.(1) CLINICAL EFFECTS: Concurrent use of leflunomide or teriflunomide with immunosuppressants may result in an increased risk of serious infections, including opportunistic infections, especially Pneumocystis jiroveci pneumonia, tuberculosis (including extra-pulmonary tuberculosis), and aspergillosis. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: If leflunomide or teriflunomide is used concurrently with immunosuppressive agents, chronic CBC monitoring should be performed more frequently, every month instead of every 6 to 8 weeks. If bone marrow suppression or a serious infection occurs, leflunomide or teriflunomide should be stopped and rapid drug elimination procedure should be performed.(1,2) DISCUSSION: Pancytopenia, agranulocytosis and thrombocytopenia have been reported in patients receiving leflunomide or teriflunomide alone, but most frequently in patients taking concurrent immunosuppressants.(1,2) Severe and potentially fatal infections, including sepsis, have been reported in patients receiving leflunomide or teriflunomide, especially Pneumocystis jiroveci pneumonia and aspergillosis. Tuberculosis has also been reported.(1,2) |
ARAVA, AUBAGIO, LEFLUNICLO, LEFLUNOMIDE, TERIFLUNOMIDE |
Ponesimod/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ponesimod in combination with immunosuppressives and immune-modulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of ponesimod with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection, cryptococcal infection, or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: The ponesimod US prescribing information states ponesimod has not been studied in combination with anti-neoplastic, immune-modulating, or immunosuppressive therapies. Caution should be used during concomitant administration because of the risk of additive immune effects during therapy and in the weeks following administration. When switching from drugs with prolonged immune effects, the half-life and mode of action of these drugs must be considered in order to avoid unintended additive immunosuppressive effects. Initiating treatment with ponesimod after alemtuzumab is not recommended. However, ponesimod can generally be started immediately after discontinuation of beta interferon or glatiramer acetate.(1) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections, cryptococcal meningitis, disseminated cryptococcal infections, and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1) |
PONVORY |
Brincidofovir/OATP1B1-3 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: OATP1B1 and 1B3 inhibitors may increase the absorption and/or decrease the hepatic uptake of brincidofovir.(1) CLINICAL EFFECTS: Concurrent use of OATP1B1 or 1B3 inhibitors may result in elevated levels of and side effects from brincidofovir.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of brincidofovir states that alternative medications that are not OATP1B1 or 1B3 inhibitors should be considered. If concurrent use is necessary, instruct the patient to take the OATP1B1 or 1B3 inhibitor at least 3 hours after brincidofovir and increase monitoring for side effects, including transaminase and bilirubin elevations and GI side effects like diarrhea.(1) DISCUSSION: In a clinical trial, single-dose oral cyclosporine (600 mg, an OATP1B1 and 1B3 inhibitor) increased the mean brincidofovir area-under-curve (AUC) and maximum concentration (Cmax) by 374% and 269%, respectively.(1) OATP1B1 and 1B3 inhibitors include asciminib, atazanavir, belumosudil, boceprevir, clarithromycin, cyclosporine, darunavir, eltrombopag, encorafenib, erythromycin, gemfibrozil, glecaprevir-pibrentasvir, ledipasvir, leflunomide, letermovir, lopinavir, ombitasvir-paritaprevir, paritaprevir, resmetirom, rifampin, ritonavir, roxadustat, saquinavir, simeprevir, sofosbuvir, telaprevir, teriflunomide, tipranavir, vadadustat, velpatasvir, and voclosporin.(1,2) |
TEMBEXA |
Sodium Iodide I 131/Myelosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Sodium iodide I 131 can cause depression of the hematopoetic system. Myelosuppressives and immunomodulators also suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of sodium iodide I 131 with agents that cause bone marrow depression, including myelosuppressives or immunomodulators, may result in an enhanced risk of hematologic disorders, including anemia, blood dyscrasias, bone marrow depression, leukopenia, and thrombocytopenia. Bone marrow depression may increase the risk of serious infections and bleeding.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of sodium iodide I 131 states that concurrent use with bone marrow depressants may enhance the depression of the hematopoetic system caused by large doses of sodium iodide I 131.(1) Sodium iodide I 131 causes a dose-dependent bone marrow suppression, including neutropenia or thrombocytopenia, in the 3 to 5 weeks following administration. Patients may be at increased risk of infections or bleeding during this time. Monitor complete blood counts within one month of therapy. If results indicate leukopenia or thrombocytopenia, dosimetry should be used to determine a safe sodium iodide I 131 activity.(1) DISCUSSION: Hematologic disorders including death have been reported with sodium iodide I 131. The most common hematologic disorders reported include anemia, blood dyscrasias, bone marrow depression, leukopenia, and thrombocytopenia.(1) |
HICON, SODIUM IODIDE I-131 |
Fingolimod/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Fingolimod in combination with immunosuppressives and immune-modulators all suppress the immune system.(1-3) CLINICAL EFFECTS: Concurrent use of fingolimod with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1-3) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: Recommendations for fingolimod regarding this interaction differ between regulatory approving agencies. The fingolimod US prescribing information states: - Antineoplastic, immune-modulating, or immunosuppressive therapies, (including corticosteroids) are expected to increase the risk of immunosuppression, and the risk of additive immune system effects must be considered if these therapies are coadministered with fingolimod. When switching from drugs with prolonged immune effects, such as natalizumab, teriflunomide or mitoxantrone, the duration and mode of action of these drugs must be considered to avoid unintended additive immunosuppressive effects when initiating fingolimod.(1) The fingolimod Canadian prescribing information states: - Concurrent use with immunosuppressive or immunomodulatory agents is contraindicated due to the risk of additive immune system effects. However, co-administration of a short course of corticosteroids (up to 5 days) did not increase the overall rate of infection in patients participating Phase III clinical trials.(2) The fingolimod UK specific product characteristics states: - Fingolimod is contraindicated in patients currently receiving immunosuppressive therapies or those immunocompromised by prior therapies. When switching patients from another disease modifying therapy to Gilenya, the half-life and mode of action of the other therapy must be considered in order to avoid an additive immune effect whilst at the same time minimizing the risk of disease activation.(3) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1-3) |
FINGOLIMOD, GILENYA, TASCENSO ODT |
Ozanimod/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ozanimod in combination with immunosuppressives and immune-modulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of ozanimod with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: The ozanimod US prescribing information state this information regarding this interaction: -Ozanimod has not been studied in combination with anti-neoplastic, immune-modulating, or immunosuppressive therapies. Caution should be used during concomitant administration because of the risk of additive immune effects during therapy and in the week following administration. When switching from drugs with prolonged immune effects, the half-life and mode of action of these drugs must be considered in order to avoid unintended additive immunosuppressive effects. Initiating treatment with ozanimod after alemtuzumab is not recommended. However, ozanimod can generally be started immediately after discontinuation of beta interferon or glatiramer acetate.(1) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1) |
ZEPOSIA |
Cladribine/Selected Inhibitors of BCRP with Myelosuppression SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of BCRP may increase the absorption of cladribine.(1-2) Also, cladribine in combination with immunosuppressives and immune-modulators all suppress the immune system.(1-2) CLINICAL EFFECTS: The concurrent administration of cladribine with an inhibitor of BCRP may result in elevated levels of cladribine and signs of toxicity.(1-2) Concurrent use of cladribine with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1-2) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: The manufacturer of cladribine states concurrent use of BCRP inhibitors should be avoided during the 4- to 5-day cladribine treatment.(1-2) Selection of an alternative concurrent medication with no or minimal transporter inhibiting proprieties should be considered. If this is not possible, dose reduction to the minimum mandatory dose of the BCRP inhibitor, separation in timing of administration, and careful patient monitoring is recommended.(1-2) Myelosuppression risk recommendations for cladribine regarding this interaction differ between regulatory approving agencies. The cladribine US prescribing information states: -Concomitant use with myelosuppressive or other immunosuppressive drugs is not recommended. Acute short-term therapy with corticosteroids can be administered. In patients who have previously been treated with immunomodulatory or immunosuppressive drugs, consider potential additive effect, the mode of action, and duration of effect of the other drugs prior to initiation of cladribine.(1) The cladribine Canadian prescribing information states: -Use of cladribine in immunocompromised patients is contraindicated because of a risk of additive effects on the immune system. Acute short-term therapy with corticosteroids can be administered during cladribine treatment.(2) Monitor for signs of hematologic toxicity. Lymphocyte counts should be monitored. DISCUSSION: Cladribine is a substrate of BCRP. Inhibitors of this transporter are expected to increase cladribine levels.(1-2) BCRP inhibitors linked to this monograph include: asciminib, belumosudil, cyclosporine, encorafenib, gefitinib, imatinib, leflunomide, momelotinib, and teriflunomide.(1,2) Fatal disseminated herpes zoster and herpes simplex infections and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1-2) |
CLADRIBINE, MAVENCLAD |
Doxorubicin/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: P-glycoprotein (P-gp) inhibition may increase doxorubicin cellular concentration, as well as decrease biliary or renal elimination.(1) CLINICAL EFFECTS: Increased cellular or systemic levels of doxorubicin may result in doxorubicin toxicity, including cardiomyopathy, myelosuppression, or hepatic impairment.(1) PREDISPOSING FACTORS: The interaction magnitude may be greater in patients with impaired renal or hepatic function. PATIENT MANAGEMENT: Avoid the concurrent use of P-gp inhibitors in patients undergoing therapy with doxorubicin.(1) Consider alternatives with no or minimal inhibition. If concurrent therapy is warranted, monitor the patient closely for signs and symptoms of doxorubicin toxicity. DISCUSSION: Doxorubicin is a substrate of P-gp.(1) Clinical studies have identified and evaluated the concurrent use of doxorubicin and P-gp inhibitors as a target to overcome P-gp mediated multidrug resistance.(2,3) P-gp inhibitors linked to this monograph include: amiodarone, asciminib, asunaprevir, azithromycin, belumosudil, capmatinib, cimetidine, cyclosporine, daclatasvir, danicopan, daridorexant, diltiazem, diosmin, dronedarone, eliglustat, erythromycin, flibanserin, fluvoxamine, fostamatinib, ginkgo, ginseng, glecaprevir/pibrentasvir, hydroquinidine, istradefylline, ivacaftor, lapatinib, ledipasvir, mavorixafor, neratinib, osimertinib, paroxetine, pirtobrutinib, propafenone, quercetin, quinidine, quinine, ranolazine, sarecycline, schisandra, selpercatinib, simeprevir, sofosbuvir/velpatasvir/voxilaprevir, sotorasib, tepotinib, tezacaftor, valbenazine, vemurafenib, verapamil, vimseltinib, and voclosporin.(4,5) |
ADRIAMYCIN, CAELYX, DOXIL, DOXORUBICIN HCL, DOXORUBICIN HCL LIPOSOME |
Selected CYP2C9 Substrates/Asciminib SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Asciminib is a moderate inhibitor of CYP2C9.(1) Asciminib may decrease the metabolism of drugs that are CYP2C9 substrates. CLINICAL EFFECTS: Decreased clearance may increase systemic concentrations of drugs primarily metabolized by CYP2C9, leading to toxicity.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of asciminib states coadministration of the CYP2C9 substrate drug with asciminib should be avoided. Consider an alternative agent that does not depend on CYP2C9 for metabolism. If a patient is taking asciminib 80 mg total daily dose and coadministration of the CYP2C9 substrate is unavoidable, reduce the dosage of the CYP2C9 substrate according to its product labeling.(1) Closely monitor patients stable on CYP2C9 substrates for altered therapeutic effect or toxicity when asciminib therapy is started, adjusted, or stopped.(1) DISCUSSION: In clinical studies, coadministration of asciminib 40 mg twice daily, 80 mg once daily, and 200 mg twice daily, the area-under-the-curve (AUC) of S-warfarin increased by 41%, 52%, and 314%, respectively. Additionally, the maximum concentration (Cmax) of S-warfarin increased by 8%, 4%, and 7%, respectively.(1) Medications linked to this interaction include fluvastatin, fosphenytoin, glimepiride, glipizide, phenytoin, and tolbutamide. These drugs have a narrow therapeutic range or are designated as CYP2C9 Sensitive Substrates (i.e. moderate 2C9 inhibitors are expected to increase exposure (AUC) to these agents by 2-fold to 5-fold).(2,3) |
CEREBYX, DILANTIN, DILANTIN-125, DUETACT, FLUVASTATIN ER, FLUVASTATIN SODIUM, FOSPHENYTOIN SODIUM, GLIMEPIRIDE, GLIPIZIDE, GLIPIZIDE ER, GLIPIZIDE XL, GLIPIZIDE-METFORMIN, GLUCOTROL XL, LESCOL XL, PHENYTEK, PHENYTOIN, PHENYTOIN SODIUM, PHENYTOIN SODIUM EXTENDED, PIOGLITAZONE-GLIMEPIRIDE |
Asciminib/Hydroxypropyl betadex (Itraconazole Solution) SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of hydroxypropyl-beta-cyclodextrin,(1) a solubilizer in itraconazole oral solution,(2) may bind to asciminib and decrease its absorption.(1) Hydroxypropyl-beta-cyclodextrin is also known as hydroxypropyl betadex. CLINICAL EFFECTS: Concurrent use of asciminib and hydroxypropyl-beta-cyclodextrin may result in decreased levels and effectiveness of asciminib.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of asciminib states to avoid concurrent use of asciminib at all recommended doses with itraconazole oral solution containing hydroxypropyl-beta-cyclodextrin.(1) Consider alternative formulations of itraconazole or a different azole antifungal that is not formulated with hydroxypropyl-beta-cyclodextrin. DISCUSSION: Concurrent use of multiple doses of itraconazole oral solution containing hydroxypropyl-beta-cyclodextrin with a single asciminib dose of 40 mg decreased asciminib area-under-curve (AUC) and concentration maximum (Cmax) by 40% and 50%, respectively.(1) Itraconazole 10 mg/mL solution contains 400 mg/mL of hydroxypropyl-beta-cyclodextrin.(2) Concurrent use of other oral products containing hydroxypropyl-beta-cyclodextrin with asciminib have not been fully characterized.(1) |
ITRACONAZOLE, SPORANOX |
Zavegepant/OATP1B3 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Zavegepant is a substrate of the organic anion transporting polypeptide 1B3 (OATP1B3) transporter. Inhibitors of OATP1B3 may increase zavegepant exposure.(1) CLINICAL EFFECTS: Concurrent use of OATP1B3 inhibitors may result in increased levels of and toxicity from zavegepant.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Concurrent administration of zavegepant with OATP1B3 inhibitors should be avoided.(1) DISCUSSION: In a study, rifampin (an OATP1B3 and NTCP inhibitor) at steady state increased the area-under-curve (AUC) and maximum concentration (Cmax) of zavegepant by 2.3-fold and 2.2-fold. Since rifampin is also a CYP3A4 inducer and zavegepant is metabolized by CYP3A4, concurrent use of zavegepant with other OATP1B3 inhibitors that are not CYP3A4 inducers may have an even more significant effect on zavegepant exposure.(1) OATP1B3 inhibitors include asciminib, atazanavir, belumosudil, cobicistat, cyclosporine, darolutamide, enasidenib, encorafenib, fostemsavir, glecaprevir/pibrentasvir, leflunomide, letermovir, lopinavir/ritonavir, paritaprevir, resmetirom, rifampin, ritonavir, teriflunomide, velpatasvir, voclosporin, and voxilaprevir.(2-9) |
ZAVZPRET |
Ritlecitinib/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ritlecitinib, immunosuppressives, and immunomodulators all suppress the immune system. CLINICAL EFFECTS: Concurrent use of ritlecitinib with immunosuppressives or immunomodulators may result in an increased risk of serious infections. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of ritlecitinib states that concurrent use of ritlecitinib with other JAK inhibitors, biologic immunomodulators, cyclosporine or other potent immunosuppressants is not recommended.(1) DISCUSSION: Serious infections have been reported in patients receiving ritlecitinib. Reported infections included appendicitis, COVID-19 infection (including pneumonia), and sepsis. Reports of viral reactivation, including herpes virus reactivation was reported in clinical studies with ritlecitinib.(1) |
LITFULO |
Erdafitinib/Strong CYP3A4 or Moderate CYP2C9 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Erdafitinib is metabolized by CYP3A4 and CYP2C9. Strong inhibitors of CYP3A4 or moderate inhibitors of CYP2C9 may inhibit the metabolism of erdafitinib.(1) CLINICAL EFFECTS: Concurrent use of strong CYP3A4 or moderate CYP2C9 inhibitors may increase the levels and effects of erdafitinib, including retinopathy and hyperphosphatemia.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US prescribing information states that concurrent use of erdafitinib with strong CYP3A4 inhibitors or moderate CYPC9 inhibitors should be avoided. If concurrent use cannot be avoided, monitor closely for adverse reactions and consider a dose modification based on prescribing information. If the strong CYP3A4 or moderate CYP2C9 inhibitor is discontinued, consider increasing the erdafitinib dose if patient does not have any drug-related toxicity.(1) DISCUSSION: In PKPB models, concurrent use of fluconazole (a moderate CYP2C9 and CYP3A4 inhibitor) resulted in erdafitinib mean ratios for concentration maximum (Cmax) and area-under-curve (AUC) of 121% and 148% , respectively, compared to erdafitinib alone.(1) In PKPB models, concurrent use of itraconazole (a strong CYP3A4 inhibitor and P-gp inhibitor) resulted in erdafitinib mean ratios for Cmax and AUC of 105% and 134%, respectively, compared to erdafitinib alone.(1) Strong inhibitors of CYP3A4 include: adagrasib, boceprevir, ceritinib, clarithromycin, cobicistat, idelalisib, indinavir, itraconazole, josamycin, ketoconazole, levoketoconazole, lonafarnib, lopinavir, mibefradil, mifepristone, nefazodone, nelfinavir, nirmatrelvir, paritaprevir, posaconazole, ribociclib, saquinavir, telaprevir, telithromycin, tipranavir, troleandomycin, tucatinib, and voriconazole.(2,3) Moderate inhibitors of CYP2C9 include: adagrasib, amiodarone, apazone, asciminib, benzbromarone, cannabidiol, fluconazole, miconazole, mifepristone, milk thistle, nitisinone, oxandrolone, phenylbutazone, and sulfaphenazole.(2,3) |
BALVERSA |
Etrasimod/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Etrasimod causes reversible sequestration of lymphocytes in lymphoid tissues, resulting in a mean 55% decrease in peripheral blood lymphocyte count at 52 weeks.(1) Other immunosuppressives and immune-modulators also suppress the immune system. CLINICAL EFFECTS: Concurrent use of etrasimod with immunosuppressive or immune-modulating agents may result in an increased risk of serious and fatal infections, such as disseminated herpetic infection, cryptococcal infection, or progressive multifocal leukoencephalopathy (PML).(1) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications increases the risk of adverse effects. PATIENT MANAGEMENT: The etrasimod US prescribing information states etrasimod has not been studied in combination with anti-neoplastic, immune-modulating, or immunosuppressive therapies. Concomitant administration of these therapies with etrasimod should be avoided because of the risk of additive immune effects during therapy and in the weeks following administration. Etrasimod's effect on peripheral lymphocytes may persist for up to 5 weeks after discontinuation.(1) When switching from drugs with prolonged immune effects, the half-life and mode of action of these drugs must be considered in order to avoid unintended additive immunosuppressive effects.(1) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections, cryptococcal meningitis, disseminated cryptococcal infections, and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients treated with other sphingosine-1 phosphate receptor modulators.(1) |
VELSIPITY |
Sirolimus Protein-Bound/Myelosuppressive Mod-Weak 3A4 Inh SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate and weak immunosuppressive CYP3A4 inhibitors may inhibit the metabolism of sirolimus by CYP3A4 and increase the risk of additive immunosuppression.(1) CLINICAL EFFECTS: Concurrent use of moderate or weak CYP3A4 inhibitors may result in elevated levels of and side effects from sirolimus including immunosuppression.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of sirolimus protein-bound injection (Fyarro) states a dose reduction to 56 mg/m2 is recommended when used concurrently with moderate or weak CYP3A4 inhibitors. Concurrent use with strong CYP3A4 inhibitors should be avoided.(1) DISCUSSION: In an open, randomized, cross-over trial in 18 healthy subjects, concurrent single doses of diltiazem (120 mg) and sirolimus (10 mg) increased sirolimus area-under-curve (AUC) and maximum concentration (Cmax) by 60% and by 43%, respectively. Sirolimus apparent oral clearance and volume of distribution decreased by 38% and 45%, respectively. There were no effects on diltiazem pharmacokinetics or pharmacodynamics.(2) In a study in 26 healthy subjects, concurrent sirolimus (2 mg daily) with verapamil (180 mg twice daily) increased sirolimus AUC and Cmax by 2.2-fold and 2.3-fold, respectively. The AUC and Cmax of the active S-enantiomer of verapamil each increased by 1.5-fold. Verapamil time to Cmax (Tmax) was increased by 1.2 hours.(2) Moderate CYP3A4 inhibitors linked to this monograph include: duvelisib, fedratinib, imatinib, and treosulfan.(3,4) Weak CYP3A4 inhibitors linked to this monograph include: asciminib, belumosudil, capivasertib, everolimus, lapatinib, larotrectinib, leflunomide, olaparib, palbociclib, and teriflunomide.(3,4) |
FYARRO |
Ropeginterferon alfa-2b/Slt Immunosuppress; Immunomodulator SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ropeginterferon alfa-2b and immunosuppressives both suppress the immune system. CLINICAL EFFECTS: Concurrent use of ropeginterferon alfa-2b with immunosuppressives may result in an increased risk of serious infections. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid concurrent use of myelosuppressive agents.(1-2) If concurrent use cannot be avoided, monitor for effects of excessive immunosuppression. DISCUSSION: In clinical trials, 20% of patients experienced leukopenia. Interferon alfa products may cause fatal or life-threatening infections.(1-2) |
BESREMI |
Atorvastatin/Asciminib SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Asciminib is an inhibitor of the BCRP, OATP1B1, and OATP1B3 transporters and may increase the absorption and/or decrease the elimination of atorvastatin.(1-3) CLINICAL EFFECTS: Concurrent use of asciminib may result in elevated levels of atorvastatin, which could result in rhabdomyolysis. PREDISPOSING FACTORS: The risk for myopathy or rhabdomyolysis may be greater in patients 65 years and older, inadequately treated hypothyroidism, renal impairment, carnitine deficiency, malignant hyperthermia, or in patients with a history of myopathy or rhabdomyolysis. Patients with a SLCO1B1 polymorphism that leads to decreased function of the hepatic uptake transporter OATP1B1 may have increased statin concentrations and be predisposed to myopathy or rhabdomyolysis. PATIENT MANAGEMENT: The manufacturer of asciminib states that concurrent use with atorvastatin should be avoided.(1,2) If concurrent therapy is deemed medically necessary, monitor patients for signs and symptoms of myopathy/rhabdomyolysis, including muscle pain/tenderness/weakness, fever, unusual tiredness, changes in the amount of urine, and/or discolored urine. DISCUSSION: In a PKPB model, concurrent use of asciminib 40 mg twice daily, 80 mg daily, and 200 mg twice daily increased the concentration maximum (Cmax) by 97%, 143% and 300%, respectively, and area-under-curve (AUC) by 81%, 122%, and 326%, respectively, of a single dose of atorvastatin (an OATP1B1 and OATP1B3 substrate).(4) In a PKPB model, concurrent use of asciminib 40 mg twice daily, 80 mg daily, and 200 mg twice daily increased the Cmax by 453%, 530% and 732%, respectively, and AUC by 190%, 202%, and 311%, respectively, of a single dose of rosuvastatin (an OATP1B1 and BCRP substrate).(4) |
AMLODIPINE-ATORVASTATIN, ATORVALIQ, ATORVASTATIN CALCIUM, CADUET, LIPITOR |
Rosuvastatin/Asciminib SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Asciminib is an inhibitor of the BCRP, OATP1B1, and OATP1B3 transporters and may increase the absorption and/or decrease the elimination of rosuvastatin.(1-3) CLINICAL EFFECTS: Concurrent use of asciminib may result in elevated levels of rosuvastatin, which could result in rhabdomyolysis. PREDISPOSING FACTORS: The risk for myopathy or rhabdomyolysis may be greater in patients 65 years and older, inadequately treated hypothyroidism, renal impairment, carnitine deficiency, malignant hyperthermia, or in patients with a history of myopathy or rhabdomyolysis. Patients with a SLCO1B1 polymorphism that leads to decreased function of the hepatic uptake transporter OATP1B1 may have increased statin concentrations and be predisposed to myopathy or rhabdomyolysis. Patients on rosuvastatin with ABCG2 polymorphisms leading to decreased or poor BCRP transporter function may have increased rosuvastatin concentrations and risk of myopathy. PATIENT MANAGEMENT: The manufacturer of asciminib states that concurrent use with rosuvastatin should be avoided.(1,2) If concurrent therapy is deemed medically necessary, monitor patients for signs and symptoms of myopathy/rhabdomyolysis, including muscle pain/tenderness/weakness, fever, unusual tiredness, changes in the amount of urine, and/or discolored urine. DISCUSSION: In a PKPB model, concurrent use of asciminib 40 mg twice daily, 80 mg daily, and 200 mg twice daily increased the concentration maximum (Cmax) by 453%, 530% and 732%, respectively, and area-under-curve (AUC) by 190%, 202%, and 311%, respectively, of a single dose of rosuvastatin (an OATP1B1 and BCRP substrate).(4) In a PKPB model, concurrent use of asciminib 40 mg twice daily, 80 mg daily, and 200 mg twice daily increased the Cmax by 97%, 143% and 300%, respectively, and AUC by 81%, 122%, and 326%, respectively, of a single dose of atorvastatin (an OATP1B1 and OATP1B3 substrate).(4) |
CRESTOR, EZALLOR SPRINKLE, ROSUVASTATIN CALCIUM, ROSUVASTATIN-EZETIMIBE, ROSZET |
Atrasentan/OATP1B1-3 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: OATP1B1 and 1B3 inhibitors may increase the absorption and/or decrease the hepatic uptake of atrasentan.(1) CLINICAL EFFECTS: Concurrent use of OATP1B1 or 1B3 inhibitors may result in elevated levels of and side effects from atrasentan, including fluid retention and hepatotoxicity.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of atrasentan states that concurrent use of OATP1B1 or 1B3 inhibitors should be avoided.(1) DISCUSSION: In a clinical study, atrasentan maximum concentration (Cmax) was 4.3 times higher and area-under-curve (AUC) was 3.8 times higher following coadministration of a single dose of 0.75 mg atrasentan with cyclosporine (OATP1B1 and 1B3 inhibitor) compared to atrasentan alone. OATP1B1 and 1B3 inhibitors include asciminib, atazanavir, belumosudil, boceprevir, clarithromycin, cobicistat, cyclosporine, eltrombopag, erythromycin, fostemsavir, gemfibrozil, glecaprevir-pibrentasvir, leflunomide, letermovir, lopinavir, nirmatrelvir, ombitasvir-paritaprevir, resmetirom, ritonavir, roxadustat, saquinavir, simeprevir, telaprevir, teriflunomide, tipranavir, vadadustat, velpatasvir, voclosporin, and voxilaprevir.(1,2) |
VANRAFIA |
There are 19 moderate interactions.
The clinician should assess the patient’s characteristics and take action as needed. Actions required for moderate interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration.
Drug Interaction | Drug Names |
---|---|
Etoposide/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: P-glycoprotein (P-gp) inhibition may increase etoposide cellular concentration, decrease biliary or renal elimination, and increase systemic absorption of oral etoposide.(1-4) CLINICAL EFFECTS: Increased cellular or systemic levels of etoposide may result in etoposide toxicity. PREDISPOSING FACTORS: The interaction magnitude may be greater in patients receiving oral etoposide, or with impaired renal or hepatic function. PATIENT MANAGEMENT: Anticipate and monitor for increased hematologic and gastrointestinal toxicities. Adjust or hold etoposide dose when needed. In patients receiving high-dose cyclosporine therapy, etoposide dosages should be reduced by 50%.(1) Monitor for signs of etoposide toxicity. Dosages may need further adjustment. The manufacturer of vimseltinib states concurrent use with P-gp substrates should be avoided. If concurrent use cannot be avoided, take vimseltinib at least 4 hours prior to etoposide.(5) DISCUSSION: In a study in 16 patients, the administration of etoposide plus cyclosporine increased etoposide area-under-curve (AUC) by 59% and half-life by 73%. Etoposide renal clearance was decreased by 38% and nonrenal clearance was decreased by 52%. White blood cell count nadir was significantly lower during concurrent therapy with cyclosporine and etoposide (1200 mm3) when compared to etoposide alone (2500 mm3). There was also a trend for higher dosages of cyclosporine to exert increased effects on etoposide, although this difference did not reach statistical significance.(1) P-gp inhibitors linked to this monograph are asciminib, asunaprevir, azithromycin, belumosudil, cimetidine, clarithromycin, cyclosporine, daridorexant, danicopan, diosmin, flibanserin, fostamatinib, glecaprevir/pibrentasvir, itraconazole, ivacaftor, josamycin, ketoconazole, lonafarnib, mavorixafor, neratinib, osimertinib, pirtobrutinib, propafenone, quinidine, sofosbuvir/velpatasvir/voxilaprevir, tepotinib, tezacaftor, tucatinib, valbenazine, vemurafenib, verapamil, vimseltinib, and voclosporin. |
ETOPOPHOS, ETOPOSIDE |
Selected NSAIDs/Selected CYP2C9 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The major metabolic pathway for many non-steroidal anti-inflammatory agents (NSAIDs) is CYP2C9. Inhibitors of CYP2C9 include: amiodarone, asciminib, cannabidiol, diosmin, fluconazole, ketoconazole, miconazole, nitisinone, oxandrolone, piperine, voriconazole, and zafirlukast.(1,2) CLINICAL EFFECTS: Concurrent use of NSAIDs with inhibitors of CYP2C9 may result in increased levels of and adverse effects from NSAIDs, including increased risk for bleeding. NSAIDs linked to this monograph are celecoxib, diclofenac, flurbiprofen, ibuprofen, meloxicam, naproxen, parecoxib, piroxicam and valdecoxib. PREDISPOSING FACTORS: Higher doses of either agent would be expected to increase the risk for serious adverse effects such as gastrointestinal bleeding (GIB) or renal failure. Patients who smoke, are elderly, debilitated, dehydrated, have renal impairment, or who have a history of GIB due to NSAIDs are also at increased risk for serious adverse events.(3-7) The risk for bleeding episodes may be greater in patients with disease-associated factors (e.g. thrombocytopenia). Drug associated risk factors include concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism and/or have an inherent risk for bleeding (e.g. NSAIDs). PATIENT MANAGEMENT: Patients on routine NSAID therapy when an inhibitor of CYP2C9 is started should be evaluated for patient-specific risk factors for NSAID toxicity. Based upon this risk assessment, consider dose reduction of the NSAID or close monitoring for adverse effects. For a patient already receiving a CYP2C9 inhibitor when an NSAID is started, consider initiating the NSAID at a lower than usual dose, particularly when predisposing risk factors for harm are present. The manufacturer of celecoxib recommends that celecoxib be introduced at the lowest recommended dose in patients receiving fluconazole therapy.(3) The manufacturer of fluconazole states that half the dose of celecoxib may be necessary when fluconazole is added.(4) It would be prudent to follow this recommendation with other CYP2C9 inhibitors and to decrease the dose of celecoxib in patients in whom CYP2C9 inhibitors are added to celecoxib therapy. The manufacturer of diclofenac-misoprostol states that the total daily dose of diclofenac should not exceed the lowest recommended dose of 50 mg twice daily in patients taking CYP2C9 inhibitors.(5) It would be prudent to use the lowest recommended dose of other diclofenac formulations in patients taking CYP2C9 inhibitors. The manufacturer of parecoxib states that the dose of parecoxib should be reduced in those patients who are receiving fluconazole therapy.(6) It would be prudent to follow this recommendation with other CYP2C9 inhibitors. If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. When applicable, perform agent-specific laboratory test (e.g. INR, aPTT) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. DISCUSSION: The concomitant administration of celecoxib and fluconazole (200 mg daily) resulted in a 2-fold increase in celecoxib plasma concentration.(3) In vitro studies in human hepatocytes found that amiodarone inhibited diclofenac metabolism.(7) In two separate studies, single doses of diclofenac (50 mg) or ibuprofen (400 mg) were coadministered with the last dose of voriconazole (400 mg q12h on Day 1, followed by 200 mg q12h on Day 2). Voriconazole increased the mean AUC of diclofenac by 78% and increased the AUC of the active isomer of ibuprofen by 100%.(8-10) Coadministration of diosmin increased diclofenac levels by 63%.(2) Coadministration of flurbiprofen or ibuprofen with fluconazole increased the AUC of flurbiprofen by 81% and of the active ibuprofen by 82% compared with either agent alone.(4) Concurrent voriconazole increased meloxicam AUC by 47%.(11,12) The concurrent administration of fluconazole and parecoxib resulted in increases in the area-under-curve (AUC) and maximum concentration (Cmax) of valdecoxib (the active metabolite of parecoxib) by 62% and 19%, respectively.(6) In a study, single dose diclofenac (50mg) given concurrently with the last dose of voriconazole (400 mg every 12 hours on Day 1, 200 mg every 12 hours on Day 2) increased Cmax and AUC by 2.1-fold and 1.8-fold, respectively. (5) Inhibitors of CYP2C9 include: amiodarone, asciminib, cannabidiol, diosmin, fluconazole, ketoconazole, miconazole, nitisinone, oxandrolone, piperine, voriconazole, and zafirlukast.(1,2) |
ANAPROX DS, ANJESO, ARTHROTEC 50, ARTHROTEC 75, CALDOLOR, CAMBIA, CELEBREX, CELECOXIB, COMBOGESIC, COMBOGESIC IV, CONSENSI, DICLOFENAC, DICLOFENAC POTASSIUM, DICLOFENAC SODIUM, DICLOFENAC SODIUM ER, DICLOFENAC SODIUM MICRONIZED, DICLOFENAC SODIUM-MISOPROSTOL, EC-NAPROSYN, ELYXYB, FELDENE, FLURBIPROFEN, HYDROCODONE-IBUPROFEN, IBU, IBUPAK, IBUPROFEN, IBUPROFEN LYSINE, IBUPROFEN-FAMOTIDINE, INFLAMMACIN, INFLATHERM(DICLOFENAC-MENTHOL), LOFENA, LURBIPR, MELOXICAM, NAPRELAN, NAPROSYN, NAPROTIN, NAPROXEN, NAPROXEN SODIUM, NAPROXEN SODIUM CR, NAPROXEN SODIUM ER, NAPROXEN-ESOMEPRAZOLE MAG, NEOPROFEN, PIROXICAM, SUMATRIPTAN SUCC-NAPROXEN SOD, SYMBRAVO, TOXICOLOGY SALIVA COLLECTION, TRESNI, TREXIMET, VIMOVO, VIVLODEX, ZIPSOR, ZORVOLEX, ZYNRELEF |
Everolimus/Moderate CYP3A4; P-gp Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 and/or p-glycoprotein (P-gp) may inhibit the metabolism of everolimus.(1) CLINICAL EFFECTS: Concurrent use of moderate inhibitors of CYP3A4 and/or P-gp may result in elevated levels of and toxicity from everolimus.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: If concurrent therapy with everolimus and moderate inhibitors of CYP3A4 and/or P-gp is warranted, reduce the dosage of everolimus.(1) In patients with advanced hormone receptor-positive, HER2-negative breast cancer (HR+BC); advanced pancreatic neuroendocrine tumors (PNET); or advanced renal cell carcinoma; or renal angiomyolipoma with TSC, decrease the dose of everolimus to 2.5 mg daily. An increase to 5 mg daily may be considered based on patient tolerance. If the inhibitor is discontinued, allow an elimination period of 2-3 days before increasing the dose to that used prior to the inhibitor.(1) In patients with subependymal giant cell astrocytoma with TSC, reduce the dosage of everolimus by 50% to maintain trough concentrations of 5 ng/ml to 15 ng/ml. If the patient is already receiving 2.5 mg daily, consider a dose of 2.5 mg every other day. Assess everolimus levels 2 weeks after the addition of the inhibitor. Resume the everolimus dose used prior to initiation of the inhibitor after the inhibitor has been discontinued for 3 days, and assess everolimus trough levels 2 weeks later.(1) Guidelines from the American Society of Transplantation state that protease inhibitors are contraindicated, and recommend avoiding the use of erythromycin with everolimus. If the combination must be used, lower the dose of everolimus by up to 50% upon initiation of the antibiotic and monitor levels daily.(3) DISCUSSION: In a study in healthy subjects, concurrent use of erythromycin, a moderate CYP3A4 inhibitor and a P-gp inhibitor, increased everolimus AUC and Cmax by 2.0-fold and 4.4-fold, respectively.(1) In a study in healthy subjects, concurrent use of ketoconazole, a strong CYP3A4 inhibitor and a P-gp inhibitor, increased everolimus area-under-curve (AUC) and maximum concentration (Cmax) by 3.9-fold and 15.0-fold, respectively.(1) In a study in healthy subjects, concurrent use of verapamil, a moderate CYP3A4 inhibitor and a P-gp inhibitor, increased everolimus AUC and Cmax by 2.3-fold and 3.5-fold, respectively.(1) In a study in 16 healthy subjects, concurrent use of verapamil increased everolimus Cmax and AUC by 130% and 250%, respectively.(4) Moderate CYP3A4 and/or P-gp inhibitors include: abrocitinib, amiodarone, amprenavir, aprepitant, asciminib, asunaprevir, atazanavir, avacopan, azithromycin, belumosudil, cimetidine, clofazimine, conivaptan, crizotinib, danicopan, daridorexant, delavirdine, diltiazem, diosmin, dronedarone, duvelisib, erythromycin, fedratinib, flibanserin, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, fostamatinib, imatinib, isavuconazonium, ivacaftor, ledipasvir, lenacapavir, letermovir, mavorixafor, netupitant, nilotinib, nirogacestat, pirtobrutinib, propafenone, schisandra, tepotinib, tezacaftor, tofisopam, treosulfan, vemurafenib, verapamil, vimseltinib, and voclosporin.(5-7) |
AFINITOR, AFINITOR DISPERZ, EVEROLIMUS, TORPENZ, ZORTRESS |
Lesinurad/Moderate CYP2C9 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP2C9 may inhibit the metabolism of lesinurad.(1) CLINICAL EFFECTS: Concurrent use of moderate inhibitors of CYP2C9 may result in elevated levels and toxicity from lesinurad, include nephrotoxicity.(1) PREDISPOSING FACTORS: Patients with decreased renal function (CrCl less than 60 ml/min) and patients not receiving a xanthine oxidase inhibitor may be at increased risk of nephrotoxicity.(1) PATIENT MANAGEMENT: Approach the concurrent use of lesinurad and moderate inhibitors of CYP2C9 with caution.(1) Monitor renal function in patients receiving concurrent therapy closely. Interrupt therapy and measure serum creatinine promptly in patients who report flank pain and/or nausea/vomiting. DISCUSSION: Fluconazole (200 mg daily), a moderate inhibitor of CYP2C9, increased lesinurad levels by 50%.(1) |
DUZALLO |
Lemborexant (Less Than or Equal To 5 mg)/Weak CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Inhibitors of CYP3A4 may inhibit the metabolism of lemborexant.(1) CLINICAL EFFECTS: Concurrent use of an inhibitor of CYP3A4 may result in increased levels of and effects from lemborexant, including somnolence, fatigue, CNS depressant effects, daytime impairment, headache, and nightmare or abnormal dreams.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The maximum recommended dose of lemborexant with concurrent use of a weak CYP3A4 inhibitors should not exceed 5 mg per dose.(1) DISCUSSION: Lemborexant is a CYP3A4 substrate. In a PKPB model, concurrent use of lemborexant with itraconazole increased area-under-curve (AUC) and concentration maximum (Cmax) by 3.75-fold and 1.5-fold, respectively. Concurrent use of lemborexant with fluconazole increased AUC and Cmax by 4.25-fold and 1.75-fold, respectively.(1) Weak inhibitors of CYP3A4 include: alprazolam, amiodarone, amlodipine, asciminib, azithromycin, Baikal skullcap, belumosudil, berberine, bicalutamide, blueberry, brodalumab, cannabidiol, capivasertib, chlorzoxazone, cilostazol, cimetidine, ciprofloxacin, clotrimazole, cranberry, cyclosporine, daclatasvir, daridorexant, delavirdine, dihydroberberine, diosmin, everolimus, flibanserin, fosaprepitant, fostamatinib, gepotidacin, ginkgo, givinostat, glecaprevir/pibrentasvir, goldenseal, grazoprevir, isoniazid, istradefylline, ivacaftor, lacidipine, lapatinib, larotrectinib, lazertinib, leflunomide, levamlodipine, linagliptin, lomitapide, lurasidone, mavorixafor, olaparib, osilodrostat, palbociclib, pazopanib, peppermint oil, piperine, propiverine, propofol, ranitidine, ranolazine, remdesivir, resveratrol, roxithromycin, rucaparib, selpercatinib, simeprevir, sitaxsentan, skullcap, suvorexant, teriflunomide, ticagrelor, tolvaptan, trofinetide, viloxazine, and vonoprazan.(1,2) |
DAYVIGO |
Ubrogepant/Weak CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Weak inhibitors of CYP3A4 may inhibit the metabolism of ubrogepant.(1) CLINICAL EFFECTS: Concurrent use of ubrogepant with weak CYP3A4 inhibitors may result in an increase in exposure of ubrogepant.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer recommends a dosage adjustment of ubrogepant when used concomitantly with weak CYP3A4 inhibitors. Initial dose of ubrogepant should not exceed 50 mg when used concomitantly with weak inhibitors of CYP3A4. A second dose may be given within 24 hours but should not exceed 50 mg when used concurrently with weak CYP3A4 inhibitors.(1) DISCUSSION: Coadministration of ubrogepant with verapamil, a moderate CYP3A4 inhibitor, resulted in a 3.5-fold and 2.8-fold increase in area-under-curve (AUC) and concentration maximum (Cmax), respectively. No dedicated drug interaction study was conducted to assess concomitant use with weak CYP3A4 inhibitors. The conservative prediction of the maximal potential increase in ubrogepant exposure with weak CYP3A4 inhibitors is not expected to be more than 2-fold.(1) Weak inhibitors of CYP3A4 include: alprazolam, amiodarone, amlodipine, asciminib, azithromycin, Baikal skullcap, berberine, bicalutamide, blueberry, brodalumab, cannabidiol, capivasertib, chlorzoxazone, cilostazol, cimetidine, ciprofloxacin, clotrimazole, cranberry, cyclosporine, daclatasvir, delavirdine, dihydroberberine, diosmin, elagolix, everolimus, flibanserin, fosaprepitant, fostamatinib, gepotidacin, givinostat, glecaprevir/pibrentasvir, goldenseal, grazoprevir, isoniazid, istradefylline, ivacaftor, lacidipine, lapatinib, larotrectinib, lazertinib, leflunomide, levamlodipine, linagliptin, lomitapide, lurasidone, maribavir, mavorixafor, osilodrostat, palbociclib, pazopanib, peppermint oil, piperine, propiverine, propofol, ranitidine, ranolazine, remdesivir, resveratrol, roxithromycin, simeprevir, sitaxsentan, skullcap, suvorexant, teriflunomide, ticagrelor, tolvaptan, trofinetide, viloxazine, and vonoprazan.(2,3) |
UBRELVY |
Ustekinumab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Ustekinumab, immunosuppressives, and immunomodulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of ustekinumab with immunosuppressive or immunomodulating agents may result in an increased risk for serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of ustekinumab recommends caution because the concurrent use of ustekinumab with immunosuppressive agents may increase the risk of infection. If concurrent therapy is warranted, consider the risk of additive immune suppression and monitor based on prescribing information for both agents.(1) DISCUSSION: Ustekinumab has not been studied in combination with other immunosuppressants in psoriasis studies. In psoriatic arthritis studies, concomitant methotrexate use did not appear to influence the safety or efficacy of ustekinumab. In Crohn's disease and ulcerative colitis studies, concomitant use of immunosuppressants or corticosteroids did not appear to influence the safety or efficacy of ustekinumab. If concurrent therapy is warranted, consider the potential for increased immunosuppressive risks from both agents.(1) The most common infections reported by ustekinumab treated patients in the clinical trial periods included nasopharyngitis(8%) and upper respiratory tract infection(5%). Serious bacterial, mycobacterial, fungal, and viral infections were observed in patients receiving ustekinumab. Cases of interstitial pneumonia, eosinophilic pneumonia, and cryptogenic organizing pneumonia resulting in respiratory failure or prolonged hospitalization have been reported in patients receiving ustekinumab.(1) |
OTULFI, PYZCHIVA, SELARSDI, STELARA, STEQEYMA, USTEKINUMAB, USTEKINUMAB-AEKN, USTEKINUMAB-TTWE, WEZLANA, YESINTEK |
COVID-19 Vaccines/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Immunosuppressants and immunomodulators may prevent the immune system from properly responding to the COVID-19 vaccine.(1,2) CLINICAL EFFECTS: Administration of a COVID-19 vaccine with immunosuppressants or immunomodulators may interfere with vaccine-induced immune response and impair the efficacy of the vaccine. However, patients should be offered and given a COVID-19 vaccine even if the use and timing of immunosuppressive agents cannot be adjusted.(1,2) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: In an effort to optimize COVID-19 vaccine response, the American College of Rheumatology (ACR) published conditional recommendations for administration of COVID-19 vaccines with immunosuppressants and immunomodulators.(1) The CDC also provides clinical considerations for COVID-19 vaccination in patients on immunosuppressants.(2) The CDC states that all immunocompromised patients over 6 months of age should receive at least 1 dose of COVID-19 vaccine if eligible. See the CDC's Interim Clinical Considerations for Use of COVID-19 Vaccines for specific recommendations based on age, vaccination history, and vaccine manufacturer.(2) The ACR states that in general, immunosuppressants and immunomodulators should be held for 1-2 weeks after each vaccine dose. See below for specific recommendations for certain agents.(1) The CDC advises planning for vaccination at least 2 weeks before starting or resuming immunosuppressive therapy.(2) Patients should be offered and given a COVID-19 vaccine even if the use and timing of immunosuppressive agents cannot be adjusted.(1,2) B-cell depleting agents, including rituximab: The ACR recommends consulting with the rheumatologist to determine optimal timing of COVID-19 vaccination. Measuring CD19 B cells may be considered to determine need for a booster vaccine dose. If B cell levels are not measured, a supplemental vaccine dose 2-4 weeks before the next scheduled dose of rituximab is recommended.(1) The CDC states that the utility of B-cell quantification to guide clinical care is not known and is not recommended. Patients who receive B-cell depleting therapy should receive COVID-19 vaccines about 4 weeks before the next scheduled dose. For patients who received 1 or more doses of COVID-19 vaccine during treatment with B-cell-depleting therapies that were administered over a limited period (e.g., as part of a treatment regimen for certain malignancies), revaccination may be considered. The suggested interval to start revaccination is about 6 months after completion of the B-cell-depleting therapy.(2) Abatacept: - Subcutaneous abatacept should be withheld for 1-2 weeks after each vaccine dose, as disease activity allows. - For intravenous abatacept, time administration so that vaccination will occur 1 week before the next abatacept infusion.(1) Cyclophosphamide: When feasible, administer cyclophosphamide one week after each COVID-19 vaccine dose.(1) Recipients of hematopoietic cell transplant or CAR-T-cell therapy who received one or more doses of COVID-19 vaccine prior to or during treatment should undergo revaccination following the current CDC recommendations for unvaccinated patients. Revaccination should start at least 3 months (12 weeks) after transplant or CAR-T-cell therapy.(2) TNF-alpha inhibitors and cytokine inhibitors: The ACR was not able to reach consensus on whether to modify dosing or timing of these agents with COVID-19 vaccination.(1) The CDC includes these agents in their general recommendation to hold therapy for at least 2 weeks following vaccination.(2) DISCUSSION: The ACR convened a COVID-19 Vaccine Guidance Task Force to provide guidance on optimal use of COVID-19 vaccines in rheumatology patients. These recommendations are based on limited clinical evidence of COVID-19 vaccines in patients without rheumatic and musculoskeletal disorders and evidence of other vaccines in this patient population.(1) The ACR recommendation for rituximab is based on studies of humoral immunity following receipt of other vaccines. These studies have uncertain generalizability to vaccination against COVID-19, as it is unknown if efficacy is attributable to induction of host T cells versus B cell (antibody-based) immunity.(1) The ACR recommendation for mycophenolate is based on preexisting data of mycophenolate on non-COVID-19 vaccine immunogenicity. Emerging data suggests that mycophenolate may impair SARS-CoV-2 vaccine response in rheumatic and musculoskeletal disease and transplant patients.(1) The ACR recommendation for methotrexate is based on data from influenza vaccines and pneumococcal vaccines with methotrexate.(1) The ACR recommendation for JAK inhibitors is based on concerns related to the effects of JAK inhibitors on interferon signaling that may result in a diminished vaccine response.(1) The ACR recommendation for subcutaneous abatacept is based on several studies suggesting a negative effect of abatacept on vaccine immunogenicity. The first vaccine dose primes naive T cells, naive T cell priming is inhibited by CTLA-4, and abatacept is a CTLA-4Ig construct. CTLA-4 should not inhibit boosts of already primed T cells at the time of the second vaccine dose.(1) |
COMIRNATY 2024-2025, MODERNA COVID 24-25(6M-11Y)EUA, NOVAVAX COVID 2024-2025 (EUA), PFIZER COVID 2024-25(5-11Y)EUA, PFIZER COVID 2024-25(6M-4Y)EUA, SPIKEVAX 2024-2025 |
Atogepant/OATP1B1-3 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Atogepant is a substrate of OATP1B1 and 1B3. Inhibitors of these transporters may increase the GI absorption and/or decrease the hepatic uptake of atogepant.(1) CLINICAL EFFECTS: Concurrent use of OATP1B1 or 1B3 inhibitors may result in elevated levels of and side effects from atogepant, including nausea, constipation and fatigue.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of atogepant states that, when used concurrently with an OATP inhibitor for prevention of episodic migraine, the atogepant dose should be limited to 10 mg or 30 mg once daily. When used concurrently with an OATP inhibitor for prevention of chronic migraines, the atogepant dose should be limited to 30 mg once daily.(1) DISCUSSION: In a clinical trial of healthy subjects, single-dose rifampin, an OATP inhibitor, increased the atogepant area-under-curve (AUC) and maximum concentration (Cmax) by 2.85-fold and 2.23-fold, respectively.(1) OATP1B1 and 1B3 inhibitors include asciminib, atazanavir, belumosudil, cyclosporine, darunavir, eltrombopag, erythromycin, gemfibrozil, glecaprevir-pibrentasvir, ledipasvir, leflunomide, letermovir, paritaprevir, resmetirom, ritonavir, roxadustat, simeprevir, sofosbuvir, teriflunomide, vadadustat, velpatasvir, and voclosporin.(1,2) |
QULIPTA |
Warfarin/Asciminib SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Asciminib in a moderate CYP2C9 inhibitor(1) which may decrease the metabolism of the S-enantiomer of warfarin. Also, asciminib and warfarin therapy may both increase the risk of bleeding.(1,2) CLINICAL EFFECTS: Concurrent use of asciminib may result in elevated levels of warfarin and increased INR.(1) Concurrent use of warfarin and asciminib may increase the risk for bleeding. PREDISPOSING FACTORS: The risk for bleeding episodes may be greater in patients with disease-associated factors (e.g. thrombocytopenia). Drug associated risk factors include concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism and/or have an inherent risk for bleeding (e.g. NSAIDs). Pharmacogenomic information: patients with a CYP2C9 intermediate metabolizer genotype, and/or 1-2 copies of a reduced function VKORC1 gene are expected to be more susceptible to this interaction. Although patients with a pre-existing CYP2C9 poor metabolizer genotype are expected to be less susceptible to effects from this drug combination, their reduced function genotypes (e.g. CYP2C9 *1/*3, *2/*2, *2/*3, and *3/*3) result in an inherently higher warfarin half-life and risk for warfarin-associated bleeding. CYP2C9 poor metabolizers generally require lower anticoagulant doses and more time (>2 to 4 weeks) to achieve effective and safe anticoagulation than patients without these CYP2C9 variants. PATIENT MANAGEMENT: Monitor INRs more frequently until stable in patients who start asciminib therapy, or have the asciminib dose adjusted.(1) If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin and/or hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. When applicable, perform agent-specific laboratory test (e.g. INR, aPTT) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. The time of highest risk for a coumarin-type drug interaction is when the precipitant drug is initiated or discontinued. Contact the prescriber before initiating, altering the dose or discontinuing either drug. Discontinue anticoagulation in patients with active pathologic bleeding. DISCUSSION: In clinical studies, coadministration of asciminib 40 mg twice daily, 80 mg once daily, and 200 mg twice daily, the area-under-the-curve (AUC) of S-warfarin increased by 41%, 52%, and 314%, respectively. Additionally, the maximum concentration (Cmax) of S-warfarin increased by 8%, 4%, and 7%, respectively.(1) |
JANTOVEN, WARFARIN SODIUM |
Sarilumab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Sarilumab, immunosuppressives, and immunomodulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of sarilumab with immunosuppressive or immunomodulating agents may result in an increased risk for serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of sarilumab recommends caution because the concurrent use of sarilumab with immunosuppressive agents may increase the risk of infection. If concurrent therapy is warranted, consider the risk of additive immune suppression and monitor based on prescribing information for both agents.(1) DISCUSSION: Sarilumab was studied as monotherapy and in combination with methotrexate or conventional disease modifying antirheumatic drugs (DMARDs) in rheumatoid arthritis studies. Sarilumab has not been studied with biological DMARDs and concurrent use should be avoided. If concurrent therapy is warranted, consider the potential for increased immunosuppressive risks from both agents.(1) The most common infections reported by sarilumab treated patients in the clinical trial periods included pneumonia and cellulitis. Serious bacterial, mycobacterial, fungal, and viral infections were observed in patients receiving sarilumab. Cases of tuberculosis, candidiasis, and pneumocystis with sarilumab have been reported.(1) |
KEVZARA |
Ublituximab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Ublituximab, immunosuppressives, and immunomodulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of ublituximab with immunosuppressive or immunomodulating agents may result in an increased risk for serious infections.(1) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: The US manufacturer of ublituximab recommends caution because the concurrent use of ublituximab with immunomodulating or immunosuppressive agents, including immunosuppressant doses of corticosteroids, may increase the risk of infection.(1) If concurrent therapy is warranted, consider the risk of additive immune suppression and monitor based on prescribing information for both agents. When switching from agents with immune effects, the half-life and mechanism of action of these drugs must be taken into consideration in order to prevent additive immunosuppressive effects.(1) DISCUSSION: The most common infections reported by ublituximab-treated patients in the clinical trial periods included upper respiratory tract infections and urinary tract infections. Serious, including life-threatening or fatal, bacterial and viral infections were observed in patients receiving ublituximab.(1) Serious and/or fatal bacterial, fungal, and new or reactivated viral infections have been associated with other anti-CD20 B-cell depleting therapies. There were no cases of progressive multifocal leukoencephalopathy (PML) reported during the clinical trials; however, there have been reports of PML during or following completion of other anti-CD20 B-cell depleting therapies.(1) |
BRIUMVI |
Tocilizumab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Tocilizumab, immunosuppressives, and immunomodulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of tocilizumab with immunosuppressive or immunomodulating agents may result in an increased risk for serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of tocilizumab recommends caution because the concurrent use of tocilizumab with immunosuppressive agents may increase the risk of infection. If concurrent therapy is warranted, consider the risk of additive immune suppression and monitor based on prescribing information for both agents.(1) DISCUSSION: Tocilizumab was studied as monotherapy and in combination with methotrexate, non-biologic DMARDs or corticosteroids, depending on the indication. Tocilizumab has not been studied with biological DMARDs and concurrent use should be avoided. If concurrent therapy is warranted, consider the potential for increased immunosuppressive risks from both agents.(1) The most common infections reported by tocilizumab treated patients in the clinical trial periods included pneumonia, urinary tract infection, cellulitis, herpes zoster, gastroenteritis, diverticulitis, sepsis and bacterial arthritis. Serious bacterial, mycobacterial, fungal, and viral infections were observed in patients receiving tocilizumab. Cases of tuberculosis, cryptococcus, aspergillosis, candidiasis, and pneumocystosis have been reported.(1) |
ACTEMRA, ACTEMRA ACTPEN, TOFIDENCE, TYENNE, TYENNE AUTOINJECTOR |
Momelotinib/OATP1B1-3 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: OATP1B1 and 1B3 inhibitors may decrease the hepatic uptake of momelotinib.(1) CLINICAL EFFECTS: Concurrent use of OATP1B1 and 1B3 inhibitors may result in elevated levels of and side effects from momelotinib, including myelosuppression and hepatotoxicity.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Concurrent use of momelotinib with OATP1B1 and 1B3 inhibitors should be approached with caution. Monitor patients closely for adverse reactions and consider dose modifications per momelotinib prescribing recommendations.(1) DISCUSSION: Concurrent administration of a single dose rifampin, an OATP1B1/1B3 inhibitor, increased the maximum concentration (Cmax) and area-under-curve (AUC) of a single dose of momelotinib by 40% and 57%, respectively. The M21 metabolite Cmax increased 6% and AUC increased 12%.(1) OATP1B1 inhibitors include asciminib, atazanavir, belumosudil, boceprevir, cobicistat, cyclosporine, darolutamide, darunavir, eltrombopag, enasidenib, encorafenib, erythromycin, fostemsavir, gemfibrozil, glecaprevir-pibrentasvir, ledipasvir, letermovir, lopinavir, nirmatrelvir, paritaprevir, resmetirom, rifampin, roxadustat, saquinavir, simeprevir, telaprevir, tipranavir, vadadustat, velpatasvir, and voclosporin.(1,2) |
OJJAARA |
Tacrolimus/Myelosuppressive Mod-Weak CYP3A4 Inh SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate and weak immunosuppressive inhibitors of CYP3A4 may inhibit the metabolism of tacrolimus and increase the risk of additive immunosuppression.(1) CLINICAL EFFECTS: Concurrent use of an immunosuppressive CYP3A4 inhibitor may result in elevated levels of and toxicity from tacrolimus, including nephrotoxicity, neurotoxicity, immunosuppression, and prolongation of the QTc interval and life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of tacrolimus recommends monitoring tacrolimus whole blood trough concentrations and reducing tacrolimus dose if needed.(1) Consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a study of 26 renal transplant recipients, conjugated estrogens 3.75 mg daily increased the tacrolimus dose-corrected concentration of tacrolimus by 85.6%. Discontinuation of the conjugated estrogens led to a decrease in tacrolimus concentration of 46.6%.(3) A case report describes a 65-year-old kidney transplant recipient who was stable on tacrolimus 9 mg per day with trough levels of 5 to 7.5 ng/mL. Ten days after starting on estradiol gel 0.5 mg per day, her tacrolimus level rose to 18.3 ng/mL and serum creatinine (Scr) rose from 1.1 mg/dL at baseline to 2 mg/dL. Tacrolimus dose was reduced by 60%, and trough levels and Scr normalized after two weeks.(4) A study of 16 healthy volunteers found that elbasvir 50 mg/grazoprevir 200 mg daily increased the area-under-curve (AUC) of tacrolimus by 43%, while the maximum concentration (Cmax) of tacrolimus was decreased by 40%.(5) An analysis of FAERS data from 2004-2017, found a significant assoc ation between transplant rejection and concurrent use of tacrolimus and clotrimazole (reporting odds ration 1.92, 95% CI). A retrospective study of 7 heart transplant patients on concurrent tacrolimus and clotrimazole troche showed a significant correlation between tacrolimus trough concentration and AUC after clotrimazole discontinuation. Tacrolimus clearance and bioavailability after clotrimazole discontinuation was 2.2-fold greater (0.27 vs. 0.59 L/h/kg) and the trough concentration decreased from 6.5 ng/mL at 1 day to 5.3 ng/mL at 2 days after clotrimazole discontinuation.(7) A retrospective study of 26 heart transplant patients found that discontinuation of concurrent clotrimazole with tacrolimus in the CYP3A5 expresser group had a 3.3-fold increase in apparent oral clearance and AUC of tacrolimus (0.27 vs. 0.89 L/h/kg) compared to the CYP3A5 non expresser group with a 2.2-fold mean increase (0.18 vs. 0.39 L/h/kg).(8) A study of 6 adult kidney transplant recipients found that clotrimazole (5-day course) increased the tacrolimus AUC 250% and the blood trough concentrations doubled (27.7 ng/ml versus 27.4 ng/ml). Tacrolimus clearance decreased 60% with coadministration of clotrimazole.(9) A case report describes a 23-year-old kidney transplant recipient who was stable on tacrolimus 5 mg twice daily, mycophenolate mofetil 30 mg daily, prednisone (30 mg daily tapered over time to 5 mg), and clotrimazole troche 10 mg four times daily. Discontinuation of clotrimazole resulted in a decrease in tacrolimus trough levels from 13.7 ng/ml to 5.4 ng/ml over a period of 6 days. Clotrimazole was restarted with tacrolimus 6 mg resulting in an increased tacrolimus level of 19.2 ng/ml.(10) A retrospective study in 95 heart transplant recipients on concurrent clotrimazole and tacrolimus found a median tacrolimus dose increase of 66.7% was required after clotrimazole discontinuation. Tacrolimus trough concentration was found to have decreased 42.5% after clotrimazole discontinuation.(11) A retrospective study in 65 pancreas transplant patients on concurrent tacrolimus, clotrimazole, cyclosporine, and prednisone found that clotrimazole discontinuation at 3 months after transplantation may cause significant tacrolimus trough level reductions.(12) Moderate CYP3A4 inhibitors linked to this monograph include: duvelisib, fedratinib, imatinib, and treosulfan.(6) Weak CYP3A4 inhibitors linked to this monograph include: asciminib, belumosudil, capivasertib, everolimus, larotrectinib, leflunomide, olaparib, palbociclib, and teriflunomide.(6) |
ASTAGRAF XL, ENVARSUS XR, PROGRAF, TACROLIMUS, TACROLIMUS XL |
Letermovir/Select OATP1B1-3 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: OATP1B1 and 1B3 inhibitors may decrease the hepatocyte uptake and increase the plasma concentration of letermovir.(1) CLINICAL EFFECTS: Concurrent use of OATP1B1 and 1B3 inhibitors may result in elevated levels of and side effects from letermovir, including diarrhea, nausea, abdominal pain, and peripheral edema.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Concurrent use of letermovir with OATP1B1 and 1B3 inhibitors should be approached with caution. Monitor patients closely for adverse reactions and consider dose modifications per prescribing recommendations.(1) DISCUSSION: Letermovir is a substrate of OATP1B1 and 1B3. Co-administration of letermovir with drugs that are inhibitors of OATP1B1 and 1B3 transporters may result in increases in letermovir plasma concentrations.(1) OAT1B1 and 1B3 inhibitors include asciminib, belumosudil, enasidenib, glecaprevir/pibrentasvir, paritaprevir, and vadadustat.(2-6) |
PREVYMIS |
Pravastatin/Asciminib SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Asciminib is an inhibitor of OATP1B1 and OATP1B3.(1-3) Pravastatin is a substrate for OATP1B1 and OATP1B3 transport.(4) CLINICAL EFFECTS: Concurrent use of asciminib may lead to higher systemic concentrations of pravastatin, increasing the risk for statin-induced myopathy or rhabdomyolysis. PREDISPOSING FACTORS: The risk for myopathy or rhabdomyolysis may be greater in patients 65 years and older, inadequately treated hypothyroidism, renal impairment, carnitine deficiency, malignant hyperthermia, or in patients with a history of myopathy or rhabdomyolysis. Patients with a SLCO1B1 polymorphism that leads to decreased function of the hepatic uptake transporter OATP1B1 may have increased statin concentrations and be predisposed to myopathy or rhabdomyolysis. PATIENT MANAGEMENT: The manufacturer of asciminib states that pravastatin should be used with caution and monitored closely for adverse events including myopathy and rhabdomyolysis. Consider using the lowest effective dose of pravastatin.(1,2) If concurrent therapy is deemed medically necessary, monitor patients for signs and symptoms of myopathy/rhabdomyolysis, including muscle pain/tenderness/weakness, fever, unusual tiredness, changes in the amount of urine, and/or discolored urine. DISCUSSION: In a PKPB model, concurrent use of asciminib 40 mg twice daily, 80 mg daily, and 200 mg twice daily increased the maximum concentration (Cmax) of a single dose of pravastatin (an OATP1B1 and OATP1B3 substrate) by 43%, 63% and 141%, respectively, and increased area-under-curve (AUC) by 37%, 51%, and 137%, respectively.(3) In a PKPB model, concurrent use of asciminib 40 mg twice daily, 80 mg daily, and 200 mg twice daily increased the Cmax of a single dose of atorvastatin (an OATP1B1 and OATP1B3 substrate) by 97%, 143% and 300%, respectively, and increased AUC by 81%, 122%, and 326%, respectively.(3) In a PKPB model, concurrent use of asciminib 40 mg twice daily, 80 mg daily, and 200 mg twice daily increased the Cmax of a single dose of rosuvastatin (an OATP1B1 and BCRP substrate) by 453%, 530% and 732%, respectively, and increased AUC by 190%, 202%, and 311%, respectively.(3) |
PRAVASTATIN SODIUM |
Simvastatin/Asciminib SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Asciminib is an inhibitor of the BCRP, OATP1B1, and OATP1B3 transporters and may increase the absorption and/or decrease the elimination of simvastatin.(1-3) CLINICAL EFFECTS: Concurrent asciminib may result in elevated levels of simvastatin, which may result in myopathy and rhabdomyolysis.(1,2) PREDISPOSING FACTORS: The risk for myopathy or rhabdomyolysis may be greater in patients 65 years and older, inadequately treated hypothyroidism, renal impairment, carnitine deficiency, malignant hyperthermia, or in patients with a history of myopathy or rhabdomyolysis. Patients with a SLCO1B1 polymorphism that leads to decreased function of the hepatic uptake transporter OATP1B1 may have increased statin concentrations and be predisposed to myopathy or rhabdomyolysis. PATIENT MANAGEMENT: The manufacturer of asciminib states that simvastatin should be used with caution and monitored closely for adverse events including myopathy and rhabdomyolysis. Consider using the lowest effective dose of simvastatin.(1,2) If concurrent therapy is deemed medically necessary, monitor patients for signs and symptoms of myopathy/rhabdomyolysis, including muscle pain/tenderness/weakness, fever, unusual tiredness, changes in the amount of urine, and/or discolored urine. DISCUSSION: In a PKPB model, concurrent use of asciminib 40 mg twice daily, 80 mg daily, and 200 mg twice daily increased the maximum concentration (Cmax) of a single dose of pravastatin (an OATP1B1 and OATP1B3 substrate) by 43%, 63% and 141%, respectively, and increased area-under-curve (AUC) by 37%, 51%, and 137%, respectively.(3) In a PKPB model, concurrent use of asciminib 40 mg twice daily, 80 mg daily, and 200 mg twice daily increased the Cmax of a single dose of atorvastatin (an OATP1B1 and OATP1B3 substrate) by 97%, 143% and 300%, respectively, and increased AUC by 81%, 122%, and 326%, respectively.(3) In a PKPB model, concurrent use of asciminib 40 mg twice daily, 80 mg daily, and 200 mg twice daily increased the Cmax of a single dose of rosuvastatin (an OATP1B1 and BCRP substrate) by 453%, 530% and 732%, respectively, and increased AUC by 190%, 202%, and 311%, respectively.(3) |
EZETIMIBE-SIMVASTATIN, FLOLIPID, SIMVASTATIN, VYTORIN, ZOCOR |
Mavacamten/Weak CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Weak CYP3A4 inhibitors may decrease the metabolism of mavacamten.(1) CLINICAL EFFECTS: Concurrent use of weak CYP3A4 inhibitors may increase the plasma levels and the incidence and severity of adverse reactions of mavacamten.(1) PREDISPOSING FACTORS: CYP2C19 poor metabolizers may experience an increased incidence or severity of adverse effects.(1) PATIENT MANAGEMENT: The UK manufacturer of mavacamten states no dose adjustment is necessary when starting mavacamten in patients on weak CYP3A4 inhibitors or in intermediate, normal, rapid, or ultra-rapid CYP2C19 metabolizers already on mavacamten and starting a weak CYP3A4 inhibitor. In poor CYP2C19 metabolizers already on mavacamten and starting a weak CYP3A4 inhibitor, reduce mavacamten 5 mg to 2.5 mg or if on 2.5 mg pause treatment for 4 weeks. If CYP2C19 phenotype is unknown, consider a mavacamten starting dose of 2.5 mg daily.(1) DISCUSSION: In a PBPK model, concomitant use of mavacamten (15 mg daily) with cimetidine 400 mg twice daily, a weak CYP3A4 inhibitor, was predicted to increase mavacamten area-under-curve (AUC) by 6% and maximum concentration (Cmax) by 4% in poor CYP2C19 metabolizers and by 3% and 2%, respectively, in both intermediate and normal CYP2C19 metabolizers.(2) Weak CYP3A4 inhibitors include: alprazolam, amiodarone, amlodipine, asciminib, azithromycin, Baikal skullcap, belumosudil, berberine, bicalutamide, blueberry, brodalumab, chlorzoxazone, cilostazol, ciprofloxacin, clotrimazole, cranberry, cyclosporine, delavirdine, dihydroberberine, diosmin, everolimus, flibanserin, fosaprepitant, fostamatinib, gepotidacin, ginkgo, givinostat, glecaprevir/pibrentasvir, goldenseal, istradefylline, ivacaftor, lacidipine, lapatinib, leflunomide, levamlodipine, linagliptin, lomitapide, lurasidone, mavorixafor, pazopanib, peppermint oil, propiverine, propofol, ranitidine, remdesivir, resveratrol, roxithromycin, sitaxsentan, skullcap, suvorexant, teriflunomide, ticagrelor, tolvaptan, trofinetide, and viloxazine.(4,5) |
CAMZYOS |
The following contraindication information is available for SCEMBLIX (asciminib hydrochloride):
Drug contraindication overview.
*None.
*None.
There are 1 contraindications.
Absolute contraindication.
Contraindication List |
---|
Lactation |
There are 7 severe contraindications.
Adequate patient monitoring is recommended for safer drug use.
Severe List |
---|
Elevated serum amylase |
Elevated serum lipase |
Hypertension |
Neutropenic disorder |
Pancreatitis |
Pregnancy |
Thrombocytopenic disorder |
There are 2 moderate contraindications.
Clinically significant contraindication, where the condition can be managed or treated before the drug may be given safely.
Moderate List |
---|
Anemia |
Atherosclerotic cardiovascular disease |
The following adverse reaction information is available for SCEMBLIX (asciminib hydrochloride):
Adverse reaction overview.
The most common adverse reactions (>=20%) reported with asciminib are upper respiratory tract infections, musculoskeletal pain, headache, fatigue, nausea, rash, and diarrhea. The most common laboratory abnormalities (>= 20%) reported with asciminib are decreased platelet count, increased triglycerides, decreased neutrophil count, decreased hemoglobin, increased creatine kinase, increased alanine aminotransferase, increased lipase, increased amylase, increased aspartate aminotransferase, increased uric acid, and decreased lymphocyte count.
The most common adverse reactions (>=20%) reported with asciminib are upper respiratory tract infections, musculoskeletal pain, headache, fatigue, nausea, rash, and diarrhea. The most common laboratory abnormalities (>= 20%) reported with asciminib are decreased platelet count, increased triglycerides, decreased neutrophil count, decreased hemoglobin, increased creatine kinase, increased alanine aminotransferase, increased lipase, increased amylase, increased aspartate aminotransferase, increased uric acid, and decreased lymphocyte count.
There are 24 severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Anemia Elevated serum amylase Elevated serum lipase Increased alanine transaminase Neutropenic disorder Thrombocytopenic disorder |
Cardiac arrhythmia Heart failure Hemorrhage Hyperbilirubinemia Hypersensitivity drug reaction Hypertension Hypocalcemia Hypophosphatemia Hypothyroidism Increased aspartate transaminase Influenza Lower respiratory infection Pancreatitis Pleural effusions Pneumonia |
Rare/Very Rare |
---|
Arterial thrombosis Bronchospastic pulmonary disease Myocardial ischemia |
There are 29 less severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Diarrhea Fatigue Hypertriglyceridemia Increased creatine kinase level Musculoskeletal pain Nausea Skin rash Upper respiratory infection |
Acute abdominal pain Anorexia Arthralgia Blurred vision Constipation Cough Dizziness Dry eye Dyspnea Edema Fever Headache disorder Hypercholesterolemia Hyperlipidemia Hyperuricemia Palpitations Peripheral neuropathy Pruritus of skin Urinary tract infection Urticaria Vomiting |
Rare/Very Rare |
---|
None. |
The following precautions are available for SCEMBLIX (asciminib hydrochloride):
The safety and efficacy of asciminib in pediatric patients have not been established.
Contraindicated
Severe Precaution
Management or Monitoring Precaution
Contraindicated
None |
Severe Precaution
None |
Management or Monitoring Precaution
None |
Based on animal studies and the mechanism of action, asciminib can cause embryo-fetal harm when administered to a pregnant woman. There are no available data on the use of asciminib in pregnant women to evaluate a drug-associated risk. Animal reproduction studies demonstrated that oral administration of asciminib during organogenesis induced structural abnormalities, embryo-fetal mortality, and alterations to growth. Advise patients of the potential risk to a fetus.
There are no data on the presence of asciminib or its metabolites in human milk, the effects on the breastfed child, or milk production. Because of the potential for serious adverse reactions in the breastfed child, advise women not to breastfeed during treatment with asciminib and for 1 week after the last dose.
In the ASCEMBL study, 44 of the 233 (19%) patients were >=65 years of age and 6 (2.6%) were >=75 years of age. In the CABL001X2101 study, 16 of the 48 (33%) patients with the T315I mutation were >=65 years of age and 4 (8%) were >=75 years of age. Overall, no differences in safety or efficacy of asciminib were observed between patients >=65 years of age compared to younger patients. There is an insufficient number of patients >=75 years of age to assess whether there are differences in safety or efficacy.
The following prioritized warning is available for SCEMBLIX (asciminib hydrochloride):
No warning message for this drug.
No warning message for this drug.
The following icd codes are available for SCEMBLIX (asciminib hydrochloride)'s list of indications:
Chronic phase philadelphia chromosome (+) CML | |
C92.1 | Chronic myeloid leukemia, BCr/ABl-positive |
C92.10 | Chronic myeloid leukemia, BCr/ABl-positive, not having achieved remission |
C92.12 | Chronic myeloid leukemia, BCr/ABl-positive, in relapse |
Chronic phase philadelphia chromosome (+) CML with t315I | |
C92.1 | Chronic myeloid leukemia, BCr/ABl-positive |
C92.10 | Chronic myeloid leukemia, BCr/ABl-positive, not having achieved remission |
C92.12 | Chronic myeloid leukemia, BCr/ABl-positive, in relapse |
Formulary Reference Tool