Please wait while the formulary information is being retrieved.
Drug overview for NOURIANZ (istradefylline):
Generic name: istradefylline (IS-tra-DEF-i-lin)
Drug class: Antiparkinson Adjuvant - Adenosine Receptor Antagonist
Therapeutic class: Central Nervous System Agents
Istradefylline, a xanthine derivative, is an adenosine receptor antagonist.
No enhanced Uses information available for this drug.
Generic name: istradefylline (IS-tra-DEF-i-lin)
Drug class: Antiparkinson Adjuvant - Adenosine Receptor Antagonist
Therapeutic class: Central Nervous System Agents
Istradefylline, a xanthine derivative, is an adenosine receptor antagonist.
No enhanced Uses information available for this drug.
DRUG IMAGES
- NOURIANZ 40 MG TABLET
- NOURIANZ 20 MG TABLET
The following indications for NOURIANZ (istradefylline) have been approved by the FDA:
Indications:
Idiopathic parkinsonism
Professional Synonyms:
Paralysis agitans
Primary Parkinson's disease
Indications:
Idiopathic parkinsonism
Professional Synonyms:
Paralysis agitans
Primary Parkinson's disease
The following dosing information is available for NOURIANZ (istradefylline):
No enhanced Dosing information available for this drug.
Istradefylline is administered orally once daily without regard to food.
DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
---|---|---|
NOURIANZ 20 MG TABLET | Maintenance | Adults take 1 tablet (20 mg) by oral route once daily |
NOURIANZ 40 MG TABLET | Maintenance | Adults take 1 tablet (40 mg) by oral route once daily |
No generic dosing information available.
The following drug interaction information is available for NOURIANZ (istradefylline):
There are 1 contraindications.
These drug combinations generally should not be dispensed or administered to the same patient. A manufacturer label warning that indicates the contraindication warrants inclusion of a drug combination in this category, regardless of clinical evidence or lack of clinical evidence to support the contraindication.
Drug Interaction | Drug Names |
---|---|
Lemborexant (Greater Than 5 mg)/Weak CYP3A4 Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Inhibitors of CYP3A4 may inhibit the metabolism of lemborexant.(1) CLINICAL EFFECTS: Concurrent use of an inhibitor of CYP3A4 may result in increased levels of and effects from lemborexant, including somnolence, fatigue, CNS depressant effects, daytime impairment, headache, and nightmare or abnormal dreams.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The maximum recommended dose of lemborexant with concurrent use of a weak CYP3A4 inhibitors should not exceed 5 mg per dose.(1) DISCUSSION: Lemborexant is a CYP3A4 substrate. In a PKPB model, concurrent use of lemborexant with itraconazole increased area-under-curve (AUC) and concentration maximum (Cmax) by 3.75-fold and 1.5-fold, respectively. Concurrent use of lemborexant with fluconazole increased AUC and Cmax by 4.25-fold and 1.75-fold, respectively.(1) Weak inhibitors of CYP3A4 include: alprazolam, amiodarone, amlodipine, asciminib, azithromycin, Baikal skullcap, belumosudil, berberine, bicalutamide, blueberry, brodalumab, cannabidiol, capivasertib, chlorzoxazone, cilostazol, cimetidine, ciprofloxacin, clotrimazole, cranberry, cyclosporine, daclatasvir, daridorexant, delavirdine, dihydroberberine, diosmin, everolimus, flibanserin, fosaprepitant, fostamatinib, gepotidacin, ginkgo, givinostat, glecaprevir/pibrentasvir, goldenseal, grazoprevir, isoniazid, istradefylline, ivacaftor, lacidipine, lapatinib, larotrectinib, lazertinib, leflunomide, levamlodipine, linagliptin, lomitapide, lurasidone, mavorixafor, olaparib, osilodrostat, palbociclib, pazopanib, peppermint oil, piperine, propiverine, propofol, ranitidine, ranolazine, remdesivir, resveratrol, roxithromycin, rucaparib, selpercatinib, simeprevir, sitaxsentan, skullcap, suvorexant, teriflunomide, ticagrelor, tolvaptan, trofinetide, viloxazine, and vonoprazan.(1,2) |
DAYVIGO |
There are 7 severe interactions.
These drug interactions can produce serious consequences in most patients. Actions required for severe interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration scheduling, and providing additional patient monitoring. Review the full interaction monograph for more information.
Drug Interaction | Drug Names |
---|---|
Lomitapide (Less Than or Equal To 30 mg)/Weak CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Weak inhibitors of CYP3A4 may inhibit the metabolism of lomitapide.(1) Lomitapide is very susceptible to CYP3A4 inhibition. For example, in an interaction study with a strong CYP3A4 inhibitor (ketoconazole) lomitapide exposure was increased 27-fold.(2) Thus even weak CYP3A4 inhibitors may affect lomitapide exposure (AUC, area-under-curve). CLINICAL EFFECTS: Concurrent use of a weak inhibitor of CYP3A4 may result in 2-fold increases in lomitapide levels and toxicity from lomitapide.(1) PREDISPOSING FACTORS: This interaction may be more severe in patients with hepatic impairment or with end-stage renal disease.(1) PATIENT MANAGEMENT: The maximum lomitapide dose should be 30 mg daily for patients taking concomitant weak CYP3A4 inhibitors. Due to lomitapide's long half-life, it may take 1 to 2 weeks to see the full effect of this interaction. When initiating a weak CYP3A4 inhibitor in patients taking lomitapide 10 mg daily or more, decrease the dose of lomitapide by 50%. In patients taking lomitapide 5 mg daily, continue current dose. DISCUSSION: Lomitapide is very susceptible to CYP3A4 inhibition. For example, in an interaction study with a strong CYP3A4 inhibitor (ketoconazole) lomitapide exposure was increased 27-fold.(2) Based upon interactions with stronger inhibitors, weak inhibitors of CYP3A4 are predicted to increase lomitapide area-under-curve(AUC) 2-fold.(1) Weak CYP3A4 inhibitors linked to this interaction include alprazolam, amiodarone, amlodipine, asciminib, atorvastatin, azithromycin, Baikal skullcap, belumosudil, bicalutamide, blueberry juice, brodalumab, cannabidiol, capivasertib, cilostazol, cimetidine, ciprofloxacin, chlorzoxazone, clotrimazole, cranberry juice, cyclosporine, daridorexant, delavirdine, diosmin, everolimus, flibanserin, fosaprepitant, fostamatinib, gepotidacin, ginkgo, givinostat, glecaprevir/pibrentasvir, goldenseal, grazoprevir, isoniazid, istradefylline, ivacaftor, larotrectinib, lacidipine, lapatinib, lazertinib, leflunomide, levamlodipine, linagliptin, lurasidone, maribavir, mavorixafor, olaparib, osilodrostat, palbociclib, pazopanib, peppermint oil, piperine, propiverine, propofol, ranitidine, ranolazine, remdesivir, resveratrol, roxithromycin, rucaparib, selpercatinib, sitaxsentan, skullcap, teriflunomide, ticagrelor, tolvaptan, trofinetide, viloxazine, vonoprazan, and zileuton.(1-3) |
JUXTAPID |
Eliglustat/Weak CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Weak inhibitors of CYP3A4 may inhibit the metabolism of eliglustat. If the patient is also taking an inhibitor of CYP2D6, eliglustat metabolism can be further inhibited.(1) CLINICAL EFFECTS: Concurrent use of an agent that is a weak inhibitor of CYP3A4 may result in elevated levels of and clinical effects of eliglustat, including prolongation of the PR, QTc, and/or QRS intervals, which may result in life-threatening cardiac arrhythmias.(1) PREDISPOSING FACTORS: If the patient is also taking an inhibitor of CYP2D6, is a poor metabolizer of CYP2D6, and/or has hepatic impairment, eliglustat metabolism can be further inhibited.(1) The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The concurrent use of eliglustat with weak inhibitors of CYP3A4 in poor metabolizers of CYP2D6 should be avoided.(1) The dosage of eliglustat with weak inhibitors of CYP3A4 in extensive metabolizers of CYP2D6 with mild (Child-Pugh Class A) hepatic impairment should be limited to 84 mg daily.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Ketoconazole (400 mg daily), a strong inhibitor of CYP3A4, increased eliglustat (84 mg BID) maximum concentration (Cmax) and area-under-curve (AUC) by 4-fold and 4.4-fold, respectively, in extensive metabolizers. Physiologically-based pharmacokinetic (PKPB) models suggested ketoconazole would increase eliglustat Cmax and AUC by 4.4-fold and 5.4-fold, respectively, in intermediate metabolizers. PKPB models suggested ketoconazole may increase the Cmax and AUC of eliglustat (84 mg daily) by 4.3-fold and 6.2-fold, respectively, in poor metabolizers.(1) PKPB models suggested fluconazole, a moderate inhibitor of CYP3A4, would increase eliglustat Cmax and AUC by 2.8-fold and 3.2-fold, respectively, in extensive metabolizers and by 2.5-fold and 2.9-fold, respectively in intermediate metabolizers. PKPB models suggest that concurrent eliglustat (84 mg BID), paroxetine (a strong inhibitor of CYP2D6), and ketoconazole would increase eliglustat Cmax and AUC by 16.7-fold and 24.2-fold, respectively, in extensive metabolizers. In intermediate metabolizers, eliglustat Cmax and AUC would be expected to increase 7.5-fold and 9.8-fold, respectively.(1) PKPB models suggest that concurrent eliglustat (84 mg BID), terbinafine (a moderate inhibitor of CYP2D6), and ketoconazole would increase eliglustat Cmax and AUC by 10.2-fold and 13.6-fold, respectively, in extensive metabolizers. In intermediate metabolizers, eliglustat Cmax and AUC would be expected to increase 4.2-fold and 5-fold, respectively.(1) Weak inhibitors of CYP3A4 include: alprazolam, amlodipine, asciminib, azithromycin, Baikal skullcap, belumosudil, berberine, bicalutamide, blueberry, brodalumab, cannabidiol, chlorzoxazone, cilostazol, cimetidine, ciprofloxacin, clotrimazole, cranberry, cyclosporine, daclatasvir, daridorexant, delavirdine, dihydroberberine, diosmin, everolimus, flibanserin, fosaprepitant, fostamatinib, gepotidacin, ginkgo, givinostat, glecaprevir/pibrentasvir, goldenseal, grazoprevir, isoniazid, istradefylline, ivacaftor, lacidipine, lapatinib, larotrectinib, lazertinib, leflunomide, levamlodipine, linagliptin, lomitapide, lurasidone, olaparib, osilodrostat, palbociclib, pazopanib, peppermint oil, piperine, propiverine, propofol, ranolazine, remdesivir, resveratrol, roxithromycin, rucaparib, selpercatinib, simeprevir, sitaxsentan, skullcap, suvorexant, teriflunomide, ticagrelor, tolvaptan, trofinetide, and vonoprazan.(3,4) |
CERDELGA |
Istradefylline/Selected Strong CYP3A4 Inducers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Istradefylline is a substrate of CYP3A4. Strong inducers of CYP3A4 may induce the metabolism of istradefylline.(1) CLINICAL EFFECTS: The concurrent administration of a strong CYP3A4 inducer may result in decreased levels and effectiveness of istradefylline.(1) PREDISPOSING FACTORS: Tobacco smokers who smoke more than 20 cigarettes per day may have lower exposure to istradefylline and be more susceptible to the effects of a strong CYP3A4 inducer.(1) Induction effects may be more likely with regular use of the inducer for longer than 1-2 weeks. PATIENT MANAGEMENT: The manufacturer of istradefylline states that concurrent use with strong CYP3A4 inducers should be avoided.(1) DISCUSSION: Concomitant administration of rifampin (600 mg once daily for 20 days, strong CYP3A4 inducer) with istradefylline (40 mg) decreased istradefylline maximum concentration (Cmax) and area-under-the-curve (AUC) by 45% and 81%, respectively, compared to istradefylline administered alone.(1) Strong inducers of CYP3A4 include: apalutamide, barbiturates, enzalutamide, fosphenytoin, lumacaftor, mitotane, phenobarbital, phenytoin, primidone, rifampin, rifapentine, and St. John's wort.(2-3) |
ASA-BUTALB-CAFFEINE-CODEINE, ASCOMP WITH CODEINE, BRAFTOVI, BUTALB-ACETAMINOPH-CAFF-CODEIN, BUTALBITAL, BUTALBITAL-ACETAMINOPHEN, BUTALBITAL-ACETAMINOPHEN-CAFFE, BUTALBITAL-ASPIRIN-CAFFEINE, CEREBYX, DILANTIN, DILANTIN-125, DONNATAL, ERLEADA, FIORICET, FIORICET WITH CODEINE, FOSPHENYTOIN SODIUM, LYSODREN, MITOTANE, MYSOLINE, ORKAMBI, PENTOBARBITAL SODIUM, PHENOBARBITAL, PHENOBARBITAL SODIUM, PHENOBARBITAL-BELLADONNA, PHENOBARBITAL-HYOSC-ATROP-SCOP, PHENOHYTRO, PHENYTEK, PHENYTOIN, PHENYTOIN SODIUM, PHENYTOIN SODIUM EXTENDED, PRIFTIN, PRIMIDONE, RIFADIN, RIFAMPIN, SEZABY, TENCON, XTANDI |
Istradefylline/Strong CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Strong inhibitors of CYP3A4 may inhibit the metabolism of istradefylline.(1) CLINICAL EFFECTS: Concurrent use of a strong inhibitor of CYP3A4 may result in elevated levels and increased effects of istradefylline, such as dyskinesias, impulse control disorder, hallucinations and psychosis.(1) PREDISPOSING FACTORS: Patients with hepatic impairment may be exposed to higher concentrations of istradefylline and may be more susceptible to the effects of strong CYP3A4 inhibitors.(1) PATIENT MANAGEMENT: The manufacturer of istradefylline states that the maximum dose of istradefylline in patients on concomitant strong CYP3A4 inhibitors is 20 mg daily.(1) DISCUSSION: Coadministration of ketoconazole (a strong CYP3A4 inhibitor) 200 mg twice daily for 4 days with a single 40 mg dose of istradefylline increased the area-under-the-curve (AUC) of istradefylline by 2.5-fold, but did not affect the maximum concentration (Cmax).(1) Strong inhibitors of CYP3A4 include: adagrasib, boceprevir, ceritinib, clarithromycin, cobicistat, idelalisib, indinavir, itraconazole, josamycin, ketoconazole, lopinavir/ritonavir, mibefradil, mifepristone, nefazodone, nelfinavir, nirmatrelvir/ritonavir, posaconazole, ribociclib, ritonavir, saquinavir, telaprevir, telithromycin, tucatinib, and voriconazole.(2,3) |
CLARITHROMYCIN, CLARITHROMYCIN ER, EVOTAZ, GENVOYA, ITRACONAZOLE, ITRACONAZOLE MICRONIZED, KALETRA, KETOCONAZOLE, KISQALI, KORLYM, KRAZATI, LANSOPRAZOL-AMOXICIL-CLARITHRO, LOPINAVIR-RITONAVIR, MIFEPREX, MIFEPRISTONE, NEFAZODONE HCL, NORVIR, NOXAFIL, OMECLAMOX-PAK, PAXLOVID, POSACONAZOLE, PREZCOBIX, RECORLEV, RITONAVIR, SPORANOX, STRIBILD, SYMTUZA, TOLSURA, TUKYSA, TYBOST, VFEND, VFEND IV, VIRACEPT, VOQUEZNA TRIPLE PAK, VORICONAZOLE, ZYDELIG, ZYKADIA |
Istradefylline/Carbamazepine SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Istradefylline is a substrate of CYP3A4. Strong inducers of CYP3A4 may induce the metabolism of istradefylline.(1) Carbamazepine is a strong CYP3A4 inducer.(2) Inhibitors of CYP3A4 may inhibit the hepatic metabolism of carbamazepine.(2,3) Istradefylline is an inhibitor of CYP3A4.(1) CLINICAL EFFECTS: The concurrent administration of a strong CYP3A4 inducer may result in decreased levels and effectiveness of istradefylline.(1) Increased serum carbamazepine levels with subsequent increases in the pharmacological and toxic effects of carbamazepine, including dizziness, ataxia, blurred vision, or SIADH.(2) PREDISPOSING FACTORS: Tobacco smokers who smoke more than 20 cigarettes per day may have lower exposure to istradefylline and be more susceptible to the effects of a strong CYP3A4 inducer.(1) PATIENT MANAGEMENT: The manufacturer of istradefylline states that concurrent use with strong CYP3A4 inducers should be avoided.(1) The manufacturer of carbamazepine states CYP3A4 inhibitors may increase plasma carbamazepine levels. If concurrent use is warranted, close monitoring of carbamazepine levels is indicated and dosage adjustment may be required.(2) In patients receiving concurrent therapy with carbamazepine and a CYP3A4 inhibitor, carbamazepine levels should be monitored closely and the patient observed for signs of toxicity (dizziness, ataxia, blurred vision, or SIADH). The dosage of carbamazepine may need to be adjusted or carbamazepine may need to be discontinued.(2) DISCUSSION: Concomitant administration of rifampin (600 mg once daily for 20 days, strong CYP3A4 inducer) with istradefylline (40 mg) decreased istradefylline maximum concentration (Cmax) and area-under-the-curve (AUC) by 45% and 81%, respectively, compared to istradefylline administered alone.(1) Carbamazepine is almost completely metabolized to carbamazepine-10,11-epoxide, with only 5% of the drug excreted unchanged. Pharmacokinetics studies have indicated the major pathway for carbamazepine is catalyzed by CYP3A4, with minor contributions from CYP2C8 and CYP3A5.(2,3) |
CARBAMAZEPINE, CARBAMAZEPINE ER, CARBATROL, EPITOL, EQUETRO, TEGRETOL, TEGRETOL XR |
Istradefylline/Ivosidenib SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Istradefylline is a substrate of CYP3A4. Strong inducers of CYP3A4 may induce the metabolism of istradefylline.(1) Ivosidenib is a strong CYP3A4 inducer.(2) Inhibitors of CYP3A4 may inhibit the hepatic metabolism of ivosidenib.(2) Istradefylline is a CYP3A4 inhibitor.(1) CLINICAL EFFECTS: The concurrent administration of a strong CYP3A4 inducer such as ivosidenib may result in decreased levels and effectiveness of istradefylline.(1) Concurrent use of istradefylline may increase serum ivosidenib levels with subsequent increases in the pharmacological and toxic effects of ivosidenib including QT prolongation.(2) PREDISPOSING FACTORS: Tobacco smokers who smoke more than 20 cigarettes per day may have lower exposure to istradefylline and be more susceptible to the effects of a strong CYP3A4 inducer.(1) The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The manufacturer of istradefylline states that concurrent use with strong CYP3A4 inducers should be avoided.(1) The US manufacturer of ivosidenib recommends considering an alternative concomitant medication with less potential for CYP3A4 inhibition.(2) During concomitant therapy with istradefylline and ivosidenib, monitor patients closely for prolongation of the QT interval. Obtain serum calcium, magnesium, and potassium levels and monitor ECG at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Concomitant administration of rifampin (600 mg once daily for 20 days, strong CYP3A4 inducer) with istradefylline (40 mg) decreased istradefylline maximum concentration (Cmax) and area-under-the-curve (AUC) by 45% and 81%, respectively, compared to istradefylline administered alone.(1) In a drug interaction study in healthy subjects, coadministration of itraconazole (200 mg once daily for 18 days) with a single dose of ivosidenib (250 mg) increased ivosidenib AUC by 269%. No change was seen in ivosidenib's Cmax.(2) Data from a pharmacokinetic simulation suggests that fluconazole, a moderate CYP3A4 inhibitor, may increase ivosidenib (500 mg) single-dose AUC by 173%. In regards to multiple-dosing, coadministration of ivosidenib with fluconazole is predicted to increase ivosidenib Cmax and AUC by 152% and 190%, respectively.(2) |
TIBSOVO |
Doxorubicin/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: P-glycoprotein (P-gp) inhibition may increase doxorubicin cellular concentration, as well as decrease biliary or renal elimination.(1) CLINICAL EFFECTS: Increased cellular or systemic levels of doxorubicin may result in doxorubicin toxicity, including cardiomyopathy, myelosuppression, or hepatic impairment.(1) PREDISPOSING FACTORS: The interaction magnitude may be greater in patients with impaired renal or hepatic function. PATIENT MANAGEMENT: Avoid the concurrent use of P-gp inhibitors in patients undergoing therapy with doxorubicin.(1) Consider alternatives with no or minimal inhibition. If concurrent therapy is warranted, monitor the patient closely for signs and symptoms of doxorubicin toxicity. DISCUSSION: Doxorubicin is a substrate of P-gp.(1) Clinical studies have identified and evaluated the concurrent use of doxorubicin and P-gp inhibitors as a target to overcome P-gp mediated multidrug resistance.(2,3) P-gp inhibitors linked to this monograph include: amiodarone, asciminib, asunaprevir, azithromycin, belumosudil, capmatinib, cimetidine, cyclosporine, daclatasvir, danicopan, daridorexant, diltiazem, diosmin, dronedarone, eliglustat, erythromycin, flibanserin, fluvoxamine, fostamatinib, ginkgo, ginseng, glecaprevir/pibrentasvir, hydroquinidine, istradefylline, ivacaftor, lapatinib, ledipasvir, mavorixafor, neratinib, osimertinib, paroxetine, pirtobrutinib, propafenone, quercetin, quinidine, quinine, ranolazine, sarecycline, schisandra, selpercatinib, simeprevir, sofosbuvir/velpatasvir/voxilaprevir, sotorasib, tepotinib, tezacaftor, valbenazine, vemurafenib, verapamil, vimseltinib, and voclosporin.(4,5) |
ADRIAMYCIN, CAELYX, DOXIL, DOXORUBICIN HCL, DOXORUBICIN HCL LIPOSOME |
There are 6 moderate interactions.
The clinician should assess the patient’s characteristics and take action as needed. Actions required for moderate interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration.
Drug Interaction | Drug Names |
---|---|
Rivaroxaban/Selected P-gp and Weak CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Amiodarone, azithromycin, brodalumab, chloramphenicol, cimetidine, cyclosporine, felodipine, fluvoxamine, fostamatinib, glecaprevir/pibrentasvir, hydroquinidine, ivacaftor, nilotinib, piperine, pirtobrutinib, quinidine, ranolazine, simeprevir, ticagrelor and tolvaptan may inhibit the metabolism of rivaroxaban by CYP3A4 and by P-glycoprotein.(1,2) CLINICAL EFFECTS: Concurrent use of an agent that is both an inhibitor of P-gp and a weak inhibitor of CYP3A4 may result in elevated levels of and clinical effects of rivaroxaban, including an increased risk of bleeding, in patients with decreased renal function.(1,2) PREDISPOSING FACTORS: Patients with decreased renal function (CrCL of 15 ml/min to 80 ml/min) may be predisposed to this interaction.(1) The risk for bleeding episodes may be greater in patients with disease-associated factors (e.g. thrombocytopenia). Drug associated risk factors include concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism and/or have an inherent risk for bleeding (e.g. NSAIDs). PATIENT MANAGEMENT: The US manufacturer states no precautions are necessary with the concurrent use of these agents and rivaroxaban in patients with normal renal function.(1) It would be prudent to closely monitor concurrent use in patients with reduced renal function (CrCL of 15 ml/min to 80 ml/min). If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. When applicable, perform agent-specific laboratory test (e.g. INR, aPTT) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. DISCUSSION: Clarithromycin (500 mg twice daily) increased the area-under-curve (AUC) and maximum concentration (Cmax) of a single dose of rivaroxaban by 50% and 40%, respectively.(1,2) Erythromycin (500 mg three times daily) increased the AUC and Cmax of a single dose of rivaroxaban by 30% and 30%, respectively.(1-3) In patients with mild renal impairment (CrCl of 50 ml/min to 79 ml/min) who were receiving erythromycin, rivaroxaban levels were increased 76% when compared to administration of rivaroxaban in patients with normal renal function receiving rivaroxaban alone. In patients with moderate renal impairment (CrCl of 30 ml/min to 49 ml/min) who were receiving erythromycin, rivaroxaban levels were increased 99% when compared to administration of rivaroxaban in patients with normal renal function receiving rivaroxaban alone.(1) Fluconazole increased the AUC and Cmax of a single dose of rivaroxaban by 40%% and 30%, respectively.(1) These changes are not expected to be clinically significant in patients with normal renal function.(1,2) In a case report, an 88-year-old woman with renal impairment on rivaroxaban presented with an elevated INR of 2.5 and a rivaroxaban peak plasma concentration above the upper limit of detection at >800 mcg/L (therapeutic range 58-211 mcg/L). Nothing in her medical history suggested a reason for supratherapeutic rivaroxaban levels except for a 7-week amiodarone regimen that was discontinued 3 weeks prior. This suggests the potential for amiodarone to persist in the body weeks after its use and precipitate drug-drug interactions.(4) A retrospective cohort study examined 24,943 patients aged 66 years and older with concurrent therapy of an anticoagulant, either rivaroxaban (40.0%), apixaban (31.9%), or dabigatran (28.1%), with either azithromycin or clarithromycin. The primary outcome of hospital admission with major hemorrhage within 30 days on concurrent therapy was higher in patients on clarithromycin (0.77%) compared to azithromycin (0.43%) with an adjusted hazard ratio of 1.71 (95% CI, 1.20-2.45). In a self-controlled case series, 744 major hemorrhage events were identified among 647 unique individuals taking anticoagulants who were exposed to clarithromycin. The rate of events that occurred during clarithromycin use had a significant rate ratio of 1.44 (95% CI, 1.08-1.92).(5) A propensity matched cohort evaluated the concurrent use of combined P-gp and moderate CYP3A4 inhibitors with apixaban or rivaroxaban. Combined inhibitors included amiodarone, diltiazem, erythromycin, dronedarone, and verapamil. Bleeding occurred in 26.4% of patients in the inhibitor group compared to 18.4% in the control group (hazard ratio 1.8; 95% CI 1.19-2.73; p=0.006). Although not statistically significant, patients in the inhibitor group also had a higher rate of major bleeding (15% vs 10.3%) and minor bleeding (8.9% vs 5.2%), respectively.(6) A summary of pharmacokinetic interactions with rivaroxaban and amiodarone concluded that concurrent use should be avoided if CrCl < 80 ml/min.(7) A prospective cohort study of 174 patients evaluated the concurrent use of rivaroxaban and amiodarone. The combination of rivaroxaban and amiodarone was associated with a higher incidence of bleeding events (p=0.041; HR=2.83, 95% CI 1.05-7.66) and clinically relevant non-major bleeding (p=0.021; HR=3.65, 95% CI 1.21-10.94). Concurrent use of amiodarone and rivaroxaban in non-valvular atrial fibrillation patients was an independent risk factor for increased risk of bleeding (p=0.044; OR 2.871, 95% CI 1.028-8.023).(8) P-gp and weak CYP3A4 inhibitors linked to this monograph are: amiodarone, azithromycin, belumosudil, brodalumab, chloramphenicol, cimetidine, cyclosporine, daridorexant, diosmin, flibanserin, fostamatinib, glecaprevir/pibrentasvir, hydroquinidine, istradefylline, ivacaftor, mavorixafor, nilotinib, piperine, pirtobrutinib, quinidine, ranolazine, simeprevir and tolvaptan.(9,10) |
RIVAROXABAN, XARELTO |
Tacrolimus/Moderate and Weak CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate and weak inhibitors of CYP3A4 may inhibit the metabolism of tacrolimus.(1) CLINICAL EFFECTS: Concurrent use of a CYP3A4 inhibitor may result in elevated levels of and toxicity from tacrolimus, including nephrotoxicity, neurotoxicity, and prolongation of the QTc interval and life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of tacrolimus recommends monitoring tacrolimus whole blood trough concentrations and reducing tacrolimus dose if needed.(1) Consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a study of 26 renal transplant recipients, conjugated estrogens 3.75 mg daily increased the tacrolimus dose-corrected concentration of tacrolimus by 85.6%. Discontinuation of the conjugated estrogens led to a decrease in tacrolimus concentration of 46.6%.(3) A case report describes a 65-year-old kidney transplant recipient who was stable on tacrolimus 9 mg per day with trough levels of 5 to 7.5 ng/mL. Ten days after starting on estradiol gel 0.5 mg per day, her tacrolimus level rose to 18.3 ng/mL and serum creatinine (Scr) rose from 1.1 mg/dL at baseline to 2 mg/dL. Tacrolimus dose was reduced by 60%, and trough levels and Scr normalized after two weeks.(4) A study of 16 healthy volunteers found that elbasvir 50 mg/grazoprevir 200 mg daily increased the area-under-curve (AUC) of tacrolimus by 43%, while the maximum concentration (Cmax) of tacrolimus was decreased by 40%.(5) An analysis of FAERS data from 2004-2017, found a significant assoc ation between transplant rejection and concurrent use of tacrolimus and clotrimazole (reporting odds ration 1.92, 95% CI). A retrospective study of 7 heart transplant patients on concurrent tacrolimus and clotrimazole troche showed a significant correlation between tacrolimus trough concentration and AUC after clotrimazole discontinuation. Tacrolimus clearance and bioavailability after clotrimazole discontinuation was 2.2-fold greater (0.27 vs. 0.59 L/h/kg) and the trough concentration decreased from 6.5 ng/mL at 1 day to 5.3 ng/mL at 2 days after clotrimazole discontinuation.(7) A retrospective study of 26 heart transplant patients found that discontinuation of concurrent clotrimazole with tacrolimus in the CYP3A5 expresser group had a 3.3-fold increase in apparent oral clearance and AUC of tacrolimus (0.27 vs. 0.89 L/h/kg) compared to the CYP3A5 non expresser group with a 2.2-fold mean increase (0.18 vs. 0.39 L/h/kg).(8) A study of 6 adult kidney transplant recipients found that clotrimazole (5-day course) increased the tacrolimus AUC 250% and the blood trough concentrations doubled (27.7 ng/ml versus 27.4 ng/ml). Tacrolimus clearance decreased 60% with coadministration of clotrimazole.(9) A case report describes a 23-year-old kidney transplant recipient who was stable on tacrolimus 5 mg twice daily, mycophenolate mofetil 30 mg daily, prednisone (30 mg daily tapered over time to 5 mg), and clotrimazole troche 10 mg four times daily. Discontinuation of clotrimazole resulted in a decrease in tacrolimus trough levels from 13.7 ng/ml to 5.4 ng/ml over a period of 6 days. Clotrimazole was restarted with tacrolimus 6 mg resulting in an increased tacrolimus level of 19.2 ng/ml.(10) A retrospective study in 95 heart transplant recipients on concurrent clotrimazole and tacrolimus found a median tacrolimus dose increase of 66.7% was required after clotrimazole discontinuation. Tacrolimus trough concentration was found to have decreased 42.5% after clotrimazole discontinuation.(11) A retrospective study in 65 pancreas transplant patients on concurrent tacrolimus, clotrimazole, cyclosporine, and prednisone found that clotrimazole discontinuation at 3 months after transplantation may cause significant tacrolimus trough level reductions.(12) Moderate CYP3A4 inhibitors linked to this monograph include: aprepitant, berotralstat, clofazimine, conivaptan, fluvoxamine, lenacapavir, letermovir, netupitant, nirogacestat, and tofisopam.(6) Weak CYP3A4 inhibitors linked to this monograph include: alprazolam, avacopan, baikal skullcap, berberine, bicalutamide, blueberry, brodalumab, chlorzoxazone, cimetidine, cranberry juice, daclatasvir, daridorexant, delavirdine, diosmin, estrogens, flibanserin, fosaprepitant, fostamatinib, ginkgo biloba, givinostat, glecaprevir/pibrentasvir, goldenseal, grazoprevir, isoniazid, istradefylline, ivacaftor, lacidipine, lazertinib, linagliptin, lomitapide, lumateperone, lurasidone, peppermint oil, piperine, propiverine, ranitidine, remdesivir, resveratrol, rimegepant, simeprevir, sitaxsentan, skullcap, suvorexant, ticagrelor, tolvaptan, trofinetide, viloxazine, and vonoprazan-amoxicillin.(6) |
ASTAGRAF XL, ENVARSUS XR, PROGRAF, TACROLIMUS, TACROLIMUS XL |
Lemborexant (Less Than or Equal To 5 mg)/Weak CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Inhibitors of CYP3A4 may inhibit the metabolism of lemborexant.(1) CLINICAL EFFECTS: Concurrent use of an inhibitor of CYP3A4 may result in increased levels of and effects from lemborexant, including somnolence, fatigue, CNS depressant effects, daytime impairment, headache, and nightmare or abnormal dreams.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The maximum recommended dose of lemborexant with concurrent use of a weak CYP3A4 inhibitors should not exceed 5 mg per dose.(1) DISCUSSION: Lemborexant is a CYP3A4 substrate. In a PKPB model, concurrent use of lemborexant with itraconazole increased area-under-curve (AUC) and concentration maximum (Cmax) by 3.75-fold and 1.5-fold, respectively. Concurrent use of lemborexant with fluconazole increased AUC and Cmax by 4.25-fold and 1.75-fold, respectively.(1) Weak inhibitors of CYP3A4 include: alprazolam, amiodarone, amlodipine, asciminib, azithromycin, Baikal skullcap, belumosudil, berberine, bicalutamide, blueberry, brodalumab, cannabidiol, capivasertib, chlorzoxazone, cilostazol, cimetidine, ciprofloxacin, clotrimazole, cranberry, cyclosporine, daclatasvir, daridorexant, delavirdine, dihydroberberine, diosmin, everolimus, flibanserin, fosaprepitant, fostamatinib, gepotidacin, ginkgo, givinostat, glecaprevir/pibrentasvir, goldenseal, grazoprevir, isoniazid, istradefylline, ivacaftor, lacidipine, lapatinib, larotrectinib, lazertinib, leflunomide, levamlodipine, linagliptin, lomitapide, lurasidone, mavorixafor, olaparib, osilodrostat, palbociclib, pazopanib, peppermint oil, piperine, propiverine, propofol, ranitidine, ranolazine, remdesivir, resveratrol, roxithromycin, rucaparib, selpercatinib, simeprevir, sitaxsentan, skullcap, suvorexant, teriflunomide, ticagrelor, tolvaptan, trofinetide, viloxazine, and vonoprazan.(1,2) |
DAYVIGO |
Ubrogepant/Weak CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Weak inhibitors of CYP3A4 may inhibit the metabolism of ubrogepant.(1) CLINICAL EFFECTS: Concurrent use of ubrogepant with weak CYP3A4 inhibitors may result in an increase in exposure of ubrogepant.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer recommends a dosage adjustment of ubrogepant when used concomitantly with weak CYP3A4 inhibitors. Initial dose of ubrogepant should not exceed 50 mg when used concomitantly with weak inhibitors of CYP3A4. A second dose may be given within 24 hours but should not exceed 50 mg when used concurrently with weak CYP3A4 inhibitors.(1) DISCUSSION: Coadministration of ubrogepant with verapamil, a moderate CYP3A4 inhibitor, resulted in a 3.5-fold and 2.8-fold increase in area-under-curve (AUC) and concentration maximum (Cmax), respectively. No dedicated drug interaction study was conducted to assess concomitant use with weak CYP3A4 inhibitors. The conservative prediction of the maximal potential increase in ubrogepant exposure with weak CYP3A4 inhibitors is not expected to be more than 2-fold.(1) Weak inhibitors of CYP3A4 include: alprazolam, amiodarone, amlodipine, asciminib, azithromycin, Baikal skullcap, berberine, bicalutamide, blueberry, brodalumab, cannabidiol, capivasertib, chlorzoxazone, cilostazol, cimetidine, ciprofloxacin, clotrimazole, cranberry, cyclosporine, daclatasvir, delavirdine, dihydroberberine, diosmin, elagolix, everolimus, flibanserin, fosaprepitant, fostamatinib, gepotidacin, givinostat, glecaprevir/pibrentasvir, goldenseal, grazoprevir, isoniazid, istradefylline, ivacaftor, lacidipine, lapatinib, larotrectinib, lazertinib, leflunomide, levamlodipine, linagliptin, lomitapide, lurasidone, maribavir, mavorixafor, osilodrostat, palbociclib, pazopanib, peppermint oil, piperine, propiverine, propofol, ranitidine, ranolazine, remdesivir, resveratrol, roxithromycin, simeprevir, sitaxsentan, skullcap, suvorexant, teriflunomide, ticagrelor, tolvaptan, trofinetide, viloxazine, and vonoprazan.(2,3) |
UBRELVY |
Sirolimus Protein-Bound/Slt Moderate and Weak CYP3A4 Inhibit SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate and weak CYP3A4 inhibitors may inhibit the metabolism of sirolimus by CYP3A4.(1) CLINICAL EFFECTS: Concurrent use of moderate or weak CYP3A4 inhibitors may result in elevated levels of and side effects from sirolimus.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of sirolimus protein-bound injection (Fyarro) states a dose reduction to 56 mg/m2 is recommended when used concurrently with moderate or weak CYP3A4 inhibitors. Concurrent use with strong CYP3A4 inhibitors should be avoided.(1) DISCUSSION: In an open, randomized, cross-over trial in 18 healthy subjects, concurrent single doses of diltiazem (120 mg) and sirolimus (10 mg) increased sirolimus area-under-curve (AUC) and maximum concentration (Cmax) by 60% and by 43%, respectively. Sirolimus apparent oral clearance and volume of distribution decreased by 38% and 45%, respectively. There were no effects on diltiazem pharmacokinetics or pharmacodynamics.(2) In a study in 26 healthy subjects, concurrent sirolimus (2 mg daily) with verapamil (180 mg twice daily) increased sirolimus AUC and Cmax by 2.2-fold and 2.3-fold, respectively. The AUC and Cmax of the active S-enantiomer of verapamil each increased by 1.5-fold. Verapamil time to Cmax (Tmax) was increased by 1.2 hours.(2) Moderate and weak CYP3A4 inhibitors linked to this monograph include: alprazolam, amlodipine, aprepitant, avacopan, azithromycin, berberine, berotralstat, bicalutamide, blueberry, brodalumab, chlorzoxazone, cilostazol, cimetidine, ciprofloxacin, clofazimine, conivaptan, daclatasvir, daridorexant, delavirdine, diosmin, entrectinib, erythromycin, estrogen, flibanserin, fluvoxamine, fosaprepitant, fosnetupitant, fostamatinib, ginkgo, givinostat, glecaprevir/pibrentasvir, goldenseal, grazoprevir, isoniazid, istradefylline, ivacaftor, lacidipine, lazertinib, lenacapavir, levamlodipine, linagliptin, lomitapide, lumateperone, lurasidone, mavorixafor, netupitant, omeprazole, osilodrostat, peppermint oil, piperine, propiverine, propofol, ranitidine, ranolazine, remdesivir, resveratrol, rimegepant, roxithromycin, scutellarin, simeprevir, sitaxsentan, suvorexant, ticagrelor, tofisopam, tolvaptan, trofinetide and vonoprazan.(3,4) |
FYARRO |
Mavacamten/Weak CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Weak CYP3A4 inhibitors may decrease the metabolism of mavacamten.(1) CLINICAL EFFECTS: Concurrent use of weak CYP3A4 inhibitors may increase the plasma levels and the incidence and severity of adverse reactions of mavacamten.(1) PREDISPOSING FACTORS: CYP2C19 poor metabolizers may experience an increased incidence or severity of adverse effects.(1) PATIENT MANAGEMENT: The UK manufacturer of mavacamten states no dose adjustment is necessary when starting mavacamten in patients on weak CYP3A4 inhibitors or in intermediate, normal, rapid, or ultra-rapid CYP2C19 metabolizers already on mavacamten and starting a weak CYP3A4 inhibitor. In poor CYP2C19 metabolizers already on mavacamten and starting a weak CYP3A4 inhibitor, reduce mavacamten 5 mg to 2.5 mg or if on 2.5 mg pause treatment for 4 weeks. If CYP2C19 phenotype is unknown, consider a mavacamten starting dose of 2.5 mg daily.(1) DISCUSSION: In a PBPK model, concomitant use of mavacamten (15 mg daily) with cimetidine 400 mg twice daily, a weak CYP3A4 inhibitor, was predicted to increase mavacamten area-under-curve (AUC) by 6% and maximum concentration (Cmax) by 4% in poor CYP2C19 metabolizers and by 3% and 2%, respectively, in both intermediate and normal CYP2C19 metabolizers.(2) Weak CYP3A4 inhibitors include: alprazolam, amiodarone, amlodipine, asciminib, azithromycin, Baikal skullcap, belumosudil, berberine, bicalutamide, blueberry, brodalumab, chlorzoxazone, cilostazol, ciprofloxacin, clotrimazole, cranberry, cyclosporine, delavirdine, dihydroberberine, diosmin, everolimus, flibanserin, fosaprepitant, fostamatinib, gepotidacin, ginkgo, givinostat, glecaprevir/pibrentasvir, goldenseal, istradefylline, ivacaftor, lacidipine, lapatinib, leflunomide, levamlodipine, linagliptin, lomitapide, lurasidone, mavorixafor, pazopanib, peppermint oil, propiverine, propofol, ranitidine, remdesivir, resveratrol, roxithromycin, sitaxsentan, skullcap, suvorexant, teriflunomide, ticagrelor, tolvaptan, trofinetide, and viloxazine.(4,5) |
CAMZYOS |
The following contraindication information is available for NOURIANZ (istradefylline):
Drug contraindication overview.
There are no contraindications to the use of istradefylline.
There are no contraindications to the use of istradefylline.
There are 1 contraindications.
Absolute contraindication.
Contraindication List |
---|
Psychotic disorder |
There are 4 severe contraindications.
Adequate patient monitoring is recommended for safer drug use.
Severe List |
---|
Disease of liver |
Dyskinesia |
Impulse control disorder |
Tobacco smoker |
There are 0 moderate contraindications.
The following adverse reaction information is available for NOURIANZ (istradefylline):
Adverse reaction overview.
The most common adverse effects of istradefylline (reported at an incidence of at least 5% and more frequently than placebo) include dyskinesia, dizziness, constipation, nausea, hallucination, and insomnia.
The most common adverse effects of istradefylline (reported at an incidence of at least 5% and more frequently than placebo) include dyskinesia, dizziness, constipation, nausea, hallucination, and insomnia.
There are 0 severe adverse reactions.
There are 14 less severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Constipation Dizziness Dyskinesia Hallucinations Insomnia Nausea |
Acute cognitive impairment Anorexia Bronchitis Disturbance in thinking Hyperglycemia Skin rash |
Rare/Very Rare |
---|
Impulse control disorder Increased libido |
The following precautions are available for NOURIANZ (istradefylline):
Safety and efficacy of istradefylline have not been established in pediatric patients.
Contraindicated
Severe Precaution
Management or Monitoring Precaution
Contraindicated
None |
Severe Precaution
None |
Management or Monitoring Precaution
None |
There are no adequate data in pregnant women to determine whether istradefylline is associated with a risk of adverse developmental outcomes; based on animal findings, the drug may cause fetal harm. In animal reproduction studies, teratogenic effects (e.g., fetal structural abnormalities, growth deficits, embryofetal and offspring mortality) were observed when istradefylline was administered orally to pregnant rats and rabbits during organogenesis at clinically relevant doses not associated with maternal toxicity. The teratogenic effects of istradefylline in pregnant rabbits were increased when the drug was administered in combination with levodopa-carbidopa.
Use of istradefylline is not recommended in pregnant women. Women of childbearing potential should use effective contraception during treatment with the drug.
Use of istradefylline is not recommended in pregnant women. Women of childbearing potential should use effective contraception during treatment with the drug.
Istradefylline is distributed into milk in rats at concentrations up to 10 times those in maternal plasma. It is not known whether istradefylline is distributed into human milk; the effects of istradefylline on the breast-fed infant or on milk production also are not known. The developmental and health benefits of breast-feeding should be considered along with the mother's clinical need for istradefylline, and any potential adverse effects on the breast-fed infant from the drug or underlying maternal condition.
Among patients who received istradefylline in clinical trials, 53% were 65 years of age or older and 13% were 75 years of age or older. No overall differences in response were observed between these patients and younger patients. No clinically important changes in the pharmacokinetics of istradefylline have been observed based on age.
The following prioritized warning is available for NOURIANZ (istradefylline):
No warning message for this drug.
No warning message for this drug.
The following icd codes are available for NOURIANZ (istradefylline)'s list of indications:
Idiopathic parkinsonism | |
G20 | Parkinson's disease |
G20.A | Parkinson's disease without dyskinesia |
G20.A1 | Parkinson's disease without dyskinesia, without mention of fluctuations |
G20.A2 | Parkinson's disease without dyskinesia, with fluctuations |
G20.B | Parkinson's disease with dyskinesia |
G20.B1 | Parkinson's disease with dyskinesia, without mention of fluctuations |
G20.B2 | Parkinson's disease with dyskinesia, with fluctuations |
G20.C | Parkinsonism, unspecified |
Formulary Reference Tool