Please wait while the formulary information is being retrieved.
Drug overview for SEGLENTIS (tramadol hcl/celecoxib):
Generic name: tramadol HCl/celecoxib (TRAM-a-dol/SEL-e-KOX-ib)
Drug class: Non-Steroidal Anti-Inflammatory (NSAID) and Salicylates
Therapeutic class: Analgesic, Anti-inflammatory or Antipyretic
Celecoxib is a nonsteroidal anti-inflammatory agent (NSAIA) that is a selective inhibitor of cyclooxygenase-2 (COX-2). Tramadol hydrochloride is a synthetic opiate agonist and inhibitor of norepinephrine and serotonin uptake.
No enhanced Uses information available for this drug.
Generic name: tramadol HCl/celecoxib (TRAM-a-dol/SEL-e-KOX-ib)
Drug class: Non-Steroidal Anti-Inflammatory (NSAID) and Salicylates
Therapeutic class: Analgesic, Anti-inflammatory or Antipyretic
Celecoxib is a nonsteroidal anti-inflammatory agent (NSAIA) that is a selective inhibitor of cyclooxygenase-2 (COX-2). Tramadol hydrochloride is a synthetic opiate agonist and inhibitor of norepinephrine and serotonin uptake.
No enhanced Uses information available for this drug.
DRUG IMAGES
- SEGLENTIS 56 MG-44 MG TABLET
The following indications for SEGLENTIS (tramadol hcl/celecoxib) have been approved by the FDA:
Indications:
Pain
Professional Synonyms:
None.
Indications:
Pain
Professional Synonyms:
None.
The following dosing information is available for SEGLENTIS (tramadol hcl/celecoxib):
Opiate agonists should be given at the lowest effective dosage and for the shortest duration of therapy consistent with the treatment goals of the patient. The initial dosage of tramadol must be individualized, taking into account the patient's severity of pain, response, prior analgesic use, and risk factors for addiction, abuse, and misuse. Dosage should be titrated to a level that provides adequate analgesia and minimizes adverse effects.
If concomitant therapy with other CNS depressants is required, the lowest effective dosages and shortest possible duration of concomitant therapy should be used. (See Concomitant Use with Benzodiazepines or Other CNS Depressants under Cautions: Precautions and Contraindications.)
Because of the greater frequency of decreased hepatic, renal, and/or cardiac function and of concomitant disease and/or drug therapy in geriatric patients, care should be taken in dosage selection for such patients. The manufacturers recommend that geriatric patients receive initial dosages of tramadol hydrochloride alone in the lower end of the usual range and that the dosage not exceed 300 mg daily in those older than 75 years of age. Dosage of tramadol hydrochloride should be titrated slowly in geriatric patients, with close monitoring for CNS and respiratory depression.
Appropriate dosage selection and titration are essential to reduce the risk of respiratory depression. Patients should be monitored closely for respiratory depression, especially during the first 24-72 hours of therapy and following any increase in dosage.
Patients receiving opiate analgesics should be reevaluated continually for adequacy of pain control and for adverse effects, as well as for manifestations of opiate withdrawal and for the development of addiction, abuse, or misuse. During long-term therapy, the continued need for opiate analgesics should be continually reevaluated. Frequent communication among the prescriber, other members of the healthcare team, the patient, and the patient's caregiver or family is important during periods of changing analgesic requirements, including the initial dosage titration period.
Patients with chronic pain who experience episodes of breakthrough pain may require dosage adjustment or supplemental analgesia (i.e., ''rescue'' therapy with an immediate-release analgesic). If the level of pain increases after dosage stabilization, an attempt should be made to identify the source of increased pain before increasing the dosage.
For acute pain not related to trauma or surgery, the prescribed quantity should be limited to the amount needed for the expected duration of pain severe enough to require opiate analgesia (generally 3 days or less and rarely more than 7 days).
When opiate analgesics are used for the management of chronic noncancer pain, the US Centers for Disease Control and Prevention (CDC) recommends that primary care clinicians carefully reassess individual benefits and risks before prescribing dosages equivalent to 50 mg or more of morphine sulfate daily and avoid dosages equivalent to 90 mg or more of morphine sulfate daily or carefully justify their decision to titrate the dosage to such levels. Other experts recommend consulting a pain management specialist before exceeding a dosage equivalent to 80-120 mg of morphine sulfate daily.
If discontinuance of opiate therapy is required in a patient who may be physically dependent on opiates, the dosage should be tapered gradually to avoid manifestations of abrupt withdrawal. When tramadol therapy is discontinued in such patients, dosage generally can be reduced by 25-50% every 2-4 days. If manifestations of withdrawal occur, the dosage should be increased to the prior level and tapered more slowly (i.e., by increasing the interval between dosage reductions and/or reducing the amount of each incremental change in dose).
For further information on the management of opiate analgesic therapy, see Dosage and Administration: Dosage, in the Opiate Agonists General Statement 28:08.08.
Dosage of tramadol hydrochloride (as conventional tablets) should be reduced in certain patients with renal or hepatic impairment by decreasing the frequency of administration. Adults with creatinine clearances less than 30 mL/minute may receive oral tramadol hydrochloride conventional tablets in a dosage of 50-100 mg every 12 hours, not to exceed 200 mg daily. Since less than 7% of a dose of tramadol hydrochloride is removed by hemodialysis, patients undergoing dialysis may receive their usual dosage on the day of dialysis.
Adults with hepatic cirrhosis may receive the conventional tablets in a dosage of 50 mg every 12 hours.
Tramadol hydrochloride extended-release oral formulations should not be used in patients with severe renal impairment (creatinine clearances less than 30 mL/minute) or severe hepatic impairment (Child-Pugh class C). The available tablet or capsule strengths and once-daily dosing of these formulations do not provide sufficient dosing flexibility for safe use in these patients.
Adults with creatinine clearances of less than 30 mL/minute may receive tramadol hydrochloride in fixed combination with acetaminophen at a dosing interval of every 12 hours; in such patients, the dosage of tramadol hydrochloride administered as the fixed combination should not exceed 75 mg every 12 hours. Tramadol hydrochloride in fixed combination with acetaminophen should not be used in patients with impaired hepatic function.
If concomitant therapy with other CNS depressants is required, the lowest effective dosages and shortest possible duration of concomitant therapy should be used. (See Concomitant Use with Benzodiazepines or Other CNS Depressants under Cautions: Precautions and Contraindications.)
Because of the greater frequency of decreased hepatic, renal, and/or cardiac function and of concomitant disease and/or drug therapy in geriatric patients, care should be taken in dosage selection for such patients. The manufacturers recommend that geriatric patients receive initial dosages of tramadol hydrochloride alone in the lower end of the usual range and that the dosage not exceed 300 mg daily in those older than 75 years of age. Dosage of tramadol hydrochloride should be titrated slowly in geriatric patients, with close monitoring for CNS and respiratory depression.
Appropriate dosage selection and titration are essential to reduce the risk of respiratory depression. Patients should be monitored closely for respiratory depression, especially during the first 24-72 hours of therapy and following any increase in dosage.
Patients receiving opiate analgesics should be reevaluated continually for adequacy of pain control and for adverse effects, as well as for manifestations of opiate withdrawal and for the development of addiction, abuse, or misuse. During long-term therapy, the continued need for opiate analgesics should be continually reevaluated. Frequent communication among the prescriber, other members of the healthcare team, the patient, and the patient's caregiver or family is important during periods of changing analgesic requirements, including the initial dosage titration period.
Patients with chronic pain who experience episodes of breakthrough pain may require dosage adjustment or supplemental analgesia (i.e., ''rescue'' therapy with an immediate-release analgesic). If the level of pain increases after dosage stabilization, an attempt should be made to identify the source of increased pain before increasing the dosage.
For acute pain not related to trauma or surgery, the prescribed quantity should be limited to the amount needed for the expected duration of pain severe enough to require opiate analgesia (generally 3 days or less and rarely more than 7 days).
When opiate analgesics are used for the management of chronic noncancer pain, the US Centers for Disease Control and Prevention (CDC) recommends that primary care clinicians carefully reassess individual benefits and risks before prescribing dosages equivalent to 50 mg or more of morphine sulfate daily and avoid dosages equivalent to 90 mg or more of morphine sulfate daily or carefully justify their decision to titrate the dosage to such levels. Other experts recommend consulting a pain management specialist before exceeding a dosage equivalent to 80-120 mg of morphine sulfate daily.
If discontinuance of opiate therapy is required in a patient who may be physically dependent on opiates, the dosage should be tapered gradually to avoid manifestations of abrupt withdrawal. When tramadol therapy is discontinued in such patients, dosage generally can be reduced by 25-50% every 2-4 days. If manifestations of withdrawal occur, the dosage should be increased to the prior level and tapered more slowly (i.e., by increasing the interval between dosage reductions and/or reducing the amount of each incremental change in dose).
For further information on the management of opiate analgesic therapy, see Dosage and Administration: Dosage, in the Opiate Agonists General Statement 28:08.08.
Dosage of tramadol hydrochloride (as conventional tablets) should be reduced in certain patients with renal or hepatic impairment by decreasing the frequency of administration. Adults with creatinine clearances less than 30 mL/minute may receive oral tramadol hydrochloride conventional tablets in a dosage of 50-100 mg every 12 hours, not to exceed 200 mg daily. Since less than 7% of a dose of tramadol hydrochloride is removed by hemodialysis, patients undergoing dialysis may receive their usual dosage on the day of dialysis.
Adults with hepatic cirrhosis may receive the conventional tablets in a dosage of 50 mg every 12 hours.
Tramadol hydrochloride extended-release oral formulations should not be used in patients with severe renal impairment (creatinine clearances less than 30 mL/minute) or severe hepatic impairment (Child-Pugh class C). The available tablet or capsule strengths and once-daily dosing of these formulations do not provide sufficient dosing flexibility for safe use in these patients.
Adults with creatinine clearances of less than 30 mL/minute may receive tramadol hydrochloride in fixed combination with acetaminophen at a dosing interval of every 12 hours; in such patients, the dosage of tramadol hydrochloride administered as the fixed combination should not exceed 75 mg every 12 hours. Tramadol hydrochloride in fixed combination with acetaminophen should not be used in patients with impaired hepatic function.
Tramadol hydrochloride alone or in fixed combination with acetaminophen or celecoxib is administered orally. Since food does not affect substantially the rate or extent of absorption of tramadol hydrochloride administered alone as conventional tablets, the manufacturers state that conventional tablets of the drug can be taken without regard to food. Food may decrease the rate and extent of absorption of tramadol when the drug is administered as extended-release tablets (delaying peak plasma concentrations by about 3 hours and decreasing the extent of absorption by about 16%); the manufacturer states that although tramadol hydrochloride extended-release tablets may be administered once daily without regard to food, the extended-release tablets should be administered in a consistent manner relative to food intake.
The manufacturer also recommends that tramadol hydrochloride extended-release capsules be administered in a consistent manner relative to food intake, although the rate and extent of absorption are similar following oral administration with or without food. Food delays absorption of tramadol hydrochloride and acetaminophen administered in fixed combination, increasing times to peak plasma concentrations by about 35 and 60 minutes, respectively. However, food does not affect peak plasma concentrations achieved or the extent of absorption of the drugs, and the clinical importance of the delays in absorption is unknown.
The manufacturers make no specific recommendation regarding administration of the fixed-combination preparation with food. Tramadol hydrochloride extended-release tablets or capsules should be swallowed whole and should not be broken, crushed, chewed, split, or dissolved, since such physical alteration of the tablets or capsules could result in rapid release of the drug and absorption of a potentially fatal overdose. The extended-release preparations should not be used concomitantly with other tramadol-containing preparations.
For patients receiving tramadol hydrochloride conventional tablets alone for the relief of moderate to moderately severe pain and not requiring rapid onset of analgesic effect, the manufacturers recommend a dosage titration regimen to decrease the likelihood of discontinuance secondary to adverse effects (e.g., nausea, vomiting, dizziness, vertigo) associated with administration at higher initial dosages. Celecoxib is administered orally. The drug is commercially available as capsules and an oral solution; the oral solution is FDA-labeled for the treatment of migraine only.
The manufacturer also recommends that tramadol hydrochloride extended-release capsules be administered in a consistent manner relative to food intake, although the rate and extent of absorption are similar following oral administration with or without food. Food delays absorption of tramadol hydrochloride and acetaminophen administered in fixed combination, increasing times to peak plasma concentrations by about 35 and 60 minutes, respectively. However, food does not affect peak plasma concentrations achieved or the extent of absorption of the drugs, and the clinical importance of the delays in absorption is unknown.
The manufacturers make no specific recommendation regarding administration of the fixed-combination preparation with food. Tramadol hydrochloride extended-release tablets or capsules should be swallowed whole and should not be broken, crushed, chewed, split, or dissolved, since such physical alteration of the tablets or capsules could result in rapid release of the drug and absorption of a potentially fatal overdose. The extended-release preparations should not be used concomitantly with other tramadol-containing preparations.
For patients receiving tramadol hydrochloride conventional tablets alone for the relief of moderate to moderately severe pain and not requiring rapid onset of analgesic effect, the manufacturers recommend a dosage titration regimen to decrease the likelihood of discontinuance secondary to adverse effects (e.g., nausea, vomiting, dizziness, vertigo) associated with administration at higher initial dosages. Celecoxib is administered orally. The drug is commercially available as capsules and an oral solution; the oral solution is FDA-labeled for the treatment of migraine only.
No dosing information available.
No generic dosing information available.
The following drug interaction information is available for SEGLENTIS (tramadol hcl/celecoxib):
There are 8 contraindications.
These drug combinations generally should not be dispensed or administered to the same patient. A manufacturer label warning that indicates the contraindication warrants inclusion of a drug combination in this category, regardless of clinical evidence or lack of clinical evidence to support the contraindication.
Drug Interaction | Drug Names |
---|---|
Opioid Antagonists/Opioid Analgesics SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Naltrexone, nalmefene, and samidorphan are opioid antagonists and thus inhibit the effects of opioid analgesics.(1-3) CLINICAL EFFECTS: Concurrent administration or the administration of naltrexone within 7-10 days of opioids may induce acute abstinence syndrome or exacerbate a pre-existing subclinical abstinence syndrome.(1,4) Patients taking naltrexone may not experience beneficial effects of opioid-containing medications.(4) Samidorphan can precipitate opioid withdrawal in patients who are dependent on opioids. In patients who use opioids, delay initiation of samidorphan for a minimum of 7 days after last use of short-acting opioids and 14 days after last use of long-acting opioids.(3) Concurrent use of nalmefene tablets with opioid agonists may prevent the beneficial effects of the opioid.(2) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of naltrexone states that the administration of naltrexone concurrently with opioids or to patients dependent on opioids is contraindicated.(1,4) Patients previously dependent on short-acting opioids should be opioid-free for a minimum of seven to ten days before beginning naltrexone therapy. Patients previously on buprenorphine or methadone may be vulnerable to withdrawal symptoms for as long as 2 weeks.(1,4) The manufacturer of naltrexone states that the naloxone challenge test, described in the naltrexone prescribing information, can be administered to determine if patients are opioid free.(1) The manufacturer of samidorphan states the concurrent use of samidorphan in patients using opioids or undergoing acute opioid withdrawal is contraindicated. Prior to initiating samidorphan, there should be at least a 7-day opioid free interval from the last use of short-acting opioids, and at least a 14-day opioid free interval from the last use of long-acting opioids.(3) The UK manufacturer of nalmefene tablets (for reduction of alcohol consumption) states the concurrent use of opioid analgesics is contraindicated.(2) Suspend the use of nalmefene tablets for 7 days prior to the anticipated use of opioids (e.g., elective surgery).(2) DISCUSSION: A double-blind, randomized, placebo-control study evaluated pain relief and side effects of 35 opioid-naive patients undergoing cesarean section. All patients received spinal anesthesia (bupivacaine and morphine) and were randomized to also receive placebo, naltrexone 3 mg, or naltrexone 6 mg. Patients treated with naltrexone experienced shorter duration of pain relief (not statistically significant), however incidence of opioid-induced side effects was reduced. Patients in the naltrexone 6 mg group had lower rates of pruritus, vomiting, and somnolence (all statistically significant) compared to the placebo group.(5) In a double-blind, randomized, placebo-control trial ten recreational opioid users were studied to determine the effects of hydromorphone (4 mg and 16 mg), tramadol (87.5 mg, 175 mg, and 350 mg), and placebo after pretreatment with naltrexone (50 mg) or placebo. Results show that lower doses of hydromorphone and tramadol acted similar to placebo. Hydromorphone 16 mg alone caused euphoria and miosis which were blocked by naltrexone. Tramadol 350 mg produced a lower magnitude of euphoria and miosis compared to hydromorphone. Naltrexone partially diminished the euphoria caused by tramadol, while it enhanced some of the unpleasant monoaminergic effects (flushing, malaise, vomiting).(6) A case report describes a 28 year-old ex-heroin addict who was stable on methadone 100 mg daily and simultaneously stopped using heroin and began drinking alcohol. He was admitted to the hospital for alcohol detoxification and, by mistake, was given naltrexone 100 mg instead of methadone 100 mg. The patient experienced withdrawal symptoms including chills, agitation, muscle and abdominal pain, generalized piloerection, and dilated pupils. Treatment of withdrawal was titrated to treat symptoms and required administration 78 mg of parenteral hydromorphone, after which the patient experienced relief for the following six hours.(8) Intentional administration of an opioid antagonist, naloxone, with opioid analgesics has been performed with close monitoring to lower required opioid dose by inducing withdrawal. Three case reports describe patients who had improved pain relief on significantly reduced doses of opioid analgesics.(8) In a double-blind controlled trial, 267 trauma patients were randomized to receive 0.05 mg/kg intravenous morphine either alone or in combination with 5 mg naltrexone oral suspension. Evaluated endpoints include reduction of pain and incidence of side effects. Results indicate that ultra-low dose naltrexone does not alter opioid requirements for pain control, but does lower incidence of nausea [2 (1.16%) vs 16 (11.6%), p<0.001].(9) |
CONTRAVE, LOTREXONE, LYBALVI, NALTREX, NALTREXONE BASE MONOHYDRATE, NALTREXONE HCL, NALTREXONE HCL DIHYDRATE, NALTREXONE HCL MICRONIZED, OPVEE, VIVITROL |
Ketorolac (Non-Injection)/NSAID; Aspirin (Greater Than 300 mg); Salicylates SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Possible additive or synergistic side effects.(1,2) CLINICAL EFFECTS: Concurrent use of multiple doses of ketorolac with other non-steroidal anti-inflammatory agents (NSAIDs), salicylates or aspirin may result in an increase in NSAID-related side effects such as bleeding or renal impairment.(1-3) PREDISPOSING FACTORS: Patients with pre-existing renal impairment may be at an increased risk of adverse effects from this interaction. The risk for bleeding episodes may be greater in patients with multiple disease-associated factors (e.g. thrombocytopenia, advanced liver disease). Drug associated risk factors include concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism and/or have an inherent risk for bleeding (e.g., anticoagulants, antiplatelets, corticosteroids, selective serotonin reuptake inhibitors (SSRIs) or serotonin-norepinephrine reuptake inhibitors (SNRIs). Risk of GI bleed may be increased in patients who are of older age, in poor health status, or who use alcohol or smoke. Risk may also be increased with longer duration of NSAID use and prior history of peptic ulcer disease and/or GI bleeding. PATIENT MANAGEMENT: Manufacturers of ketorolac state that concurrent use of ketorolac with either other NSAIDs or aspirin is contraindicated.(1,2) If concurrent therapy is deemed medically necessary, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. When applicable, perform agent-specific laboratory tests (e.g. INR, aPTT) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Conduct periodic monitoring of renal function, especially in patients with renal impairment. Instruct patients to report any signs and symptoms of bleeding, such as unusual bruising; red or black, tarry stools; acute abdominal or joint pain and/or swelling. DISCUSSION: Based upon similar pharmacodynamic effects and potentially cumulative risks of serious NSAID-related adverse events, manufacturers of ketorolac state the concurrent administration of ketorolac with other NSAIDs or aspirin is contraindicated.(1,2) |
KETOROLAC TROMETHAMINE, SPRIX |
Tramadol/MAOIs SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Tramadol and MAO inhibitors (MAOIs) may lower the seizure threshold.(1-3) Both tramadol and MAOIs may increase serotonin and norepinephrine. Tramadol inhibits neuronal reuptake of serotonin and norepinephrine, while MAOIs impair metabolism of serotonin and norepinephrine via inhibition of monoamine oxidase(MAO).(1-3) CLINICAL EFFECTS: Concurrent use of tramadol and an inhibitor of monoamine oxidase may result in seizures or serotonin syndrome.(1-3) Symptoms of serotonin syndrome may include tremor, agitation, diaphoresis, hyperreflexia, clonus, tachycardia, hyperthermia, and muscle rigidity.(6) PREDISPOSING FACTORS: CYP2D6 poor metabolizers, or patients also taking strong CYP2D6 inhibitors (e.g. bupropion, fluoxetine, paroxetine, terbinafine) will inhibit tramadol metabolism leading higher systemic levels of tramadol. Risk of seizures may be increased in patients with epilepsy, a history of seizures, head trauma, metabolic disorders, alcohol or drug withdrawal, or infections of the central nervous system.(3) The risk of seizure may also be increased in patients receiving more than the upper daily dose limit of tramadol or in patients taking other medications that lower seizure threshold.(1-2) PATIENT MANAGEMENT: The Australian manufacturers of tramadol state that it is contraindicated in patients who are currently receiving monoamine oxidase inhibitors or who have received them in the previous 14 days.(1,2) The US manufacturer of tramadol states that tramadol should be used with caution in patients taking monoamine oxidase inhibitors and in patients receiving antidepressants.(3) DISCUSSION: The use of tramadol in patients taking monoamine oxidase inhibitors may increase the risk of seizures, serotonin syndrome, and suicide.(3) Methylene blue, when administered intravenously, has been shown to reach sufficient concentrations to be a potent inhibitor of MAO-A.(4,5) Metaxalone is a weak inhibitor of MAO.(7,8) One or more of the drug pairs linked to this monograph have been included in a list of interactions that should be considered "high-priority" for inclusion and should not be inactivated in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
FURAZOLIDONE, MARPLAN, MATULANE, METHYLENE BLUE, NARDIL, PARNATE, PHENELZINE SULFATE, PROCARBAZINE HCL, PROVAYBLUE, TRANYLCYPROMINE SULFATE, XADAGO |
Selected Nephrotoxic Agents/Cidofovir SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Cidofovir is nephrotoxic. Concurrent administration of other nephrotoxic agents may result in additive or synergistic effects on renal function.(1-3) CLINICAL EFFECTS: Concurrent use of cidofovir with nephrotoxic agents such as adefovir, intravenous aminoglycosides, amphotericin B, foscarnet, intravenous pentamidine, tenofovir, vancomycin, voclosporin and non-steroidal anti-inflammatory agents may result in renal toxicity.(1-3) Other nephrotoxic agents include capreomycin, cisplatin, gallium nitrate, high-dose methotrexate, and streptozocin. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The Australian,(1) UK,(2) and US(3) manufacturers of cidofovir state that concurrent administration of potentially nephrotoxic agents such as adefovir, intravenous aminoglycosides, amphotericin B, foscarnet, intravenous pentamidine, tenofovir, vancomycin, voclosporin and non-steroidal anti-inflammatory agents may result in renal toxicity.(1-3) Other nephrotoxic agents include capreomycin, cisplatin, gallium nitrate, high-dose methotrexate, and streptozocin. These agents should be discontinued at least 7 days before the administration of cidofovir. DISCUSSION: The safety of cidofovir has not been studied in patients receiving other known potentially nephrotoxic agents. Renal impairment is the major toxicity of cidofovir.(1-3) |
CIDOFOVIR |
Propoxyphene; Tramadol/Rasagiline; Selegiline SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Tramadol and propoxyphene inhibit neural reuptake of serotonin. MAOIs may increase neuronal serotonin concentrations via inhibition of MAO-A. CLINICAL EFFECTS: The concurrent use of some opioids with MAOIs has resulted in serotonin syndrome. Symptoms of serotonin syndrome may include tremor, agitation, diaphoresis, hyperreflexia, clonus, tachycardia, hyperthermia, and muscle rigidity. PREDISPOSING FACTORS: High doses or concurrent use of multiple drugs which increase CNS serotonin levels may increase risk for serotonin syndrome. PATIENT MANAGEMENT: The US manufacturers of both rasagiline and selegiline state that use of propoxyphene or tramadol is contraindicated during therapy with and within 14 days of discontinuation of rasagiline or selegiline due to the risk for serotonin syndrome. DISCUSSION: The US manufacturer of rasagiline reports a case of serotonin syndrome in a patient treated with both tramadol (dose not stated) and rasagiline 4 mg daily, and also warns that cases of serotonin syndrome have been reported with concomitant use of meperidine, methadone, or propoxyphene. The interaction between meperidine and MAOIs has been well documented. There are two reports of potential interactions between MAOIs and dextromethorphan. There is one case report of serotonin syndrome with concurrent meperidine and linezolid. One or more of the drug pairs linked to this monograph have been included in a list of interactions that should be considered "high-priority" for inclusion and should not be inactivated in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
AZILECT, EMSAM, RASAGILINE MESYLATE, SELEGILINE HCL, ZELAPAR |
Ketorolac (Injectable)/NSAIDs; Aspirin (Greater Than 300 mg); Salicylates SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Possible additive or synergistic side effects.(1) CLINICAL EFFECTS: Concurrent use of multiple doses of ketorolac with other non-steroidal anti-inflammatory agents (NSAIDs), salicylates or aspirin may result in an increase in NSAID-related side effects such as bleeding or renal impairment.(1-3) PREDISPOSING FACTORS: Patients with pre-existing renal impairment may be at an increased risk of adverse effects from this interaction. The risk for bleeding episodes may be greater in patients with multiple disease-associated factors (e.g. thrombocytopenia, advanced liver disease). Drug associated risk factors include concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism and/or have an inherent risk for bleeding (e.g., anticoagulants, antiplatelets, corticosteroids, selective serotonin reuptake inhibitors (SSRIs) or serotonin-norepinephrine reuptake inhibitors (SNRIs). Risk of GI bleed may be increased in patients who are of older age, in poor health status, or who use alcohol or smoke. Risk may also be increased with longer duration of NSAID use and prior history of peptic ulcer disease and/or GI bleeding. PATIENT MANAGEMENT: The manufacturer of ketorolac states that concurrent use of ketorolac with either other NSAIDs, salicylates or aspirin is contraindicated.(1) If concurrent therapy is deemed medically necessary, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. When applicable, perform agent-specific laboratory tests (e.g. INR, aPTT) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. DISCUSSION: Manufacturers of ketorolac state that concurrent use of ketorolac with either other NSAIDs, salicylates or aspirin is contraindicated.(1,2) If concurrent therapy is deemed medically necessary, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. Conduct periodic monitoring of renal function, especially in patients with renal impairment. |
BUPIVACAINE-KETOROLAC-KETAMINE, KETOROLAC TROMETHAMINE, R.E.C.K.(ROPIV-EPI-CLON-KETOR), ROPIVACAINE-CLONIDINE-KETOROLC, ROPIVACAINE-KETOROLAC-KETAMINE, TORONOVA II SUIK, TORONOVA SUIK |
Selected Nephrotoxic Agents/Bacitracin SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Bacitracin may cause renal failure due to glomerular and tubular necrosis. Concurrent administration of other nephrotoxic agents may result in additive renal toxicity.(1-3) CLINICAL EFFECTS: Concurrent use of bacitracin with other potentially nephrotoxic agents may result in renal toxicity.(1-3) PREDISPOSING FACTORS: Dehydration and high-dose bacitracin may predispose to adverse renal effects.(1) PATIENT MANAGEMENT: Health Canada states that bacitracin is contraindicated in patients with renal impairment, including those taking other nephrotoxic drugs.(1) The Canadian and US manufacturers of bacitracin state that concomitant use of bacitracin with other potentially nephrotoxic agents should be avoided.(2,3) DISCUSSION: Renal impairment is a major toxicity of bacitracin. Cases of nephrotoxicity have been reported when bacitracin was used off-label.(1-3) |
BACITRACIN, BACITRACIN MICRONIZED, BACITRACIN ZINC |
Slt Serotonergic Opioids (Immediate Release)/Metaxalone SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Concurrent use of serotonergic opioids and metaxalone, a weak monoamine oxidase (MAO) inhibitor, may result in additive CNS depression and additive serotonergic effects.(1,2) CLINICAL EFFECTS: Concurrent use of opioids and metaxalone may result in profound sedation, respiratory depression, coma, and/or death.(2) The concurrent use of some opioids with serotonergic properties with metaxalone may result in serotonin syndrome. Symptoms of serotonin syndrome may include tremor, agitation, diaphoresis, hyperreflexia, clonus, tachycardia, hyperthermia, and muscle rigidity.(2) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. Treatment with multiple medications which increase serotonin levels or inhibit the metabolism of serotonin are risk factors for serotonin syndrome. Higher opioid concentrations, as may occur due to inhibition of opioid clearance, patient specific genomic factors (e.g. poor metabolizer status for a P450 enzyme), or high opioid dosage may increase the risk for an interaction. PATIENT MANAGEMENT: Use an alternative analgesic when possible. If concurrent therapy is unavoidable, patients should be monitored for signs and symptoms of serotonin syndrome. Instruct patients to report muscle twitching, tremors, shivering and stiffness, fever, heavy sweating, heart palpitations, restlessness, confusion, agitation, trouble with coordination, or severe diarrhea. If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(2) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(3) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(2) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(4) DISCUSSION: Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) A retrospective cohort study compared the risk of opioid overdose associated with concomitant use of opioids and skeletal muscle relaxants versus opioid use alone. The study examined two types of opioid users (naive opioid use and prevalent opioid use) with and without exposure to skeletal muscle relaxants. The adjusted hazard ratios (HR) were 1.09 and 1.26 in the naive and prevalent opioid user cohorts, respectively, generating a combined estimate of 1.21. The risk increased with treatment duration (less than or equal to 14 days: 0.91; 15-60 days: 1.37; and greater than 60 days: 1.80) and for the use of baclofen and carisoprodol (HR 1.83 and 1.84, respectively). Elevated risk was associated with concomitant users with daily opioid dose greater than 50 mg and benzodiazepine use (HR 1.50 and 1.39, respectively).(6) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(7) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(8) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(9) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(10) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(11) Although documentation is lacking for some opioids, the FDA recommends health professionals monitor and advise patients to report symptoms of serotonin syndrome in patients receiving analgesic opioids and serotonergic agents.(12) The interaction between meperidine and MAOIs has been well documented. There are two reports of potential interactions between MAOIs and dextromethorphan.(13,14) In another case report, the concurrent use of propoxyphene and phenylzine resulted in sedation and somnolence. The patient had previously taken both agents alone with no adverse effects.(15) Although some studies have shown that morphine does not interact with MAOIs,(16,17) other data indicates that MAOIs markedly potentiate the effect of morphine.(18) Metaxalone is a weak inhibitor of MAO.(1,19) |
METAXALONE |
There are 20 severe interactions.
These drug interactions can produce serious consequences in most patients. Actions required for severe interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration scheduling, and providing additional patient monitoring. Review the full interaction monograph for more information.
Drug Interaction | Drug Names |
---|---|
Methotrexate; Pralatrexate/NSAIDs SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: The exact mechanism is unknown. NSAID-induced inhibition of prostaglandin synthesis may decrease renal perfusion rate and therefore inhibit methotrexate and pralatrexate clearance. NSAIDs may also compete for renal secretion with methotrexate and pralatrexate. Since methotrexate is not extensively protein bound, displacement of methotrexate by NSAIDs is unlikely to have altered methotrexate kinetics. CLINICAL EFFECTS: Increased levels of methotrexate and pralatrexate, with increased effects, leading to increased risk of severe neurotoxicity, stomatitis, and myelosuppression, including neutropenia. PREDISPOSING FACTORS: Risk factors for methotrexate toxicity include: - High-dose oncology regimens - Impaired renal function, ascites, or pleural effusions PATIENT MANAGEMENT: Avoid the use of NSAIDs with high dose methotrexate therapy.(1) If both drugs must be given, monitor methotrexate levels and patient response carefully. Consider extending leucovorin rescue duration. Use caution when administering NSAIDs with low dose methotrexate therapy. (1) Administration of NSAIDs with pralatrexate requires close monitoring for toxicity.(2) DISCUSSION: A retrospective review documented four cases of methotrexate toxicity during concurrent administration of ketoprofen and methotrexate in 36 patients. Three cases were fatalities.(3) In contrast, a four-way cross-over study in ten subjects found no effect on methotrexate oral or renal clearance by ketoprofen, piroxicam, or flurbiprofen.(4) In a study in 19 subjects, the concurrent administration of methotrexate and piroxicam resulted in a decrease in methotrexate maximum concentration (Cmax) but no other changes in methotrexate kinetics.(5) Another three-way cross-over study in six patients showed no effect by flurbiprofen or ibuprofen on methotrexate kinetics.(6) In contrast, administration of ibuprofen to nine patients resulted in a 39% decrease in methotrexate total clearance and a 40% decrease in methotrexate renal clearance.(7) Information on naproxen is also conflicting. In another arm of the earlier study (7), the administration of naproxen in nine patients decreased methotrexate total clearance by 22%, but had no significant effects on methotrexate renal clearance. In another study in nine subjects, methotrexate altered naproxen kinetics by greater than 30% in six subjects, although these changes were not statistically significant. Naproxen altered methotrexate kinetics by greater than 30% in four subjects, although these changes were also not statistically significant.(8) In contrast, the administration of naproxen with methotrexate in 15 subjects showed no significant effects on methotrexate oral or renal clearance.(9) A study in 19 subjects found that the concurrent administration of etodolac and methotrexate decreased methotrexate Cmax and increased methotrexate mean residence time. There were no changes in methotrexate clearance or area-under-curve (AUC) and no toxicity was observed.(10) A study in 12 patients showed no significant effects of sulindac on methotrexate kinetics unless one patient who had low baseline clearance of methotrexate was excluded from analysis.(11) A study in seven children examined the effects of the children's usual NSAID on methotrexate kinetics. NSAIDs were naproxen, tolmetin, and indomethacin. Methotrexate half-life increased during NSAID administration. There were no significant changes in methotrexate clearance, AUC or volume of distribution. There was inter-subject variably in response. In six of seven patients, NSAID administration increased methotrexate AUC 19-140%.(12) Case reports have documented an interaction between methotrexate and phenylbutazone (13), indomethacin (14), flurbiprofen (15), and naproxen (16,17); however, one naproxen report (16) is complicated by the fact that the patient took 27.5 mg methotrexate in one week instead of 2.5 mg three times weekly. Because of the conflicting data and wide patient variability, caution is warranted during concurrent administration of methotrexate and any NSAID. |
FOLOTYN, JYLAMVO, METHOTREXATE, METHOTREXATE SODIUM, OTREXUP, PRALATREXATE, RASUVO, TREXALL, XATMEP |
Selected Immunosuppressants/NSAIDs; Salicylates SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Cyclosporine increases the production of prostaglandin E2 and I2. Prostaglandin E2 has been shown to prevent cyclosporine -induced renal toxicity in animals. NSAIDS and salicylates may increase cyclosporine-induced renal toxicity by blocking the formation of prostaglandins. Concurrent use of everolimus, sirolimus or tacrolimus with NSAIDs or salicylates may result in additive nephrotoxicity. CLINICAL EFFECTS: Concurrent administration of cyclosporine, everolimus, sirolimus, or tacrolimus and a NSAID or salicylate may result in a decrease in renal function, with or without an alteration in immunosuppressant levels. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: If possible, avoid the concurrent use of NSAIDs or salicylates in patients maintained on cyclosporine, everolimus, sirolimus, or tacrolimus. If concurrent therapy is warranted, patients should be monitored for a decrease in renal function. The NSAID or salicylate may need to be discontinued. DISCUSSION: A decrease in renal function has been reported with concurrent cyclosporine and diclofenac, sulindac, mefenamic acid, ketoprofen, piroxicam, and naproxen. Decreasing the cyclosporine dose without discontinuing the NSAID does not appear to improve renal function. The use of agents which decrease renal function concurrently with everolimus, sirolimus or tacrolimus should be approached with caution. An observational study of 63 inpatient encounters for 57 transplant patients evaluated concurrent use between calcineurin inhibitor (CNI) therapy and NSAID use. Patients were matched to 126 transplant patients on CNI therapy without NSAID use. Patients who received at least one dose of NSAID had a 12.2% rate of treatment emergent acute kidney injury (AKI). The relative risk ratio for AKI in patient exposed to NSAID therapy was 2.20 (95% CI 0.74-6.54). An increase in 48 hour post NSAID exposure serum creatinine above baseline was documented in 65.9% of patients compared to 46% in the non NSAID group (p=0.016). Multivariate analysis revealed changes in serum creatinine at 48 hours after admission were independently associated with age (p=0.008) and NSAID use (p=0.026).(12) |
AFINITOR, AFINITOR DISPERZ, ASTAGRAF XL, CYCLOSPORINE, CYCLOSPORINE MODIFIED, ENVARSUS XR, EVEROLIMUS, FYARRO, GENGRAF, NEORAL, PROGRAF, SANDIMMUNE, SIROLIMUS, TACROLIMUS, TACROLIMUS XL, TORPENZ, ZORTRESS |
Selected Anticoagulants (Vit K antagonists)/NSAIDs SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: The exact mechanism is unknown. Some NSAIDs may displace anticoagulants from plasma protein binding sites. NSAIDs also have the potential to produce gastrointestinal ulceration and bleeding. Some NSAIDs may impair platelet function and prolong bleeding times. CLINICAL EFFECTS: Concurrent use of anticoagulants and NSAIDs may increase the risk for bleeding. PREDISPOSING FACTORS: Bleeding risk may be increased in patients with renal impairment and in patients older than 75 years. The risk for bleeding episodes may be greater in patients with multiple disease-associated factors (e.g. thrombocytopenia, advanced liver disease). Drug associated risk factors include concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism and/or have an inherent risk for bleeding (e.g., other anticoagulants, antiplatelets, corticosteroids, selective serotonin reuptake inhibitors (SSRIs) or serotonin-norepinephrine reuptake inhibitors (SNRIs). Risk of GI bleed may be increased in patients who are of older age, in poor health status, or who use alcohol or smoke. Risk may also be increased with longer duration of NSAID use and prior history of peptic ulcer disease and/or GI bleeding. PATIENT MANAGEMENT: If concurrent therapy with anticoagulants and NSAIDs is warranted, patients should be closely monitored for signs of blood loss, including decreased hemoglobin and/or hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. When applicable, perform agent-specific laboratory test (e.g. INR, aPTT) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. The time of highest risk for a coumarin-type drug interaction is when the precipitant drug is initiated or discontinued. Contact the prescriber before initiating, altering the dose or discontinuing either drug. DISCUSSION: The effects of NSAIDs on the hypoprothrombinemic response to anticoagulants appears to vary between patients as well as with different NSAIDs. Documentation is frequently contradictory - while studies have shown several NSAIDs to have no effect on the pharmacokinetics of warfarin, case reports have documented increased effects with and without bleeding when these same NSAIDs were administered concurrently with warfarin. While celecoxib has been shown not to affect platelet aggregation or bleeding times and had no effects on the anticoagulant effect of warfarin in healthy subjects, increased prothrombin times and bleeding episodes, some of which were fatal, have been reported, predominantly in the elderly, in patients receiving concurrent therapy with celecoxib and warfarin. Rofecoxib has been shown to increase prothrombin times in subjects who received concurrent warfarin therapy. A post hoc analysis of nonselective NSAIDs in the RE-LY study (compared dabigatran 150 and 110 mg twice daily with warfarin in atrial fibrillation) assessed clinical outcomes by comparing nonselective NSAID use (at least once during trial) with no NSAID use in 2279 patients. The use of NSAIDs was associated an increased risk of major bleeding (hazard ratio (HR) 1.68), gastrointestinal major bleeding (HR 1.81), stroke or systemic embolism (HR 1.50), and hospitalization (HR 1.64).(22) A self-controlled case study of 1,622 oral anticoagulant-precipitant drug pairs were reviewed and found 14% of drug pairs were associated with a statistically significant elevated risk of thromboembolism. Concurrent use of warfarin and sulindac resulted in a ratio of rate ratios (RR) (95% CI) of 3.7 (1.79-7.62); warfarin and etodolac ratio of RR 2.61 (1.6-4.25); warfarin and ibuprofen ratio of RR 1.94 (1.5-2.5); warfarin and naproxen ratio of RR 1.72 (1.35-2.19); warfarin and indomethacin ratio of RR 1.62 (1.03-2.55); warfarin and diclofenac ratio of RR 1.43 (1.07-1.92; warfarin and celecoxib ratio of RR 1.24 (1.02-1.53); and warfarin and meloxicam ratio of RR 1.23 (1.02-1.47).(23) In a nationwide cohort study, patients were evaluated for thromboembolic cardiovascular and clinically relevant bleeding events with concurrent antithrombotic and ongoing NSAID treatment. A total of 108,232 patients were followed for a mean of 2.3 +/- 1.8 years after diagnosis of myocardial infarction. Concomitant NSAID treatment significantly increased the risk for cardiovascular events (hazard ratio (HR) 6.96; 95% CI 6.24 - 6.77; p<0.001) and bleeding events (HR 4.08; 95% CI 3.51 - 4.73; p<0.001) compared to no NSAID treatment. NSAIDs were further evaluated and revealed the use of celecoxib (HR: 4.65; 95% CI: 3.17 to 6.82; p < 0.001, and 3.44; 95% CI: 2.20 to 5.39; p < 0.001, respectively) and meloxicam (HR: 3.03; 95% CI: 1.68 to 5.47; p < 0.001, and 2.80; 95% CI: 1.40 to 5.60; p < 0.001, respectively) had the lowest risk for cardiovascular and bleeding events, receptively. A large systematic review was performed on 72 warfarin drug-drug interactions studies that reported on bleeding, thromboembolic events, or death. Most studies were retrospective cohorts. A meta-analysis of 8 of those studies found a higher rate of clinically significant bleeding in patients on warfarin and NSAIDs (OR=1.83; 95% CI 1.29-2.59). Increased bleeding risk was seen in subgroup analyses with non-selective NSAIDs (OR=1.86; 95% CI 1.10-3.17) and COX-2 inhibitors (OR=1.81; 95% CI 1.3-2.52).(24) If concurrent therapy with anticoagulants and NSAIDs is warranted, it would be prudent to monitor patients closely for increased anticoagulant effects. |
ANISINDIONE, DICUMAROL, JANTOVEN, WARFARIN SODIUM |
Pemetrexed/Long Half-Life NSAIDs; Diflunisal SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: NSAIDs may decrease the clearance of pemetrexed.(1) This decreased clearance may be the result of chronic renal toxicity from NSAIDs or NSAIDs may compete with pemetrexed for tubular secretion.(2) CLINICAL EFFECTS: Concurrent use of pemetrexed and NSAIDs may result in elevated levels of and toxicity from pemetrexed, including myelosuppression, neutropenia, renal toxicity, and gastrointestinal toxicity.(1) PREDISPOSING FACTORS: This interaction is expected to be more severe in patients with mild to moderate renal insufficiency (creatine clearance (CrCl) of 45 ml/min to 79 ml/min) and/or patients taking long acting NSAIDs. (1) PATIENT MANAGEMENT: NSAIDs and salicylates with long half-lives should be avoided for at least 5 days before, the day of, and 2 days following pemetrexed administration in all patients.(1,2) If NSAIDs are required, patients should be monitored for pemetrexed toxicity, especially myelosuppression, renal toxicity, and gastrointestinal toxicity.(1) In patients with normal renal function (CrCl equal to or greater than 80 ml/min), ibuprofen (400 mg 4 times daily) can be administered with pemetrexed.(1) In patients with mild to moderate renal insufficiency (CrCl from 45 ml/min to 79 ml/min), NSAIDs with short half-lives should be avoided for 2 days before, the day of, and 2 days after pemetrexed administration. Ibuprofen should be administered with caution in these patients.(1) DISCUSSION: In patients with normal renal function, ibuprofen (400 mg 4 times daily) decreased the clearance of pemetrexed by 20% and increased its area-under-curve (AUC) by 20%.(1) In a Phase I clinical trial, two patients receiving high dose pemetrexed therapy experienced severe toxicity, both were receiving a NSAID. Following these reports, all patients were required to stop aspirin or other NSAIDs 2 days before and not resume these agents until 2 days after pemetrexed.(2) In two randomized, controlled cross-over trials, 27 cancer patients with a creatinine clearance (CrCl) less than or equal to 60 ml/min received pemetrexed (500 mg/m2) infusion on Day 1 of a 21-day cycle and either aspirin 325 mg or ibuprofen 400 mg orally every 6 hours starting 2 days before pemetrexed administration. Coadministration of aspirin did not affect pemetrexed pharmacokinetics. Ibuprofen decreased the clearance of pemetrexed by 16%, increased its maximum concentration (Cmax) by 15%, and increased the AUC by 20%.(3) |
ALIMTA, AXTLE, PEMETREXED, PEMETREXED DISODIUM, PEMFEXY, PEMRYDI RTU |
Selected Platelet Aggregation Inhibitors/NSAIDs; Salicylates SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Abciximab, cangrelor, cilostazol, clopidogrel, dipyridamole, eptifibatide, prasugrel, ticagrelor, vorapaxar and NSAIDs or salicylates inhibit platelet aggregation. CLINICAL EFFECTS: Concurrent use of platelet aggregation inhibitors and NSAIDs or salicylates may increase the risk of bleeding. PREDISPOSING FACTORS: The risk for bleeding episodes may be greater in patients with multiple disease-associated factors (e.g. thrombocytopenia, advanced liver disease). Drug associated risk factors include concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism and/or have an inherent risk for bleeding (e.g., anticoagulants, other antiplatelets, corticosteroids, selective serotonin reuptake inhibitors (SSRIs) or serotonin-norepinephrine reuptake inhibitors (SNRIs). Risk of GI bleed may be increased in patients who are of older age, in poor health status, or who use alcohol or smoke. Risk may also be increased with longer duration of NSAID use and prior history of peptic ulcer disease and/or GI bleeding. Risk increases as the number of risk factors increases. PATIENT MANAGEMENT: Use caution when administering platelet aggregation inhibitors with NSAIDs or salicylates.(1-5) It would be prudent to monitor patients more closely during concurrent therapy and to use the lowest NSAID or salicylate dose possible. If concurrent therapy is warranted, monitor patients for signs of blood loss, including decreased hemoglobin and/or hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. When applicable, perform agent-specific laboratory test (e.g. INR, aPTT) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. The 2010 ACCF/ACG/AHA Consensus guidelines recommend the use of proton pump inhibitors (PPIs) in patients with multiple risk factors for GI bleeding who require antiplatelet therapy. However, esomeprazole and omeprazole should be avoided with clopidogrel as they are expected to reduce the effectiveness of clopidogrel. Use of other PPIs should be approached with caution, as they may reduce the effectiveness of clopidogrel. DISCUSSION: Because of the increased risk of bleeding, caution is warranted when using this combination. In a nationwide cohort study, patients were evaluated for thromboembolic cardiovascular and clinically relevant bleeding events with concurrent antithrombotic and ongoing NSAID treatment. A total of 108,232 patients were followed for a mean of 2.3 +/- 1.8 years after diagnosis of myocardial infarction. Concomitant NSAID treatment significantly increased the risk for cardiovascular events (hazard ratio (HR) 6.96; 95% CI 6.24 - 6.77; p<0.001) and bleeding events (HR 4.08; 95% CI 3.51 - 4.73; p<0.001) compared to no NSAID treatment. NSAIDs were further evaluated and revealed the use of celecoxib (HR: 4.65; 95% CI: 3.17 to 6.82; p < 0.001, and 3.44; 95% CI: 2.20 to 5.39; p < 0.001, respectively) and meloxicam (HR: 3.03; 95% CI: 1.68 to 5.47; p < 0.001, and 2.80; 95% CI: 1.40 to 5.60; p < 0.001, respectively) had the lowest risk for cardiovascular and bleeding events, receptively. |
ASPIRIN-DIPYRIDAMOLE ER, BRILINTA, CILOSTAZOL, CLOPIDOGREL, CLOPIDOGREL BISULFATE, DIPYRIDAMOLE, EFFIENT, EPTIFIBATIDE, KENGREAL, PLAVIX, PRASUGREL HCL, TICAGRELOR, ZONTIVITY |
Colistimethate/Selected Nephrotoxic Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Colistimethate can cause nephrotoxicity.(1,2) Concurrent administration of other nephrotoxic agents may result in an increased risk of nephrotoxicity.(1) It is suspected that cephalothin interferes with the excretion of colistimethate resulting in enhanced nephrotoxicity.(2,3) CLINICAL EFFECTS: Concurrent use of colistimethate with other nephrotoxic agents may result in additive nephrotoxic effects. PREDISPOSING FACTORS: Factors predisposing to nephrotoxicity include higher cumulative doses of colistimethate, longer treatment duration, hypovolemia, and critical illness. PATIENT MANAGEMENT: Concurrent use of potentially nephrotoxic agents with colistimethate should be avoided.(1,2) If concurrent use is necessary, it should be undertaken with great caution.(1) DISCUSSION: In a case control study of 42 patients on intravenous colistimethate sodium, NSAIDs were identified as an independent risk factor for nephrotoxicity (OR 40.105, p=0.044).(4) In 4 case reports, patients developed elevated serum creatinine and blood urea nitrogen following concurrent colistimethate and cephalothin (3 patients) or when colistimethate followed cephalothin therapy (1 patient).(3) A literature review found that individual nephrotoxic agents, including aminoglycosides, vancomycin, amphotericin, IV contrast, diuretics, ACE inhibitors, ARBs, NSAIDs, and calcineurin inhibitors, were not consistently associated with additive nephrotoxicity when used with colistimethate. However, when multiple agents (at least 2 additional potential nephrotoxins) were used concurrently, there was a significant correlation to colistimethate nephrotoxicity.(5) |
COLISTIMETHATE, COLISTIMETHATE SODIUM, COLY-MYCIN M PARENTERAL |
Sodium Phosphate Bowel Cleanser/NSAIDs; Salicylates SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Bowel cleansing with sodium phosphate causes dehydration, decreased intravascular volume and hyperphosphatemia, which increases phosphate levels in the renal tubules. Abnormally high levels of calcium and phosphate in the renal tubules may precipitate out, resulting in renal injury.(1) CLINICAL EFFECTS: Use of sodium phosphate for bowel cleansing in patients maintained on nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk of acute phosphate nephropathy, which is an acute kidney injury associated with deposits of calcium phosphate crystal in the renal tubules that may result in permanent renal function impairment. Acute phosphate nephropathy presents as acute kidney injury with minimal proteinuria and a bland urine sediment.(2) Use of oral sodium phosphate products at laxative doses has not been associated with acute kidney injury.(3) PREDISPOSING FACTORS: Patients who may be at an increased risk of acute phosphate nephropathy include those who are over age 55; are hypovolemic or have decreased intravascular volume; have baseline kidney disease, bowel obstruction, or active colitis; and who are using medications that affect renal perfusion or function (such as diuretics, ACE inhibitors, angiotension receptor blockers [ARBs]), and NSAIDs.(2) PATIENT MANAGEMENT: If possible, use an alternative agent for bowel cleansing.(1) Use sodium phosphate products with caution in patients taking medications that affect kidney function or perfusion, such as ACE inhibitors or ARBs. Obtain baseline and post-procedure labs (electrolytes, calcium, phosphate, BUN, creatinine, and [in smaller, frail individuals] glomerular filtration rate). Instruct patients to drink sufficient quantities of clear fluids before, during, and after bowel cleansing and to avoid other laxatives that contain sodium phosphate. Consider hospitalization and intravenous hydration during bowel cleansing to support frail patients who may be unable to drink an appropriate volume of fluid or who may be without assistance at home.(2) Use of an electrolyte solution for rehydration may decrease the risk of acute phosphate nephropathy.(4,5) DISCUSSION: Since May 2006, the FDA has received 20 reports of acute phosphate nephropathy associated with the use of Osmo Prep. Concomitant medications included ACE inhibitors or ARBs (11), diuretics (6), and NSAIDs (4).(2) In a retrospective review of colonoscopy patients, simultaneous use of ACE inhibitors or ARBs significantly increased the risk of acute kidney injury from oral sodium phosphate. Diuretic use was also a risk factor.(6) In a case series study of 21 cases of acute phosphate nephropathy in patients who had used oral sodium phosphate, 14 patients received an ACE inhibitor or ARB, 4 used a diuretic, and 3 used an NSAID.(7) Cases have also been reported with rectal products.(8) |
MB CAPS, SODIUM PHOSPHATE DIBASIC, URIMAR-T, URNEVA |
Dabigatran/NSAIDs; Salicylates SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Dabigatran is a direct thrombin inhibitor and when taken with agents that effect platelet aggregation and/or other clotting factors increased bleeding episodes can occur.(1,2) CLINICAL EFFECTS: Concurrent use of dabigatran with NSAIDs or salicylates may result in additive or synergistic effects resulting in unwanted bleeding episodes.(1) PREDISPOSING FACTORS: Factors associated with an increased risk for bleeding include renal impairment, concomitant use of P-glycoprotein inhibitors, patient older than 74 years, coexisting conditions (e.g. recent trauma, thrombocytopenia, advanced liver disease), use of drugs associated with bleeding risk (e.g. other anticoagulants, antiplatelets, corticosteroids, selective serotonin reuptake inhibitors (SSRIs) or serotonin-norepinephrine reuptake inhibitors (SNRIs)), and patient weight less than 50 kg. (1-3) Risk of GI bleed may be increased in patients who are of older age, in poor health status, who use alcohol or smoke, with longer duration of NSAID use, and with prior history of peptic ulcer disease and/or GI bleeding. PATIENT MANAGEMENT: Monitor patients receiving concurrent therapy for signs of blood loss and promptly evaluate patients with any symptoms. Discontinue dabigatran in patients with active pathological bleeding.(1) If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. When applicable, perform agent-specific laboratory test (e.g. INR, aPTT) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. DISCUSSION: Dabigatran is a direct thrombin inhibitor and when taken with agents that effect platelet aggregation and/or other clotting factors increased bleeding episodes can occur.(1,2) A post hoc analysis of nonselective NSAIDs in the RE-LY study (compared dabigatran 150 and 110 mg twice daily with warfarin in atrial fibrillation) assessed clinical outcomes by comparing nonselective NSAID use (at least once during trial) with no NSAID use in 2279 patients. The use of NSAIDs was associated an increased risk of major bleeding (hazard ratio (HR) 1.68), gastrointestinal major bleeding (HR 1.81), stroke or systemic embolism (HR 1.50), and hospitalization (HR 1.64).(22) |
DABIGATRAN ETEXILATE, PRADAXA |
Apixaban; Betrixaban; Edoxaban; Rivaroxaban/NSAIDs; Salicylates SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of apixaban(1-4), betrixaban(7), edoxaban(5), or rivaroxaban(6) and nonsteroidal antiinflammatory agents (NSAIDs) or salicylates may result in additive increased risk of bleeding. CLINICAL EFFECTS: Concurrent use of apixaban(1), betrixaban(7), edoxaban(5), or rivaroxaban(2) with NSAIDs or salicylates may result in unwanted bleeding episodes. PREDISPOSING FACTORS: Bleeding risk may be increased in patients with renal impairment and in patients older than 75 years. The risk for bleeding episodes may be greater in patients with multiple disease-associated factors (e.g. thrombocytopenia, advanced liver disease). Drug associated risk factors include concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism and/or have an inherent risk for bleeding (e.g., other anticoagulants, antiplatelets, corticosteroids, selective serotonin reuptake inhibitors (SSRIs) or serotonin-norepinephrine reuptake inhibitors (SNRIs). Risk of GI bleed may be increased in patients who are of older age, in poor health status, or who use alcohol or smoke. Risk may also be increased with longer duration of NSAID use and prior history of peptic ulcer disease and/or GI bleeding. PATIENT MANAGEMENT: Approach concurrent therapy with apixaban(1-4), betrixaban(7), edoxaban(5), or rivaroxaban(6) with caution. Monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. When applicable, perform agent-specific laboratory test (e.g. INR, aPTT) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. DISCUSSION: In a study, naproxen (500 mg) increased apixaban (10 mg) area-under-curve (AUC) and maximum concentration (Cmax) by 1.5-fold an 1.6-fold, respectively, with corresponding increases in clotting tests. There were no changes in the effect of naproxen on arachidonic acid-induced platelet aggregation, no clinically relevant changes in bleeding times, or naproxen pharmacokinetics.(1) In a single dose study, there were no pharmacokinetic or pharmacodynamic interactions between rivaroxaban and naproxen.(6) Although effects seen in the above studies were limited, NSAIDs are known to increase bleeding and may further increase the risk of bleeding with these agents.(1-6) In edoxaban clinical studies, concomitant use of low-dose aspirin (less than or equal to 100 mg/day) or thienopyridines, and NSAIDs was permitted and resulted in increased rates of clinically relevant bleeding.(5) In a study of 34 healthy subjects administered edoxaban 60 mg daily and naproxen 500 mg daily, bleeding time increased by 2.08-fold from baseline on the combination, compared to a 1.23-fold increase with naproxen alone and 1.7-fold increase on edoxaban alone.(8) A self-controlled case study of 1,622 oral anticoagulant-precipitant drug pairs were reviewed and found 14% of drug pairs were associated with a statistically significant elevated risk of thromboembolism. Concurrent use of apixaban and ibuprofen resulted in a ratio of rate ratios (RR) (95% CI) of 5.16 (3.0-8.85); apixaban and celecoxib ratio of RR 1.8 (1.06-3.06); rivaroxaban and etodolac ratio of RR 2.47 (1.18-4.22); rivaroxaban and naproxen ratio of RR 1.89 (1.12-1.43); and rivaroxaban and ibuprofen ratio of RR 1.68 (1.29-4.44).(9) |
ELIQUIS, RIVAROXABAN, SAVAYSA, XARELTO |
Select CYP2C8; 2C9 Substrates/Mifepristone (Chronic therapy) SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Mifepristone is a moderate inhibitor of CYP2C8 and CYP2C9.(1) CLINICAL EFFECTS: Decreased clearance may increase systemic concentrations of drugs primarily metabolized by CYP2C8 or CYP2C9, leading to toxicity.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Closely monitor patients stable on CYP2C8/2C9 substrates for increased therapeutic effect or toxicity when chronic mifepristone therapy is started or adjusted. Adjust dosage of the 2C8/2C9 substrate drug accordingly. Because of the long half-life of mifepristone, the effect of changes in mifepristone therapy may not be seen for 2 weeks. For patients on chronic mifepristone and newly started on a CYP2C8/2C9 substrate, the smallest recommended dose of the CYP2C8/2C9 substrate is suggested by the manufacturer of mifepristone.(1) If chronic mifepristone therapy is discontinued, the manufacturer of mifepristone recommends waiting at least 2 weeks before increasing the dose of a concomitant interacting medication.(1) DISCUSSION: Mifepristone 1200 mg was given daily for 7 days, followed by a single dose of fluvastatin (40 mg), a CYP 2C8/2C9 substrate. The area-under-curve (AUC) of fluvastatin was increased 3.57 fold. The manufacturer notes this result could be representative of other oral drugs with CYP2C8/2C9 metabolism.(1) Mifepristone has a long elimination half-life of approximately 85 hours and so full effects of a mifepristone dose change on CYP2C8/2C9 substrates may not be seen for two weeks. Extended monitoring for this interaction may be required when mifepristone is started, stopped or if dose is changed.(1) Medications linked to this interaction are celecoxib, dasabuvir, fluvastatin, and repaglinide. These drugs have a narrow therapeutic range or are designated as CYP2C8 or CYP2C9 Sensitive Substrates(2,3), i.e. moderate CYP2C8 or 2C9 inhibitors are expected to increase exposure (AUC) to these agents by 2-fold to 5-fold. |
KORLYM, MIFEPRISTONE |
Sodium Oxybate/Codeine; Tramadol SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Oxybate by itself may be associated with severe somnolence or respiratory depression. Concurrent use with other CNS depressants may further increase the risk for respiratory depression or loss of consciousness.(1-3) Codeine and tramadol are converted to their more active opioid metabolites (morphine and O-desmethyltramadol respectively) by CYP2D6. CLINICAL EFFECTS: Concurrent use of sodium oxybate and opioids such as tramadol, or alcohol may further increase the risk for respiratory depression and profound sedation, syncope or coma.(1,2) Fatalities have been reported.(3) PREDISPOSING FACTORS: Based upon FDA evaluation of deaths in patients taking sodium oxybate, risk factors may include: use of multiple drugs which depress the CNS, more rapid than recommended oxybate dose titration, exceeding the maximum recommended oxybate dose, and prescribing for unapproved uses such as fibromyalgia, insomnia or migraine. Note that in oxybate clinical trials for narcolepsy 78% - 85% of patients were also receiving concomitant CNS stimulants.(1-3) In patients receiving codeine or tramadol, ultrarapid metabolizers of CYP2D6 are more likely to have higher than normal systemic concentrations of the active opioid.(4) Other patients at high risk from this interaction include: adolescents between 12 and 18 years who are obese or have conditions such as obstructive sleep apnea or severe lung disease, which may increase the risk of respiratory depression; and breastfeeding women (due to the risk of serious adverse reactions in breastfed infants).(5) PATIENT MANAGEMENT: Avoid use of oxybate when concomitant opioids, benzodiazepines, sedating antidepressants, sedating antipsychotics, general anesthetics, or muscle relaxants, particularly when predisposing risk factors are present. If combination use is required, dose reduction or discontinuation of one or more CNS depressants should be considered. If short term use of an opioid or general anesthetic is required, consider interruption of sodium oxybate treatment.(1,2) Codeine and tramadol are converted to their active opioid metabolites by CYP2D6. Ultrarapid metabolizers of CYP2D6 more rapidly convert codeine or tramadol to their active metabolites (morphine and o-desmethyltramadol respectively) and so are more likely to have higher than normal systemic concentrations of the active opioid. Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(6) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(7) DISCUSSION: The FDA evaluated sodium oxybate postmarket fatal adverse event reports from the FDA Adverse Event Reporting System(AERS) and from the manufacturer. Although report documentation was not always optimal or complete, useful information was obtained. Factors which may have contributed to fatal outcome: concomitant use of one or more drugs which depress the CNS, more rapid than recommended oxybate dose titration, exceeding the maximum recommended oxybate dose, and prescribing for unapproved uses such as fibromyalgia, insomnia or migraine. FDA reported the case of a 5-year-old patient who received one dose of tramadol following a tonsillectomy and experienced slow, difficult breathing requiring emergency intervention and hospitalization. The child was subsequently found to be an ultrarapid metabolizer of CYP2D6.(4) Many deaths occurred in patients with serious psychiatric disorders such as depression and substance abuse. Other concomitant diseases may have also contributed to respiratory and CNS depressant effects of oxybate.(3) |
LUMRYZ, LUMRYZ STARTER PACK, SODIUM OXYBATE, XYREM, XYWAV |
Selected Nephrotoxic Agents/Foscarnet SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Foscarnet is nephrotoxic. Concurrent administration of other nephrotoxic agents may result in additive or synergistic effects on renal function.(1) Concurrent intravenous pentamidine may also result in hypocalcemia.(1) CLINICAL EFFECTS: Concurrent use of foscarnet with nephrotoxic agents such as acyclovir, adefovir, intravenous aminoglycosides, amphotericin B, cyclosporine, methotrexate, non-steroidal anti-inflammatory agents, intravenous pentamidine, tacrolimus, tenofovir, vancomycin and voclosporin may result in renal toxicity.(1) Other nephrotoxic agents include capreomycin, cisplatin, gallium nitrate, high-dose methotrexate, and streptozocin. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of foscarnet state that concurrent administration of potentially nephrotoxic agents such as acyclovir, intravenous aminoglycosides, amphotericin B, cyclosporine, methotrexate, tacrolimus, and intravenous pentamidine should be avoided.(1) Other nephrotoxic agents include adefovir, capreomycin, cisplatin, gallium nitrate, high-dose methotrexate, non-steroidal anti-inflammatory agents, streptozocin, tenofovir, vancomycin and voclosporin. If concurrent therapy is warranted, monitor renal function closely. In patients receiving concurrent foscarnet and pentamidine, also monitor serum calcium levels and instruct patients to report severe muscle spasms, mental/mood changes, and/or seizures.(1) DISCUSSION: The safety of foscarnet has not been studied in patients receiving other known potentially nephrotoxic agents. Renal impairment is the major toxicity of foscarnet.(1) |
FOSCARNET SODIUM, FOSCAVIR |
Tramadol/Linezolid SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Tramadol and linezolid may lower the seizure threshold.(1-3) Both tramadol and linezolid may increase serotonin and norepinephrine. Tramadol inhibits neuronal reuptake of serotonin and norepinephrine, while linezolid impairs metabolism of serotonin and norepinephrine via inhibition of monoamine oxidase(MAO).(1-3) CLINICAL EFFECTS: Concurrent use of tramadol and linezolid may result in seizures or serotonin syndrome.(1-3) Symptoms of serotonin syndrome may include tremor, agitation, diaphoresis, hyperreflexia, clonus, tachycardia, hyperthermia, and muscle rigidity.(4) PREDISPOSING FACTORS: CYP2D6 poor metabolizers,(5) or patients also taking strong CYP2D6 inhibitors (e.g. bupropion, fluoxetine, paroxetine, terbinafine) will have reduced tramadol metabolism leading higher systemic levels of tramadol. Risk of seizures may be increased in patients with epilepsy, a history of seizures, head trauma, metabolic disorders, alcohol or drug withdrawal, or infections of the central nervous system.(1) The risk for seizures may also be increased in patients receiving more than the upper daily dose limit of tramadol, or in patients taking additional medications which lower the seizure threshold.(1) PATIENT MANAGEMENT: Evaluate the patient for predisposing factors (other drugs, diseases or conditions) which may further increase the risk for serotonin syndrome or seizures. When possible and clinically appropriate, change to an alternative analgesic or antibiotic, particularly when predisposing factors are present. If concomitant therapy is necessary, monitor patient for signs of serotonin toxicity (e.g. tremor, agitation, diaphoresis, hyperreflexia, clonus, tachycardia, hyperthermia, muscle rigidity) or seizures, especially after tramadol dose increases. Manufacturer prescribing recommendations: The US manufacturer of tramadol states that tramadol should be used with caution in patients taking monoamine oxidase inhibitors.(1) In contrast, an Australian manufacturer of tramadol states that it is contraindicated in patients who are currently receiving monoamine oxidase inhibitors or who have received them in the previous 14 days.(2) The US manufacturer of linezolid does not have specific recommendations regarding concurrent treatment with tramadol but does state that linezolid should not be used in patients receiving serotonergic drugs (e.g. SSRIs, TCAs, meperidine) unless clinically appropriate and patients are carefully observed for signs and symptoms of serotonin syndrome.(3) DISCUSSION: Tramadol and its M1 metabolite are pharmacologically active. Tramadol inhibits the reuptake of norepinephrine and serotonin with minimal opioid receptor binding. The active M1 metabolite has 200 times greater binding affinity for the mu-opioid receptor than tramadol and is 6 times more potent in producing analgesia.(1) CYP P-450-2D6 converts tramadol to M1.(1,5) A study in surgery patients included 2D6 EM patients who received concomitant treatment with tramadol and 2D6 inhibitors. Levels of the M1 metabolite were decreased by 80-90% compared with EM patients not taking 2D6 inhibitors. Authors noted some EM patients were converted to the PM phenotype.(6) |
LINEZOLID, LINEZOLID-0.9% NACL, LINEZOLID-D5W, ZYVOX |
Iobenguane I 123/Agents that Affect Catecholamines SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Many compounds that reduce catecholamine uptake or that deplete catecholamine stores may interfere with iobenguane uptake into cells.(1) CLINICAL EFFECTS: Compounds that reduce catecholamine uptake or that deplete catecholamine stores may interfere with imaging completed with iobenguane.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Discuss the use of agents that affect catecholamines. Discontinue drugs that reduce catecholamine uptake or deplete catecholamine stores prior to imaging with iobenguane. Before imaging with iobenguane, discontinue agents that affect catecholamines for at least 5 biological half-lives, as clinically tolerated.(1) DISCUSSION: Many agents may reduce catecholamine uptake or deplete catecholamine stores.(1) Examples include: - CNS stimulants or amphetamines (e.g. cocaine, methylphenidate, dextroamphetamine) - norepinephrine and dopamine reuptake inhibitors (e.g. phentermine) - norepinephrine and serotonin reuptake inhibitors (e.g. tramadol) - monoamine oxidase inhibitors (e.g. phenelzine, linezolid) - central monoamine depleting drugs (e.g. reserpine) - non-select beta adrenergic blocking drugs (e.g. labetalol) - alpha agonists or alpha/beta agonists (e.g. pseudoephedrine, phenylephrine, ephedrine, phenylpropanolamine, naphazoline) - tricyclic antidepressants or norepinephrine reuptake inhibitors (e.g. amitriptyline, bupropion, duloxetine, mirtazapine, venlafaxine) - botanicals that may inhibit reuptake of norepinephrine, serotonin or dopamine (e.g. ephedra, ma huang, St. John's Wort, yohimbine) |
ADREVIEW |
Tramadol/Meperidine SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: The concurrent administration of tramadol(1) with meperidine(2) may result in additive blockade of serotonin reuptake, leading to central serotonergic hyperstimulation, as well as additive sedation, respiratory depression, coma, and/or death. CLINICAL EFFECTS: Concurrent administration may increase the risk for adverse events, including serotonin syndrome, sedation, and respiratory depression. Symptoms of serotonin syndrome may include tremor, agitation, diaphoresis, hyperreflexia, clonus, tachycardia, hyperthermia, and muscle rigidity.(3) PREDISPOSING FACTORS: Patients who are CYP2D6 ultrarapid metabolizers have accelerated conversion of tramadol to its active metabolite, M1, and may be at higher risk of sedation and respiratory depression.(1) Treatment with multiple medications which increase serotonin levels or with medications which inhibit the metabolism of serotonin increasing drugs are risk factors for serotonin syndrome.(3) A genetic defect in CYP2D6 leading to the slow metabolizer phenotype may increase the risk for serotonin syndrome due to tramadol. Renal dysfunction and chronic use of meperidine would be expected to increase the risk for serotonin toxicity due to meperidine. PATIENT MANAGEMENT: Use an alternative to meperidine whenever possible, particularly in patients with renal impairment. If concurrent therapy of tramadol with meperidine is warranted, patients should be closely monitored for signs and symptoms of sedation, respiratory depression and serotonin syndrome. One or both agents may need to be discontinued. Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression. Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(2) DISCUSSION: There are a number of serotonin syndrome case reports following the addition of tramadol to a stable selective serotonin reuptake inhibitor regimen. The syndrome developed between 12 hours to 3 weeks after the initiation of tramadol therapy. Patients recovered after tramadol and/or the SSRI/SNRI was discontinued.(4-16) One patient also developed mania.(4) Another patient developed nightmares and hallucinations after taking concurrent tramadol and paroxetine for 56 days.(5) One author suggests that although the combination of tramadol and SSRIs or SNRIs is associated with a risk for serotonin syndrome, given the high rate of co-prescribing for the combination it is an uncommon outcome.(17) Case reports describe the interaction between meperidine and serotonin-increasing agents.(18-20) Although there are no reports of serotonin syndrome specifically with the combination of tramadol and meperidine, both drugs inhibit serotonin reuptake and caution is still warranted. |
DEMEROL, MEPERIDINE HCL, MEPERIDINE HCL-0.9% NACL |
Eluxadoline/Anticholinergics; Opioids SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Eluxadoline is a mixed mu-opioid and kappa-opioid agonist and delta-opioid antagonist and may alter or slow down gastrointestinal transit.(1) CLINICAL EFFECTS: Constipation related adverse events that sometimes required hospitalization have been reported, including the development of intestinal obstruction, intestinal perforation, and fecal impaction.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid use with other drugs that may cause constipation. If concurrent use is necessary, evaluate the patient's bowel function regularly. Monitor for symptoms of constipation and GI hypomotility, including having bowel movements less than three times weekly or less than usual, difficulty having a bowel movement or passing gas, nausea, vomiting, and abdominal pain or distention.(1) Instruct patients to stop eluxadoline and immediately contact their healthcare provider if they experience severe constipation. Loperamide may be used occasionally for acute management of severe diarrhea, but must be discontinued if constipation develops.(1) DISCUSSION: In phase 3 clinical trials, constipation was the most commonly reported adverse reaction (8%). Approximately 50% of constipation events occurred within the first 2 weeks of treatment while the majority occurred within the first 3 months of therapy. Rates of severe constipation were less than 1% in patients receiving eluxadoline doses of 75 mg and 100 mg.(1) |
VIBERZI |
Tramadol/Tricyclic Compounds; Carbamazepine SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Tramadol and tricyclic compounds may lower the seizure threshold.(1) Tramadol inhibits the reuptake of serotonin and norepinephrine but has weak opioid effects. M1, tramadol's active metabolite, is a stronger opioid and up to 6 times more potent than tramadol in producing analgesia.(1) Carbamazepine induces the metabolism of this tramadol opioid metabolite. CLINICAL EFFECTS: Concurrent use of tramadol and a tricyclic compound may result in seizures or serotonin syndrome and may increase the risk of suicide.(1) Concurrent use of tramadol and carbamazepine may significantly reduce the analgesic effect of tramadol.(1) Although not used therapeutically as an antidepressant, carbamazepine is a tricyclic compound. PREDISPOSING FACTORS: Risk of seizures may be increased in patients with epilepsy, a history of seizures, head trauma, metabolic disorders, alcohol or drug withdrawal, or infections of the central nervous system.(1) PATIENT MANAGEMENT: Tramadol should be used with caution in patients taking tricyclic compounds.(1) The use of tramadol and carbamazepine is not recommended.(1) Carbamazepine induces metabolism (glucuronidation) of the tramadol opioid metabolite (M1). In patients on long-term carbamazepine when tramadol is started, achieving adequate analgesia may be difficult. Prescribing higher tramadol doses would be associated with higher parent drug levels which may result in serotonin and norepinephrine associated adverse effects. In patients receiving chronic tramadol treatment when carbamazepine is started, anticipate a reduction in analgesic effects. The maximal effects of carbamazepine on tramadol efficacy may not be seen for 2 or more weeks. Monitor for decreased tramadol efficacy, including symptoms of opioid withdrawal, after carbamazepine is initiated or when carbamazepine dosage is increased. If carbamazepine is to be discontinued in patients stabilized on the combination of tramadol and carbamazepine, gradually decrease the carbamazepine dose to decrease the risk of withdrawal seizures. As carbamazepine induction wanes, systemic tramadol metabolite concentrations will rise. The tramadol dose may need to be decreased to prevent tramadol toxicity. DISCUSSION: The use of tramadol in patients treated with tricyclic compounds may increase the risk of seizures.(1) A review of 124 reports of seizures following tramadol therapy received by the FDA through July 31, 1996 revealed that 23% of the patients were also taking tricyclic antidepressants.(2) Therefore, the manufacturer of tramadol states that tramadol should be used with caution in patients treated with tricyclic compounds.(1) The manufacturer of tramadol also states that the use of tramadol with carbamazepine is not recommended.(1) In a case report, a 79 year-old female developed serotonin syndrome three days after the addition of tramadol to amitriptyline therapy. Over the next four days, her condition deteriorated and she died.(3) |
AMITRIPTYLINE HCL, AMOXAPINE, ANAFRANIL, CARBAMAZEPINE, CARBAMAZEPINE ER, CARBATROL, CHLORDIAZEPOXIDE-AMITRIPTYLINE, CLOMIPRAMINE HCL, DESIPRAMINE HCL, DOXEPIN HCL, EPITOL, EQUETRO, IMIPRAMINE HCL, IMIPRAMINE PAMOATE, NORPRAMIN, NORTRIPTYLINE HCL, PAMELOR, PERPHENAZINE-AMITRIPTYLINE, PROTRIPTYLINE HCL, SILENOR, TEGRETOL, TEGRETOL XR, TRIMIPRAMINE MALEATE |
Caplacizumab/Anticoagulants; Antiplatelets SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Bleeding has been reported with the use of caplacizumab.(1) CLINICAL EFFECTS: Concurrent use of caplacizumab with either anticoagulants or antiplatelets may increase the risk of hemorrhage.(1) PREDISPOSING FACTORS: The risk for bleeding episodes may be greater in patients with disease-associated factors (e.g. hemophilia, coagulation factor deficiencies). Drug associated risk factors include concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism and/or have an inherent risk for bleeding (e.g. NSAIDs). PATIENT MANAGEMENT: Avoid the use of caplacizumab with anticoagulants and antiplatelets. Interrupt caplacizumab therapy if clinically significant bleeding occurs. Patients may require von Willebrand factor concentrate to rapidly correct hemostasis. If caplacizumab is restarted, closely monitor for signs of bleeding.(1) If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. When applicable, perform agent-specific laboratory tests (e.g. INR, aPTT) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. The time of highest risk for a coumarin-type drug interaction is when the precipitant drug is initiated or discontinued. Contact the prescriber before initiating, altering the dose or discontinuing either drug. DISCUSSION: Bleeding has been reported with caplacizumab. In clinical studies, severe bleeding adverse reactions of epistaxis, gingival bleeding, upper gastrointestinal hemorrhage, and metrorrhagia were each reported in 1% of patients. Overall, bleeding events occurred in approximately 58% of patients on caplacizumab versus 43% of patients on placebo.(1) In post-marketing reports, cases of life-threatening and fatal bleeding were reported with caplacizumab.(1) |
CABLIVI |
Tramadol/Cyclobenzaprine SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Tramadol and cyclobenzaprine, a tricyclic compound, both may lower the seizure threshold, have additive effects on serotonin levels,(1) and cause additive CNS depression.(3) CLINICAL EFFECTS: Concurrent use of tramadol and cyclobenzaprine may result in increased risk of seizures, serotonin syndrome, suicide,(1) profound sedation, respiratory depression, coma, and/or death.(3) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. Risk of seizures may be increased in patients with epilepsy, a history of seizures, head trauma, metabolic disorders, alcohol or drug withdrawal, or infections of the central nervous system.(1) PATIENT MANAGEMENT: Tramadol should be used with caution in patients taking tricyclic compounds, including cyclobenzaprine. Monitor patients closely for serotonin syndrome.(1) Limit prescribing opioid analgesics with CNS depressants such as cyclobenzaprine to patients for whom alternatives are inadequate.(3) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(3) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(4) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(3) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(5) DISCUSSION: The use of tramadol in patients treated with tricyclic compounds may increase the risk of seizures.(1) A review of 124 reports of seizures following tramadol therapy received by the FDA through July 31, 1996 revealed that 23% of the patients were also taking tricyclic antidepressants.(2) Therefore, the manufacturer of tramadol states that tramadol should be used with caution in patients treated with tricyclic compounds.(1) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(6) A retrospective cohort study compared the risk of opioid overdose associated with concomitant use of opioids and skeletal muscle relaxants versus opioid use alone. The study examined two types of opioid users (naive opioid use and prevalent opioid use) with and without exposure to skeletal muscle relaxants. The adjusted hazard ratios (HR) were 1.09 and 1.26 in the naive and prevalent opioid user cohorts, respectively, generating a combined estimate of 1.21. The risk increased with treatment duration (less than or equal to 14 days: 0.91; 15-60 days: 1.37; and greater than 60 days: 1.80) and for the use of baclofen and carisoprodol (HR 1.83 and 1.84, respectively). Elevated risk was associated with concomitant users with daily opioid dose greater than 50 mg and benzodiazepine use (HR 1.50 and 1.39, respectively).(7) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(8) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(9) |
AMRIX, CYCLOBENZAPRINE HCL, CYCLOBENZAPRINE HCL ER, CYCLOPAK, CYCLOTENS, FEXMID |
Alprostadil/Acetaminophen; NSAIDs SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Alprostadil is a prostaglandin E1 product used to maintain patency of a patent ductus arteriosus (PDA).(1) Acetaminophen and nonsteroidal anti-inflammatory (NSAID) agents inhibit prostaglandins and may be used for PDA closure in addition to pain/fever management.(2-4) CLINICAL EFFECTS: Simultaneous administration of acetaminophen or NSAIDs may result in decreased clinical effects from alprostadil, including reduction in PDA.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid concurrent administration of acetaminophen or NSAIDs in patients on alprostadil for maintaining patency of a patent ductus arteriosus (PDA).(1) DISCUSSION: NSAIDs and acetaminophen are used as management for patent ductus arteriosus (PDA) closure.(2-4) Alprostadil is used to maintain patency of a PDA.(1) In a case report, a 37-week gestational age neonate with cardiac defects required alprostadil therapy for PDA patency. After multiple doses of acetaminophen for pain, an echocardiogram showed reduction of the PDA requiring increased doses of alprostadil. Additional acetaminophen was discontinued. Follow up echocardiogram showed successful reversal of PDA reduction and alprostadil dose was reduced.(5) |
ALPROSTADIL, PROSTAGLANDIN E1, PROSTIN VR PEDIATRIC |
There are 52 moderate interactions.
The clinician should assess the patient’s characteristics and take action as needed. Actions required for moderate interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration.
Drug Interaction | Drug Names |
---|---|
NSAIDs/Corticosteroids SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of NSAIDs and corticosteroids result in additive risk of GI ulceration. CLINICAL EFFECTS: Concurrent use of NSAIDs and corticosteroids may increase the incidence and/or severity of GI irritation or ulceration, including increasing the risk for bleeding. PREDISPOSING FACTORS: Risk of GI bleed may be increased in patients who are of older age, in poor health status, or who use alcohol or smoke. Risk may also be increased by concurrent use of anticoagulants, antiplatelets, selective serotonin reuptake inhibitors (SSRIs) or serotonin-norepinephrine reuptake inhibitors (SNRIs); with longer duration of NSAID use; and with prior history of peptic ulcer disease and/or GI bleeding. The risk for bleeding episodes may be greater in patients with disease-associated factors (e.g. thrombocytopenia, advanced liver disease). PATIENT MANAGEMENT: Monitor patients receiving concurrent therapy carefully for signs of gastrointestinal ulceration. Use the lowest effective NSAID dose for the shortest duration possible. If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. Instruct patients to report signs of GI bleeding such as black, tarry stools; "coffee ground" vomit; nausea; or stomach/abdominal pain. DISCUSSION: Concurrent use of NSAIDs and corticosteroids increase the risk of GI bleeding. |
AGAMREE, ALDOSTERONE, ALKINDI SPRINKLE, ANUCORT-HC, ANUSOL-HC, BECLOMETHASONE DIPROPIONATE, BETA 1, BETALOAN SUIK, BETAMETHASONE ACETATE MICRO, BETAMETHASONE ACETATE-SOD PHOS, BETAMETHASONE DIPROPIONATE, BETAMETHASONE SOD PHOS-ACETATE, BETAMETHASONE SOD PHOS-WATER, BETAMETHASONE SODIUM PHOSPHATE, BETAMETHASONE VALERATE, BSP 0820, BUDESONIDE, BUDESONIDE DR, BUDESONIDE EC, BUDESONIDE ER, BUDESONIDE MICRONIZED, BUPIVACAINE-DEXAMETH-EPINEPHRN, CELESTONE, CLOBETASOL PROPIONATE MICRO, CORTEF, CORTENEMA, CORTIFOAM, CORTISONE ACETATE, DEFLAZACORT, DEPO-MEDROL, DESONIDE MICRONIZED, DESOXIMETASONE, DESOXYCORTICOSTERONE ACETATE, DEXABLISS, DEXAMETHASONE, DEXAMETHASONE ACETATE, DEXAMETHASONE ACETATE MICRO, DEXAMETHASONE INTENSOL, DEXAMETHASONE ISONICOTINATE, DEXAMETHASONE MICRONIZED, DEXAMETHASONE SOD PHOS-WATER, DEXAMETHASONE SODIUM PHOSPHATE, DEXAMETHASONE-0.9% NACL, DMT SUIK, DOUBLEDEX, EMFLAZA, EOHILIA, FLUDROCORTISONE ACETATE, FLUNISOLIDE, FLUOCINOLONE ACETONIDE, FLUOCINOLONE ACETONIDE MICRO, FLUOCINONIDE MICRONIZED, FLUTICASONE PROPIONATE, FLUTICASONE PROPIONATE MICRO, HEMADY, HEMMOREX-HC, HEXATRIONE, HYDROCORTISONE, HYDROCORTISONE ACETATE, HYDROCORTISONE SOD SUCCINATE, HYDROCORTISONE-PRAMOXINE, KENALOG-10, KENALOG-40, KENALOG-80, LIDOCIDEX-I, MAS CARE-PAK, MEDROL, MEDROLOAN II SUIK, MEDROLOAN SUIK, METHYLPREDNISOLONE, METHYLPREDNISOLONE AC MICRO, METHYLPREDNISOLONE ACETATE, METHYLPREDNISOLONE SODIUM SUCC, MILLIPRED, MILLIPRED DP, MOMETASONE FUROATE, ORAPRED ODT, ORTIKOS, PEDIAPRED, PREDNISOLONE, PREDNISOLONE ACETATE MICRONIZE, PREDNISOLONE MICRONIZED, PREDNISOLONE SODIUM PHOS ODT, PREDNISOLONE SODIUM PHOSPHATE, PREDNISONE, PREDNISONE INTENSOL, PREDNISONE MICRONIZED, PRO-C-DURE 5, PRO-C-DURE 6, PROCTOCORT, RAYOS, SOLU-CORTEF, SOLU-MEDROL, TAPERDEX, TARPEYO, TRIAMCINOLONE, TRIAMCINOLONE ACETONIDE, TRIAMCINOLONE DIACETATE, TRIAMCINOLONE DIACETATE MICRO, TRILOAN II SUIK, TRILOAN SUIK, UCERIS, VERIPRED 20, ZCORT, ZILRETTA |
NSAIDs; Salicylates/Loop Diuretics SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: During concurrent administration of a loop diuretic and a nonsteroidal anti-inflammatory drug (NSAID), patients may retain sodium as a result of NSAID-induced prostaglandin inhibition. CLINICAL EFFECTS: The pharmacological effects of loop diuretics may be decreased due to reduced antihypertensive and diuretic actions. Concurrent use of NSAIDs with loop diuretics and renin-angiotensin system (RAS) inhibitors may result in increased risk of acute kidney injury (AKI). PREDISPOSING FACTORS: Low water intake/dehydration, drug sensitivity, greater than 75 years of age, and renal impairment may increase an individuals susceptibility to AKI. PATIENT MANAGEMENT: Monitor patients for a decrease in the effects of the loop diuretic. It may be necessary to administer a higher dose of the diuretic or an alternative anti-inflammatory agent. Concurrent use of NSAIDs with loop diuretics and RAS inhibitors should be used with caution and monitored closely for signs of AKI. DISCUSSION: In a computational study, the risk of AKI using triple therapy with a diuretic, RAS inhibitor, and NSAID was assessed. The study found the following factors may increase an individual's susceptibility to AKI: low water intake, drug sensitivity, greater than 75 years of age, and renal impairment.(19,20) In an observational study, current use of a triple therapy with a diuretic, RAS inhibitor, and NSAID, was associated with an increased rate of acute kidney injury (rate ratio (RR) 1.31, 95% confidence interval (CI) 1.12-1.53). The highest risk of AKI associated with triple therapy were observed in the first 30 days of use (RR 1.82, CI 1.35-2.46). (21) Administration of indomethacin alone has been reported to decrease sodium excretion and increase blood pressure. In patients receiving a loop diuretic (e.g., bumetanide, furosemide), these effects interfere with clinical management. Several NSAIDs have been shown to interact with loop diuretics interfering with the pharmacological effects of the diuretic. In volunteers on sodium restricted diets, ibuprofen and indomethacin inhibited furosemide diuresis. |
BUMETANIDE, EDECRIN, ETHACRYNATE SODIUM, ETHACRYNIC ACID, FUROSCIX, FUROSEMIDE, FUROSEMIDE-0.9% NACL, LASIX, SOAANZ, TORSEMIDE |
NSAIDs; Salicylates/Lithium SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Decreased renal excretion of lithium, possibly resulting from NSAID-induced prostaglandin inhibition. CLINICAL EFFECTS: May observe increased lithium toxicity. PREDISPOSING FACTORS: Risk factors for lithium toxicity include: renal impairment or worsening of existing renal disease, dehydration, low sodium diet, and concomitant use of multiple medications which may impair renal elimination of lithium (e.g. ARBs, ACE Inhibitors, NSAIDs, diuretics). Patients who require higher therapeutic lithium levels to maintain symptom control are particularly susceptible to these factors. PATIENT MANAGEMENT: The magnitude of this interaction is highly variable. Patients with predisposing factors, e.g. dehydration, renal impairment, or concurrent use of other agents which may impair lithium elimination, are expected to have a higher risk for lithium toxicity. If both drugs are administered, monitor plasma lithium levels and observe the patient for signs and symptoms of lithium toxicity or changes in renal function. Full effects of the addition or an increase in NSAID dose may not be seen for one to two weeks. Adjust the dose of lithium accordingly. If lithium is to be started in a patient stabilized on chronic NSAID therapy, consider starting with a lower lithium dose and titrate slowly as half-life may be prolonged. Monitor lithium concentrations until stabilized on the combination. Counsel the patient to contact their prescriber before starting an OTC NSAID. Assure that patients are familiar with signs and symptoms of lithium toxicity (e.g. new or worsening tremor, nausea/vomiting, diarrhea, ataxia, or altered mental status) and to report signs and symptoms of toxicity. DISCUSSION: Numerous studies and case reports have been documented that administration of a NSAID to a patient stabilized on lithium therapy may result in increased serum lithium levels and possible toxicity. Full effects may take 1 to 2 weeks to develop and may persist for a week after the NSAID is discontinued. |
LITHIUM CARBONATE, LITHIUM CARBONATE ER, LITHIUM CITRATE, LITHIUM CITRATE TETRAHYDRATE, LITHOBID |
Angiotensin II Receptor Blocker (ARB)/NSAIDs; Salicylates SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Angiotensin II receptor blockers (ARBs) can cause vasodilation of the efferent renal arteriole which may result in decreased glomerular filtration rate. NSAIDs inhibit prostaglandin synthesis which can lead to afferent arteriolar vasoconstriction and may negate any decrease in blood pressure. CLINICAL EFFECTS: Concurrent use of ARBs with NSAIDs may result in decreased antihypertensive effects. In patients with existing renal impairment, the use of these agents together may also result in further deterioration of renal clearance caused by renal hypoperfusion. Concurrent use of ARBs with NSAIDs and diuretics may result in increased risk of acute kidney injury (AKI). PREDISPOSING FACTORS: Low water intake/dehydration, drug sensitivity, greater than 75 years of age, and use of diuretics can lead to hypovolemia and increased risk of AKI. PATIENT MANAGEMENT: Patients maintained on ARBs should be monitored for a loss of blood pressure control and a change in renal function if an NSAID is added to their regimen. Patients receiving concurrent therapy may require higher doses of ARBs. If blood pressure control cannot be achieved or if the patient's renal function deteriorates, the NSAID may need to be discontinued. Patients should be monitored for hypotension if NSAIDs are withdrawn from concurrent ARB therapy. Concurrent use of ARBs with NSAIDs and diuretics should be used with caution and monitored for signs of AKI. DISCUSSION: In a computational study, the risk of AKI using triple therapy with a diuretic, renin-angiotensin system (RAS) inhibitor, and NSAID was assessed. The study found the following factors may increase an individual's susceptibility to AKI: low water intake, drug sensitivity, greater than 75 years of age, and renal impairment.(22,23) In an observational study, current use of a triple therapy combination was associated with an increased rate of acute kidney injury (rate ratio (RR) 1.31, 95% confidence interval (CI) 1.12-1.53). The highest risk of AKI associated with triple therapy were observed in the first 30 days of use (RR 1.82, CI 1.35-2.46).(24) In a population based cohort study, the concurrent use of NSAIDs with renin-angiotensin system (RAS) inhibitors in 5,710 hypertensive patients stabilized on antihypertensive therapy required hypertension treatment intensification. Adjusted hazard ratios (HR) for hypertension treatment intensification were 1.34 [95% CI 1.05-1.71] for NSAIDs in general, 1.79 (95% CI 1.15-2.78) for diclofenac and 2.02 (95% CI 1.09-3.77) for piroxicam. There were significant interactions between NSAIDs and angiotensin converting enzyme inhibitors (ACE inhibitors; HR 4.09, 95% CI 2.02-8.27) or angiotensin receptor blockers (ARBs; HR 3.62, 95% CI 1.80-7.31), but not with other antihypertensive drugs. |
AMLODIPINE-OLMESARTAN, AMLODIPINE-VALSARTAN, AMLODIPINE-VALSARTAN-HCTZ, ARBLI, ATACAND, ATACAND HCT, AVALIDE, AVAPRO, AZOR, BENICAR, BENICAR HCT, CANDESARTAN CILEXETIL, CANDESARTAN-HYDROCHLOROTHIAZID, COZAAR, DIOVAN, DIOVAN HCT, EDARBI, EDARBYCLOR, ENTRESTO, ENTRESTO SPRINKLE, EPROSARTAN MESYLATE, EXFORGE, EXFORGE HCT, HYZAAR, IRBESARTAN, IRBESARTAN-HYDROCHLOROTHIAZIDE, LOSARTAN POTASSIUM, LOSARTAN-HYDROCHLOROTHIAZIDE, MICARDIS, MICARDIS HCT, OLMESARTAN MEDOXOMIL, OLMESARTAN-AMLODIPINE-HCTZ, OLMESARTAN-HYDROCHLOROTHIAZIDE, TELMISARTAN, TELMISARTAN-AMLODIPINE, TELMISARTAN-HYDROCHLOROTHIAZID, TRIBENZOR, VALSARTAN, VALSARTAN-HYDROCHLOROTHIAZIDE |
NSAIDs; Aspirin (Non-Cardioprotective)/Beta-Blockers SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Unknown; however, possibly related to inhibition of prostaglandin by NSAIDs. CLINICAL EFFECTS: The antihypertensive action of beta-blockers may be decreased. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Monitor patient's blood pressure and adjust the dose of the beta-blocker as needed. DISCUSSION: Concurrent administration of beta-blockers and NSAIDs has been associated with a clinically significant loss in antihypertensive response. The magnitude of the effect of NSAIDs on control of blood pressure by beta-blockers needs to be determined for each anti-inflammatory agent. One or more of the drug pairs linked to this monograph have been included in a list of interactions that could be considered for classification as "non-interruptive" in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
ACEBUTOLOL HCL, ATENOLOL, ATENOLOL-CHLORTHALIDONE, BETAPACE, BETAPACE AF, BETAXOLOL HCL, BISOPROLOL FUMARATE, BISOPROLOL-HYDROCHLOROTHIAZIDE, BREVIBLOC, BYSTOLIC, CARVEDILOL, CARVEDILOL ER, COREG, COREG CR, CORGARD, ESMOLOL HCL, ESMOLOL HCL-SODIUM CHLORIDE, ESMOLOL HCL-WATER, HEMANGEOL, INDERAL LA, INDERAL XL, INNOPRAN XL, LABETALOL HCL, LABETALOL HCL-WATER, NADOLOL, NEBIVOLOL HCL, PINDOLOL, PROPRANOLOL HCL, PROPRANOLOL HCL ER, PROPRANOLOL-HYDROCHLOROTHIAZID, RAPIBLYK, SOTALOL, SOTALOL AF, SOTALOL HCL, SOTYLIZE, TENORETIC 100, TENORETIC 50, TENORMIN, TIMOLOL MALEATE |
Selected Anticoagulants (Vitamin K antagonists)/Propoxyphene; Tramadol SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The exact mechanism is unknown. CLINICAL EFFECTS: Concurrent use of propoxyphene or tramadol may result in increased effects of some anticoagulants, including bleeding. PREDISPOSING FACTORS: The risk for bleeding episodes may be greater in patients with disease-associated factors (e.g. thrombocytopenia). Drug associated risk factors include concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism and/or have an inherent risk for bleeding (e.g. NSAIDs). PATIENT MANAGEMENT: Patients maintained on warfarin who begin therapy with propoxyphene or tramadol containing medication should be monitored closely for signs of increased warfarin effects. The dosage of warfarin may need to be adjusted or a different opioid may need to be used. If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. When applicable, perform agent-specific laboratory test (e.g. INR, aPTT) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. The time of highest risk for a coumarin-type drug interaction is when the precipitant drug is initiated or discontinued. Contact the prescriber before initiating, altering the dose or discontinuing either drug. DISCUSSION: There have been three case reports of patients developing hematuria following the addition of a combination product containing propoxyphene and acetaminophen.(1-2) In one of these reports, the patient took double the recommended dosage of the product in a four hour period.(1) In another case report, a patient noticed increased bleeding from facial shaving cuts and developed an increased prothrombin time after self-administering nearly twice the recommended dosage of a combination propoxyphene and acetaminophen product and an unknown quantity of ibuprofen over a three day period.(3) In another report, a patient developed an increased prothrombin time following the addition of a combination propoxyphene and acetaminophen product.(4) There have been three case reports of increased INR values following the addition of tramadol to warfarin-containing regimens.(5-7) A large systematic review was performed on 72 warfarin drug-drug interactions studies that reported on bleeding, thromboembolic events, or death. Most studies were retrospective cohorts. A meta-analysis of 4 of those studies found a higher rate of clinically significant bleeding in patients on warfarin and non-NSAID analgesics (OR=2.12; 95% CI 1.65-2.73). Increased bleeding risk was also seen in subgroup analyses with opioid analgesics (OR=2.81; 95% CI 1.89-4.17).(8) A retrospective review associated tramadol use with episodes of major bleeding in patients receiving phenprocoumon or acenocoumarol.(9) In contrast, a study in 19 patients receiving phenprocoumon found no effect on INR values following the addition of tramadol.(10) A self-controlled case study of 1,622 oral anticoagulant-precipitant drug pairs were reviewed and found 14% of drug pairs were associated with a statistically significant elevated risk of thromboembolism. Concurrent use of warfarin and propoxyphene resulted in a ratio of rate ratios (95% CI) of 1.38 (1.08-1.77).(11) |
ANISINDIONE, JANTOVEN, WARFARIN SODIUM |
Triamterene; Amiloride/Selected NSAIDs; Salicylates SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The exact mechanism is unknown; however, nonsteroidal anti-inflammatory (NSAID) inhibition of prostaglandins may allow triamterene or amiloride- induced nephrotoxicity or hyperkalemia to occur in some patients. CLINICAL EFFECTS: Possible renal failure or hyperkalemia. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: When possible, avoid concurrent therapy with triamterene or amiloride with NSAIDs. If these agents are used concurrently, monitor renal function and serum electrolytes. If decreased renal function or hyperkalemia develops, discontinue both agents. DISCUSSION: Although acute renal failure and hyperkalemia have only been reported in studies and case reports involving indomethacin, diclofenac, flurbiprofen, and ibuprofen with either triamterene or amiloride, the proposed mechanism suggests that all nonsteroidal anti-inflammatory agents may be capable of this interaction. Patients receiving diuretics are at an increased risk of NSAID-induced renal failure. |
AMILORIDE HCL, AMILORIDE-HYDROCHLOROTHIAZIDE, DYRENIUM, TRIAMTERENE, TRIAMTERENE-HYDROCHLOROTHIAZID |
Selected NSAIDs/Selected CYP2C9 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The major metabolic pathway for many non-steroidal anti-inflammatory agents (NSAIDs) is CYP2C9. Inhibitors of CYP2C9 include: amiodarone, asciminib, cannabidiol, diosmin, fluconazole, ketoconazole, miconazole, nitisinone, oxandrolone, piperine, voriconazole, and zafirlukast.(1,2) CLINICAL EFFECTS: Concurrent use of NSAIDs with inhibitors of CYP2C9 may result in increased levels of and adverse effects from NSAIDs, including increased risk for bleeding. NSAIDs linked to this monograph are celecoxib, diclofenac, flurbiprofen, ibuprofen, meloxicam, naproxen, parecoxib, piroxicam and valdecoxib. PREDISPOSING FACTORS: Higher doses of either agent would be expected to increase the risk for serious adverse effects such as gastrointestinal bleeding (GIB) or renal failure. Patients who smoke, are elderly, debilitated, dehydrated, have renal impairment, or who have a history of GIB due to NSAIDs are also at increased risk for serious adverse events.(3-7) The risk for bleeding episodes may be greater in patients with disease-associated factors (e.g. thrombocytopenia). Drug associated risk factors include concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism and/or have an inherent risk for bleeding (e.g. NSAIDs). PATIENT MANAGEMENT: Patients on routine NSAID therapy when an inhibitor of CYP2C9 is started should be evaluated for patient-specific risk factors for NSAID toxicity. Based upon this risk assessment, consider dose reduction of the NSAID or close monitoring for adverse effects. For a patient already receiving a CYP2C9 inhibitor when an NSAID is started, consider initiating the NSAID at a lower than usual dose, particularly when predisposing risk factors for harm are present. The manufacturer of celecoxib recommends that celecoxib be introduced at the lowest recommended dose in patients receiving fluconazole therapy.(3) The manufacturer of fluconazole states that half the dose of celecoxib may be necessary when fluconazole is added.(4) It would be prudent to follow this recommendation with other CYP2C9 inhibitors and to decrease the dose of celecoxib in patients in whom CYP2C9 inhibitors are added to celecoxib therapy. The manufacturer of diclofenac-misoprostol states that the total daily dose of diclofenac should not exceed the lowest recommended dose of 50 mg twice daily in patients taking CYP2C9 inhibitors.(5) It would be prudent to use the lowest recommended dose of other diclofenac formulations in patients taking CYP2C9 inhibitors. The manufacturer of parecoxib states that the dose of parecoxib should be reduced in those patients who are receiving fluconazole therapy.(6) It would be prudent to follow this recommendation with other CYP2C9 inhibitors. If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. When applicable, perform agent-specific laboratory test (e.g. INR, aPTT) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. DISCUSSION: The concomitant administration of celecoxib and fluconazole (200 mg daily) resulted in a 2-fold increase in celecoxib plasma concentration.(3) In vitro studies in human hepatocytes found that amiodarone inhibited diclofenac metabolism.(7) In two separate studies, single doses of diclofenac (50 mg) or ibuprofen (400 mg) were coadministered with the last dose of voriconazole (400 mg q12h on Day 1, followed by 200 mg q12h on Day 2). Voriconazole increased the mean AUC of diclofenac by 78% and increased the AUC of the active isomer of ibuprofen by 100%.(8-10) Coadministration of diosmin increased diclofenac levels by 63%.(2) Coadministration of flurbiprofen or ibuprofen with fluconazole increased the AUC of flurbiprofen by 81% and of the active ibuprofen by 82% compared with either agent alone.(4) Concurrent voriconazole increased meloxicam AUC by 47%.(11,12) The concurrent administration of fluconazole and parecoxib resulted in increases in the area-under-curve (AUC) and maximum concentration (Cmax) of valdecoxib (the active metabolite of parecoxib) by 62% and 19%, respectively.(6) In a study, single dose diclofenac (50mg) given concurrently with the last dose of voriconazole (400 mg every 12 hours on Day 1, 200 mg every 12 hours on Day 2) increased Cmax and AUC by 2.1-fold and 1.8-fold, respectively. (5) Inhibitors of CYP2C9 include: amiodarone, asciminib, cannabidiol, diosmin, fluconazole, ketoconazole, miconazole, nitisinone, oxandrolone, piperine, voriconazole, and zafirlukast.(1,2) |
ACCOLATE, AMIODARONE HCL, AMIODARONE HCL-D5W, DIFLUCAN, EPIDIOLEX, FLUCONAZOLE, FLUCONAZOLE-NACL, KETOCONAZOLE, MICONAZOLE, MICONAZOLE NITRATE, NEXTERONE, NITISINONE, NITYR, ORAVIG, ORFADIN, OXANDROLONE, PACERONE, SCEMBLIX, VFEND, VFEND IV, VORICONAZOLE, ZAFIRLUKAST |
Selected NSAIDs/Probenecid SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Probenecid may inhibit the renal tubular secretion of some NSAIDs. Probenecid may also prevent biliary clearance of NSAIDs. CLINICAL EFFECTS: The decreased clearance of NSAIDs may lead to increased blood levels and an increase in adverse effects. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Patients receiving concurrent therapy should be monitored for an increase in NSAID-related adverse effects, including renal insufficiency. The dose of the NSAID may need to be decreased or probenecid may need to be discontinued. DISCUSSION: Probenecid has been reported to increase the blood levels of indomethacin by 2-fold to 6-fold.(1,2) Probenecid has been reported to increase levels of oral ketoprofen by 93%;(3) however, no effect was seen on intramuscular ketoprofen in another study.(4) Probenecid has also been shown to increase naproxen levels.(5) Probenecid has been shown to increase the maximum concentration (Cmax) of tenoxicam. No other pharmacokinetic parameters were affected.(6) This interaction may result in clinical benefits in some patients. |
PROBENECID, PROBENECID-COLCHICINE |
Heparins/NSAIDs SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Heparin inhibits thrombosis by inactivating activated Factor X and inhibiting the conversion of prothrombin to thrombin.(1) NSAIDs inhibit coagulation by interfering with platelet-aggregation, while inhibition of prostaglandin synthesis increases the risk for gastrointestinal bleeding. CLINICAL EFFECTS: Concurrent use of heparin and an NSAID may increase the risk for bleeding.(1,2) PREDISPOSING FACTORS: The risk for bleeding episodes may be greater in patients with multiple disease-associated factors (e.g. thrombocytopenia, advanced liver disease). Drug associated risk factors include concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism and/or have an inherent risk for bleeding (e.g., other anticoagulants, antiplatelets, corticosteroids, selective serotonin reuptake inhibitors (SSRIs) or serotonin-norepinephrine reuptake inhibitors (SNRIs). Risk of GI bleed may be increased in patients who are of older age, in poor health status, or who use alcohol or smoke. Risk may also be increased with longer duration of NSAID use and prior history of peptic ulcer disease and/or GI bleeding. PATIENT MANAGEMENT: Manufacturers recommend caution and monitoring when using this combination of drugs.(1,2) If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. When applicable, perform agent-specific laboratory test (e.g. INR, aPTT) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. DISCUSSION: Based upon drug mechanisms of action, careful monitoring would be prudent. |
ARIXTRA, ELMIRON, ENOXAPARIN SODIUM, ENOXILUV, FONDAPARINUX SODIUM, FRAGMIN, HEPARIN SODIUM, HEPARIN SODIUM IN 0.45% NACL, HEPARIN SODIUM-0.45% NACL, HEPARIN SODIUM-0.9% NACL, HEPARIN SODIUM-D5W, LOVENOX, PENTOSAN POLYSULFATE SODIUM |
SSRIs; SNRIs/Selected NSAIDs; Aspirin SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Serotonin release by platelets plays a role in hemostasis.(1,2) The increased risk of bleeding may be a result of a decrease in serotonin reuptake by platelets. CLINICAL EFFECTS: Concurrent use of a selective serotonin reuptake inhibitor(1-7,13) or a serotonin-norepinephrine reuptake inhibitor(8-10) and a NSAID may result in bleeding. PREDISPOSING FACTORS: The risk for bleeding episodes may be greater in patients with multiple disease-associated factors (e.g. thrombocytopenia, advanced liver disease). Drug associated risk factors include concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism and/or have an inherent risk for bleeding (e.g., anticoagulants, antiplatelets, or corticosteroids. Risk of GI bleed may be increased in patients who are of older age, in poor health status, or who use alcohol or smoke. Risk may also be increased with longer duration of NSAID use and prior history of peptic ulcer disease and/or GI bleeding. Renal impairment has been associated with an elevated risk of GI bleed in patients on SSRIs.(15) PATIENT MANAGEMENT: Selective serotonin reuptake inhibitors(1-7,13) or serotonin-norepinephrine reuptake inhibitors(8-10) and NSAIDs should be used concurrently with caution. Patients should be warned about the increased risk of bleeding and be educated about signs and symptoms of bleeding.(1-11,13) If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. Discontinue anti-platelet agents in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. DISCUSSION: In a retrospective review of 5 years of data from the Pharmaco-Epidemiologic Prescription Database, hospitalizations for upper gastro-intestinal bleeding in antidepressant users were compared to those in non-antidepressant users. The risk of a bleed in a patient using an NSAID only based on an observed-expected ratio was 4.5 and in a patient using low-dose aspirin only was 2.5. Concurrent use of a selective serotonin reuptake inhibitor with NSAIDs or low-dose aspirin increased the risk of bleeding to 12.2 and 5.2, respectively.(11) In another study, there were 16 cases of upper gastrointestinal bleeding in patients receiving concurrent therapy with selective serotonin reuptake inhibitors and NSAIDs. Adjusted relative risk of bleeding with NSAIDs, selective serotonin reuptake inhibitors, or both were 3.7, 2.6, or 15.6, respectively.(12) |
CELEXA, CITALOPRAM HBR, CYMBALTA, DESVENLAFAXINE ER, DESVENLAFAXINE SUCCINATE ER, DRIZALMA SPRINKLE, DULOXETINE HCL, DULOXICAINE, EFFEXOR XR, ESCITALOPRAM OXALATE, FETZIMA, FLUOXETINE DR, FLUOXETINE HCL, FLUVOXAMINE MALEATE, FLUVOXAMINE MALEATE ER, LEXAPRO, OLANZAPINE-FLUOXETINE HCL, PAROXETINE CR, PAROXETINE ER, PAROXETINE HCL, PAROXETINE MESYLATE, PAXIL, PAXIL CR, PRISTIQ, PROZAC, SAVELLA, SERTRALINE HCL, TRINTELLIX, VENLAFAXINE BESYLATE ER, VENLAFAXINE HCL, VENLAFAXINE HCL ER, VIIBRYD, VILAZODONE HCL, ZOLOFT |
Selected Nephrotoxic Agents/Cisplatin SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The nephrotoxic effects of aminoglycosides or non-steroidal anti-inflammatory drugs (NSAIDs) may be additive to those of cisplatin. CLINICAL EFFECTS: The concurrent administration of amikacin, gentamicin, tobramycin, or NSAIDs with cisplatin may result in additive nephrotoxic effects.(1,2,5,6) PREDISPOSING FACTORS: Pre-existing renal insufficiency, advanced age, dehydration may increase the risk of nephrotoxicity.(1,5,6) PATIENT MANAGEMENT: The US labeling for aminoglycosides and cisplatin states that the concurrent use of aminoglycosides and cisplatin should be avoided.(1,3,4,6) Inform patients that concurrent cisplatin and aminoglycosides or NSAIDs can cause nephrotoxicity and that renal function and electrolyte monitoring during treatment is necessary.(2) DISCUSSION: The US manufacturers of amikacin, gentamicin and tobramycin state that since the nephrotoxic effects of these medications may be additive, avoid concurrent or sequential use of other neurotoxic and/or nephrotoxic agents including cisplatin.(1,3,6) |
CISPLATIN, KEMOPLAT |
Drospirenone/NSAIDs; Salicylates SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Drospirenone has antimineralocorticoid activity and may cause hyperkalemia. NSAIDs may also increase potassium levels.(1) CLINICAL EFFECTS: Concurrent use of drospirenone and NSAIDs may result in hyperkalemia.(1) PREDISPOSING FACTORS: Renal insufficiency, hepatic dysfunction, adrenal insufficiency, and use of potassium supplements, ACE inhibitors, angiotensin II receptor antagonists, heparin, and potassium-sparing diuretics may increase potassium levels.(1) PATIENT MANAGEMENT: Patients receiving drospirenone with a NSAID should have their serum potassium level checked during the first treatment cycle.(1) DISCUSSION: Drospirenone has antimineralocorticoid activity comparable to 25 mg of spironolactone and may result in hyperkalemia. Concurrent use of NSAIDs may also increase potassium levels.(1) Occasional or chronic use of NSAIDs was not restricted in clinical trials of drospirenone.(1) |
ANGELIQ, BEYAZ, DROSPIRENONE-ETH ESTRA-LEVOMEF, DROSPIRENONE-ETHINYL ESTRADIOL, JASMIEL, LO-ZUMANDIMINE, LORYNA, NEXTSTELLIS, NIKKI, OCELLA, SAFYRAL, SLYND, SYEDA, VESTURA, YASMIN 28, YAZ, ZARAH, ZUMANDIMINE |
Tenofovir/Selected Nephrotoxic Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Tenofovir and other nephrotoxic agents may result in additive or synergistic effects on renal function and increase nephrotoxicity risk.(1) CLINICAL EFFECTS: Concurrent use of tenofovir and other nephrotoxic agents may result in renal toxicity and acute renal failure.(1) Reports of acute renal failure and Fanconi syndrome have been reported with tenofovir use.(2,3) However, this has been reported in 3 case reports and the renal failure may have been complicated by other pre-existing conditions.(2) PREDISPOSING FACTORS: Pre-existing renal dysfunction, long duration of use, low body weight, concomitant use of drugs that may increase tenofovir levels may increase the risk of nephrotoxicity.(1) PATIENT MANAGEMENT: The US prescribing information for tenofovir recommends avoiding concurrent or recent use of a nephrotoxic agent.(3) Evaluate renal function prior to initiation of concurrent therapy and continue renal function monitoring during therapy. Dose adjustments may be required for impaired renal function. Tenofovir should be avoided with high-dose or multiple NSAIDs. Alternatives to NSAIDs should be considered in patients at risk for renal dysfunction.(3) Patients receiving concurrent NSAIDs with tenofovir should be monitored for possible renal toxicity.(1,2) The dosing interval should be adjusted in patients with a baseline creatinine clearance of less than 50 ml/min.(1-3) DISCUSSION: From March 18, 2003 to December 1, 2005, Health Canada received 10 reports of nephrotoxic reactions with tenofovir. Three of these occurred following the addition of a NSAID to tenofovir therapy. In the first report, a patient maintained on tenofovir for 29 months developed acute renal failure and acute tubular necrosis requiring dialysis 5 days after beginning indomethacin (100 mg rectally twice daily). In the second report, a patient maintained on tenofovir for 7 months developed acute renal failure and acute tubular necrosis after taking 90 tablets of naproxen (375 mg) over 2 months. The patient died. In the third report, a patient maintained on tenofovir for over a year developed acute renal failure and nephrotic syndrome after 2 months of valdecoxib (20 mg daily) therapy. Symptoms subsided following discontinuation of valdecoxib.(1) |
BIKTARVY, CIMDUO, COMPLERA, DELSTRIGO, DESCOVY, EFAVIRENZ-EMTRIC-TENOFOV DISOP, EFAVIRENZ-LAMIVU-TENOFOV DISOP, EMTRICITABINE-TENOFOVIR DISOP, GENVOYA, ODEFSEY, STRIBILD, SYMFI, SYMFI LO, SYMTUZA, TENOFOVIR DISOPROXIL FUMARATE, TRUVADA, VEMLIDY, VIREAD |
Aspirin (for Cardioprotection)/Selected NSAIDs SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Some non-steroidal anti-inflammatory agents (NSAIDs) are reversible inhibitors of cyclooxygenase and aspirin is an irreversible inhibitor. If these NSAIDs are given before aspirin, the aspirin will not be able to bind to the cyclooxygenase site, which will result in a lack of effect. CLINICAL EFFECTS: The antiplatelet and cardioprotective effect of aspirin may be decreased with the concurrent use of some NSAIDs, particularly during the washout period of the NSAID. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Consideration should be given to use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic if appropriate. If an NSAID must be used, cardioprotective doses of aspirin should be administered before taking any NSAIDs. Single doses of ibuprofen should be given at least 8 hours before or at least 2 hours after immediate release aspirin. The administration of other NSAIDs should be separated from aspirin by at least 2 hours. DISCUSSION: The cardioprotective effect from aspirin is based on the antiplatelet effects. The irreversible inhibition of cyclooxygenase mediates the antiplatelet effects. Administration of a reversible inhibitor or cyclooxygenase blocks the irreversible effect of aspirin on the platelets. This effect has been seen with celecoxib, flufenamic acid, ibuprofen, indomethacin, naproxen, nimesulide, oxaprozin, piroxicam, and tiaprofenic acid but not with diclofenac, etoricoxib, ketorolac, meloxicam, or sulindac. In a study of 80 healthy volunteers, aspirin antiplatelet activity, measured by % thromboxane B2 inhibition (TxB2), was decreased when naproxen 220 mg daily was given simultaneously with or 30 minutes before aspirin 81 mg daily for 10 days (98.7% aspirin alone vs 93.1% and 87.7% naproxen and aspirin). The interaction persisted at least 1 day following discontinuation of naproxen but was normalized by the 3rd day. In a nationwide cohort study, patients were evaluated for thromboembolic cardiovascular and clinically relevant bleeding events with concurrent antithrombotic and ongoing NSAID treatment. A total of 108,232 patients were followed for a mean of 2.3 +/- 1.8 years after diagnosis of myocardial infarction. Concomitant NSAID treatment significantly increased the risk for cardiovascular events (hazard ratio (HR) 6.96; 95% CI 6.24 - 6.77; p<0.001) and bleeding events (HR 4.08; 95% CI 3.51 - 4.73; p<0.001) compared to no NSAID treatment. NSAIDs were further evaluated and revealed the use of celecoxib (HR: 4.65; 95% CI: 3.17 to 6.82; p < 0.001, and 3.44; 95% CI: 2.20 to 5.39; p < 0.001, respectively) and meloxicam (HR: 3.03; 95% CI: 1.68 to 5.47; p < 0.001, and 2.80; 95% CI: 1.40 to 5.60; p < 0.001, respectively) had the lowest risk for cardiovascular and bleeding events, receptively. |
ACETYL SALICYLIC ACID, ASPIRIN, ASPIRIN-DIPYRIDAMOLE ER, DURLAZA |
Tamoxifen/Selected Weak CYP2D6 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Inhibitors of CYP2D6 may inhibit the conversion of tamoxifen to endoxifen (an active metabolite of tamoxifen).(1-2) The role of endoxifen in tamoxifen's efficacy has been debated and may involve a minimum concentration level.(3-5) CLINICAL EFFECTS: Concurrent use of inhibitors of CYP2D6 may decrease the effectiveness of tamoxifen in preventing breast cancer recurrence. PREDISPOSING FACTORS: Concurrent use of weak CYP2D6 inhibitors in patients who are CYP2D6 intermediate metabolizers should be avoided. Patients who are CYP2D6 poor metabolizers lack CYP2D6 function and are not affected by CYP2D6 inhibition. PATIENT MANAGEMENT: Although data on this interaction are conflicting, it may be prudent to use alternatives to CYP2D6 inhibitors when possible in patients taking tamoxifen. The US manufacturer of tamoxifen states that the impact on the efficacy of tamoxifen by strong CYP2D6 inhibitors is uncertain and makes no recommendation regarding coadministration with inhibitors of CYP2D6.(12) The manufacturer of paroxetine (a strong CYP2D6 inhibitor) states that alternative agents with little or no CYP2D6 inhibition should be considered.(13) The National Comprehensive Cancer Network's breast cancer guidelines advises caution when coadministering strong CYP2D6 inhibitors with tamoxifen.(14) If concurrent therapy is warranted, the risks versus benefits should be discussed with the patient. DISCUSSION: Some studies have suggested that administration of fluoxetine, paroxetine, and quinidine with tamoxifen or a CYP2D6 poor metabolizer phenotype may result in a decrease in the formation of endoxifen (an active metabolite of tamoxifen) and a shorter time to breast cancer recurrence.(1-2,9) A retrospective study of 630 breast cancer patients found an increasing risk of breast cancer mortality with increasing durations of coadministration of tamoxifen and paroxetine. In the adjusted analysis, absolute increases of 25%, 50%, and 75% in the proportion of time of overlapping use of tamoxifen with paroxetine was associated with 24%, 54%, and 91% increase in the risk of death from breast cancer, respectively.(16) The CYP2D6 genotype of the patient may have a role in the effects of this interaction. Patients with wild-type CYP2D6 genotype may be affected to a greater extent by this interaction. Patients with a variant CYP2D6 genotype may have lower baseline levels of endoxifen and may be affected to a lesser extent by this interaction.(6-10) In a retrospective review, 1,325 patients treated with tamoxifen for breast cancer were classified as being poor 2D6 metabolizers (lacking functional CYP2D6 enzymes), intermediate metabolizers (heterozygous alleles), or extensive metabolizers (possessing 2 functional alleles). After a mean follow-up period of 6.3 years, the recurrence rates were 14.9%, 20.9%, and 29.0%, in extensive metabolizers, intermediate metabolizers, and poor metabolizers, respectively.(11) In October of 2006, the Advisory Committee Pharmaceutical Science, Clinical Pharmacology Subcommittee of the US Food and Drug Administration recommended that the US tamoxifen labeling be updated to include information about the increased risk of breast cancer recurrence in poor CYP2D6 metabolizers (either by genotype or drug interaction).(17-18) The labeling changes were never made due to ongoing uncertainty about the effects of CYP2D6 genotypes on tamoxifen efficacy. In contrast to the above information, two studies have shown no relationship between CYP2D6 genotype and breast cancer outcome.(19-21) As well, a number of studies found no association between use of CYP2D6 inhibitors and/or antidepressants in patients on tamoxifen and breast cancer recurrence,(22-26) though the studies were limited by problematic selection of CYP2D6 inhibitors and short follow-up. Weak inhibitors of CYP2D6 include: alogliptin, artesunate, celecoxib, cimetidine, clobazam, cobicistat, delavirdine, diltiazem, dimenhydrinate, diphenhydramine, dronabinol, dupilumab, echinacea, enasidenib, fedratinib, felodipine, fluvoxamine, gefitinib, hydralazine, imatinib, labetalol, lorcaserin, nicardipine, osilodrostat, ranitidine, ritonavir, sertraline, verapamil and viloxazine.(27) |
SOLTAMOX, TAMOXIFEN CITRATE |
Opioids/Buprenorphine; Pentazocine SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Buprenorphine is a partial agonist at mu-opiate receptors, exhibiting a ceiling effect at which higher doses produce no further effect. Pentazocine is a mixed agonist-antagonist at opiate receptors.(1) Full mu-opioid agonists (e.g., morphine, methadone) continue to have increased effects at higher doses without ceiling effects.(2) CLINICAL EFFECTS: Concurrent use of buprenorphine or pentazocine with other opioids in opioid dependent patients may result in withdrawal symptoms. Concurrent use in other patients may result in additive or decreased analgesia and decreased opioid side effects. PREDISPOSING FACTORS: Patients dependent on opioids or who take higher dosages of opioids may be more likely to experience withdrawal symptoms with concurrent use. PATIENT MANAGEMENT: Use buprenorphine and pentazocine with caution in patients maintained or dependent on other opioids and monitor for signs of withdrawal. In other patients, also monitor for changes in analgesic effects. The manufacturer of Sublocade states buprenorphine may precipitate opioid withdrawal in patients who are currently physically dependent on full opioid agonists. The risk of withdrawal may be increased if buprenorphine is given less than 6 hours after short-acting opioids (such as heroin, morphine) and less than 24 hours after long-acting opioids (such as methadone).(3) DISCUSSION: Concurrent use of buprenorphine with other opioids in opioid dependent patients could result in withdrawal symptoms. Concurrent use in other patients may result in additive or decreased analgesia, decreased opioid side effects, and/or renarcotization.(2) In clinical trials, administration of buprenorphine injection produced withdrawal symptoms in patients maintained on methadone (30 mg daily) when administered 2 hours post-methadone,(4) but not when administered 20 hours post-methadone.(5) In another study, sublingual buprenorphine produced withdrawal symptoms in patients maintained on methadone. Symptoms were more pronounced in patients maintained on 60 mg daily doses than in patients maintained on 30 mg daily doses.(6) In a study of 10 patients maintained on methadone (100 mg daily), only three were able to tolerate escalating sublingual doses of buprenorphine/naloxone up to 32/8 mg. Split doses produced less withdrawal symptoms than full doses.(7) In a case report, a heroin-user maintained in a buprenorphine-maintenance program began stockpiling his buprenorphine instead of ingesting it and began using heroin. He then decided to re-initiate treatment on his own and ingested between 80 and 88 mg of buprenorphine over a two day period and experienced extreme withdrawal symptoms, despite restarting heroin during these symptoms. Methadone relieved his withdrawal symptoms.(8) |
BELBUCA, BRIXADI, BUPRENORPHINE, BUPRENORPHINE HCL, BUPRENORPHINE-NALOXONE, BUTRANS, PENTAZOCINE-NALOXONE HCL, SUBLOCADE, SUBOXONE, ZUBSOLV |
Erlotinib/NSAIDs SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The exact mechanism is unknown. CLINICAL EFFECTS: Concurrent use of NSAIDs may increase the risk of gastrointestinal bleeding and/or perforation in patients receiving erlotinib. Fatalities have been reported.(1) PREDISPOSING FACTORS: Patients with a history of peptic ulceration or diverticular disease or who are receiving concomitant anti-angiogenic, corticosteroids, and/or taxane-based chemotherapy may be an increased risk of gastrointestinal perforation.(1) The risk for bleeding episodes may be greater in patients with disease-associated factors (e.g. thrombocytopenia). Drug associated risk factors include concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism and/or have an inherent risk for bleeding. PATIENT MANAGEMENT: Monitor patients receiving concurrent therapy for signs of gastrointestinal bleeding and/or perforation. Discontinue erlotinib in patients who develop gastrointestinal perforation.(1) If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. DISCUSSION: Infrequent cases of gastrointestinal bleeding were reported during erlotinib trials. Some cases were associated with NSAID administration.(1) In a phase II trial of concurrent bevacizumab plus erlotinib, 2 of 13 patients suffered fatal gastrointestinal perforations.(2) In another phase II trial of concurrent bevacizumab with erlotinib, 1 of 104 patients died of gastrointestinal perforation.(3) |
ERLOTINIB HCL, TARCEVA |
Tramadol/5-HT3 Antagonists SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The interaction may involve a reduction in the binding involving 5-HT3 receptors.(1) CLINICAL EFFECTS: Concurrent use of 5-HT3 antagonists may decrease the effectiveness of tramadol, resulting in increased use of tramadol.(1-3) 5-HT3 antagonists may not be effective in reducing tramadol-induced nausea.(4) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Consider the use of alternative anti-emetics in patients receiving tramadol, or the use of other opioids in patients receiving 5-HT3 antagonists. DISCUSSION: In a randomized study in 59 post-surgical patients in recovery, compared to tramadol alone, patients receiving concurrent ondansetron required significantly larger doses of tramadol at four hours (223 mg versus 71 mg), at 8 hours (285 mg versus 128 mg), and at 12 hours (406 mg versus 190 mg). Vomiting rates at 4 hours and 8 hours were significantly higher with tramadol and concurrent ondansetron compared to tramadol alone.(1) In a randomized, double-blind study in 40 surgical patients undergoing lumbar laminectomy, compared to tramadol alone, cumulative tramadol consumption with concurrent ondansetron during the first 24 hours was significantly increased (between 26% and 35%) as well as thereafter (22% to 25%).(2) In another randomized study in 120 post-surgical patients, it was discovered that tramadol consumption was increased in those patients receiving concurrent ondansetron compared to tramadol alone.(3) In a prospective, randomized, double-blinded study in dental patients, patients received one of four treatments: fentanyl and metoclopramide, tramadol and metoclopramide, fentanyl and ondansetron, or tramadol and ondansetron. The patients who received tramadol and ondansetron had the highest nausea scores among the treatment groups. There were no significant differences in the incidences of pain or nausea in the 24 hours following the procedure.(4) In a randomized, controlled trial in 40 surgical patients undergoing hernioplasty or thyroidectomy, compared to tramadol alone, cumulative tramadol consumption was higher at the 2-hour time point with concurrent ondansetron (0.24 +/- 0.1 vs. 0.17 +/- 0.16; p = 0.01).(5) A systematic review and meta-analysis of randomized controlled trials in the postoperative setting comparing tramadol alone and in combination with ondansetron were included. At 4-hours, 8-hours, 12-hours, and 24-hours post-procedure, patients had increased tramadol requirements when administered with concurrent ondansetron compared to tramadol alone.(6) 5-HT3 antagonists linked to this monograph include: alosetron, azasetron, dolasetron, granisetron, ondansetron, palonosetron, ramosetron, and tropisetron. |
AKYNZEO, ALOSETRON HCL, GRANISETRON HCL, LOTRONEX, MKO (MIDAZOLAM-KETAMINE-ONDAN), ONDANSETRON HCL, ONDANSETRON HCL-0.9% NACL, ONDANSETRON ODT, PALONOSETRON HCL, POSFREA, SANCUSO, SUSTOL |
Metoprolol/Selected CYP2D6 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: CYP2D6 inhibitors may inhibit the metabolism of metoprolol.(1,2) CLINICAL EFFECTS: Concurrent use of CYP2D6 inhibitors may result in elevated levels of and toxicity from metoprolol.(1,2) PREDISPOSING FACTORS: The interaction may be more severe in patients who are ultrarapid metabolizers of CYP2D6.(1,2) PATIENT MANAGEMENT: Monitor patients receiving concurrent therapy with metoprolol and inhibitors of CYP2D6. The dosage of metoprolol may need to be adjusted.(1,2) DISCUSSION: In an open-label, randomized, cross-over study in 12 healthy males, celecoxib (200 mg BID) increased the AUC of metoprolol (50 mg) by 64%. One subject experienced a 200% increase.(3) In a randomized, double-blind, cross-over study in 7 healthy subjects, hydroxychloroquine (400 mg) increased the AUC of a single dose of metoprolol by 65%.(4) In a study in 20 Chinese patients with chronic myelogenous leukemia, imatinib (400 mg BID) increased the AUC of metoprolol (100 mg single dose) by 23%. (5) In healthy subjects, ranolazine (750 mg twice daily) increased plasma levels of a single dose of metoprolol (100 mg) by 1.8-fold.(6) CYP2D6 inhibitors include: abiraterone, asunaprevir, berotralstat, bupropion, capivasertib, celecoxib, cinacalcet, citalopram, dacomitinib, diphenhydramine, dronabinol, duloxetine, eliglustat, escitalopram, fedratinib, fluoxetine, hydroxychloroquine, imatinib, lorcaserin, moclobemide, osilodrostat, paroxetine, quinine, ranitidine, ranolazine, rolapitant, and sertraline. |
KAPSPARGO SPRINKLE, LOPRESSOR, METOPROLOL SUCCINATE, METOPROLOL TARTRATE, METOPROLOL-HYDROCHLOROTHIAZIDE, TOPROL XL |
Gabapentinoids/Opioids (IR & ER) SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Opioid-induced reduction in GI motility may increase the absorption of gabapentin and pregabalin.(1) Gabapentin and pregabalin may reverse opioid-induced tolerance of respiratory depression.(2) Concurrent use may result in profound sedation, respiratory depression, coma, and/or death.(3) CLINICAL EFFECTS: Concurrent use of opioids may result in elevated levels of and toxicity from gabapentin and pregabalin, including profound sedation, respiratory depression, coma, and/or death.(1-7) PREDISPOSING FACTORS: Patients who are elderly, are taking other CNS depressants, have decreased renal function, and/or have conditions that reduce lung function (e.g. Chronic Obstructive Pulmonary Disease [COPD]) may be at a higher risk of this interaction. PATIENT MANAGEMENT: Limit prescribing opioid analgesics and gabapentinoids to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a gabapentinoid with an opioid analgesic, prescribe a lower initial dose of the gabapentinoid than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a gabapentinoid, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(8) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(9) DISCUSSION: In a study in 12 healthy males, administration of a single dose of morphine (60 mg sustained release) increased the area-under-curve (AUC) of a single dose of gabapentin (600 mg) by 44%.(1,3,4) There were no affects on the pharmacokinetics of morphine.(1,3,4) The combination of gabapentin plus morphine increased pain tolerance over the combination of morphine plus placebo. Side effects were not significantly different between morphine plus placebo and morphine plus gabapentin.(1) A retrospective, case-control study of opioid users in Ontario, Canada between August 1, 1997 and December 31, 2013 who died of an opioid-related cause matched cases to up to 4 controls who also used opioids. Use of gabapentin in the 120 days prior to death resulted in a significant increase in odds of opioid-related death (OR 1.99, CI=1.61-2.47, p<0.001), compared to opioid use alone. Use of moderate dose (900 mg to 1,799 mg daily) or high dose (>= 1,800 mg daily) gabapentin increased the odds of opioid-related death 60% compared to opioid use without gabapentin. Review of gabapentin prescriptions from calendar year 2013 found that 46% of gabapentin users received at least 1 opioid prescription.(3) Among 49 case reports submitted to FDA over a 5 year period (2012-2017), 12 people died from respiratory depression with gabapentinoids. Two randomized, double-blind, placebo-controlled clinical trials in healthy people, three observational studies, and several studies in animals were reviewed. A trial showed that using pregabalin alone and using it with an opioid pain reliever can depress breathing function. Three observational studies showed a relationship between gabapentinoids given before surgery and respiratory depression occurring after surgery. Several animal studies also showed that pregabalin plus opioids can depress respiratory function.(7) A retrospective cohort study evaluated the risk of mortality among Medicare beneficiaries aged 65 and older who were taking gabapentin with or without concurrent use of opioids. All-cause mortality in gabapentin users compared to duloxetine users was 12.16 per 1,000 person years vs. 9.94 per 1,000 person years, respectively. Adjusted for covariates, the risk of all-cause mortality among gabapentin users on high-dose opioids was more than double the control group (hazard ratio (HR) 2.03, CI=1.19-3.46).(10) |
GABAPENTIN, GABAPENTIN ER, GABARONE, GRALISE, HORIZANT, LYRICA, LYRICA CR, NEURONTIN, PREGABALIN, PREGABALIN ER |
Opioids/Butorphanol SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Butorphanol antagonize mu-opiate receptors. Other opioids agonize mu-opiate receptors.(1) CLINICAL EFFECTS: Concurrent use of butorphanol with other opioids in opioid dependent patients may result in withdrawal symptoms. Concurrent use in other patients may result in additive or decreased analgesia and decreased opioid side effects. PREDISPOSING FACTORS: Patients dependent on opioids may be more likely to experience withdrawal symptoms with concurrent use. Patients using higher doses of opioids may also be at a higher risk. PATIENT MANAGEMENT: Use butorphanol with caution in patients maintained or dependent on other opioids and monitor for signs of withdrawal. In other patients, also monitor for changes in analgesic effects. DISCUSSION: Because butorphanol antagonizes mu-opiate receptors and other opioids agonize mu-opiate receptors, concurrent use of buprenorphine with other opioids in opioid dependent patients may result in withdrawal symptoms. Concurrent use in other patients may result in additive or decreased analgesia and decreased opioid side effects.(1) In a study in patients maintained on methadone, butorphanol produced withdrawal symptoms comparable to naloxone.(2) In a case report, the use of remifentanil for conscious sedation in a patient maintained on butorphanol produced severe withdrawal symptoms.(3) |
BUTORPHANOL TARTRATE |
Opioids/Nalbuphine SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Nalbuphine(1) antagonizes mu-opiate receptors. Other opioids agonize mu-opiate receptors. CLINICAL EFFECTS: Concurrent use of nalbuphine with other opioids in opioid dependent patients may result in withdrawal symptoms. Concurrent use in other patients may result in additive or decreased analgesia, decreased opioid side effects, and/or renarcotization. PREDISPOSING FACTORS: Patients dependent on opioids may be more likely to experience withdrawal symptoms with concurrent use. In opioid naive patients, higher doses of nalbuphine may result in decreased analgesic effects. PATIENT MANAGEMENT: Use nalbuphine with caution in patients maintained or dependent on other opioids and monitor for signs of withdrawal. In other patients, also monitor for changes in analgesic effects. If nalbuphine is used to reverse opioid anesthesia, monitor patients for renarcotization. DISCUSSION: Nalbuphine has been successfully used as an adjunct to morphine without decreasing analgesic effects.(2,3) However, other studies reported increased morphine requirements in patients who had initially received nalbuphine.(4,5) Nalbuphine has been used to reverse fentanyl anesthesia;(8-13) however, patients often required additional pain medication(5-7) and some studies reported renarcotization after the effects of nalbuphine wore off.(9,10) Nalbuphine has also been used to prevent epidural fentanyl,(13) morphine(14-16), and hydromorphone induced pruritus;(17-18) however, one study reported shortening of the duration of analgesia(16) and another reported increased PCA demands.(17) In methadone-dependent subjects, administration of nalbuphine produced withdrawal symptoms similar to naloxone.(19,20) Administration of nalbuphine to patients maintained on controlled-release morphine resulted in withdrawal symptoms.(20,21) |
NALBUPHINE HCL |
Tramadol/Selected Moderate to Strong CYP2D6 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Abiraterone, asunaprevir, berotralstat, bupropion, cinacalcet, dacomitinib, dronedarone, duloxetine, eliglustat, escitalopram, fluoxetine, hydroquinidine, levomethadone, lorcaserin, mirabegron, paroxetine, quinidine, rolapitant, oral terbinafine, and tipranavir are moderate or strong inhibitors of CYP2D6 and may decrease conversion of tramadol to its more active O-demethylated metabolite (M1).(1-6) M1 is up to 6 times more potent than tramadol in producing analgesia.(1) CLINICAL EFFECTS: Tramadol analgesic efficacy may be decreased due to lower mu-opioid receptor mediated analgesia.(1,9,10) Higher concentrations of tramadol may be associated with increased inhibition of norepinephrine and serotonin reuptake, increasing risk for seizures and serotonin syndrome.(1) Symptoms of serotonin syndrome may include tremor, agitation, diaphoresis, hyperreflexia, clonus, tachycardia, hyperthermia, and muscle rigidity.(7) PREDISPOSING FACTORS: Risk for seizure may be increased with tramadol doses above the recommended range, in patients with metabolic disorders, alcohol or drug withdrawal, infection of the central nervous system, or with a history of seizures or head trauma.(1) Treatment with multiple medications which increase serotonin levels, or with medications which inhibit the metabolism of serotonin increasing drugs are risk factors for serotonin syndrome.(1,7) Patients with CYP2D6 ultrarapid, normal, and intermediate metabolizer phenotypes may be affected to a greater extent by CYP2D6 inhibitors. For patients on strong CYP2D6 inhibitors, the predicted phenotype is a CYP2D6 poor metabolizer.(14) Patients who are CYP2D6 poor metabolizers lack CYP2D6 function and are not affected by CYP2D6 inhibition.(14) PATIENT MANAGEMENT: If a CYP2D6 inhibitor is started in a patient stabilized on long term tramadol therapy, monitor for loss of analgesic efficacy. When initiating tramadol in a patient stabilized on a moderate or strong CYP2D6 inhibitor, anticipate lower analgesic efficacy. Hospitalized patients may need added doses of rescue analgesics to achieve adequate pain control.(9,10) To decrease risk for serotonin syndrome, consider change to an alternative analgesic for patients taking other serotonin increasing drugs in addition to concomitant tramadol and a CYP2D6 inhibitor. If a CYP2D6 inhibitor is discontinued, consider lowering the dose of tramadol until patient achieves stable drug effects. The effects of rolapitant, a moderate CYP2D6 inhibitor, on CYP2D6 are expected to last at least 28 days after administration.(12) DISCUSSION: Tramadol and its M1 metabolite both contribute to analgesic efficacy. Tramadol inhibits the reuptake of norepinephrine and serotonin with minimal opioid receptor binding. The M1 metabolite has 200 times greater binding affinity for the mu-opioid receptor than tramadol and is 6 times more potent in producing analgesia.(1) CYP2D6 converts tramadol to M1.(1,8) A prospective study evaluated the impact of 2D6 genotype on tramadol analgesia after abdominal surgery. Rescue doses of opioids were required in 47% of poor metabolizers (PM) versus 22% of extensive metabolizers (EM) of 2D6.(9) A follow-up study included 2D6 EM patients who received concomitant treatment with 2D6 inhibitors. Levels of the M1 metabolite were decreased by 80-90% compared with EM patients not taking 2D6 inhibitors. The authors noted some EM patients were converted to the PM phenotype.(10) In both studies, higher M1 levels were associated with greater analgesic efficacy and decreased need for rescue opioid treatment.(9,10) A study in 12 healthy volunteers found that a single dose of tramadol (50 mg) given to patients on terbinafine (a strong CYP2D6 inhibitor) resulted in tramadol AUC and Cmax that were 2.1-fold and 1.5-fold higher, respectively, than tramadol given alone. The AUC and Cmax of M1 were decreased by 64 % and 78 %, respectively.(13) A single dose of rolapitant increased dextromethorphan, a CYP2D6 substrate, about 3-fold on days 8 and day 22 following administration. Dextromethorphan levels remained elevated by 2.3-fold on day 28 after single dose rolapitant. The inhibitory effects of rolapitant on CYP2D6 are expected to persist beyond 28 days.(12) |
ABIRATERONE ACETATE, ABIRTEGA, AKEEGA, APLENZIN, APTIVUS, AUVELITY, BUPROPION HCL, BUPROPION HCL SR, BUPROPION XL, CERDELGA, CINACALCET HCL, CONTRAVE, CYMBALTA, DRIZALMA SPRINKLE, DULOXETINE HCL, DULOXICAINE, ESCITALOPRAM OXALATE, FLUOXETINE DR, FLUOXETINE HCL, FORFIVO XL, LEXAPRO, MIRABEGRON ER, MULTAQ, MYRBETRIQ, NUEDEXTA, OLANZAPINE-FLUOXETINE HCL, ORLADEYO, PAROXETINE CR, PAROXETINE ER, PAROXETINE HCL, PAROXETINE MESYLATE, PAXIL, PAXIL CR, PROZAC, QUINIDINE GLUCONATE, QUINIDINE SULFATE, SENSIPAR, TERBINAFINE HCL, TRUQAP, VARUBI, VIZIMPRO, WELLBUTRIN SR, WELLBUTRIN XL, YONSA, ZYTIGA |
Trazodone (Greater Than 50 mg)/Meperidine; Tramadol SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Tramadol inhibits the reuptake of serotonin.(1,2) Metabolism of trazodone leads to formation of a common active metabolite, m-chlorophenylpiperazine (mCPP) which is an agonist at a variety of serotonin receptors.(3-5) Both tramadol and mCPP are metabolized by CYP2D6.(1,3-5) CLINICAL EFFECTS: Concurrent administration could increase the risk for serotonin syndrome. Symptoms of serotonin syndrome may include tremor, agitation, diaphoresis, hyperreflexia, clonus, tachycardia, hyperthermia, and muscle rigidity.(6) PREDISPOSING FACTORS: Serotonin syndrome risk is dose-related. Higher systemic concentrations of meperidine, tramadol or mCPP would be predicted to increase risk for serotonin toxicity. Concomitant therapy with other agents which increase brain serotonin concentrations may also increase risk.(1-3,6) Renal dysfunction and chronic use of meperidine would be expected to increase the risk for serotonin toxicity due to meperidine. Concomitant treatment with inhibitors of CYP2D6 (e.g. bupropion, cinacalcet, duloxetine, fluoxetine, paroxetine, quinidine, or systemic terbinafine) may also increase mCPP and tramadol concentrations, increasing risk for serotonin toxicity. Patients who are poor metabolizers at CYP2D6 would be expected to have higher tramadol and mCPP concentrations compared with extensive metabolizers.(1,3) PATIENT MANAGEMENT: Assess patient for predisposing risk factors and monitor accordingly. Manufacturers of meperidine, tramadol and trazodone recommend careful monitoring for signs and symptoms of serotonin syndrome when a metabolic inhibitor or another serotoninergic agent is started, or when the dose of either agent is increased.(1-3) DISCUSSION: Meperidine, tramadol, and trazodone have each been associated with serotonin syndrome when given concurrently with one or more serotoninergic agents.(1-3) MCPP has been associated with serotonin syndrome when used as a probe of central serotonin function in human investigational studies.(7) CYP3A4 converts trazodone to mCPP which is then converted to an inactive metabolite via CYP2D6.(3-4) |
RALDESY, TRAZODONE HCL |
Selected Nephrotoxic Agents/Adefovir SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Recommended doses of adefovir have been associated with delayed nephrotoxicity.(1-4) Concurrent administration of other nephrotoxic agents may result in additive or synergistic effects on renal function.(1) CLINICAL EFFECTS: Concurrent use of adefovir with nephrotoxic agents such as intravenous aminoglycosides, amphotericin B, cyclosporine, tacrolimus,tenofovir, vancomycin, voclosporin and non-steroidal anti-inflammatory agents may result in renal toxicity.(1) Other nephrotoxic agents include capreomycin, cisplatin, gallium nitrate, high-dose methotrexate, intravenous pentamidine, and streptozocin. PREDISPOSING FACTORS: Patients with pre-existing renal impairment(1,2) or receiving multiple nephrotoxic agents appear to be at greater risk for nephrotoxicity. PATIENT MANAGEMENT: Evaluate renal function prior to initiation of concurrent therapy and continue renal function monitoring during therapy. Dose adjustments may be required for impaired renal function. Weigh the risks and benefits of concurrent therapy in patients with treatment-emergent nephrotoxicity. DISCUSSION: Because of the known risks for adefovir nephrotoxicity, particularly at higher than recommended doses, the safety of adefovir has not been studied in patients receiving other known potentially nephrotoxic agents. |
ADEFOVIR DIPIVOXIL, HEPSERA |
Ibrutinib/Selected Anticoagulants; Antiplatelets SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Ibrutinib administration lowers platelet count in the majority of patients.(1,2) In addition, ibrutinib has been shown to inhibit collagen-mediated platelet aggregation.(3-4) Bleeding has been reported with the use of ibrutinib,(1-4) anticoagulants, or antiplatelets alone. CLINICAL EFFECTS: Concurrent use of ibrutinib with either anticoagulants or antiplatelets may increase the risk of hemorrhage. PREDISPOSING FACTORS: The risk for bleeding episodes may be greater in patients with disease-associated factors (e.g. thrombocytopenia). Drug associated risk factors include concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism and/or have an inherent risk for bleeding (e.g. NSAIDs). PATIENT MANAGEMENT: The Canadian product monograph for ibrutinib recommends concurrent use with anticoagulants or antiplatelets should be approached with caution. If therapeutic anticoagulation is required, consider temporarily withholding ibrutinib therapy until stable anticoagulation in achieved.(2) The US prescribing information for ibrutinib states patients receiving concurrent therapy with ibrutinib and anticoagulants and/or antiplatelets should be closely monitored for changes in platelet count or in International Normalized Ratio (INR). Carefully weigh the risks vs. benefits of concurrent therapy in patients with significant thrombocytopenia. If a bleeding event occurs, follow manufacturer instructions for ibrutinib dose adjustment.(1) If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. When applicable, perform agent-specific laboratory tests (e.g. INR, aPTT) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. The time of highest risk for a coumarin-type drug interaction is when the precipitant drug is initiated or discontinued. Contact the prescriber before initiating, altering the dose or discontinuing either drug. DISCUSSION: Bleeding has been reported with ibrutinib alone.(1-3) Across 27 clinical trials, grade 3 or higher bleeding events, e.g. subdural hematoma, gastrointestinal bleeding or hematuria, have occurred in up to 4% of patients, with 0.4% fatality. Grade 3 or 4 thrombocytopenia occurred in 5-19% of patients. Bleeding events of any grade occurred in 39% of patients treated with ibrutinib.(1) Concurrent use of anticoagulants or antiplatelets has been reported to increase the risk for major bleeding. In clinical trials, major bleeding occurred in 3.1% of patients taking ibrutinib without concurrent anticoagulants or antiplatelets, 4.4% of patients on concurrent antiplatelets with or without anticoagulants, and 6.1% of patients on concurrent anticoagulants with or without antiplatelets.(1) In an open-label, phase 2 trial of patients with relapsed/refractory mantle cell lymphoma on ibrutinib, 61 patients (55%) on concurrent anticoagulants or antiplatelets had a higher rate of bleeding (69% any grade, 8% grade 3-4) than patients not on anticoagulants or antiplatelets (28% any grade, 4% grade 3-4).(5) A retrospective trial found a hazard ratio of 20 (95% CI, 2.1-200) for patients on ibrutinib with concurrent anticoagulants and antiplatelets. There was a trend towards an increased bleeding risk in patients on either anticoagulants or antiplatelets, but this was not statistically significant on multivariate analysis.(6) A case report of 2 patients with chronic lymphocytic leukemia (CLL) on ibrutinib and dabigatran demonstrated no stroke nor bleeding events during the mean 11.5 month follow-up.(7) A case report of 4 patients with lymphoproliferative disease on concurrent dabigatran and ibrutinib demonstrated no stroke nor major bleeding events. 1 patient experienced grade 2 conjunctival hemorrhage whilst on both ibrutinib and dabigatran. The anticoagulant was withheld and successfully re-initiated at a lower dose with no further bleeding events.(8) |
IMBRUVICA |
Opioids (Immediate Release)/Benzodiazepines SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids and benzodiazepines may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids and other CNS depressants, such as benzodiazepines, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics with CNS depressants such as benzodiazepines to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(4) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(5) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(6) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(7) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(8) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(9) A study of 315,428 privately insured patients who filled at least one prescription for an opioid from 2001 to 2013 were enrolled in a retrospective study. Concurrent use of a benzodiazepine was recorded as having at least one day of overlap in a given calendar year. Baseline characteristics among opioid users with concurrent use of a benzodiazepine were older (44.5 v. 42.4, p<0.001), less likely to be men (35% v. 43%, p<0.001), and had a higher prevalence rate of every comorbidity examined (p<0.001). The proportion of opioid users with concurrent benzodiazepine use nearly doubled from 9% in 2001 to 17% in 2013. The primary outcome was an emergency room visit or inpatient admission for opioid overdose within a calendar year. Among all opioid users, the annual adjusted incidence for the primary outcome was 1.16% without concurrent benzodiazepine use compared to 2.42% with concurrent benzodiazepine use (OR 2.14; 95% CI 2.05-2.24; p<0.001). Intermittent opioid users (1.45% v. 1.02%; OR 1.42; 95% CI 1.33-1.51; p<0.001) and chronic opioid users (5.36% v. 3.13%; OR 1.81; 95% CI 1.67-1.96; p<0.001) also experienced a higher adjusted incidence of the primary outcome with concurrent benzodiazepine use compared to without concurrent benzodiazepine use, respectively.(10) In a nested case-control study of adults with a new opioid dispensing between 2010-2018, patients with concurrent use of an opioid with a benzodiazepine were significantly more likely to have opioid-related overdose compared to patients receiving opioids, benzodiazepines, or neither (OR 9.28; 95% CI 7.87, 10.93). Longer concurrent use of 1-7, 8-30, and 31-90 days was associated with 4.6, 12.1, and 26.7-fold higher likelihood of opioid-related overdose (p<0.01). Patients with overlapping prescriptions during previous 0-30, 31-60, and 61-90 days were 13.2, 6.0, and 3.2-times more likely to experience an overdose (p<0.01).(11) |
ALPRAZOLAM, ALPRAZOLAM ER, ALPRAZOLAM INTENSOL, ALPRAZOLAM ODT, ALPRAZOLAM XR, ATIVAN, BYFAVO, CHLORDIAZEPOXIDE HCL, CHLORDIAZEPOXIDE-AMITRIPTYLINE, CHLORDIAZEPOXIDE-CLIDINIUM, CLOBAZAM, CLONAZEPAM, CLORAZEPATE DIPOTASSIUM, DIAZEPAM, DORAL, ESTAZOLAM, FLURAZEPAM HCL, HALCION, KLONOPIN, LIBRAX, LORAZEPAM, LORAZEPAM INTENSOL, LOREEV XR, MIDAZOLAM, MIDAZOLAM HCL, MIDAZOLAM HCL-0.8% NACL, MIDAZOLAM HCL-0.9% NACL, MIDAZOLAM HCL-D5W, MIDAZOLAM HCL-NACL, MIDAZOLAM-0.9% NACL, MIDAZOLAM-NACL, MKO (MIDAZOLAM-KETAMINE-ONDAN), NAYZILAM, ONFI, OXAZEPAM, QUAZEPAM, RESTORIL, SYMPAZAN, TEMAZEPAM, TRIAZOLAM, VALIUM, VALTOCO, XANAX, XANAX XR |
Opioids (Immediate Release)/Sleep Drugs SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids and sleep drugs may result in additive CNS depression and sleep-related disorders.(1) CLINICAL EFFECTS: Concurrent use of opioids and other CNS depressants, such as sleep drugs, may result in profound sedation, respiratory depression, coma, and/or death.(1) Concurrent use of opioids with eszopiclone, zaleplon, or zolpidem may increase the risk of sleep-related disorders including central sleep apnea and sleep-related hypoxemia and complex sleep behaviors like sleepwalking, sleep driving, and other activities while not fully awake. Rarely, serious injuries or death have resulted from complex sleep behaviors.(2) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics with CNS depressants such as sleep drugs to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(3) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Eszopiclone, zaleplon, and zolpidem are contraindicated in patients who have had a previous episode of complex sleep behavior.(2) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(4) DISCUSSION: Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) As of April 2019, the FDA had identified 66 cases of complex sleep behaviors with eszopiclone, zaleplon, or zolpidem, of which 20 cases resulted in death and the remainder resulted in serious injuries. It was not reported how many of the cases involved concomitant use of other CNS depressants.(2) |
AMBIEN, AMBIEN CR, BELSOMRA, DAYVIGO, EDLUAR, ESZOPICLONE, LUNESTA, QUVIVIQ, RAMELTEON, ROZEREM, ZALEPLON, ZOLPIDEM TARTRATE, ZOLPIDEM TARTRATE ER |
Opioids (Immediate Release)/Muscle Relaxants SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids and muscle relaxants may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids and other CNS depressants, such as muscle relaxants, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics with CNS depressants such as muscle relaxants to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(4) A retrospective cohort study compared the risk of opioid overdose associated with concomitant use of opioids and skeletal muscle relaxants versus opioid use alone. The study examined two types of opioid users (naive opioid use and prevalent opioid use) with and without exposure to skeletal muscle relaxants. The adjusted hazard ratios (HR) were 1.09 and 1.26 in the naive and prevalent opioid user cohorts, respectively, generating a combined estimate of 1.21. The risk increased with treatment duration (less than or equal to 14 days: 0.91; 15-60 days: 1.37; and greater than 60 days: 1.80) and for the use of baclofen and carisoprodol (HR 1.83 and 1.84, respectively). Elevated risk was associated with concomitant users with daily opioid dose greater than 50 mg and benzodiazepine use (HR 1.50 and 1.39, respectively).(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
BACLOFEN, CARISOPRODOL, CARISOPRODOL-ASPIRIN, CARISOPRODOL-ASPIRIN-CODEINE, CHLORZOXAZONE, DANTRIUM, DANTROLENE SODIUM, FLEQSUVY, LORZONE, LYVISPAH, MEPROBAMATE, METHOCARBAMOL, NORGESIC, NORGESIC FORTE, ORPHENADRINE CITRATE, ORPHENADRINE CITRATE ER, ORPHENADRINE-ASPIRIN-CAFFEINE, ORPHENGESIC FORTE, OZOBAX, OZOBAX DS, REVONTO, ROBAXIN, RYANODEX, SOMA, TANLOR, TIZANIDINE HCL, VANADOM, ZANAFLEX |
Aldosterone Receptor Antagonists/NSAIDs; Salicylates SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The exact mechanism is unknown; however, nonsteroidal anti-inflammatory (NSAID) inhibition of prostaglandins may allow eplerenone, finerenone, or spironolactone-induced nephrotoxicity or hyperkalemia to occur in some patients.(1-3) In some patients, NSAIDs may reduce the diuretic, natriuretic and antihypertensive effects of eplerenone, finerenone, or spironolactone.(1-3) CLINICAL EFFECTS: Concurrent use of eplerenone, finerenone, or spironolactone with NSAIDs may result in renal failure or hyperkalemia. The effects of the diuretic, natriuretic, or antihypertensive effects of eplerenone, finerenone, or spironolactone may be decreased.(1-3) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: When possible, avoid concurrent therapy with eplerenone, finerenone, or spironolactone with NSAIDs. If these agents are used concurrently, monitor renal function and serum electrolytes. If decreased renal function or hyperkalemia develops, discontinue both agents. The manufacturer of eplerenone recommends checking serum potassium and serum creatinine within 3-7 days of concurrent therapy with NSAIDs.(1) The manufacturer of spironolactone states concurrent use with NSAIDs may lead to severe hyperkalemia and extreme caution should be used during concurrent therapy.(2) DISCUSSION: Although acute renal failure and hyperkalemia have only been reported in studies and case reports involving indomethacin, diclofenac, flurbiprofen, and ibuprofen with either triamterene or amiloride, the proposed mechanism suggests that all nonsteroidal anti-inflammatory agents may be capable of this interaction with all potassium-sparing diuretics. Patients receiving diuretics are at an increased risk of NSAID-induced renal failure. |
ALDACTONE, CAROSPIR, EPLERENONE, INSPRA, KERENDIA, SPIRONOLACTONE, SPIRONOLACTONE-HCTZ |
Selected Nephrotoxic Agents/Immune Globulin IV (IGIV) SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Immune Globulin Intravenous (IGIV) products, particularly those containing sucrose, can cause renal dysfunction, acute renal failure, osmotic nephrosis, and/or death. Concurrent administration of other nephrotoxic agents may result in additive or synergistic effects on renal function.(1-4) CLINICAL EFFECTS: Concurrent use of Immune Globulin Intravenous (IGIV) products with nephrotoxic agents such as adefovir, intravenous aminoglycosides, amphotericin B, non-steroidal anti-inflammatory agents, tenofovir, and vancomycin may result in renal toxicity.(1-4) Other nephrotoxic agents include capreomycin, gallium nitrate, and streptozocin. PREDISPOSING FACTORS: Patients at risk of acute renal failure include those with any degree of pre-existing renal insufficiency, diabetes mellitus, advanced age (above 65 years of age), volume depletion, sepsis, paraproteinemia, or receiving known nephrotoxic drugs.(1-4) Renal dysfunction and acute renal failure occur more commonly in patients receiving IGIV products containing sucrose.(3-4) PATIENT MANAGEMENT: For patients at risk of renal dysfunction or renal failure, the US manufacturers of Immune Globulin Intravenous (IGIV) products recommends administration at the minimum dose and infusion rate practicable; ensure adequate hydration in patients before administration; and monitor renal function and urine output with assessment of blood urea nitrogen (BUN) and serum creatinine before initial infusion and at regular intervals during therapy.(1-3) Concurrent administration of potentially nephrotoxic agents should be avoided.(1) Review prescribing information for IGIV product to be administered for sucrose content. If concurrent therapy is warranted, monitor renal function closely. In high risk patients, consider selecting an IGIV product that does not contain sucrose. DISCUSSION: The safety of Immune Globulin Intravenous (IGIV) has not been studied in patients receiving other known potentially nephrotoxic agents. Renal impairment is a major toxicity of IGIV products.(1-3) A review of the FDA renal adverse events (RAEs) (i.e. acute renal failure or insufficiency) from June 1985 to November 1998 identified 120 reports worldwide associated with IGIV administration. In the US, the FDA received 88 reports of cases with clinical and/or laboratory findings consistent with RAE (i.e. increased serum creatinine, oliguria, and acute renal failure). Patient cases involved a median age of 60.5 years and 55% were male. Of the 54 patients who developed acute renal failure, 65% were greater than 65 years, 56% had diabetes, and 26% had prior renal insufficiency; 59% had one, 35% had two, and 6% had three of these conditions. Upon review of the IGIV product received, 90% of cases received sucrose-containing IGIV products with the remaining patients receiving either maltose- or glucose-containing products. Approximately 40% of affected patients required dialysis and RAE may have contributed to death in 15% of patients.(4) |
ALYGLO, BIVIGAM, CUTAQUIG, CUVITRU, FLEBOGAMMA DIF, GAMMAGARD LIQUID, GAMMAGARD S-D, GAMMAKED, GAMMAPLEX, GAMUNEX-C, HIZENTRA, HYQVIA, HYQVIA IG COMPONENT, OCTAGAM, PANZYGA, PRIVIGEN, XEMBIFY |
Desmopressin/Agents with Hyponatremia Risk SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Carbamazepine, chlorpromazine, lamotrigine, NSAIDs, opioids, SSRIs, thiazide diuretics, and/or tricyclic antidepressants increase the risk of hyponatremia.(1-3) CLINICAL EFFECTS: Concurrent use may increase the risk of hyponatremia with desmopressin.(1-3) PREDISPOSING FACTORS: Predisposing factors for hyponatremia include: polydipsia, renal impairment (eGFR < 50 ml/min/1.73m2), illnesses that can cause fluid/electrolyte imbalances, age >=65, medications that cause water retention and/or increase the risk of hyponatremia (glucocorticoids, loop diuretics). PATIENT MANAGEMENT: The concurrent use of agents with a risk of hyponatremia with desmopressin may increase the risk of hyponatremia. If concurrent use is deemed medically necessary, make sure serum sodium levels are normal before beginning therapy and consider using the desmopressin nasal 0.83 mcg dose. Consider measuring serum sodium levels more frequently than the recommended intervals of: within 7 days of concurrent therapy initiation, one month after concurrent therapy initiation and periodically during treatment. Counsel patients to report symptoms of hyponatremia, which may include: headache, nausea/vomiting, feeling restless, fatigue, drowsiness, dizziness, muscle cramps, changes in mental state (confusion, decreased awareness/alertness), seizures, coma, and trouble breathing. Counsel patients to limit the amount of fluids they drink in the evening and night-time and to stop taking desmopressin if they develop a stomach/intestinal virus with nausea/vomiting or any nose problems (blockage, stuffy/runny nose, drainage).(1) DISCUSSION: In clinical trials of desmopressin for the treatment of nocturia, 4 of 5 patients who developed severe hyponatremia (serum sodium <= 125 mmol/L) were taking systemic or inhaled glucocorticoids. Three of these patients were also taking NSAIDs and one was receiving a thiazide diuretic.(2) Drugs associated with hyponatremia may increase the risk, including loop diuretics, carbamazepine, chlorpromazine, glucocorticoids, lamotrigine, NSAIDs, opioids, SSRIs, thiazide diuretics, and/or tricyclic antidepressants.(1,3-4) |
DDAVP, DESMOPRESSIN ACETATE, NOCDURNA |
Amphetamines/Tramadol SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Opioids and stimulants exhibit opposing effects on the CNS.(1) Amphetamines may affect serotonin release and/or reuptake, depending on their molecular structure. Ring substitution tends to increase amphetamine-induced release of endogenous serotonin. However, the effect on serotonin release may also be dose related and is more likely if the amphetamine is taken in doses greater than those approved and generally employed in treating attention-deficit-hyperactivity-disorder, or if abused, especially over long periods of time.(2) Concurrent administration of amphetamines with tramadol may result in additive effects on serotonin, resulting in serotonin syndrome.(3,4) CLINICAL EFFECTS: Concurrent use of opioids and stimulants may have unpredictable effects and may mask overdose symptoms of the opioid, such as drowsiness and inability to focus. Concurrent use of amphetamines with other serotonergic agents may increase the risk of serotonin syndrome, a potentially life-threatening syndrome which may include one or more of the following symptoms: tremor, agitation, diaphoresis, hyperreflexia, clonus, tachycardia, hyperthermia, and muscle rigidity.(5) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. High doses or long-term abuse of amphetamines may increase the risk of serotonin syndrome. Use of multiple drugs which increase serotonin levels is associated with an increased risk for this toxidrome. PATIENT MANAGEMENT: Limit prescribing tramadol with CNS stimulants such as amphetamines to patients for whom alternatives are inadequate. Concurrent use of amphetamines with tramadol should be approached with appropriate monitoring. If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. Consider initiating amphetamines or tramadol at lower doses and monitored for signs and symptoms of serotonin syndrome. Discontinue medication if symptoms occur.(3,4) Instruct patients receiving concurrent therapy to report any signs or symptoms of serotonin syndrome immediately. Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with stimulants.(1) Monitor patients receiving concurrent therapy for signs of substance abuse. DISCUSSION: A total of 70,237 persons died from drug overdoses in the United States in 2017; approximately two thirds of these deaths involved an opioid.(2). The CDC analyzed 2016-2017 changes in age-adjusted death rates involving cocaine and psychostimulants by demographic characteristics, urbanization levels, U.S. Census region, 34 states, and the District of Columbia (DC). The CDC also examined trends in age-adjusted cocaine-involved and psychostimulant-involved death rates from 2003 to 2017 overall, as well as with and without co-involvement of opioids. Among all 2017 drug overdose deaths, 13,942 (19.8%) involved cocaine, and 10,333 (14.7%) involved psychostimulants. Death rates increased from 2016 to 2017 for both drug categories across demographic characteristics, urbanization levels, Census regions, and states. In 2017, opioids were involved in 72.7% and 50.4% of cocaine-involved and psychostimulant-involved overdoses, respectively, and the data suggest that increases in cocaine-involved overdose deaths from 2012 to 2017 were driven primarily by synthetic opioids.(7) There was opioid co-involvement in 72.7 percent of cocaine and 50.4 percent of stimulant-involved overdose deaths. This was largely driven by synthetic opioids such as fentanyl. However, stimulant-involved overdose without opioid co-involvement is also increasing.(6) |
ADDERALL, ADDERALL XR, ADZENYS XR-ODT, AMPHETAMINE SULFATE, DESOXYN, DEXEDRINE, DEXTROAMPHETAMINE SULFATE, DEXTROAMPHETAMINE SULFATE ER, DEXTROAMPHETAMINE-AMPHET ER, DEXTROAMPHETAMINE-AMPHETAMINE, DYANAVEL XR, EVEKEO, HYDROXYAMPHETAMINE HBR, LISDEXAMFETAMINE DIMESYLATE, METHAMPHETAMINE HCL, MYDAYIS, PROCENTRA, VYVANSE, XELSTRYM, ZENZEDI |
Trazodone (Less Than or Equal To 50 mg)/Meperidine; Tramadol SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Meperidine and tramadol inhibit the reuptake of serotonin.(1,2) Metabolism of trazodone leads to formation of the active metabolite, m-chlorophenylpiperazine (mCPP) which is an agonist at a variety of serotonin receptors.(3,4) Both tramadol and mCPP are metabolized by CYP2D6.(2,4-6) CLINICAL EFFECTS: Concurrent administration could increase the risk for serotonin syndrome. Symptoms of serotonin syndrome may include tremor, agitation, diaphoresis, hyperreflexia, clonus, tachycardia, hyperthermia, and muscle rigidity.(7) PREDISPOSING FACTORS: Serotonin syndrome risk is dose-related. Higher systemic concentrations of meperidine, tramadol or mCPP would be predicted to increase risk for serotonin toxicity. Concomitant therapy with other agents which increase brain serotonin concentrations may also increase risk.(1-3,7) Renal dysfunction and chronic use of meperidine would be expected to increase the risk for serotonin toxicity due to meperidine. Concomitant treatment with inhibitors of CYP2D6 (e.g. bupropion, cinacalcet, duloxetine, fluoxetine, paroxetine, quinidine, or systemic terbinafine) may also increase mCPP and tramadol concentrations, increasing risk for serotonin toxicity. Patients who are poor metabolizers at CYP2D6 would be expected to have higher tramadol and mCPP concentrations compared with extensive metabolizers.(2,3) PATIENT MANAGEMENT: Assess patient for predisposing risk factors and monitor accordingly. Manufacturers of meperidine, tramadol and trazodone recommend careful monitoring for signs and symptoms of serotonin syndrome when a metabolic inhibitor or another serotoninergic agent is started, or when the dose of either agent is increased.(1-3) DISCUSSION: Meperidine, tramadol and trazodone have each been associated with serotonin syndrome when given concurrently with one or more serotoninergic agents.(1-3) MCPP has been associated with serotonin syndrome when used as a probe of central serotonin function in human investigational studies.(8) CYP3A4 converts trazodone to mCPP which is then converted to an inactive metabolite via CYP2D6.(3,4) |
TRAZODONE HCL |
Eliglustat/Weak CYP2D6 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Weak inhibitors of CYP2D6 may inhibit the metabolism of eliglustat. If the patient is also taking an inhibitor of CYP3A4, eliglustat metabolism can be further inhibited.(1) CLINICAL EFFECTS: Concurrent use of an agent that is a weak inhibitor of CYP2D6 may result in elevated levels of and clinical effects of eliglustat, including prolongation of the PR, QTc, and/or QRS intervals, which may result in life-threatening cardiac arrhythmias.(1) PREDISPOSING FACTORS: If the patient is also taking an inhibitor of CYP3A4 and/or has hepatic impairment, eliglustat metabolism can be further inhibited.(1) The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The dosage of eliglustat with weak inhibitors of CYP2D6 in poor CYP2D6 metabolizers should be limited to 84 mg daily.(1) The dosage of eliglustat with weak inhibitors of CYP2D6 in extensive CYP2D6 metabolizers with mild (Child-Pugh Class A) hepatic impairment should be limited to 84 mg daily.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Paroxetine (30 mg daily), a strong inhibitor of CYP2D6, increased eliglustat (84 mg BID) maximum concentration (Cmax) and area-under-curve (AUC) by 7-fold and 8.4-fold, respectively, in extensive metabolizers. Physiologically-based pharmacokinetic (PKPB) models suggested paroxetine would increase eliglustat Cmax and AUC by 2.1-fold and 2.3-fold, respectively, in intermediate metabolizers. PKPB models suggested ketoconazole may increase the Cmax and AUC of eliglustat (84 mg daily) by 4.3-fold and 6.2-fold, respectively, in poor metabolizers.(1) PKPB models suggested terbinafine, a moderate inhibitor of CYP2D6, would increase eliglustat Cmax and AUC by 3.8-fold and 4.5-fold, respectively, in extensive metabolizers and by 1.6-fold and 1.6-fold, respectively in intermediate metabolizers. PKPB models suggest that concurrent eliglustat (84 mg BID), paroxetine (a strong inhibitor of CYP2D6), and ketoconazole would increase eliglustat Cmax and AUC by 16.7-fold and 24.2-fold, respectively, in extensive metabolizers. In intermediate metabolizers, eliglustat Cmax and AUC would be expected to increase 7.5-fold and 9.8-fold, respectively.(1) PKPB models suggest that concurrent eliglustat (84 mg BID), terbinafine (a moderate inhibitor of CYP2D6), and ketoconazole would increase eliglustat Cmax and AUC by 10.2-fold and 13.6-fold, respectively, in extensive metabolizers. In intermediate metabolizers, eliglustat Cmax and AUC would be expected to increase 4.2-fold and 5-fold, respectively.(1) A single dose of rolapitant increased dextromethorphan, a CYP2D6 substrate, about 3-fold on days 8 and day 22 following administration. Dextromethorphan levels remained elevated by 2.3-fold on day 28 after single dose rolapitant. The inhibitory effects of rolapitant on CYP2D6 are expected to persist beyond 28 days.(5) Weak inhibitors of CYP2D6 include: alogliptin, artesunate, celecoxib, clobazam, desvenlafaxine, dimenhydrinate, diphenhydramine, dronabinol, dupilumab, echinacea, enasidenib, felodipine, gefitinib, hydralazine, hydroxychloroquine, lorcaserin, methadone, panobinostat, propafenone, sertraline, vemurafenib, and venlafaxine.(3,4) |
CERDELGA |
Aliskiren/NSAIDs; Salicylates SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The exact mechanism is unknown. It is believed to be related to inhibition of prostaglandin synthesis by the NSAIDs. Use of an NSAID in combination with aliskiren, whose hypotensive effects may be related to the increase in hypotensive prostaglandins, may negate any decrease in blood pressure. CLINICAL EFFECTS: Concurrent use of aliskiren with NSAIDs may result in decreased antihypertensive effects. In patients with existing renal impairment, the use of these agents together may also result in further deterioration of renal clearance caused by renal hypoperfusion. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Patients maintained on aliskiren should be monitored for a loss of blood pressure control and a change in renal function if an NSAID is added to their regimen. Patients receiving concurrent therapy may require higher doses of aliskiren. If blood pressure control cannot be achieved or if the patient's renal function deteriorates, the NSAID may need to be discontinued. Patients should be monitored for hypotension if NSAIDs are withdrawn from concurrent aliskiren therapy. DISCUSSION: Indomethacin has been shown to inhibit the antihypertensive effect of captopril, cilazapril, enalapril, losartan, perindopril, and valsartan. Ibuprofen has been shown to decrease the antihypertensive effects of captopril. Two separate case reports describe individuals suspected of ACEI-associated angioedema precipitated by NSAIDs. Both cases reported symptom resolution after cessation of the NSAID. Studies have shown that sulindac does not affect the antihypertensive effects of captopril and enalapril. |
ALISKIREN, TEKTURNA |
ACE Inhibitors/Selected NSAIDs; Salicylates SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: ACE inhibitors can cause vasodilation of the efferent renal arteriole which may result in decreased glomerular filtration rate. NSAIDs inhibit prostaglandin synthesis which can lead to afferent arteriolar vasoconstriction and may negate any decrease in blood pressure. CLINICAL EFFECTS: Concurrent use of ACE inhibitors with NSAIDs may result in decreased antihypertensive effects. In patients with existing renal impairment, the use of these agents together may also result in further deterioration of renal clearance caused by renal hypoperfusion. Concurrent use of ACE inhibitors with NSAIDs and diuretics may result in increased risk of acute kidney injury (AKI). PREDISPOSING FACTORS: Low water intake/dehydration, drug sensitivity, greater than 75 years of age, and renal impairment may increase an individuals susceptibility to AKI. PATIENT MANAGEMENT: Patients maintained on ACE inhibitors should be monitored for a loss of blood pressure control and a change in renal function if an NSAID is added to their regimen. Patients receiving concurrent therapy may require higher doses of ACE inhibitors. If blood pressure control cannot be achieved or if the patient's renal function deteriorates, the NSAID may need to be discontinued. Patients should be monitored for hypotension if NSAIDs are withdrawn from concurrent ACE inhibitor therapy. Concurrent use of ACE inhibitors with NSAIDs and diuretics should be used with caution and monitored closely for signs of AKI. DISCUSSION: In a computational study, the risk of AKI using triple therapy with a diuretic, renin-angiotensin system (RAS) inhibitor, and NSAID was assessed. The study found the following factors may increase an individual's susceptibility to AKI: low water intake, drug sensitivity, greater than 75 years of age, and renal impairment.(30,31) In an observational study, current use of a triple therapy combination was associated with an increased rate of acute kidney injury (rate ratio (RR) 1.31, 95% confidence interval (CI) 1.12-1.53). The highest risk of AKI associated with triple therapy were observed in the first 30 days of use (RR 1.82, CI 1.35-2.46).(32) Indomethacin has been shown to inhibit the antihypertensive effect of captopril, cilazapril, enalapril, losartan, perindopril, and valsartan. Ibuprofen has been shown to decrease the antihypertensive effects of captopril. Two separate case reports describe individuals suspected of ACEI-associated angioedema precipitated by NSAIDs. Both cases reported symptom resolution after cessation of the NSAID. Studies have shown that sulindac does not affect the antihypertensive effects of captopril and enalapril. One or more of the drug pairs linked to this monograph have been included in a list of interactions that could be considered for classification as "non-interruptive" in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
ACCUPRIL, ACCURETIC, ALTACE, AMLODIPINE BESYLATE-BENAZEPRIL, BENAZEPRIL HCL, BENAZEPRIL-HYDROCHLOROTHIAZIDE, CAPTOPRIL, CAPTOPRIL-HYDROCHLOROTHIAZIDE, ENALAPRIL MALEATE, ENALAPRIL-HYDROCHLOROTHIAZIDE, ENALAPRILAT, EPANED, FOSINOPRIL SODIUM, FOSINOPRIL-HYDROCHLOROTHIAZIDE, LISINOPRIL, LISINOPRIL-HYDROCHLOROTHIAZIDE, LOTENSIN, LOTENSIN HCT, LOTREL, MOEXIPRIL HCL, PERINDOPRIL ERBUMINE, PRESTALIA, QBRELIS, QUINAPRIL HCL, QUINAPRIL-HYDROCHLOROTHIAZIDE, RAMIPRIL, TRANDOLAPRIL, TRANDOLAPRIL-VERAPAMIL ER, VASERETIC, VASOTEC, ZESTORETIC, ZESTRIL |
Tramadol (IR)/Selected Antipsychotics; Phenothiazines SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids such as tramadol and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids such as tramadol and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics such as tramadol with CNS depressants such as antipsychotics, including phenothiazine derivatives, to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
MOLINDONE HCL |
Tramadol (IR)/Selected Antipsychotics; Phenothiazines SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids such as tramadol and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids such as tramadol and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics such as tramadol with CNS depressants such as antipsychotics, including phenothiazine derivatives, to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
ABILIFY, ABILIFY ASIMTUFII, ABILIFY MAINTENA, ADASUVE, ARIPIPRAZOLE, ARIPIPRAZOLE ODT, ARISTADA, ARISTADA INITIO, ASENAPINE MALEATE, BARHEMSYS, CAPLYTA, CHLORPROMAZINE HCL, CLOZAPINE, CLOZAPINE ODT, CLOZARIL, COMPAZINE, COMPRO, DROPERIDOL, ERZOFRI, FANAPT, FLUPHENAZINE DECANOATE, FLUPHENAZINE HCL, HALDOL DECANOATE 100, HALDOL DECANOATE 50, HALOPERIDOL, HALOPERIDOL DECANOATE, HALOPERIDOL DECANOATE 100, HALOPERIDOL LACTATE, INVEGA, INVEGA HAFYERA, INVEGA SUSTENNA, INVEGA TRINZA, LATUDA, LOXAPINE, LURASIDONE HCL, NUPLAZID, OLANZAPINE, OLANZAPINE ODT, OLANZAPINE-FLUOXETINE HCL, OPIPZA, PALIPERIDONE ER, PERPHENAZINE, PERPHENAZINE-AMITRIPTYLINE, PERSERIS, PHENERGAN, PIMOZIDE, PROCHLORPERAZINE, PROCHLORPERAZINE EDISYLATE, PROCHLORPERAZINE MALEATE, PROMETHAZINE HCL, PROMETHAZINE HCL-0.9% NACL, PROMETHAZINE VC, PROMETHAZINE-CODEINE, PROMETHAZINE-DM, PROMETHAZINE-PHENYLEPHRINE HCL, PROMETHEGAN, QUETIAPINE FUMARATE, QUETIAPINE FUMARATE ER, REXULTI, RISPERDAL, RISPERDAL CONSTA, RISPERIDONE, RISPERIDONE ER, RISPERIDONE ODT, RYKINDO, SAPHRIS, SECUADO, SEROQUEL, SEROQUEL XR, THIORIDAZINE HCL, THIORIDAZINE HYDROCHLORIDE, THIOTHIXENE, TRIFLUOPERAZINE HCL, UZEDY, VERSACLOZ, VRAYLAR, ZYPREXA |
Tramadol/Selected SSRIs; SNRIs SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The concurrent administration of tramadol with a selective serotonin reuptake inhibitor (SSRI) or a serotonin/norepinephrine reuptake inhibitor (SNRI) may result in additive blockade of serotonin reuptake, leading to central serotonergic hyperstimulation.(1) The combination of tramadol and SSRIs or SNRIs may also lower the seizure threshold.(1) CLINICAL EFFECTS: Concurrent administration may increase the risk for serotonin syndrome. Symptoms of serotonin syndrome may include tremor, agitation, diaphoresis, hyperreflexia, clonus, tachycardia, hyperthermia, and muscle rigidity.(2) Concurrent administration may increase the risk for seizures, especially in susceptible individuals.(1) PREDISPOSING FACTORS: Treatment with multiple medications which increase serotonin levels or with medications which inhibit the metabolism of serotonin increasing drugs are risk factors for serotonin syndrome.(2) Predisposing factors for a lower seizure threshold include a history of seizures, epilepsy, or a recognized risk for seizures (e.g. head trauma, metabolic disorders, alcohol, drug withdrawal, infections of the central nervous system). A genetic defect in CYP2D6 leading to the slow metabolizer phenotype may increase the risk for serotonin syndrome due to tramadol. PATIENT MANAGEMENT: If concurrent therapy of tramadol with a SSRI or SNRI is warranted, patients should be closely monitored for signs and symptoms of serotonin syndrome and increased seizure activity.(1) DISCUSSION: There are a number of serotonin syndrome case reports following the addition of tramadol to a stable selective serotonin reuptake inhibitor regimen. The syndrome developed between 12 hours to 3 weeks after the initiation of tramadol therapy. Patients recovered after tramadol and/or the SSRI/SNRI was discontinued.(3-14) One patient also developed mania.(3) Another patient developed nightmares and hallucinations after taking concurrent tramadol and paroxetine for 56 days.(15) One author suggests that although the combination of tramadol and SSRIs or SNRIs is associated with a risk for serotonin syndrome, given the high rate of co-prescribing for the combination it is an uncommon outcome.(16) A review of the 124 reports of seizures following tramadol therapy received by the FDA through July 31, 1996 revealed that 20 patients were receiving concurrent therapy with an selective serotonin reuptake inhibitor.(17) The manufacturer of tramadol states that the risk of seizure is increased in patients receiving concurrent therapy with selective serotonin reuptake inhibitors.(1) Selected SSRIs and SNRIs linked to this monograph include: citalopram, desvenlafaxine, fluvoxamine, levomilnacipran, milnacipran, sertraline, sibutramine, venlafaxine, vilazodone, and vortioxetine. |
CELEXA, CITALOPRAM HBR, DESVENLAFAXINE ER, DESVENLAFAXINE SUCCINATE ER, EFFEXOR XR, FETZIMA, FLUVOXAMINE MALEATE, FLUVOXAMINE MALEATE ER, PRISTIQ, SAVELLA, SERTRALINE HCL, TRINTELLIX, VENLAFAXINE BESYLATE ER, VENLAFAXINE HCL, VENLAFAXINE HCL ER, VIIBRYD, VILAZODONE HCL, ZOLOFT |
Fruquintinib; Surufatinib/Anticoagulants; Antiplatelets SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Bleeding has been reported with the use of fruquintinib and surufatinib.(1,2) CLINICAL EFFECTS: Concurrent use of fruquintinib or surufatinib with either anticoagulants or antiplatelets may increase the risk of hemorrhage.(1,2) PREDISPOSING FACTORS: The risk for bleeding episodes may be greater in patients with disease-associated factors (e.g. thrombocytopenia). Drug associated risk factors include concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism and/or have an inherent risk for bleeding (e.g. NSAIDs). PATIENT MANAGEMENT: Patients receiving concurrent therapy with fruquintinib and anticoagulants and/or antiplatelets should be closely monitored for changes in platelet count or in International Normalized Ratio (INR). If a serious bleeding event occurs, the manufacturer recommends permanent discontinuation of fruquintinib.(1) Patients receiving concurrent therapy with surufatinib and anticoagulants and/or antiplatelets should be closely monitored for changes in platelet count or in INR.If a serious bleeding event occurs, the manufacturer recommends permanent discontinuation of surufatinib.(2) If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. When applicable, perform agent-specific laboratory tests (e.g. INR, aPTT) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. The time of highest risk for a coumarin-type drug interaction is when the precipitant drug is initiated or discontinued. Contact the prescriber before initiating, altering the dose or discontinuing either drug. DISCUSSION: Bleeding has been reported with fruquintinib in three randomized, double-blinded, placebo-controlled clinical trials. The incidence of grade 1 and grade 2 bleeding events was 28.2%, including gastrointestinal bleeding (10.9%), hematuria (10.6%), and epistaxis (7.5%). The incidence of grade 3 or higher bleeding events was 2.1% and included gastrointestinal bleeding (1.6%) and hemoptysis (0.5%).(1) Bleeding has been reported with surufatinib in clinical trials. Grade 1 and 2 bleeding events included gastrointestinal bleeding, blood in the urine, and gum bleeding. The incidence of grade 3 or greater bleeding events was 4.5%, including gastrointestinal hemorrhage (1.9%), and cerebral hemorrhage (1.1%). Fatalities due to bleeding were reported in 0.3% of patients. The incidence of permanent discontinuation due to bleeding was 2.6% and the incidence of suspension of surufatinib due to bleeding was 3.8%.(2) |
FRUZAQLA |
Plasminogen/Anticoagulants; Antiplatelets SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Bleeding has been reported with the use of plasminogen.(1) CLINICAL EFFECTS: Concurrent use of plasminogen with either anticoagulants or antiplatelets may increase the risk of active bleeding during plasminogen therapy, including bleeding from mucosal disease-related lesions that may manifest as gastrointestinal (GI) bleeding, hemoptysis, epistaxis, vaginal bleeding, or hematuria.(1) PREDISPOSING FACTORS: The risk for bleeding episodes may be greater in patients with disease-associated factors (e.g. thrombocytopenia). Drug associated risk factors include concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism and/or have an inherent risk for bleeding (e.g. NSAIDs). PATIENT MANAGEMENT: Patients receiving concurrent therapy with plasminogen and anticoagulants and/or antiplatelets should be closely monitored during plasminogen therapy for active bleeding from mucosal disease-related lesions, including GI bleeding, hemoptysis, epistaxis, vaginal bleeding, or hematuria.(1) Prior to initiation of treatment with plasminogen, confirm healing of lesions or wounds suspected as a source of a recent bleeding event. Monitor patients during and for 4 hours after infusion when administering plasminogen with concurrent anticoagulants, antiplatelet drugs, or other agents which may interfere with normal coagulation.(1) If patient experiences uncontrolled bleeding (defined as any gastrointestinal bleeding or bleeding from any other site that persists longer than 30 minutes), seek emergency care and discontinue plasminogen immediately.(1) If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. When applicable, perform agent-specific laboratory tests (e.g. INR, aPTT) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. The time of highest risk for a coumarin-type drug interaction is when the precipitant drug is initiated or discontinued. Contact the prescriber before initiating, altering the dose or discontinuing either drug. DISCUSSION: Plasminogen has not been studied in patients at an increased risk of bleeding. Bleeding has been reported with plasminogen in a two single-arm, open-label clinical trials as well as in compassionate use programs. The incidence of hemorrhage in patients with Plasminogen Deficiency Type 1 was 16% (3/19 patients).(1) One of the bleeding events occurred two days after receiving the second dose of plasminogen in a patient with a recent history of GI bleeding due to gastric ulcers. The patient received plasminogen through a compassionate use program and the dose was 6.6 mg/kg body weight every 2 days. Endoscopy showed multiple ulcers with one actively bleeding ulcer near the pylorus.(1) |
RYPLAZIM |
Tisotumab/Anticoagulants; Antiplatelets SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Bleeding, including hemorrhage, has been reported with the use of tisotumab.(1) CLINICAL EFFECTS: Concurrent use of tisotumab with either anticoagulants, antiplatelets, or NSAIDs may increase the risk of hemorrhage.(1) PREDISPOSING FACTORS: The risk for bleeding episodes may be greater in patients with disease-associated factors (e.g. thrombocytopenia). Drug associated risk factors include concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism and/or have an inherent risk for bleeding (e.g. NSAIDs). PATIENT MANAGEMENT: Patients receiving concurrent therapy with tisotumab and anticoagulants, antiplatelets, and/or NSAIDs should be closely monitored for signs and symptoms of bleeding and changes in platelet count or International Normalized Ratio (INR). For patients experiencing pulmonary or central nervous system (CNS) hemorrhage, permanently discontinue tisotumab. For grade 2 or greater hemorrhage in any other location, withhold until bleeding has resolved, blood hemoglobin is stable, there is no bleeding diathesis that could increase the risk of continuing therapy, and there is no anatomical or pathologic condition that can increase the risk of hemorrhage. After resolution, either resume treatment or permanently discontinue tisotumab.(1) If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. When applicable, perform agent-specific laboratory tests (e.g. INR, aPTT) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. The time of highest risk for a coumarin-type drug interaction is when the precipitant drug is initiated or discontinued. Contact the prescriber before initiating, altering the dose or discontinuing either drug. DISCUSSION: Hemorrhage occurred in 62% of patients with cervical cancer treated with tisotumab across clinical trials. The most common all grade hemorrhage adverse reactions were epistaxis (44%), hematuria (10%), and vaginal hemorrhage (10%). Grade 3 hemorrhage occurred in 5% of patients.(1) |
TIVDAK |
Select Opioids (Immediate Release)/Select Tranquilizers SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids and tranquilizers may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids and other CNS depressants such as tranquilizers may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics with CNS depressants such as tranquilizers to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(4) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(5) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(6) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(7) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(8) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(9) |
PENTOBARBITAL SODIUM |
Sparsentan/NSAIDs; Salicylates SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Sparsentan is an endothelin and angiotensin II receptor antagonist.(1) Angiotensin II receptor blockers can cause vasodilation of the efferent renal arteriole which may result in decreased glomerular filtration rate. NSAIDs inhibit prostaglandin synthesis which can lead to afferent arteriolar vasoconstriction. CLINICAL EFFECTS: Concurrent use of sparsentan with NSAIDs (including selective COX-2 inhibitors) may result in renal hypoperfusion and deterioration of renal clearance, including possible acute kidney injury (AKI). These effects are usually reversible.(1) PREDISPOSING FACTORS: Patients older than 75 years old, with renal artery stenosis, chronic kidney disease, severe congestive heart failure, or volume depletion (including from diuretic use and dehydration) may be at greater risk for AKI.(1-3) PATIENT MANAGEMENT: Monitor for signs of worsening renal function if an NSAID (including selective COX-2 inhibitors) is used concurrently with sparsentan. If renal function deteriorates, the NSAID may need to be discontinued.(1) DISCUSSION: In a computational study, the risk of AKI using triple therapy with a diuretic, renin-angiotensin system (RAS) inhibitor, and NSAID was assessed. The study found the following factors may increase an individual's susceptibility to AKI: low water intake, drug sensitivity, greater than 75 years of age, and renal impairment.(2,3) In an observational study, current use of a triple therapy combination was associated with an increased rate of acute kidney injury (rate ratio (RR) 1.31, 95% confidence interval (CI) 1.12-1.53). The highest risk of AKI associated with triple therapy were observed in the first 30 days of use (RR 1.82, CI 1.35-2.46).(4) |
FILSPARI |
Nefazodone/Tramadol SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Tramadol inhibits the reuptake of serotonin.(1) Metabolism of nefazodone leads to formation of a common active metabolite, m-chlorophenylpiperazine (mCPP) which is an agonist at a variety of serotonin receptors.(2-3) Both tramadol and mCPP are metabolized by CYP2D6.(1,3-5) CLINICAL EFFECTS: Concurrent administration could increase the risk for serotonin syndrome. Symptoms of serotonin syndrome may include tremor, agitation, diaphoresis, hyperreflexia, clonus, tachycardia, hyperthermia, and muscle rigidity.(6) PREDISPOSING FACTORS: Serotonin syndrome risk is dose-related. Higher systemic concentrations of tramadol or mCPP would be predicted to increase risk for serotonin toxicity. Concomitant therapy with other agents which increase brain serotonin concentrations may also increase risk.(1,2,6) Renal dysfunction and chronic use of meperidine would be expected to increase the risk for serotonin toxicity due to meperidine. Concomitant treatment with inhibitors of CYP2D6 (e.g. bupropion, cinacalcet, duloxetine, fluoxetine, paroxetine, quinidine, or systemic terbinafine) may also increase mCPP and tramadol concentrations, increasing risk for serotonin toxicity. Patients who are poor metabolizers at CYP2D6 would be expected to have higher tramadol and mCPP concentrations compared with extensive metabolizers.(1) PATIENT MANAGEMENT: Assess patient for predisposing risk factors and monitor accordingly. The manufacturer of tramadol recommends careful monitoring for signs and symptoms of serotonin syndrome when a metabolic inhibitor or another serotoninergic agent is started, or when the dose of either agent is increased.(1) DISCUSSION: Nefazodone and tramadol have each been associated with serotonin syndrome when given concurrently with one or more serotoninergic agents.(1-2) MCPP has been associated with serotonin syndrome when used as a probe of central serotonin function in human investigational studies.(7) Nefazodone has several active metabolites, including mCCP. Although systemic mCPP concentrations are low relative to nefazodone concentrations, in animal studies the ratio of brain:blood concentrations for mCPP to nefazodone were 47:1 and 10:1 in the mouse and rat respectively.(3) |
NEFAZODONE HCL |
NSAIDs; Salicylates/Minoxidil SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Oral minoxidil functions as a direct-acting peripheral vasodilator, lowering elevated systolic and diastolic blood pressure by reducing resistance in peripheral blood vessels. This triggers a compensatory increase in cardiac output and renin secretion and results in sodium and water retention. NSAIDs inhibit prostaglandin synthesis and also result in sodium and water retention.(1,2) CLINICAL EFFECTS: The risk of heart failure may increase with oral minoxidil and NSAIDs due to their combined effects on blood vessel dilation, fluid retention, and altered sodium balance. Minoxidil efficacy may be compromised.(1,2) PREDISPOSING FACTORS: Higher doses of oral minoxidil have been associated with serious adverse events, including hypotensive syncope, pericarditis, pericardial effusion, and myocardial infarction.(1-5) PATIENT MANAGEMENT: Closely monitor body weight, fluid and electrolyte balance, and blood pressure when using oral minoxidil and NSAIDs concurrently. Minoxidil tablets should be co-administered with an appropriate diuretic to prevent fluid retention and potential congestive heart failure. A high-ceiling (loop) diuretic is often necessary alongside vigilant monitoring of body weight. Without concurrent diuretic use, minoxidil may lead to the retention of salt and water within a few days.(1,2) DISCUSSION: While the manufacturer of minoxidil does not provide specific recommendations regarding NSAID co-administration, it emphasizes the necessity of combining minoxidil with a beta-blocker to prevent tachycardia and increased myocardial workload. Additionally, concurrent use with a diuretic is recommended to avert serious fluid accumulation and potential congestive heart failure. NSAID labeling warns about fluid retention, edema, an elevated risk of heart failure, and potential drug interactions with beta-blockers and diuretics which can result in a blunting of the antihypertensive and cardiovascular effects of these agents.(1-5) |
MINOXIDIL |
T Cell Immunotherapies/NSAIDs; Salicylates SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: NSAIDs augment the immune system. Concurrent use with NSAIDs may interfere with the activity of CAR-T cell immunotherapies.(1) CLINICAL EFFECTS: NSAIDs may decrease the efficacy of CAR-T cell immunotherapies.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: NSAIDs should be used with caution with or after CAR-T cell immunotherapy.(1) DISCUSSION: An in vitro study showed aspirin and celecoxib negatively affected CD19.CAR-T cells through their effects on the induction of apoptosis, reduction of activation, and impairment of proliferation.(1) |
ABECMA, AMTAGVI, AUCATZYL, BREYANZI, BREYANZI CD4 COMPONENT, BREYANZI CD8 COMPONENT, CARVYKTI, KYMRIAH, TECARTUS, TECELRA, YESCARTA |
Tramadol/Methylphenidate SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Opioids and methylphenidate exhibit opposing effects on the CNS.(1) CLINICAL EFFECTS: Concurrent use of opioids and methylphenidate may have unpredictable effects and may mask overdose symptoms of the opioid, such as drowsiness and inability to focus. PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing tramadol with CNS stimulants such as methylphenidate to patients for whom alternatives are inadequate. Concurrent use of methylphenidate with tramadol should be approached with appropriate monitoring. If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with stimulants.(1) Monitor patients receiving concurrent therapy for signs of substance abuse. DISCUSSION: A total of 70,237 persons died from drug overdoses in the United States in 2017; approximately two thirds of these deaths involved an opioid.(2). The CDC analyzed 2016-2017 changes in age-adjusted death rates involving cocaine and psychostimulants by demographic characteristics, urbanization levels, U.S. Census region, 34 states, and the District of Columbia (DC). The CDC also examined trends in age-adjusted cocaine-involved and psychostimulant-involved death rates from 2003 to 2017 overall, as well as with and without co-involvement of opioids. Among all 2017 drug overdose deaths, 13,942 (19.8%) involved cocaine, and 10,333 (14.7%) involved psychostimulants. Death rates increased from 2016 to 2017 for both drug categories across demographic characteristics, urbanization levels, Census regions, and states. In 2017, opioids were involved in 72.7% and 50.4% of cocaine-involved and psychostimulant-involved overdoses, respectively, and the data suggest that increases in cocaine-involved overdose deaths from 2012 to 2017 were driven primarily by synthetic opioids.(3) There was opioid co-involvement in 72.7 percent of cocaine and 50.4 percent of stimulant-involved overdose deaths. This was largely driven by synthetic opioids such as fentanyl. However, stimulant-involved overdose without opioid co-involvement is also increasing.(2) |
APTENSIO XR, AZSTARYS, CONCERTA, COTEMPLA XR-ODT, DAYTRANA, DEXMETHYLPHENIDATE HCL, DEXMETHYLPHENIDATE HCL ER, FOCALIN, FOCALIN XR, JORNAY PM, METADATE CD, METADATE ER, METHYLIN, METHYLPHENIDATE, METHYLPHENIDATE ER, METHYLPHENIDATE ER (LA), METHYLPHENIDATE HCL, METHYLPHENIDATE HCL CD, METHYLPHENIDATE HCL ER (CD), QUILLICHEW ER, QUILLIVANT XR, RELEXXII, RITALIN, RITALIN LA |
Propranolol/Selected CYP2D6 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: CYP2D6 inhibitors may inhibit the metabolism of propranolol.(1) CLINICAL EFFECTS: Concurrent use of CYP2D6 inhibitors may result in elevated levels of and toxicity from propranolol, including hypotension and bradycardia.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Monitor patients receiving concurrent therapy with propranolol and CYP2D6 inhibitors. The dosage of propranolol may need to be adjusted.(1) DISCUSSION: In a pharmacokinetic study in 16 healthy volunteers, concurrent use of quinidine 200 mg (a CYP2D6 inhibitor) increased the area-under-curve (AUC) of propranolol by 2.29-fold.(2) In a pharmacokinetic study in 6 healthy subjects, concurrent use of quinidine increased propranolol AUC 2-fold.(3) A retrospective review of concurrent use of propranolol and antidepressants evaluated the risk of hospitalization or emergency room visit within 30 days of concurrent prescription. In patients receiving antidepressants with moderate to strong CYP2D6 inhibitory effects, patient were an increased risk compared to patients receiving no antidepressants (Hazard Ratio (HR) = 1.53; 95% CI 1.03-2.81 vs. HR = 1.24; 95% CI 0.82-1.88).(4) Case reports of bradycardia and cardiac adverse effects have been reported with concurrent use of propranolol and the antidepressants fluoxetine and paroxetine (strong CYP2D6 inhibitors).(5) Strong CYP2D6 inhibitors include: bupropion, dacomitinib, fluoxetine, mavorixafor, and paroxetine. Moderate CYP2D6 inhibitors include: abiraterone, asunaprevir, berotralstat, capivasertib, cinacalcet, duloxetine, eliglustat, escitalopram, lorcaserin, mirabegron, moclobemide, quinine, ranolazine, and rolapitant. Weak CYP2D6 inhibitors include: celecoxib, desvenlafaxine, diphenhydramine, dimenhydrinate, dronabinol, fedratinib, hydroxychloroquine, imatinib, osilodrostat, ranitidine, and sertraline.(6) |
HEMANGEOL, INDERAL LA, INDERAL XL, INNOPRAN XL, PROPRANOLOL HCL, PROPRANOLOL HCL ER, PROPRANOLOL-HYDROCHLOROTHIAZID |
Selected Serotonergic Opioids/Ziprasidone SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of serotonergic opioids such as meperidine or tramadol and antipsychotics such as ziprasidone may result in additive CNS depression or additive risk of serotonin syndrome.(1) CLINICAL EFFECTS: Concurrent use of serotonergic opioids such as meperidine or tramadol and antipsychotics such as ziprasidone may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. Serotonin syndrome risk is dose-related. Higher systemic concentrations of either drug would be predicted to increase risk for serotonin toxicity. Concomitant therapy with multiple agents which increase brain serotonin concentrations may also increase risk for serotonin syndrome.(2) PATIENT MANAGEMENT: Limit prescribing opioid analgesics such as meperidine or tramadol with CNS depressants such as antipsychotics, including ziprasidone, to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness,(1) as well as for signs of serotonin syndrome. Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) Several cases of serotonin syndrome have been reported in patients receiving ziprasidone.(12-14) |
GEODON, ZIPRASIDONE HCL, ZIPRASIDONE MESYLATE |
The following contraindication information is available for SEGLENTIS (tramadol hcl/celecoxib):
Drug contraindication overview.
Tramadol is contraindicated in patients with substantial respiratory depression; acute or severe bronchial asthma in unmonitored settings or in the absence of resuscitative equipment; known or suspected GI obstruction, including paralytic ileus; or known hypersensitivity (e.g., anaphylaxis) to the drug, other opiates, or any ingredient in the formulation. Tramadol also is contraindicated during or within 14 days following treatment with an MAO inhibitor. Tramadol is contraindicated in children younger than 12 years of age for the management of pain and in those younger than 18 years of age for the management of postoperative pain following tonsillectomy and/or adenoidectomy.
(See Cautions: Pediatric Precautions.) *Known hypersensitivity (e.g., anaphylaxis, serious dermatologic reactions) to the drug, sulfonamides, or any ingredient in the formulation. *History of asthma, urticaria, or other sensitivity reactions after taking aspirin or other nonsteroidal anti-inflammatory agents (NSAIAs). *Contraindicated in the setting of coronary artery bypass graft (CABG) surgery.
Tramadol is contraindicated in patients with substantial respiratory depression; acute or severe bronchial asthma in unmonitored settings or in the absence of resuscitative equipment; known or suspected GI obstruction, including paralytic ileus; or known hypersensitivity (e.g., anaphylaxis) to the drug, other opiates, or any ingredient in the formulation. Tramadol also is contraindicated during or within 14 days following treatment with an MAO inhibitor. Tramadol is contraindicated in children younger than 12 years of age for the management of pain and in those younger than 18 years of age for the management of postoperative pain following tonsillectomy and/or adenoidectomy.
(See Cautions: Pediatric Precautions.) *Known hypersensitivity (e.g., anaphylaxis, serious dermatologic reactions) to the drug, sulfonamides, or any ingredient in the formulation. *History of asthma, urticaria, or other sensitivity reactions after taking aspirin or other nonsteroidal anti-inflammatory agents (NSAIAs). *Contraindicated in the setting of coronary artery bypass graft (CABG) surgery.
There are 16 contraindications.
Absolute contraindication.
Contraindication List |
---|
Acute asthma attack |
Adenoidectomy in pediatric patient |
Alcohol intoxication |
Aspirin exacerbated respiratory disease |
Benzodiazepine overdose |
Cerebrovascular accident |
CYp2d6 poor metabolizer |
CYp2d6 ultrarapid metabolizer |
Gastrointestinal obstruction |
History of roux-en-Y gastric bypass |
Opioid overdose |
Post-operative from CABG surgery |
Pregnancy |
Renal transplant |
Serotonin syndrome |
Tonsillectomy in pediatric patient |
There are 31 severe contraindications.
Adequate patient monitoring is recommended for safer drug use.
Severe List |
---|
Acute myocardial infarction |
Alcohol use disorder |
Alcohol withdrawal syndrome |
Central nervous system infection |
Chronic kidney disease stage 4 (severe) GFR 15-29 ml/min |
Chronic kidney disease stage 5 (failure) GFr<15 ml/min |
CYp2c9 intermediate metabolizer (activity score 1) |
CYp2c9 poor metabolizer |
Depression |
Drug abuse |
Exacerbation of chronic obstructive pulmonary disease |
Familial dysautonomia |
Gastrointestinal hemorrhage |
Gastrointestinal perforation |
Gastrointestinal ulcer |
History of kidney donation |
Increased risk of bleeding |
Intracranial hypertension |
Kidney disease with likely reduction in glomerular filtration rate (GFr) |
Lower seizure threshold |
Nephrectomy |
Obstructive sleep apnea syndrome |
Peptic ulcer |
Respiratory depression |
Seizure disorder |
Severe hepatic disease |
Suicidal |
Suicidal ideation |
Systemic mastocytosis |
Thrombotic disorder |
Tobacco smoker |
There are 11 moderate contraindications.
Clinically significant contraindication, where the condition can be managed or treated before the drug may be given safely.
Moderate List |
---|
Adrenocortical insufficiency |
Anemia |
Asthma |
Chronic heart failure |
CYp2d6 intermediate metabolizer |
Dehydration |
Disease of liver |
Edema |
Hypertension |
Hypoglycemic disorder |
Hyponatremia |
The following adverse reaction information is available for SEGLENTIS (tramadol hcl/celecoxib):
Adverse reaction overview.
Adverse effects reported in >2% of adult patients receiving celecoxib for osteoarthritis and rheumatoid arthritis in clinical trials include abdominal pain, diarrhea, dyspepsia, flatulence, peripheral edema, accidental injury, dizziness, pharyngitis, rhinitis, sinusitis, upper respiratory tract infection, and rash. Adverse events reported in adult patients receiving celecoxib for ankylosing spondylitis, analgesia, and dysmenorrhea in clinical trials were similar to those reported in the osteoarthritis and rheumatoid arthritis trials. In the clinical trial of celecoxib in pediatric patients with juvenile rheumatoid arthritis, the most commonly occurring (>=5%) adverse events in celecoxib-treated patients were headache, pyrexia, upper abdominal pain, cough, nasopharyngitis, abdominal pain, nausea, arthralgia, diarrhea, and vomiting. The most common adverse effect reported in >=3% of adult patients receiving celecoxib for migraine is dysgeusia.
Adverse effects reported in >2% of adult patients receiving celecoxib for osteoarthritis and rheumatoid arthritis in clinical trials include abdominal pain, diarrhea, dyspepsia, flatulence, peripheral edema, accidental injury, dizziness, pharyngitis, rhinitis, sinusitis, upper respiratory tract infection, and rash. Adverse events reported in adult patients receiving celecoxib for ankylosing spondylitis, analgesia, and dysmenorrhea in clinical trials were similar to those reported in the osteoarthritis and rheumatoid arthritis trials. In the clinical trial of celecoxib in pediatric patients with juvenile rheumatoid arthritis, the most commonly occurring (>=5%) adverse events in celecoxib-treated patients were headache, pyrexia, upper abdominal pain, cough, nasopharyngitis, abdominal pain, nausea, arthralgia, diarrhea, and vomiting. The most common adverse effect reported in >=3% of adult patients receiving celecoxib for migraine is dysgeusia.
There are 97 severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Abnormal hepatic function tests Accidental injury Increased alanine transaminase Increased aspartate transaminase |
Respiratory depression |
Rare/Very Rare |
---|
Abnormal ECG Accidental fall Accidental injury Acute eruptions of skin Acute generalized exanthematous pustulosis Acute myocardial infarction Adrenocortical insufficiency Agranulocytosis Anaphylaxis Androgen deficiency Anemia Angina Angioedema Aplastic anemia Biliary calculus Bloody stools Bronchospastic pulmonary disease Bullous dermatitis Cellulitis Cerebrovascular accident Conjunctival hemorrhage Coronary artery disease Cystitis Deep venous thrombosis Diverticulitis of gastrointestinal tract DRESS syndrome Drug dependence Dyspnea Edema Erythema multiforme Esophageal perforation Esophagitis Exfoliative dermatitis Facial edema Gastroesophageal reflux disease Gastrointestinal hemorrhage Gastrointestinal obstruction Gastrointestinal perforation Gastrointestinal ulcer Hearing loss Heart failure Hematuria Hemorrhage Hepatic failure Hepatic necrosis Hepatitis Hiatal hernia Hypercholesterolemia Hyperglycemia Hyperkalemia Hypernatremia Hypertension Hypoglycemic disorder Hypokalemia Hyponatremia Increased urinary frequency Interstitial nephritis Intracranial bleeding Jaundice Kidney stone Left ventricular hypertrophy Leukopenia Myocardial ischemia Nephrotoxicity Non-infective meningitis Pancreatitis Pancytopenia Peripheral ischemia Pneumonia Prolonged QT interval Proteinuria Pulmonary edema Pulmonary thromboembolism Renal papillary necrosis Seizure disorder Sepsis Serotonin syndrome SIADH syndrome Sinus bradycardia Sleep apnea Spasm of sphincter of oddi Stevens-johnson syndrome Suicidal Syncope Tachycardia Tendon rupture Thrombocytopenic disorder Thrombocytosis Thrombophlebitis Toxic epidermal necrolysis Vasculitis Vertigo |
There are 142 less severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Acute abdominal pain Constipation Diarrhea Dizziness Drowsy Dysgeusia Dyspepsia Flatulence Flushing Headache disorder Insomnia Nausea Peripheral edema Pharyngitis Pruritus of skin Rhinitis Skin rash Upper respiratory infection Vertigo Vomiting Xerostomia |
Acute abdominal pain Acute cognitive impairment Anorexia Arthralgia Back pain Blurred vision Diarrhea Dyspepsia Epicondylitis Flatulence General weakness Headache disorder Hyperhidrosis Hypertension Insomnia Nausea Nervousness Orthostatic hypotension Sinusitis Skin rash Symptoms of anxiety Urinary retention Vasodilation of blood vessels |
Rare/Very Rare |
---|
Agitation Allergic dermatitis Alopecia Anorexia Anticholinergic toxicity Arthralgia Ataxia Body fluid retention Bronchitis Bruising Cataracts Chest pain Chills Constipation Contact dermatitis Cough Cramps in legs Delirium Depersonalization Depression Dream disorder Drowsy Dry skin Dysgeusia Dysphagia Dyspnea Dysuria Ecchymosis Epistaxis Erectile dysfunction Eructation Euphoria Fatigue Fever Flu-like symptoms Flushing Gastritis Gastroenteritis General weakness Hallucinations Hearing loss Hematuria Hemorrhoids Hyperglycemia Hyperhidrosis Hyperkinesis Hypertonia Hypoesthesia Hypotension Increased appetite Increased urinary frequency Indifference Infertility Laryngitis Libido changes Loss of sense of smell Loss of taste Maculopapular rash Medication overuse headache Menstrual disorder Migraine Miosis Mood changes Muscle fasciculation Myalgia Neck stiffness Nervousness Night sweats Ocular pain Opioid induced allodynia Opioid induced hyperalgesia Ovarian cyst Pain Palpitations Paresthesia Peripheral edema Pharyngitis Pruritus of skin Sinusitis Skin irritation Skin photosensitivity Sleep disorder Stomatitis Symptoms of anxiety Syncope Synovitis Tachycardia Tenesmus Tinnitus Tremor Urinary tract infection Urticaria Visual changes Vomiting Weight gain Weight loss Xerostomia Yawning |
The following precautions are available for SEGLENTIS (tramadol hcl/celecoxib):
Celecoxib is used for the management of the signs and symptoms of juvenile rheumatoid arthritis in pediatric patients >=2 years of age; safety and efficacy of celecoxib therapy have not been established beyond 6 months in pediatric patients with juvenile rheumatoid arthritis. Celecoxib has been evaluated in pediatric patients 2-17 years of age with pauciarticular course, polyarticular course, or systemic onset juvenile rheumatoid arthritis in one clinical study. Celecoxib has not been studied in pediatric patients younger than 2 years of age, those weighing <10 kg, or those with active systemic disease.
Alternative therapies should be considered in pediatric patients known to be CYP2C9 poor metabolizers. In the pediatric clinical study for juvenile rheumatoid arthritis, patients with systemic onset juvenile rheumatoid arthritis appeared to be at risk for the development of abnormal coagulation test results. Use of NSAIAs, including celecoxib, has been associated with mild prolongation of activated partial thromboplastin time (aPTT) but not prothrombin time in pediatric patients with systemic onset juvenile rheumatoid arthritis.
Because of the risk of disseminated intravascular coagulation in pediatric patients with systemic onset juvenile rheumatoid arthritis who are receiving celecoxib, these patients should be monitored for clinical signs or symptoms of abnormal clotting or bleeding and with coagulation tests. Long-term cardiovascular toxicity has not been evaluated in pediatric patients, and it is not known whether long-term risks may be similar to those observed in adults exposed to celecoxib and other NSAIAs. Safety and efficacy of celecoxib for the acute treatment of migraine attacks have not been established in pediatric patients.
Contraindicated
Severe Precaution
Management or Monitoring Precaution
Alternative therapies should be considered in pediatric patients known to be CYP2C9 poor metabolizers. In the pediatric clinical study for juvenile rheumatoid arthritis, patients with systemic onset juvenile rheumatoid arthritis appeared to be at risk for the development of abnormal coagulation test results. Use of NSAIAs, including celecoxib, has been associated with mild prolongation of activated partial thromboplastin time (aPTT) but not prothrombin time in pediatric patients with systemic onset juvenile rheumatoid arthritis.
Because of the risk of disseminated intravascular coagulation in pediatric patients with systemic onset juvenile rheumatoid arthritis who are receiving celecoxib, these patients should be monitored for clinical signs or symptoms of abnormal clotting or bleeding and with coagulation tests. Long-term cardiovascular toxicity has not been evaluated in pediatric patients, and it is not known whether long-term risks may be similar to those observed in adults exposed to celecoxib and other NSAIAs. Safety and efficacy of celecoxib for the acute treatment of migraine attacks have not been established in pediatric patients.
Contraindicated
None |
Severe Precaution
None |
Management or Monitoring Precaution
None |
Prolonged maternal use of opiate agonists during pregnancy can result in neonatal opiate withdrawal syndrome with manifestations of irritability, hyperactivity and abnormal sleep pattern, high-pitched cry, tremor, vomiting, diarrhea, and failure to gain weight. In contrast to adults, the withdrawal syndrome in neonates may be life-threatening if not recognized and treated, and requires management according to protocols developed by neonatology experts. Women who require prolonged opiate agonist therapy during pregnancy should be advised of the risk of neonatal opiate withdrawal syndrome, and availability of appropriate treatment should be ensured.
The onset, duration, and severity of the syndrome vary depending on the specific opiate agonist used, duration of use, timing and amount of last maternal use, and rate of drug elimination by the neonate. Neonatal seizures, neonatal withdrawal syndrome, fetal death, and stillbirth have been reported with tramadol during postmarketing experience. The effect of tramadol, if any, on the later growth, development, and functional maturation of the child is unknown.
Use of opiates in pregnant women during labor can result in neonatal respiratory depression. Use of tramadol is not recommended immediately before or during labor, when other analgesic techniques may be more appropriate. Opiate agonists may prolong labor through actions that temporarily reduce the strength, duration, and frequency of uterine contractions.
However, this effect is inconsistent and may be offset by an increased rate of cervical dilatation, which tends to shorten labor. Neonates exposed to opiates during labor should be monitored for excessive sedation and respiratory depression. An opiate antagonist must be available for reversal of opiate-induced respiratory depression.
Tramadol has been shown to cross the placenta. The mean ratio of serum tramadol in the umbilical veins compared with maternal veins was 0.83 for women given tramadol during labor.
Analysis of data from the National Birth Defects Prevention Study, a large population-based, case-control study, suggests that therapeutic maternal use of opiate agonists during the period of organogenesis is associated with a low absolute risk of birth defects, including heart defects, spina bifida, and gastroschisis. The manufacturers state that available data regarding use of tramadol in pregnant women are insufficient to establish the risk of major birth defects and spontaneous abortion with the drug. Based on animal data, women of childbearing potential should be advised of the potential for tramadol to cause fetal harm.
Although there are no adequate and controlled studies to date in humans, tramadol has been shown to be embryotoxic and fetotoxic in mice, rats, and rabbits at maternally toxic doses 1.4, 0.6, and 3.6
times, respectively, the maximum daily human dosage (120 mg/kg in mice, 25 mg/kg in rats, and 75 mg/kg in rabbits). Embryo and fetal toxicity consisted mainly of decreased fetal weights, decreased skeletal ossification, and increased supernumerary ribs at maternally toxic dose levels. Transient delays in developmental or behavioral parameters also were seen in pups from rat dams allowed to deliver.
Embryo and fetal lethality was reported in only one rabbit study, in which rabbits received tramadol hydrochloride 300 mg/kg, a dose that would cause extreme maternal toxicity in rabbits. Embryotoxicity and fetotoxicity have been demonstrated in rats when tramadol and acetaminophen were administered in fixed combination at maternally toxic doses of 50 and 434 mg/kg, respectively, or 1.6 times the maximum daily human dosages of these drugs.
Embryonic and fetal toxicity consisted of decreased fetal weights and increased supernumerary ribs. Tramadol was not teratogenic in mice, rats, and rabbits at maternally toxic doses 1.4, 0.6,
and 3.6 times, respectively, the maximum human daily dosage (120 mg/kg in mice, 25 mg/kg in rats, and 75 mg/kg in rabbits). No drug-related teratogenic effects were observed in progeny of mice, rats, or rabbits receiving tramadol (up to 140, 80, or 300 mg/kg or 1.7, 1.9, or 14.6 times, respectively, the maximum daily human dosage) by various routes.
Tramadol and acetaminophen in fixed combination was not teratogenic in rats at a maternally toxic dose of 50 and 434 mg/kg, respectively, or 1.6 times the maximum daily human dosages of these drugs. In perinatal and postnatal studies in rats, progeny of dams receiving oral (gavage) tramadol hydrochloride doses of 50 mg/kg or higher had decreased weights, and pup survival was decreased early in lactation at tramadol hydrochloride doses of 80 mg/kg (1.2-1.6 or 1.9-2.6 times, respectively, the maximum human dose).
No toxicity was observed for progeny of dams receiving doses of 8, 10, 20, 25, or 40 mg/kg. Maternal toxicity was observed at all dose levels, but effects on progeny were evident only at higher dose levels where maternal toxicity was more severe. Use of NSAIAs during pregnancy at about 30 weeks of gestation or later can cause premature closure of the fetal ductus arteriosus, and use at about 20 weeks of gestation or later has been associated with fetal renal dysfunction resulting in oligohydramnios and, in some cases, neonatal renal impairment.
Because of these risks, use of NSAIAs should be avoided in pregnant women at about 30 weeks of gestation or later; if NSAIA therapy is necessary between about 20 and 30 weeks of gestation, the lowest effective dosage and shortest possible duration of treatment should be used. Monitoring of amniotic fluid volume via ultrasound examination should be considered if the duration of NSAIA treatment exceeds 48 hours; if oligohydramnios occurs, the drug should be discontinued and follow-up instituted according to clinical practice. Fetal renal dysfunction has been observed, on average, after days to weeks of maternal NSAIA use, although oligohydramnios has been observed infrequently as early as 48 hours after initiation of NSAIA therapy.
Oligohydramnios is often, but not always, reversible following discontinuance of NSAIA therapy. Complications of prolonged oligohydramnios may include limb contracture and delayed lung maturation. A limited number of case reports have described maternal NSAIA use and neonatal renal dysfunction, in some cases irreversible, without oligohydramnios.
Some cases of neonatal renal dysfunction have required treatment with invasive procedures, such as exchange transfusion or dialysis. Observational data regarding other embryofetal risks with NSAIAs during the first or second trimester of pregnancy are not conclusive. An increased incidence of fetuses with ventricular septal defects, sternebral fusion or abnormality, and rib fusion was observed in reproduction studies in rabbits receiving oral celecoxib dosages >=150 mg/kg daily throughout organogenesis (exposure approximately twice the usual human dosage of 200 mg twice daily, expressed in terms of AUC (0-24 hours)).
A dose-dependent increase in diaphragmatic hernias was observed in rats receiving oral celecoxib dosages >=30 mg/kg daily throughout organogenesis (exposure approximately 6-fold the usual human dosage of 200 mg twice daily, expressed in terms of AUC (0-24 hours)). Reproduction studies in rats using oral dosages up to 100 mg/kg daily (exposure approximately 7-fold the usual human dosage of 200 mg twice daily, expressed in terms of AUC (0-24 hours)) did not reveal evidence of delayed labor or parturition. In rats receiving oral celecoxib dosages >=50 mg/kg daily (exposure approximately 6-fold the usual human dosage of 200 mg twice daily, expressed in terms of AUC (0-24 hours)), pre- and post-implantation losses and reduced embryonic/fetal survival were observed.
Animal data indicate that prostaglandins have an important role in endometrial vascular permeability, blastocyst implantation, and decidualization. In animal studies, inhibitors of prostaglandin synthesis, such as celecoxib, were associated with increased pre- and post-implantation losses. Prostaglandins also have an important role in fetal kidney development.
In animal studies, inhibitors of prostaglandin synthesis impaired kidney development at clinically relevant doses. The effects of celecoxib on labor and delivery are unknown. In animal studies, drugs that inhibit prostaglandin synthesis, including NSAIAs, delayed parturition and increased stillbirth.
The onset, duration, and severity of the syndrome vary depending on the specific opiate agonist used, duration of use, timing and amount of last maternal use, and rate of drug elimination by the neonate. Neonatal seizures, neonatal withdrawal syndrome, fetal death, and stillbirth have been reported with tramadol during postmarketing experience. The effect of tramadol, if any, on the later growth, development, and functional maturation of the child is unknown.
Use of opiates in pregnant women during labor can result in neonatal respiratory depression. Use of tramadol is not recommended immediately before or during labor, when other analgesic techniques may be more appropriate. Opiate agonists may prolong labor through actions that temporarily reduce the strength, duration, and frequency of uterine contractions.
However, this effect is inconsistent and may be offset by an increased rate of cervical dilatation, which tends to shorten labor. Neonates exposed to opiates during labor should be monitored for excessive sedation and respiratory depression. An opiate antagonist must be available for reversal of opiate-induced respiratory depression.
Tramadol has been shown to cross the placenta. The mean ratio of serum tramadol in the umbilical veins compared with maternal veins was 0.83 for women given tramadol during labor.
Analysis of data from the National Birth Defects Prevention Study, a large population-based, case-control study, suggests that therapeutic maternal use of opiate agonists during the period of organogenesis is associated with a low absolute risk of birth defects, including heart defects, spina bifida, and gastroschisis. The manufacturers state that available data regarding use of tramadol in pregnant women are insufficient to establish the risk of major birth defects and spontaneous abortion with the drug. Based on animal data, women of childbearing potential should be advised of the potential for tramadol to cause fetal harm.
Although there are no adequate and controlled studies to date in humans, tramadol has been shown to be embryotoxic and fetotoxic in mice, rats, and rabbits at maternally toxic doses 1.4, 0.6, and 3.6
times, respectively, the maximum daily human dosage (120 mg/kg in mice, 25 mg/kg in rats, and 75 mg/kg in rabbits). Embryo and fetal toxicity consisted mainly of decreased fetal weights, decreased skeletal ossification, and increased supernumerary ribs at maternally toxic dose levels. Transient delays in developmental or behavioral parameters also were seen in pups from rat dams allowed to deliver.
Embryo and fetal lethality was reported in only one rabbit study, in which rabbits received tramadol hydrochloride 300 mg/kg, a dose that would cause extreme maternal toxicity in rabbits. Embryotoxicity and fetotoxicity have been demonstrated in rats when tramadol and acetaminophen were administered in fixed combination at maternally toxic doses of 50 and 434 mg/kg, respectively, or 1.6 times the maximum daily human dosages of these drugs.
Embryonic and fetal toxicity consisted of decreased fetal weights and increased supernumerary ribs. Tramadol was not teratogenic in mice, rats, and rabbits at maternally toxic doses 1.4, 0.6,
and 3.6 times, respectively, the maximum human daily dosage (120 mg/kg in mice, 25 mg/kg in rats, and 75 mg/kg in rabbits). No drug-related teratogenic effects were observed in progeny of mice, rats, or rabbits receiving tramadol (up to 140, 80, or 300 mg/kg or 1.7, 1.9, or 14.6 times, respectively, the maximum daily human dosage) by various routes.
Tramadol and acetaminophen in fixed combination was not teratogenic in rats at a maternally toxic dose of 50 and 434 mg/kg, respectively, or 1.6 times the maximum daily human dosages of these drugs. In perinatal and postnatal studies in rats, progeny of dams receiving oral (gavage) tramadol hydrochloride doses of 50 mg/kg or higher had decreased weights, and pup survival was decreased early in lactation at tramadol hydrochloride doses of 80 mg/kg (1.2-1.6 or 1.9-2.6 times, respectively, the maximum human dose).
No toxicity was observed for progeny of dams receiving doses of 8, 10, 20, 25, or 40 mg/kg. Maternal toxicity was observed at all dose levels, but effects on progeny were evident only at higher dose levels where maternal toxicity was more severe. Use of NSAIAs during pregnancy at about 30 weeks of gestation or later can cause premature closure of the fetal ductus arteriosus, and use at about 20 weeks of gestation or later has been associated with fetal renal dysfunction resulting in oligohydramnios and, in some cases, neonatal renal impairment.
Because of these risks, use of NSAIAs should be avoided in pregnant women at about 30 weeks of gestation or later; if NSAIA therapy is necessary between about 20 and 30 weeks of gestation, the lowest effective dosage and shortest possible duration of treatment should be used. Monitoring of amniotic fluid volume via ultrasound examination should be considered if the duration of NSAIA treatment exceeds 48 hours; if oligohydramnios occurs, the drug should be discontinued and follow-up instituted according to clinical practice. Fetal renal dysfunction has been observed, on average, after days to weeks of maternal NSAIA use, although oligohydramnios has been observed infrequently as early as 48 hours after initiation of NSAIA therapy.
Oligohydramnios is often, but not always, reversible following discontinuance of NSAIA therapy. Complications of prolonged oligohydramnios may include limb contracture and delayed lung maturation. A limited number of case reports have described maternal NSAIA use and neonatal renal dysfunction, in some cases irreversible, without oligohydramnios.
Some cases of neonatal renal dysfunction have required treatment with invasive procedures, such as exchange transfusion or dialysis. Observational data regarding other embryofetal risks with NSAIAs during the first or second trimester of pregnancy are not conclusive. An increased incidence of fetuses with ventricular septal defects, sternebral fusion or abnormality, and rib fusion was observed in reproduction studies in rabbits receiving oral celecoxib dosages >=150 mg/kg daily throughout organogenesis (exposure approximately twice the usual human dosage of 200 mg twice daily, expressed in terms of AUC (0-24 hours)).
A dose-dependent increase in diaphragmatic hernias was observed in rats receiving oral celecoxib dosages >=30 mg/kg daily throughout organogenesis (exposure approximately 6-fold the usual human dosage of 200 mg twice daily, expressed in terms of AUC (0-24 hours)). Reproduction studies in rats using oral dosages up to 100 mg/kg daily (exposure approximately 7-fold the usual human dosage of 200 mg twice daily, expressed in terms of AUC (0-24 hours)) did not reveal evidence of delayed labor or parturition. In rats receiving oral celecoxib dosages >=50 mg/kg daily (exposure approximately 6-fold the usual human dosage of 200 mg twice daily, expressed in terms of AUC (0-24 hours)), pre- and post-implantation losses and reduced embryonic/fetal survival were observed.
Animal data indicate that prostaglandins have an important role in endometrial vascular permeability, blastocyst implantation, and decidualization. In animal studies, inhibitors of prostaglandin synthesis, such as celecoxib, were associated with increased pre- and post-implantation losses. Prostaglandins also have an important role in fetal kidney development.
In animal studies, inhibitors of prostaglandin synthesis impaired kidney development at clinically relevant doses. The effects of celecoxib on labor and delivery are unknown. In animal studies, drugs that inhibit prostaglandin synthesis, including NSAIAs, delayed parturition and increased stillbirth.
Tramadol is distributed into milk. Following a single IV tramadol dose of 100 mg, the cumulative distribution into milk within 16 hours after dosing was 100 mcg of tramadol (0.1% of the maternal dose) and 27 mcg of M1. Because the safety of tramadol in infants and neonates has not been established, the drug is not recommended for obstetrical preoperative medication or for use in nursing women, including use for post-delivery analgesia.
FDA review of available medical literature did not reveal evidence of an increased frequency of adverse effects in nursing infants of women receiving tramadol; however, because the drug is distributed into milk and has similar risks as codeine in ultrarapid metabolizers of CYP2D6 substrates, FDA recommends that tramadol not be used in nursing women. (See Pharmacogenomics under Cautions: Precautions and Contraindications. Also see Cautions: Precautions and Contraindications, in Codeine Phosphate and Codeine Sulfate 28:08.08.) Infants exposed to tramadol through breast milk should be monitored closely for clinical manifestations of opiate toxicity (e.g., sedation, difficulty breast-feeding or breathing, hypotonia). If clinical manifestations of opiate toxicity occur, caregivers should seek immediate medical treatment for the infant.
Symptoms of withdrawal can occur in opiate-dependent infants when maternal administration of opiates is discontinued or breast-feeding is stopped. Celecoxib is distributed into milk in small amounts. Limited data obtained from nursing women receiving celecoxib indicate that the calculated average infant exposure to the drug is 10-40 mcg/kg daily, which is less than 1% of the weight-based therapeutic dosage for a 2-year-old child.
Maternal use of celecoxib was not associated with adverse effects in 2 breast-fed infants 17 and 22 months of age. It is not known whether celecoxib affects milk production. The developmental and health benefits of breast-feeding should be considered along with the mother's clinical need for celecoxib and any potential adverse effects on the breast-fed infant from the drug or from the underlying maternal condition.
FDA review of available medical literature did not reveal evidence of an increased frequency of adverse effects in nursing infants of women receiving tramadol; however, because the drug is distributed into milk and has similar risks as codeine in ultrarapid metabolizers of CYP2D6 substrates, FDA recommends that tramadol not be used in nursing women. (See Pharmacogenomics under Cautions: Precautions and Contraindications. Also see Cautions: Precautions and Contraindications, in Codeine Phosphate and Codeine Sulfate 28:08.08.) Infants exposed to tramadol through breast milk should be monitored closely for clinical manifestations of opiate toxicity (e.g., sedation, difficulty breast-feeding or breathing, hypotonia). If clinical manifestations of opiate toxicity occur, caregivers should seek immediate medical treatment for the infant.
Symptoms of withdrawal can occur in opiate-dependent infants when maternal administration of opiates is discontinued or breast-feeding is stopped. Celecoxib is distributed into milk in small amounts. Limited data obtained from nursing women receiving celecoxib indicate that the calculated average infant exposure to the drug is 10-40 mcg/kg daily, which is less than 1% of the weight-based therapeutic dosage for a 2-year-old child.
Maternal use of celecoxib was not associated with adverse effects in 2 breast-fed infants 17 and 22 months of age. It is not known whether celecoxib affects milk production. The developmental and health benefits of breast-feeding should be considered along with the mother's clinical need for celecoxib and any potential adverse effects on the breast-fed infant from the drug or from the underlying maternal condition.
Geriatric patients are at increased risk for NSAIA-associated serious adverse cardiovascular, GI, and renal effects. In clinical trials evaluating celecoxib for acute treatment of migraine attacks, approximately 70 patients were >=65 years of age, while in clinical trials evaluating celecoxib for other indications, more than 3300 patients were 65-74 years of age and about 1300 were >=75 years of age. No overall differences in efficacy of celecoxib were observed between geriatric and younger patients.
Although results from clinical studies indicated that renal function (measured by glomerular filtration rate, blood urea nitrogen, and creatinine) and platelet function (measured by bleeding time and platelet aggregation) in geriatric individuals receiving celecoxib did not differ from those in younger individuals, spontaneous postmarketing reports of fatal adverse GI effects and acute renal failure have occurred more often in geriatric individuals than in younger individuals. If it is determined that the anticipated benefits of celecoxib therapy outweigh the potential risks, celecoxib should be initiated at the lower end of the dosing range and patients should be monitored for adverse effects; if used for the acute treatment of migraine attacks, celecoxib should be used for the fewest possible number of days per month. Peak plasma concentration and AUC of celecoxib (as the oral capsules) were increased 40 and 50%, respectively, in geriatric individuals (i.e., >=65 years of age), but dosage adjustment in this age group based solely on age generally is not required.
Peak plasma celecoxib concentration and AUC values were higher in geriatric women than geriatric men, predominantly because of the lower body weight of these women. In geriatric patients weighing <50 kg, celecoxib therapy should be initiated at the lowest recommended dosage.
Although results from clinical studies indicated that renal function (measured by glomerular filtration rate, blood urea nitrogen, and creatinine) and platelet function (measured by bleeding time and platelet aggregation) in geriatric individuals receiving celecoxib did not differ from those in younger individuals, spontaneous postmarketing reports of fatal adverse GI effects and acute renal failure have occurred more often in geriatric individuals than in younger individuals. If it is determined that the anticipated benefits of celecoxib therapy outweigh the potential risks, celecoxib should be initiated at the lower end of the dosing range and patients should be monitored for adverse effects; if used for the acute treatment of migraine attacks, celecoxib should be used for the fewest possible number of days per month. Peak plasma concentration and AUC of celecoxib (as the oral capsules) were increased 40 and 50%, respectively, in geriatric individuals (i.e., >=65 years of age), but dosage adjustment in this age group based solely on age generally is not required.
Peak plasma celecoxib concentration and AUC values were higher in geriatric women than geriatric men, predominantly because of the lower body weight of these women. In geriatric patients weighing <50 kg, celecoxib therapy should be initiated at the lowest recommended dosage.
The following prioritized warning is available for SEGLENTIS (tramadol hcl/celecoxib):
WARNING: Tramadol/celecoxib has a risk for abuse and addiction, which can lead to overdose and death. Tramadol/celecoxib may also cause severe, possibly fatal, breathing problems. To lower your risk, your doctor should have you take the smallest dose of the medication that works and take it for the shortest possible time.
See also How to Use section for more information about addiction. Ask your doctor or pharmacist if you should have naloxone available to treat opioid overdose. Teach your family or household members about the signs of an opioid overdose and how to treat it.
The risk for severe breathing problems is higher when you start this medication and after a dose increase, or if you take the wrong dose/strength. Taking this medication with alcohol or other drugs that can cause drowsiness or breathing problems may cause very serious side effects, including death. Also, other medications can affect the removal of tramadol/celecoxib from your body, which may affect how it works.
Be sure you know how to take this medication and what other drugs you should avoid taking with it. See also Drug Interactions section. Get medical help right away if any of these very serious side effects occur: slow/shallow breathing, unusual lightheadedness, severe drowsiness/dizziness, difficulty waking up.
Keep this medicine in a safe place to prevent theft, misuse, or abuse. If someone accidentally swallows this drug, get medical help right away. Nonsteroidal anti-inflammatory drugs (including celecoxib) may rarely increase the risk of a heart attack or stroke.
This effect can happen at any time while taking this drug but is more likely if you take it for a long time. The risk may be greater in older adults or if you have heart disease or increased risk for heart disease (for example, due to smoking, family history of heart disease, or conditions such as high blood pressure or diabetes). Do not take this drug right before or after heart bypass surgery (CABG).
Also, celecoxib may rarely cause serious (rarely fatal) bleeding from the stomach or intestines. This effect can occur without warning symptoms at any time while taking this drug. Older adults may be at higher risk for this effect.
(See also Precautions and Drug Interactions sections.) Stop taking this medication and get medical help right away if you notice any of these rare but serious side effects: stomach/abdominal pain that doesn't go away, black/tarry stools, vomit that looks like coffee grounds, chest/jaw/left arm pain, shortness of breath, unusual sweating, confusion, weakness on one side of the body, trouble speaking, sudden vision changes. Before using this medication, women of childbearing age should talk with their doctor(s) about the benefits and risks. Tell your doctor if you are pregnant or if you plan to become pregnant.
This medication may harm an unborn baby and cause problems with normal labor/delivery. It is not recommended for use in pregnancy from 20 weeks until delivery. If your doctor decides that you need to use this medication between 20 and 30 weeks of pregnancy, you should use the lowest effective dose for the shortest possible time.
You should not use this medication after 30 weeks of pregnancy. Babies born to mothers who use this drug for a long time may develop severe (possibly fatal) withdrawal symptoms. Tell the doctor right away if you notice any symptoms in your newborn baby such as crying that doesn't stop, slow/shallow breathing, irritability, shaking, vomiting, diarrhea, poor feeding, or difficulty gaining weight.
Children younger than 18 years should not use products that contain tramadol. Some children are more sensitive to tramadol and have had very serious (rarely fatal) breathing problems such as slow/shallow breathing (see also Side Effects section). The risk is greater in children who are obese or have breathing problems, or after certain surgeries (including tonsil/adenoid removal). Talk with your doctor or pharmacist about the risks and benefits of this medication.
WARNING: Tramadol/celecoxib has a risk for abuse and addiction, which can lead to overdose and death. Tramadol/celecoxib may also cause severe, possibly fatal, breathing problems. To lower your risk, your doctor should have you take the smallest dose of the medication that works and take it for the shortest possible time.
See also How to Use section for more information about addiction. Ask your doctor or pharmacist if you should have naloxone available to treat opioid overdose. Teach your family or household members about the signs of an opioid overdose and how to treat it.
The risk for severe breathing problems is higher when you start this medication and after a dose increase, or if you take the wrong dose/strength. Taking this medication with alcohol or other drugs that can cause drowsiness or breathing problems may cause very serious side effects, including death. Also, other medications can affect the removal of tramadol/celecoxib from your body, which may affect how it works.
Be sure you know how to take this medication and what other drugs you should avoid taking with it. See also Drug Interactions section. Get medical help right away if any of these very serious side effects occur: slow/shallow breathing, unusual lightheadedness, severe drowsiness/dizziness, difficulty waking up.
Keep this medicine in a safe place to prevent theft, misuse, or abuse. If someone accidentally swallows this drug, get medical help right away. Nonsteroidal anti-inflammatory drugs (including celecoxib) may rarely increase the risk of a heart attack or stroke.
This effect can happen at any time while taking this drug but is more likely if you take it for a long time. The risk may be greater in older adults or if you have heart disease or increased risk for heart disease (for example, due to smoking, family history of heart disease, or conditions such as high blood pressure or diabetes). Do not take this drug right before or after heart bypass surgery (CABG).
Also, celecoxib may rarely cause serious (rarely fatal) bleeding from the stomach or intestines. This effect can occur without warning symptoms at any time while taking this drug. Older adults may be at higher risk for this effect.
(See also Precautions and Drug Interactions sections.) Stop taking this medication and get medical help right away if you notice any of these rare but serious side effects: stomach/abdominal pain that doesn't go away, black/tarry stools, vomit that looks like coffee grounds, chest/jaw/left arm pain, shortness of breath, unusual sweating, confusion, weakness on one side of the body, trouble speaking, sudden vision changes. Before using this medication, women of childbearing age should talk with their doctor(s) about the benefits and risks. Tell your doctor if you are pregnant or if you plan to become pregnant.
This medication may harm an unborn baby and cause problems with normal labor/delivery. It is not recommended for use in pregnancy from 20 weeks until delivery. If your doctor decides that you need to use this medication between 20 and 30 weeks of pregnancy, you should use the lowest effective dose for the shortest possible time.
You should not use this medication after 30 weeks of pregnancy. Babies born to mothers who use this drug for a long time may develop severe (possibly fatal) withdrawal symptoms. Tell the doctor right away if you notice any symptoms in your newborn baby such as crying that doesn't stop, slow/shallow breathing, irritability, shaking, vomiting, diarrhea, poor feeding, or difficulty gaining weight.
Children younger than 18 years should not use products that contain tramadol. Some children are more sensitive to tramadol and have had very serious (rarely fatal) breathing problems such as slow/shallow breathing (see also Side Effects section). The risk is greater in children who are obese or have breathing problems, or after certain surgeries (including tonsil/adenoid removal). Talk with your doctor or pharmacist about the risks and benefits of this medication.
The following icd codes are available for SEGLENTIS (tramadol hcl/celecoxib)'s list of indications:
Pain | |
G43 | Migraine |
G43.0 | Migraine without aura |
G43.00 | Migraine without aura, not intractable |
G43.001 | Migraine without aura, not intractable, with status migrainosus |
G43.009 | Migraine without aura, not intractable, without status migrainosus |
G43.01 | Migraine without aura, intractable |
G43.011 | Migraine without aura, intractable, with status migrainosus |
G43.019 | Migraine without aura, intractable, without status migrainosus |
G43.1 | Migraine with aura |
G43.10 | Migraine with aura, not intractable |
G43.101 | Migraine with aura, not intractable, with status migrainosus |
G43.109 | Migraine with aura, not intractable, without status migrainosus |
G43.11 | Migraine with aura, intractable |
G43.111 | Migraine with aura, intractable, with status migrainosus |
G43.119 | Migraine with aura, intractable, without status migrainosus |
G43.4 | Hemiplegic migraine |
G43.40 | Hemiplegic migraine, not intractable |
G43.401 | Hemiplegic migraine, not intractable, with status migrainosus |
G43.409 | Hemiplegic migraine, not intractable, without status migrainosus |
G43.41 | Hemiplegic migraine, intractable |
G43.411 | Hemiplegic migraine, intractable, with status migrainosus |
G43.419 | Hemiplegic migraine, intractable, without status migrainosus |
G43.5 | Persistent migraine aura without cerebral infarction |
G43.50 | Persistent migraine aura without cerebral infarction, not intractable |
G43.501 | Persistent migraine aura without cerebral infarction, not intractable, with status migrainosus |
G43.509 | Persistent migraine aura without cerebral infarction, not intractable, without status migrainosus |
G43.51 | Persistent migraine aura without cerebral infarction, intractable |
G43.511 | Persistent migraine aura without cerebral infarction, intractable, with status migrainosus |
G43.519 | Persistent migraine aura without cerebral infarction, intractable, without status migrainosus |
G43.6 | Persistent migraine aura with cerebral infarction |
G43.60 | Persistent migraine aura with cerebral infarction, not intractable |
G43.601 | Persistent migraine aura with cerebral infarction, not intractable, with status migrainosus |
G43.609 | Persistent migraine aura with cerebral infarction, not intractable, without status migrainosus |
G43.61 | Persistent migraine aura with cerebral infarction, intractable |
G43.611 | Persistent migraine aura with cerebral infarction, intractable, with status migrainosus |
G43.619 | Persistent migraine aura with cerebral infarction, intractable, without status migrainosus |
G43.7 | Chronic migraine without aura |
G43.70 | Chronic migraine without aura, not intractable |
G43.701 | Chronic migraine without aura, not intractable, with status migrainosus |
G43.709 | Chronic migraine without aura, not intractable, without status migrainosus |
G43.71 | Chronic migraine without aura, intractable |
G43.711 | Chronic migraine without aura, intractable, with status migrainosus |
G43.719 | Chronic migraine without aura, intractable, without status migrainosus |
G43.8 | Other migraine |
G43.80 | Other migraine, not intractable |
G43.801 | Other migraine, not intractable, with status migrainosus |
G43.809 | Other migraine, not intractable, without status migrainosus |
G43.81 | Other migraine, intractable |
G43.811 | Other migraine, intractable, with status migrainosus |
G43.819 | Other migraine, intractable, without status migrainosus |
G43.82 | Menstrual migraine, not intractable |
G43.821 | Menstrual migraine, not intractable, with status migrainosus |
G43.829 | Menstrual migraine, not intractable, without status migrainosus |
G43.83 | Menstrual migraine, intractable |
G43.831 | Menstrual migraine, intractable, with status migrainosus |
G43.839 | Menstrual migraine, intractable, without status migrainosus |
G43.9 | Migraine, unspecified |
G43.90 | Migraine, unspecified, not intractable |
G43.901 | Migraine, unspecified, not intractable, with status migrainosus |
G43.909 | Migraine, unspecified, not intractable, without status migrainosus |
G43.91 | Migraine, unspecified, intractable |
G43.911 | Migraine, unspecified, intractable, with status migrainosus |
G43.919 | Migraine, unspecified, intractable, without status migrainosus |
G43.B | Ophthalmoplegic migraine |
G43.B0 | Ophthalmoplegic migraine, not intractable |
G43.B1 | Ophthalmoplegic migraine, intractable |
G43.C | Periodic headache syndromes in child or adult |
G43.C0 | Periodic headache syndromes in child or adult, not intractable |
G43.C1 | Periodic headache syndromes in child or adult, intractable |
G43.D | Abdominal migraine |
G43.D0 | Abdominal migraine, not intractable |
G43.D1 | Abdominal migraine, intractable |
G43.E | Chronic migraine with aura |
G43.E0 | Chronic migraine with aura, not intractable |
G43.E01 | Chronic migraine with aura, not intractable, with status migrainosus |
G43.E09 | Chronic migraine with aura, not intractable, without status migrainosus |
G43.E1 | Chronic migraine with aura, intractable |
G43.E11 | Chronic migraine with aura, intractable, with status migrainosus |
G43.E19 | Chronic migraine with aura, intractable, without status migrainosus |
G44 | Other headache syndromes |
G44.00 | Cluster headache syndrome, unspecified |
G44.001 | Cluster headache syndrome, unspecified, intractable |
G44.009 | Cluster headache syndrome, unspecified, not intractable |
G44.01 | Episodic cluster headache |
G44.011 | Episodic cluster headache, intractable |
G44.019 | Episodic cluster headache, not intractable |
G44.02 | Chronic cluster headache |
G44.021 | Chronic cluster headache, intractable |
G44.029 | Chronic cluster headache, not intractable |
G44.03 | Episodic paroxysmal hemicrania |
G44.031 | Episodic paroxysmal hemicrania, intractable |
G44.039 | Episodic paroxysmal hemicrania, not intractable |
G44.04 | Chronic paroxysmal hemicrania |
G44.041 | Chronic paroxysmal hemicrania, intractable |
G44.049 | Chronic paroxysmal hemicrania, not intractable |
G44.05 | Short lasting unilateral neuralgiform headache with conjunctival injection and tearing (SUNCt) |
G44.051 | Short lasting unilateral neuralgiform headache with conjunctival injection and tearing (SUNCt), intractable |
G44.059 | Short lasting unilateral neuralgiform headache with conjunctival injection and tearing (SUNCt), not intractable |
G44.1 | Vascular headache, not elsewhere classified |
G44.2 | Tension-type headache |
G44.20 | Tension-type headache, unspecified |
G44.201 | Tension-type headache, unspecified, intractable |
G44.209 | Tension-type headache, unspecified, not intractable |
G44.21 | Episodic tension-type headache |
G44.211 | Episodic tension-type headache, intractable |
G44.219 | Episodic tension-type headache, not intractable |
G44.22 | Chronic tension-type headache |
G44.221 | Chronic tension-type headache, intractable |
G44.229 | Chronic tension-type headache, not intractable |
G44.3 | Post-traumatic headache |
G44.30 | Post-traumatic headache, unspecified |
G44.301 | Post-traumatic headache, unspecified, intractable |
G44.309 | Post-traumatic headache, unspecified, not intractable |
G44.31 | Acute post-traumatic headache |
G44.311 | Acute post-traumatic headache, intractable |
G44.319 | Acute post-traumatic headache, not intractable |
G44.32 | Chronic post-traumatic headache |
G44.321 | Chronic post-traumatic headache, intractable |
G44.329 | Chronic post-traumatic headache, not intractable |
G44.4 | Drug-induced headache, not elsewhere classified |
G44.40 | Drug-induced headache, not elsewhere classified, not intractable |
G44.41 | Drug-induced headache, not elsewhere classified, intractable |
G44.5 | Complicated headache syndromes |
G44.51 | Hemicrania continua |
G44.52 | New daily persistent headache (NDPh) |
G44.53 | Primary thunderclap headache |
G44.59 | Other complicated headache syndrome |
G44.8 | Other specified headache syndromes |
G44.81 | Hypnic headache |
G44.82 | Headache associated with sexual activity |
G44.83 | Primary cough headache |
G44.84 | Primary exertional headache |
G44.85 | Primary stabbing headache |
G44.86 | Cervicogenic headache |
G44.89 | Other headache syndrome |
G50.1 | Atypical facial pain |
G89 | Pain, not elsewhere classified |
G89.0 | Central pain syndrome |
G89.1 | Acute pain, not elsewhere classified |
G89.11 | Acute pain due to trauma |
G89.12 | Acute post-thoracotomy pain |
G89.18 | Other acute postprocedural pain |
G89.2 | Chronic pain, not elsewhere classified |
G89.21 | Chronic pain due to trauma |
G89.22 | Chronic post-thoracotomy pain |
G89.28 | Other chronic postprocedural pain |
G89.29 | Other chronic pain |
G89.3 | Neoplasm related pain (acute) (chronic) |
G89.4 | Chronic pain syndrome |
G90.5 | Complex regional pain syndrome I (CRPS i) |
G90.50 | Complex regional pain syndrome i, unspecified |
G90.51 | Complex regional pain syndrome I of upper limb |
G90.511 | Complex regional pain syndrome I of right upper limb |
G90.512 | Complex regional pain syndrome I of left upper limb |
G90.513 | Complex regional pain syndrome I of upper limb, bilateral |
G90.519 | Complex regional pain syndrome I of unspecified upper limb |
G90.52 | Complex regional pain syndrome I of lower limb |
G90.521 | Complex regional pain syndrome I of right lower limb |
G90.522 | Complex regional pain syndrome I of left lower limb |
G90.523 | Complex regional pain syndrome I of lower limb, bilateral |
G90.529 | Complex regional pain syndrome I of unspecified lower limb |
G90.59 | Complex regional pain syndrome I of other specified site |
H57.1 | Ocular pain |
H57.10 | Ocular pain, unspecified eye |
H57.11 | Ocular pain, right eye |
H57.12 | Ocular pain, left eye |
H57.13 | Ocular pain, bilateral |
H92 | Otalgia and effusion of ear |
H92.0 | Otalgia |
H92.01 | Otalgia, right ear |
H92.02 | Otalgia, left ear |
H92.03 | Otalgia, bilateral |
H92.09 | Otalgia, unspecified ear |
K14.6 | Glossodynia |
M25.5 | Pain in joint |
M25.50 | Pain in unspecified joint |
M25.51 | Pain in shoulder |
M25.511 | Pain in right shoulder |
M25.512 | Pain in left shoulder |
M25.519 | Pain in unspecified shoulder |
M25.52 | Pain in elbow |
M25.521 | Pain in right elbow |
M25.522 | Pain in left elbow |
M25.529 | Pain in unspecified elbow |
M25.53 | Pain in wrist |
M25.531 | Pain in right wrist |
M25.532 | Pain in left wrist |
M25.539 | Pain in unspecified wrist |
M25.54 | Pain in joints of hand |
M25.541 | Pain in joints of right hand |
M25.542 | Pain in joints of left hand |
M25.549 | Pain in joints of unspecified hand |
M25.55 | Pain in hip |
M25.551 | Pain in right hip |
M25.552 | Pain in left hip |
M25.559 | Pain in unspecified hip |
M25.56 | Pain in knee |
M25.561 | Pain in right knee |
M25.562 | Pain in left knee |
M25.569 | Pain in unspecified knee |
M25.57 | Pain in ankle and joints of foot |
M25.571 | Pain in right ankle and joints of right foot |
M25.572 | Pain in left ankle and joints of left foot |
M25.579 | Pain in unspecified ankle and joints of unspecified foot |
M25.59 | Pain in other specified joint |
M26.62 | Arthralgia of temporomandibular joint |
M26.621 | Arthralgia of right temporomandibular joint |
M26.622 | Arthralgia of left temporomandibular joint |
M26.623 | Arthralgia of bilateral temporomandibular joint |
M26.629 | Arthralgia of temporomandibular joint, unspecified side |
M54 | Dorsalgia |
M54.2 | Cervicalgia |
M54.4 | Lumbago with sciatica |
M54.40 | Lumbago with sciatica, unspecified side |
M54.41 | Lumbago with sciatica, right side |
M54.42 | Lumbago with sciatica, left side |
M54.5 | Low back pain |
M54.50 | Low back pain, unspecified |
M54.51 | Vertebrogenic low back pain |
M54.59 | Other low back pain |
M54.6 | Pain in thoracic spine |
M54.8 | Other dorsalgia |
M54.89 | Other dorsalgia |
M54.9 | Dorsalgia, unspecified |
M77.4 | Metatarsalgia |
M77.40 | Metatarsalgia, unspecified foot |
M77.41 | Metatarsalgia, right foot |
M77.42 | Metatarsalgia, left foot |
M79.1 | Myalgia |
M79.10 | Myalgia, unspecified site |
M79.11 | Myalgia of mastication muscle |
M79.12 | Myalgia of auxiliary muscles, head and neck |
M79.18 | Myalgia, other site |
M79.6 | Pain in limb, hand, foot, fingers and toes |
M79.60 | Pain in limb, unspecified |
M79.601 | Pain in right arm |
M79.602 | Pain in left arm |
M79.603 | Pain in arm, unspecified |
M79.604 | Pain in right leg |
M79.605 | Pain in left leg |
M79.606 | Pain in leg, unspecified |
M79.609 | Pain in unspecified limb |
M79.62 | Pain in upper arm |
M79.621 | Pain in right upper arm |
M79.622 | Pain in left upper arm |
M79.629 | Pain in unspecified upper arm |
M79.63 | Pain in forearm |
M79.631 | Pain in right forearm |
M79.632 | Pain in left forearm |
M79.639 | Pain in unspecified forearm |
M79.64 | Pain in hand and fingers |
M79.641 | Pain in right hand |
M79.642 | Pain in left hand |
M79.643 | Pain in unspecified hand |
M79.644 | Pain in right finger(s) |
M79.645 | Pain in left finger(s) |
M79.646 | Pain in unspecified finger(s) |
M79.65 | Pain in thigh |
M79.651 | Pain in right thigh |
M79.652 | Pain in left thigh |
M79.659 | Pain in unspecified thigh |
M79.66 | Pain in lower leg |
M79.661 | Pain in right lower leg |
M79.662 | Pain in left lower leg |
M79.669 | Pain in unspecified lower leg |
M79.67 | Pain in foot and toes |
M79.671 | Pain in right foot |
M79.672 | Pain in left foot |
M79.673 | Pain in unspecified foot |
M79.674 | Pain in right toe(s) |
M79.675 | Pain in left toe(s) |
M79.676 | Pain in unspecified toe(s) |
N23 | Unspecified renal colic |
N64.4 | Mastodynia |
N94 | Pain and other conditions associated with female genital organs and menstrual cycle |
N94.0 | Mittelschmerz |
N94.3 | Premenstrual tension syndrome |
N94.4 | Primary dysmenorrhea |
N94.5 | Secondary dysmenorrhea |
N94.6 | Dysmenorrhea, unspecified |
R07 | Pain in throat and chest |
R07.0 | Pain in throat |
R07.1 | Chest pain on breathing |
R07.2 | Precordial pain |
R07.81 | Pleurodynia |
R07.82 | Intercostal pain |
R07.89 | Other chest pain |
R07.9 | Chest pain, unspecified |
R10 | Abdominal and pelvic pain |
R10.0 | Acute abdomen |
R10.1 | Pain localized to upper abdomen |
R10.10 | Upper abdominal pain, unspecified |
R10.11 | Right upper quadrant pain |
R10.12 | Left upper quadrant pain |
R10.2 | Pelvic and perineal pain |
R10.3 | Pain localized to other parts of lower abdomen |
R10.30 | Lower abdominal pain, unspecified |
R10.31 | Right lower quadrant pain |
R10.32 | Left lower quadrant pain |
R10.33 | Periumbilical pain |
R10.8 | Other abdominal pain |
R10.83 | Colic |
R10.84 | Generalized abdominal pain |
R10.9 | Unspecified abdominal pain |
R51 | Headache |
R51.0 | Headache with orthostatic component, not elsewhere classified |
R51.9 | Headache, unspecified |
R52 | Pain, unspecified |
R68.84 | Jaw pain |
T82.84 | Pain due to cardiac and vascular prosthetic devices, implants and grafts |
T82.847 | Pain due to cardiac prosthetic devices, implants and grafts |
T82.847A | Pain due to cardiac prosthetic devices, implants and grafts, initial encounter |
T82.847D | Pain due to cardiac prosthetic devices, implants and grafts, subsequent encounter |
T82.848 | Pain due to vascular prosthetic devices, implants and grafts |
T82.848A | Pain due to vascular prosthetic devices, implants and grafts, initial encounter |
T82.848D | Pain due to vascular prosthetic devices, implants and grafts, subsequent encounter |
T83.84 | Pain due to genitourinary prosthetic devices, implants and grafts |
T83.84xA | Pain due to genitourinary prosthetic devices, implants and grafts, initial encounter |
T83.84xD | Pain due to genitourinary prosthetic devices, implants and grafts, subsequent encounter |
T84.84 | Pain due to internal orthopedic prosthetic devices, implants and grafts |
T84.84xA | Pain due to internal orthopedic prosthetic devices, implants and grafts, initial encounter |
T84.84xD | Pain due to internal orthopedic prosthetic devices, implants and grafts, subsequent encounter |
T85.84 | Pain due to internal prosthetic devices, implants and grafts, not elsewhere classified |
T85.840 | Pain due to nervous system prosthetic devices, implants and grafts |
T85.840A | Pain due to nervous system prosthetic devices, implants and grafts, initial encounter |
T85.840D | Pain due to nervous system prosthetic devices, implants and grafts, subsequent encounter |
T85.848 | Pain due to other internal prosthetic devices, implants and grafts |
T85.848A | Pain due to other internal prosthetic devices, implants and grafts, initial encounter |
T85.848D | Pain due to other internal prosthetic devices, implants and grafts, subsequent encounter |
Formulary Reference Tool