Please wait while the formulary information is being retrieved.
Drug overview for LAZCLUZE (lazertinib mesylate):
Generic name: LAZERTINIB MESYLATE
Drug class: Antineoplastic - Protein-Tyrosine Kinase Inhibitors
Therapeutic class: Antineoplastics
Lazertinib, a third generation kinase inhibitor of epidermal growth factor receptor (EGFR), is an antineoplastic agent.
No enhanced Uses information available for this drug.
Generic name: LAZERTINIB MESYLATE
Drug class: Antineoplastic - Protein-Tyrosine Kinase Inhibitors
Therapeutic class: Antineoplastics
Lazertinib, a third generation kinase inhibitor of epidermal growth factor receptor (EGFR), is an antineoplastic agent.
No enhanced Uses information available for this drug.
DRUG IMAGES
- No Image Available
The following indications for LAZCLUZE (lazertinib mesylate) have been approved by the FDA:
Indications:
Non-small cell lung cancer with EGFR exon 19 deletion
Non-small cell lung cancer with EGFR exon 21 L858R substitution mutation
Professional Synonyms:
EGFR exon 19 deletion mutation-positive NSCLC
EGFR L858R substitution mutation-positive non-small cell lung cancer (NSCLC)
NSCLC with EGFR Ex19Del
NSCLC with EGFR exon 21 Leu858Arg substitution
Indications:
Non-small cell lung cancer with EGFR exon 19 deletion
Non-small cell lung cancer with EGFR exon 21 L858R substitution mutation
Professional Synonyms:
EGFR exon 19 deletion mutation-positive NSCLC
EGFR L858R substitution mutation-positive non-small cell lung cancer (NSCLC)
NSCLC with EGFR Ex19Del
NSCLC with EGFR exon 21 Leu858Arg substitution
The following dosing information is available for LAZCLUZE (lazertinib mesylate):
If an adverse reaction occurs, treatment interruption, dosage reduction, and/or discontinuation of therapy may be necessary based on severity of the adverse event.
The manufacturer's recommended dosage reduction schedule and dosing modifications for adverse reactions are provided in Tables 1 and 2.
Refer to the amivantamab prescribing information for recommended amivantamab dosage modification.
Table 1. Recommended Dosage Reductions for Adverse Reactions
Lazertinib Dose Level Starting dose 240 mg once daily (one 240-mg tablet) 1st dose reduction 160 mg once daily (two 80-mg tablets) 2nd dose reduction 80 mg once daily (one 80-mg tablet) 3rd dose reduction Discontinue lazertinib
Table 2. Recommended Management and Dosage Modifications for Adverse Reactions
Adverse Reaction Severity, Dosage Modification Venous thromboembolic events (VTE) Grade 2 or 3: Withhold lazertinib and amivantamab. Administer anticoagulant treatment as clinically indicated. Once anticoagulant treatment has been initiated, resume lazertinib and amivantamab at the same dose level, at the discretion of the healthcare p rovider.
Grade 4 or recurrent Grade 2 or 3 (despite therapeutic level anticoagulation): Withhold lazertinib and permanently discontinue amivantamab. Administer anticoagulant treatment as clinically indicated. Once anticoagulant treatment has been initiate d, treatment can continue with lazertinib at the same dose level, at the discretion of the healthcare provider.
Interstitial lung disease Any Grade: Withhold lazertinib and (ILD)/Pneumonitis amivantamab if ILD/pneumonitis is suspected and permanently discontinue if ILD/pneumonitis is confirmed. Dermatologic adverse reactions Grade 1: Initiate supportive care (including dermatitis acneiform, management. Grade 2: Initiate pruritus, dry skin) supportive care management. If there is no improvement after 2 weeks, reduce amivantamab dose and continue lazertinib at the same dose.
Reassess every 2 weeks, if no improvement, reduce lazer tinib dose until <=Grade 1 (Table 1), then may resume previous dose of lazertinib at the discretion of the healthcare provider. Grade 3: Withhold lazertinib and amivantamab. Initiate supportive care management.
Upon recovery to <=Grade 2, resume lazertinib at the same dose or consider dose reduction, resume amivantamab at a reduced dose. If there is no improvement within 2 weeks, permanently discontinue both lazertinib and amivantamab. Grade 4 (including severe bullous, blistering or exfoliating skin condit ions): Initiate supportive care management.
Permanently discontinue amivantamab. Withhold lazertinib until recovery <=Grade 2 or baseline. Upon recovery to <=Grade 2, resume lazertinib at a reduced dose at the discretion of the healthcare provider.
Other adverse reactions Grade 3-4: Withhold lazertinib and amivantamab until the adverse reaction resolves to <=Grade 1 or baseline. Resume both drugs at a reduced dose or lazertinib alone. Consider permanently discontinuing both lazertinib and amivantamab if recovery does not oc cur within 4 weeks.
The manufacturer's recommended dosage reduction schedule and dosing modifications for adverse reactions are provided in Tables 1 and 2.
Refer to the amivantamab prescribing information for recommended amivantamab dosage modification.
Table 1. Recommended Dosage Reductions for Adverse Reactions
Lazertinib Dose Level Starting dose 240 mg once daily (one 240-mg tablet) 1st dose reduction 160 mg once daily (two 80-mg tablets) 2nd dose reduction 80 mg once daily (one 80-mg tablet) 3rd dose reduction Discontinue lazertinib
Table 2. Recommended Management and Dosage Modifications for Adverse Reactions
Adverse Reaction Severity, Dosage Modification Venous thromboembolic events (VTE) Grade 2 or 3: Withhold lazertinib and amivantamab. Administer anticoagulant treatment as clinically indicated. Once anticoagulant treatment has been initiated, resume lazertinib and amivantamab at the same dose level, at the discretion of the healthcare p rovider.
Grade 4 or recurrent Grade 2 or 3 (despite therapeutic level anticoagulation): Withhold lazertinib and permanently discontinue amivantamab. Administer anticoagulant treatment as clinically indicated. Once anticoagulant treatment has been initiate d, treatment can continue with lazertinib at the same dose level, at the discretion of the healthcare provider.
Interstitial lung disease Any Grade: Withhold lazertinib and (ILD)/Pneumonitis amivantamab if ILD/pneumonitis is suspected and permanently discontinue if ILD/pneumonitis is confirmed. Dermatologic adverse reactions Grade 1: Initiate supportive care (including dermatitis acneiform, management. Grade 2: Initiate pruritus, dry skin) supportive care management. If there is no improvement after 2 weeks, reduce amivantamab dose and continue lazertinib at the same dose.
Reassess every 2 weeks, if no improvement, reduce lazer tinib dose until <=Grade 1 (Table 1), then may resume previous dose of lazertinib at the discretion of the healthcare provider. Grade 3: Withhold lazertinib and amivantamab. Initiate supportive care management.
Upon recovery to <=Grade 2, resume lazertinib at the same dose or consider dose reduction, resume amivantamab at a reduced dose. If there is no improvement within 2 weeks, permanently discontinue both lazertinib and amivantamab. Grade 4 (including severe bullous, blistering or exfoliating skin condit ions): Initiate supportive care management.
Permanently discontinue amivantamab. Withhold lazertinib until recovery <=Grade 2 or baseline. Upon recovery to <=Grade 2, resume lazertinib at a reduced dose at the discretion of the healthcare provider.
Other adverse reactions Grade 3-4: Withhold lazertinib and amivantamab until the adverse reaction resolves to <=Grade 1 or baseline. Resume both drugs at a reduced dose or lazertinib alone. Consider permanently discontinuing both lazertinib and amivantamab if recovery does not oc cur within 4 weeks.
No enhanced Administration information available for this drug.
DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
---|---|---|
LAZCLUZE 80 MG TABLET | Maintenance | Adults take 1 tablet (80 mg) by oral route once daily |
LAZCLUZE 240 MG TABLET | Maintenance | Adults take 1 tablet (240 mg) by oral route once daily |
No generic dosing information available.
The following drug interaction information is available for LAZCLUZE (lazertinib mesylate):
There are 1 contraindications.
These drug combinations generally should not be dispensed or administered to the same patient. A manufacturer label warning that indicates the contraindication warrants inclusion of a drug combination in this category, regardless of clinical evidence or lack of clinical evidence to support the contraindication.
Drug Interaction | Drug Names |
---|---|
Lemborexant (Greater Than 5 mg)/Weak CYP3A4 Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Inhibitors of CYP3A4 may inhibit the metabolism of lemborexant.(1) CLINICAL EFFECTS: Concurrent use of an inhibitor of CYP3A4 may result in increased levels of and effects from lemborexant, including somnolence, fatigue, CNS depressant effects, daytime impairment, headache, and nightmare or abnormal dreams.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The maximum recommended dose of lemborexant with concurrent use of a weak CYP3A4 inhibitors should not exceed 5 mg per dose.(1) DISCUSSION: Lemborexant is a CYP3A4 substrate. In a PKPB model, concurrent use of lemborexant with itraconazole increased area-under-curve (AUC) and concentration maximum (Cmax) by 3.75-fold and 1.5-fold, respectively. Concurrent use of lemborexant with fluconazole increased AUC and Cmax by 4.25-fold and 1.75-fold, respectively.(1) Weak inhibitors of CYP3A4 include: alprazolam, amiodarone, amlodipine, asciminib, azithromycin, Baikal skullcap, belumosudil, berberine, bicalutamide, blueberry, brodalumab, cannabidiol, capivasertib, chlorzoxazone, cilostazol, cimetidine, ciprofloxacin, clotrimazole, cranberry, cyclosporine, daclatasvir, daridorexant, delavirdine, dihydroberberine, diosmin, everolimus, flibanserin, fosaprepitant, fostamatinib, gepotidacin, ginkgo, givinostat, glecaprevir/pibrentasvir, goldenseal, grazoprevir, isoniazid, istradefylline, ivacaftor, lacidipine, lapatinib, larotrectinib, lazertinib, leflunomide, levamlodipine, linagliptin, lomitapide, lurasidone, mavorixafor, olaparib, osilodrostat, palbociclib, pazopanib, peppermint oil, piperine, propiverine, propofol, ranitidine, ranolazine, remdesivir, resveratrol, roxithromycin, rucaparib, selpercatinib, simeprevir, sitaxsentan, skullcap, suvorexant, teriflunomide, ticagrelor, tolvaptan, trofinetide, viloxazine, and vonoprazan.(1,2) |
DAYVIGO |
There are 7 severe interactions.
These drug interactions can produce serious consequences in most patients. Actions required for severe interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration scheduling, and providing additional patient monitoring. Review the full interaction monograph for more information.
Drug Interaction | Drug Names |
---|---|
Lomitapide (Less Than or Equal To 30 mg)/Weak CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Weak inhibitors of CYP3A4 may inhibit the metabolism of lomitapide.(1) Lomitapide is very susceptible to CYP3A4 inhibition. For example, in an interaction study with a strong CYP3A4 inhibitor (ketoconazole) lomitapide exposure was increased 27-fold.(2) Thus even weak CYP3A4 inhibitors may affect lomitapide exposure (AUC, area-under-curve). CLINICAL EFFECTS: Concurrent use of a weak inhibitor of CYP3A4 may result in 2-fold increases in lomitapide levels and toxicity from lomitapide.(1) PREDISPOSING FACTORS: This interaction may be more severe in patients with hepatic impairment or with end-stage renal disease.(1) PATIENT MANAGEMENT: The maximum lomitapide dose should be 30 mg daily for patients taking concomitant weak CYP3A4 inhibitors. Due to lomitapide's long half-life, it may take 1 to 2 weeks to see the full effect of this interaction. When initiating a weak CYP3A4 inhibitor in patients taking lomitapide 10 mg daily or more, decrease the dose of lomitapide by 50%. In patients taking lomitapide 5 mg daily, continue current dose. DISCUSSION: Lomitapide is very susceptible to CYP3A4 inhibition. For example, in an interaction study with a strong CYP3A4 inhibitor (ketoconazole) lomitapide exposure was increased 27-fold.(2) Based upon interactions with stronger inhibitors, weak inhibitors of CYP3A4 are predicted to increase lomitapide area-under-curve(AUC) 2-fold.(1) Weak CYP3A4 inhibitors linked to this interaction include alprazolam, amiodarone, amlodipine, asciminib, atorvastatin, azithromycin, Baikal skullcap, belumosudil, bicalutamide, blueberry juice, brodalumab, cannabidiol, capivasertib, cilostazol, cimetidine, ciprofloxacin, chlorzoxazone, clotrimazole, cranberry juice, cyclosporine, daridorexant, delavirdine, diosmin, everolimus, flibanserin, fosaprepitant, fostamatinib, gepotidacin, ginkgo, givinostat, glecaprevir/pibrentasvir, goldenseal, grazoprevir, isoniazid, istradefylline, ivacaftor, larotrectinib, lacidipine, lapatinib, lazertinib, leflunomide, levamlodipine, linagliptin, lurasidone, maribavir, mavorixafor, olaparib, osilodrostat, palbociclib, pazopanib, peppermint oil, piperine, propiverine, propofol, ranitidine, ranolazine, remdesivir, resveratrol, roxithromycin, rucaparib, selpercatinib, sitaxsentan, skullcap, teriflunomide, ticagrelor, tolvaptan, trofinetide, viloxazine, vonoprazan, and zileuton.(1-3) |
JUXTAPID |
Pazopanib/Selected Inhibitors of P-gp or BCRP SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of P-glycoprotein (P-gp) or BCRP may increase the absorption of pazopanib.(1) CLINICAL EFFECTS: The concurrent administration of pazopanib with an inhibitor of P-glycoprotein or BCRP may result in elevated levels of pazopanib and signs of toxicity.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of pazopanib states concurrent use of P-gp inhibitors or BCRP inhibitors should be avoided.(1) Monitor patients for increased side effects from pazopanib. If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Pazopanib is a substrate of P-gp and BCRP. Inhibitors of these transporters are expected to increase pazopanib levels.(1) BCRP inhibitors linked to this monograph include: asciminib, belumosudil, clopidogrel, cyclosporine, darolutamide, eltrombopag, gefitinib, grazoprevir, lazertinib, leflunomide, momelotinib, oteseconazole, rolapitant, roxadustat, tafamidis, teriflunomide, and vadadustat.(1,3-5) P-glycoprotein inhibitors linked to this monograph include: asunaprevir, belumosudil, capmatinib, carvedilol, cyclosporine, danicopan, daridorexant, diltiazem, flibanserin, fostamatinib, ginseng, glecaprevir/pibrentasvir, isavuconazonium, ivacaftor, ledipasvir, neratinib, sofosbuvir/velpatasvir/voxilaprevir, tepotinib, tezacaftor, ticagrelor, valbenazine, verapamil, vimseltinib, and voclosporin.(3,4) |
PAZOPANIB HCL, VOTRIENT |
Cladribine/Selected Inhibitors of BCRP SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of BCRP may increase the absorption of cladribine.(1-2) CLINICAL EFFECTS: The concurrent administration of cladribine with an inhibitor of BCRP may result in elevated levels of cladribine and signs of toxicity.(1-2) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of cladribine states concurrent use of BCRP inhibitors should be avoided during the 4- to 5-day cladribine treatment.(1-2) Selection of an alternative concurrent medication with no or minimal transporter inhibiting proprieties should be considered. If this is not possible, dose reduction to the minimum mandatory dose of the BCRP inhibitor, separation in timing of administration, and careful patient monitoring is recommended.(1-2) Monitor for signs of hematologic toxicity. Lymphocyte counts should be monitored. DISCUSSION: Cladribine is a substrate of BCRP. Inhibitors of this transporter are expected to increase cladribine levels.(1-2) BCRP inhibitors linked to this monograph include: capmatinib, clopidogrel, cobicistat, curcumin, danicopan, darolutamide, eltrombopag, elvitegravir, grazoprevir, lazertinib, oteseconazole, pacritinib, ritonavir, roxadustat, tafamidis, ticagrelor, turmeric, and vadadustat.(1-4) |
CLADRIBINE, MAVENCLAD |
Eliglustat/Weak CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Weak inhibitors of CYP3A4 may inhibit the metabolism of eliglustat. If the patient is also taking an inhibitor of CYP2D6, eliglustat metabolism can be further inhibited.(1) CLINICAL EFFECTS: Concurrent use of an agent that is a weak inhibitor of CYP3A4 may result in elevated levels of and clinical effects of eliglustat, including prolongation of the PR, QTc, and/or QRS intervals, which may result in life-threatening cardiac arrhythmias.(1) PREDISPOSING FACTORS: If the patient is also taking an inhibitor of CYP2D6, is a poor metabolizer of CYP2D6, and/or has hepatic impairment, eliglustat metabolism can be further inhibited.(1) The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The concurrent use of eliglustat with weak inhibitors of CYP3A4 in poor metabolizers of CYP2D6 should be avoided.(1) The dosage of eliglustat with weak inhibitors of CYP3A4 in extensive metabolizers of CYP2D6 with mild (Child-Pugh Class A) hepatic impairment should be limited to 84 mg daily.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Ketoconazole (400 mg daily), a strong inhibitor of CYP3A4, increased eliglustat (84 mg BID) maximum concentration (Cmax) and area-under-curve (AUC) by 4-fold and 4.4-fold, respectively, in extensive metabolizers. Physiologically-based pharmacokinetic (PKPB) models suggested ketoconazole would increase eliglustat Cmax and AUC by 4.4-fold and 5.4-fold, respectively, in intermediate metabolizers. PKPB models suggested ketoconazole may increase the Cmax and AUC of eliglustat (84 mg daily) by 4.3-fold and 6.2-fold, respectively, in poor metabolizers.(1) PKPB models suggested fluconazole, a moderate inhibitor of CYP3A4, would increase eliglustat Cmax and AUC by 2.8-fold and 3.2-fold, respectively, in extensive metabolizers and by 2.5-fold and 2.9-fold, respectively in intermediate metabolizers. PKPB models suggest that concurrent eliglustat (84 mg BID), paroxetine (a strong inhibitor of CYP2D6), and ketoconazole would increase eliglustat Cmax and AUC by 16.7-fold and 24.2-fold, respectively, in extensive metabolizers. In intermediate metabolizers, eliglustat Cmax and AUC would be expected to increase 7.5-fold and 9.8-fold, respectively.(1) PKPB models suggest that concurrent eliglustat (84 mg BID), terbinafine (a moderate inhibitor of CYP2D6), and ketoconazole would increase eliglustat Cmax and AUC by 10.2-fold and 13.6-fold, respectively, in extensive metabolizers. In intermediate metabolizers, eliglustat Cmax and AUC would be expected to increase 4.2-fold and 5-fold, respectively.(1) Weak inhibitors of CYP3A4 include: alprazolam, amlodipine, asciminib, azithromycin, Baikal skullcap, belumosudil, berberine, bicalutamide, blueberry, brodalumab, cannabidiol, chlorzoxazone, cilostazol, cimetidine, ciprofloxacin, clotrimazole, cranberry, cyclosporine, daclatasvir, daridorexant, delavirdine, dihydroberberine, diosmin, everolimus, flibanserin, fosaprepitant, fostamatinib, gepotidacin, ginkgo, givinostat, glecaprevir/pibrentasvir, goldenseal, grazoprevir, isoniazid, istradefylline, ivacaftor, lacidipine, lapatinib, larotrectinib, lazertinib, leflunomide, levamlodipine, linagliptin, lomitapide, lurasidone, olaparib, osilodrostat, palbociclib, pazopanib, peppermint oil, piperine, propiverine, propofol, ranolazine, remdesivir, resveratrol, roxithromycin, rucaparib, selpercatinib, simeprevir, sitaxsentan, skullcap, suvorexant, teriflunomide, ticagrelor, tolvaptan, trofinetide, and vonoprazan.(3,4) |
CERDELGA |
Sodium Iodide I 131/Myelosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Sodium iodide I 131 can cause depression of the hematopoetic system. Myelosuppressives and immunomodulators also suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of sodium iodide I 131 with agents that cause bone marrow depression, including myelosuppressives or immunomodulators, may result in an enhanced risk of hematologic disorders, including anemia, blood dyscrasias, bone marrow depression, leukopenia, and thrombocytopenia. Bone marrow depression may increase the risk of serious infections and bleeding.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of sodium iodide I 131 states that concurrent use with bone marrow depressants may enhance the depression of the hematopoetic system caused by large doses of sodium iodide I 131.(1) Sodium iodide I 131 causes a dose-dependent bone marrow suppression, including neutropenia or thrombocytopenia, in the 3 to 5 weeks following administration. Patients may be at increased risk of infections or bleeding during this time. Monitor complete blood counts within one month of therapy. If results indicate leukopenia or thrombocytopenia, dosimetry should be used to determine a safe sodium iodide I 131 activity.(1) DISCUSSION: Hematologic disorders including death have been reported with sodium iodide I 131. The most common hematologic disorders reported include anemia, blood dyscrasias, bone marrow depression, leukopenia, and thrombocytopenia.(1) |
HICON, SODIUM IODIDE I-131 |
Lazertinib/Strong CYP3A4 Inducers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Strong inducers of CYP3A4 may induce the metabolism of lazertinib.(1) CLINICAL EFFECTS: Concurrent or recent use of strong CYP3A4 inducers may reduce the clinical effectiveness of lazertinib.(1) PREDISPOSING FACTORS: Induction effects may be more likely with regular use of the inducer for longer than 1-2 weeks. PATIENT MANAGEMENT: The US manufacturer of lazertinib states that concurrent use of strong CYP3A4 inducers should be avoided. Consider an alternative concomitant medication with no potential to induce CYP3A4.(1) DISCUSSION: In a clinical pharmacokinetic study, concomitant use of rifampin (strong CYP3A4 inducer) decreased lazertinib concentration maximum (Cmax) by 72% and area-under-curve (AUC) by 83%.(1) Strong CYP3A4 inducers linked to this monograph are: apalutamide, barbiturates, carbamazepine, enzalutamide, fosphenytoin, ivosidenib, lumacaftor, mitotane, phenobarbital, phenytoin, primidone, rifampin, rifapentine, and St. John's Wort.(2,3) |
ASA-BUTALB-CAFFEINE-CODEINE, ASCOMP WITH CODEINE, BRAFTOVI, BUTALB-ACETAMINOPH-CAFF-CODEIN, BUTALBITAL, BUTALBITAL-ACETAMINOPHEN, BUTALBITAL-ACETAMINOPHEN-CAFFE, BUTALBITAL-ASPIRIN-CAFFEINE, CARBAMAZEPINE, CARBAMAZEPINE ER, CARBATROL, CEREBYX, DILANTIN, DILANTIN-125, DONNATAL, EPITOL, EQUETRO, ERLEADA, FIORICET, FIORICET WITH CODEINE, FOSPHENYTOIN SODIUM, LYSODREN, MITOTANE, MYSOLINE, ORKAMBI, PENTOBARBITAL SODIUM, PHENOBARBITAL, PHENOBARBITAL SODIUM, PHENOBARBITAL-BELLADONNA, PHENOBARBITAL-HYOSC-ATROP-SCOP, PHENOHYTRO, PHENYTEK, PHENYTOIN, PHENYTOIN SODIUM, PHENYTOIN SODIUM EXTENDED, PRIFTIN, PRIMIDONE, RIFADIN, RIFAMPIN, SEZABY, TEGRETOL, TEGRETOL XR, TENCON, TIBSOVO, XTANDI |
Lazertinib/Moderate CYP3A4 Inducers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate inducers of CYP3A4 may induce the metabolism of lazertinib via this pathway.(1) CLINICAL EFFECTS: Concurrent or recent use of moderate CYP3A4 inducers may reduce the clinical effectiveness of lazertinib.(1) PREDISPOSING FACTORS: Induction effects may be more likely with regular use of the inducer for longer than 1-2 weeks. PATIENT MANAGEMENT: The US manufacturer of lazertinib states that concurrent use of moderate CYP3A4 inducers should be avoided. Consider an alternative concomitant medication with no potential to induce CYP3A4.(1) DISCUSSION: In a pharmacokinetic modelling study, concomitant use of efavirenz (moderate CYP3A4 inducer) is predicted to decrease lazertinib steady state concentration maximum (Cmax) and area-under-curve (AUC) by at least 32% and 44%, respectively.(1) Moderate inducers of CYP3A4 include: belzutifan, bosentan, cenobamate, dabrafenib, dipyrone, efavirenz, elagolix, etravirine, lesinurad, lorlatinib, mavacamten, mitapivat, modafinil, nafcillin, pacritinib, pexidartinib, repotrectinib, rifabutin, sotorasib, telotristat ethyl, thioridazine, and tovorafenib.(2,3) |
AUGTYRO, BOSENTAN, CAMZYOS, DUZALLO, EFAVIRENZ, EFAVIRENZ-EMTRIC-TENOFOV DISOP, EFAVIRENZ-LAMIVU-TENOFOV DISOP, ETRAVIRINE, INTELENCE, LORBRENA, LUMAKRAS, MODAFINIL, NAFCILLIN, NAFCILLIN SODIUM, OJEMDA, ORIAHNN, ORILISSA, PROVIGIL, PYRUKYND, RIFABUTIN, SYMFI, SYMFI LO, TAFINLAR, TALICIA, THIORIDAZINE HCL, THIORIDAZINE HYDROCHLORIDE, TRACLEER, TURALIO, VONJO, WELIREG, XCOPRI, XERMELO |
There are 5 moderate interactions.
The clinician should assess the patient’s characteristics and take action as needed. Actions required for moderate interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration.
Drug Interaction | Drug Names |
---|---|
Tacrolimus/Moderate and Weak CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate and weak inhibitors of CYP3A4 may inhibit the metabolism of tacrolimus.(1) CLINICAL EFFECTS: Concurrent use of a CYP3A4 inhibitor may result in elevated levels of and toxicity from tacrolimus, including nephrotoxicity, neurotoxicity, and prolongation of the QTc interval and life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of tacrolimus recommends monitoring tacrolimus whole blood trough concentrations and reducing tacrolimus dose if needed.(1) Consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a study of 26 renal transplant recipients, conjugated estrogens 3.75 mg daily increased the tacrolimus dose-corrected concentration of tacrolimus by 85.6%. Discontinuation of the conjugated estrogens led to a decrease in tacrolimus concentration of 46.6%.(3) A case report describes a 65-year-old kidney transplant recipient who was stable on tacrolimus 9 mg per day with trough levels of 5 to 7.5 ng/mL. Ten days after starting on estradiol gel 0.5 mg per day, her tacrolimus level rose to 18.3 ng/mL and serum creatinine (Scr) rose from 1.1 mg/dL at baseline to 2 mg/dL. Tacrolimus dose was reduced by 60%, and trough levels and Scr normalized after two weeks.(4) A study of 16 healthy volunteers found that elbasvir 50 mg/grazoprevir 200 mg daily increased the area-under-curve (AUC) of tacrolimus by 43%, while the maximum concentration (Cmax) of tacrolimus was decreased by 40%.(5) An analysis of FAERS data from 2004-2017, found a significant assoc ation between transplant rejection and concurrent use of tacrolimus and clotrimazole (reporting odds ration 1.92, 95% CI). A retrospective study of 7 heart transplant patients on concurrent tacrolimus and clotrimazole troche showed a significant correlation between tacrolimus trough concentration and AUC after clotrimazole discontinuation. Tacrolimus clearance and bioavailability after clotrimazole discontinuation was 2.2-fold greater (0.27 vs. 0.59 L/h/kg) and the trough concentration decreased from 6.5 ng/mL at 1 day to 5.3 ng/mL at 2 days after clotrimazole discontinuation.(7) A retrospective study of 26 heart transplant patients found that discontinuation of concurrent clotrimazole with tacrolimus in the CYP3A5 expresser group had a 3.3-fold increase in apparent oral clearance and AUC of tacrolimus (0.27 vs. 0.89 L/h/kg) compared to the CYP3A5 non expresser group with a 2.2-fold mean increase (0.18 vs. 0.39 L/h/kg).(8) A study of 6 adult kidney transplant recipients found that clotrimazole (5-day course) increased the tacrolimus AUC 250% and the blood trough concentrations doubled (27.7 ng/ml versus 27.4 ng/ml). Tacrolimus clearance decreased 60% with coadministration of clotrimazole.(9) A case report describes a 23-year-old kidney transplant recipient who was stable on tacrolimus 5 mg twice daily, mycophenolate mofetil 30 mg daily, prednisone (30 mg daily tapered over time to 5 mg), and clotrimazole troche 10 mg four times daily. Discontinuation of clotrimazole resulted in a decrease in tacrolimus trough levels from 13.7 ng/ml to 5.4 ng/ml over a period of 6 days. Clotrimazole was restarted with tacrolimus 6 mg resulting in an increased tacrolimus level of 19.2 ng/ml.(10) A retrospective study in 95 heart transplant recipients on concurrent clotrimazole and tacrolimus found a median tacrolimus dose increase of 66.7% was required after clotrimazole discontinuation. Tacrolimus trough concentration was found to have decreased 42.5% after clotrimazole discontinuation.(11) A retrospective study in 65 pancreas transplant patients on concurrent tacrolimus, clotrimazole, cyclosporine, and prednisone found that clotrimazole discontinuation at 3 months after transplantation may cause significant tacrolimus trough level reductions.(12) Moderate CYP3A4 inhibitors linked to this monograph include: aprepitant, berotralstat, clofazimine, conivaptan, fluvoxamine, lenacapavir, letermovir, netupitant, nirogacestat, and tofisopam.(6) Weak CYP3A4 inhibitors linked to this monograph include: alprazolam, avacopan, baikal skullcap, berberine, bicalutamide, blueberry, brodalumab, chlorzoxazone, cimetidine, cranberry juice, daclatasvir, daridorexant, delavirdine, diosmin, estrogens, flibanserin, fosaprepitant, fostamatinib, ginkgo biloba, givinostat, glecaprevir/pibrentasvir, goldenseal, grazoprevir, isoniazid, istradefylline, ivacaftor, lacidipine, lazertinib, linagliptin, lomitapide, lumateperone, lurasidone, peppermint oil, piperine, propiverine, ranitidine, remdesivir, resveratrol, rimegepant, simeprevir, sitaxsentan, skullcap, suvorexant, ticagrelor, tolvaptan, trofinetide, viloxazine, and vonoprazan-amoxicillin.(6) |
ASTAGRAF XL, ENVARSUS XR, PROGRAF, TACROLIMUS, TACROLIMUS XL |
Lemborexant (Less Than or Equal To 5 mg)/Weak CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Inhibitors of CYP3A4 may inhibit the metabolism of lemborexant.(1) CLINICAL EFFECTS: Concurrent use of an inhibitor of CYP3A4 may result in increased levels of and effects from lemborexant, including somnolence, fatigue, CNS depressant effects, daytime impairment, headache, and nightmare or abnormal dreams.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The maximum recommended dose of lemborexant with concurrent use of a weak CYP3A4 inhibitors should not exceed 5 mg per dose.(1) DISCUSSION: Lemborexant is a CYP3A4 substrate. In a PKPB model, concurrent use of lemborexant with itraconazole increased area-under-curve (AUC) and concentration maximum (Cmax) by 3.75-fold and 1.5-fold, respectively. Concurrent use of lemborexant with fluconazole increased AUC and Cmax by 4.25-fold and 1.75-fold, respectively.(1) Weak inhibitors of CYP3A4 include: alprazolam, amiodarone, amlodipine, asciminib, azithromycin, Baikal skullcap, belumosudil, berberine, bicalutamide, blueberry, brodalumab, cannabidiol, capivasertib, chlorzoxazone, cilostazol, cimetidine, ciprofloxacin, clotrimazole, cranberry, cyclosporine, daclatasvir, daridorexant, delavirdine, dihydroberberine, diosmin, everolimus, flibanserin, fosaprepitant, fostamatinib, gepotidacin, ginkgo, givinostat, glecaprevir/pibrentasvir, goldenseal, grazoprevir, isoniazid, istradefylline, ivacaftor, lacidipine, lapatinib, larotrectinib, lazertinib, leflunomide, levamlodipine, linagliptin, lomitapide, lurasidone, mavorixafor, olaparib, osilodrostat, palbociclib, pazopanib, peppermint oil, piperine, propiverine, propofol, ranitidine, ranolazine, remdesivir, resveratrol, roxithromycin, rucaparib, selpercatinib, simeprevir, sitaxsentan, skullcap, suvorexant, teriflunomide, ticagrelor, tolvaptan, trofinetide, viloxazine, and vonoprazan.(1,2) |
DAYVIGO |
Ubrogepant/Weak CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Weak inhibitors of CYP3A4 may inhibit the metabolism of ubrogepant.(1) CLINICAL EFFECTS: Concurrent use of ubrogepant with weak CYP3A4 inhibitors may result in an increase in exposure of ubrogepant.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer recommends a dosage adjustment of ubrogepant when used concomitantly with weak CYP3A4 inhibitors. Initial dose of ubrogepant should not exceed 50 mg when used concomitantly with weak inhibitors of CYP3A4. A second dose may be given within 24 hours but should not exceed 50 mg when used concurrently with weak CYP3A4 inhibitors.(1) DISCUSSION: Coadministration of ubrogepant with verapamil, a moderate CYP3A4 inhibitor, resulted in a 3.5-fold and 2.8-fold increase in area-under-curve (AUC) and concentration maximum (Cmax), respectively. No dedicated drug interaction study was conducted to assess concomitant use with weak CYP3A4 inhibitors. The conservative prediction of the maximal potential increase in ubrogepant exposure with weak CYP3A4 inhibitors is not expected to be more than 2-fold.(1) Weak inhibitors of CYP3A4 include: alprazolam, amiodarone, amlodipine, asciminib, azithromycin, Baikal skullcap, berberine, bicalutamide, blueberry, brodalumab, cannabidiol, capivasertib, chlorzoxazone, cilostazol, cimetidine, ciprofloxacin, clotrimazole, cranberry, cyclosporine, daclatasvir, delavirdine, dihydroberberine, diosmin, elagolix, everolimus, flibanserin, fosaprepitant, fostamatinib, gepotidacin, givinostat, glecaprevir/pibrentasvir, goldenseal, grazoprevir, isoniazid, istradefylline, ivacaftor, lacidipine, lapatinib, larotrectinib, lazertinib, leflunomide, levamlodipine, linagliptin, lomitapide, lurasidone, maribavir, mavorixafor, osilodrostat, palbociclib, pazopanib, peppermint oil, piperine, propiverine, propofol, ranitidine, ranolazine, remdesivir, resveratrol, roxithromycin, simeprevir, sitaxsentan, skullcap, suvorexant, teriflunomide, ticagrelor, tolvaptan, trofinetide, viloxazine, and vonoprazan.(2,3) |
UBRELVY |
Sirolimus Protein-Bound/Slt Moderate and Weak CYP3A4 Inhibit SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate and weak CYP3A4 inhibitors may inhibit the metabolism of sirolimus by CYP3A4.(1) CLINICAL EFFECTS: Concurrent use of moderate or weak CYP3A4 inhibitors may result in elevated levels of and side effects from sirolimus.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of sirolimus protein-bound injection (Fyarro) states a dose reduction to 56 mg/m2 is recommended when used concurrently with moderate or weak CYP3A4 inhibitors. Concurrent use with strong CYP3A4 inhibitors should be avoided.(1) DISCUSSION: In an open, randomized, cross-over trial in 18 healthy subjects, concurrent single doses of diltiazem (120 mg) and sirolimus (10 mg) increased sirolimus area-under-curve (AUC) and maximum concentration (Cmax) by 60% and by 43%, respectively. Sirolimus apparent oral clearance and volume of distribution decreased by 38% and 45%, respectively. There were no effects on diltiazem pharmacokinetics or pharmacodynamics.(2) In a study in 26 healthy subjects, concurrent sirolimus (2 mg daily) with verapamil (180 mg twice daily) increased sirolimus AUC and Cmax by 2.2-fold and 2.3-fold, respectively. The AUC and Cmax of the active S-enantiomer of verapamil each increased by 1.5-fold. Verapamil time to Cmax (Tmax) was increased by 1.2 hours.(2) Moderate and weak CYP3A4 inhibitors linked to this monograph include: alprazolam, amlodipine, aprepitant, avacopan, azithromycin, berberine, berotralstat, bicalutamide, blueberry, brodalumab, chlorzoxazone, cilostazol, cimetidine, ciprofloxacin, clofazimine, conivaptan, daclatasvir, daridorexant, delavirdine, diosmin, entrectinib, erythromycin, estrogen, flibanserin, fluvoxamine, fosaprepitant, fosnetupitant, fostamatinib, ginkgo, givinostat, glecaprevir/pibrentasvir, goldenseal, grazoprevir, isoniazid, istradefylline, ivacaftor, lacidipine, lazertinib, lenacapavir, levamlodipine, linagliptin, lomitapide, lumateperone, lurasidone, mavorixafor, netupitant, omeprazole, osilodrostat, peppermint oil, piperine, propiverine, propofol, ranitidine, ranolazine, remdesivir, resveratrol, rimegepant, roxithromycin, scutellarin, simeprevir, sitaxsentan, suvorexant, ticagrelor, tofisopam, tolvaptan, trofinetide and vonoprazan.(3,4) |
FYARRO |
Atorvastatin; Rosuvastatin/Selected BCRP Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Atorvastatin and rosuvastatin are both substrates of the BCRP transporter.(1-3) Inhibitors of this transporter may increase intestinal absorption and hepatic uptake of BCRP substrates atorvastatin and rosuvastatin.(1-9) CLINICAL EFFECTS: Simultaneous use of BCRP inhibitors may result in increased levels and side effects from atorvastatin and rosuvastatin, including rhabdomyolysis.(1,3,5) PREDISPOSING FACTORS: The risk for myopathy or rhabdomyolysis may be greater in patients 65 years and older, inadequately treated hypothyroidism, renal impairment, carnitine deficiency, malignant hyperthermia, or in patients with a history of myopathy or rhabdomyolysis. Patients with a SLCO1B1 polymorphism that leads to decreased function of the hepatic uptake transporter OATP1B1 may have increased statin concentrations and be predisposed to myopathy or rhabdomyolysis. Patients on rosuvastatin with ABCG2 polymorphisms leading to decreased or poor BCRP transporter function may have increased rosuvastatin concentrations and risk of myopathy. PATIENT MANAGEMENT: Concurrent use may result in increased risk of side effects associated with atorvastatin and rosuvastatin. If concurrent therapy is warranted, close monitoring would be prudent for statin related side effects including rhabdomyolysis. The Canadian manufacturer of clopidogrel states that the dose of rosuvastatin should not exceed 20 mg daily when used concomitantly with clopidogrel.(6) There is no recommendation for rosuvastatin dose adjustments from the Australian and US manufacturers of clopidogrel.(7,8) Educate the patient of signs and symptoms of rhabdomyolysis. DISCUSSION: Atorvastatin and rosuvastatin are both BCRP substrates.(1-3) In a clinical study of 20 patients with stable coronary heart disease, single-dose clopidogrel 300 mg increased the area-under-curve (AUC) and maximum concentration (Cmax) of rosuvastatin by 2-fold and 1.3-fold, respectively. Multiple doses of clopidogrel 75 mg daily for 7 days increased rosuvastatin AUC by 1.4-fold but did not affect the Cmax.(5) In a pharmacokinetic study, concomitant use of lazertinib increased rosuvastatin Cmax by 2.2-fold and AUC by 2-fold.(4) BCRP inhibitors include: clopidogrel, encorafenib, and lazertinib.(3-9) |
AMLODIPINE-ATORVASTATIN, ATORVALIQ, ATORVASTATIN CALCIUM, CADUET, CRESTOR, EZALLOR SPRINKLE, LIPITOR, ROSUVASTATIN CALCIUM, ROSUVASTATIN-EZETIMIBE, ROSZET |
The following contraindication information is available for LAZCLUZE (lazertinib mesylate):
Drug contraindication overview.
*None.
*None.
There are 1 contraindications.
Absolute contraindication.
Contraindication List |
---|
Lactation |
There are 3 severe contraindications.
Adequate patient monitoring is recommended for safer drug use.
Severe List |
---|
Interstitial lung disease |
Pregnancy |
Venous thrombosis |
There are 0 moderate contraindications.
The following adverse reaction information is available for LAZCLUZE (lazertinib mesylate):
Adverse reaction overview.
The most common adverse reactions (>=20%) of lazertinib in combination with amivantamab were rash, nail toxicity, infusion-related reaction (amivantamab), musculoskeletal pain, edema, stomatitis, VTE, paresthesia, fatigue, diarrhea, constipation, COVID-19, hemorrhage, dry skin, decreased appetite, pruritus, nausea, and ocular toxicity. The most common Grade 3 or 4 laboratory abnormalities (>=2%) of lazertinib in combination with amivantamab were decreased albumin, decreased sodium, increased ALT, decreased potassium, decreased hemoglobin, increased AST, increased GGT, and increased magnesium.
The most common adverse reactions (>=20%) of lazertinib in combination with amivantamab were rash, nail toxicity, infusion-related reaction (amivantamab), musculoskeletal pain, edema, stomatitis, VTE, paresthesia, fatigue, diarrhea, constipation, COVID-19, hemorrhage, dry skin, decreased appetite, pruritus, nausea, and ocular toxicity. The most common Grade 3 or 4 laboratory abnormalities (>=2%) of lazertinib in combination with amivantamab were decreased albumin, decreased sodium, increased ALT, decreased potassium, decreased hemoglobin, increased AST, increased GGT, and increased magnesium.
There are 6 severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Venous thrombosis |
Interstitial lung disease Pleural effusions Pneumonia |
Rare/Very Rare |
---|
Acute myocardial infarction Sepsis |
There are 33 less severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Abnormal hepatic function tests Anemia Anorexia Constipation COVId-19 Diarrhea Dry skin Edema Fatigue Hemorrhage Hypermagnesemia Hypersensitivity drug reaction Hypoalbuminemia Hypokalemia Hyponatremia Musculoskeletal pain Nail disorders Nausea Paresthesia Pruritus of skin Skin rash Stomatitis |
Acute abdominal pain Conjunctivitis Cough Dizziness Dyspnea Fever Headache disorder Hemorrhoids Hypocalcemia Insomnia Vomiting |
Rare/Very Rare |
---|
None. |
The following precautions are available for LAZCLUZE (lazertinib mesylate):
The safety and effectiveness of lazertinib in pediatric patients have not been established.
Contraindicated
Severe Precaution
Management or Monitoring Precaution
Contraindicated
None |
Severe Precaution
None |
Management or Monitoring Precaution
None |
Although there are no available data in pregnant women, animal studies suggest that lazertinib may cause fetal harm. Oral administration of lazertinib to pregnant animals during the period of organogenesis resulted in reduced embryo-fetal survival and fetal body weight in rats and malformations in rabbits at exposures approximately 4 and 0.5 times, respectively, the human exposure at the recommended dose of 240 mg/day. Advise pregnant women of the potential risk to a fetus.
There are no data on the presence of lazertinib or its metabolites in human milk or their effects on the breastfed child or on milk production. Because of the potential for serious adverse reactions in breastfed children, advise women not to breastfeed during treatment with lazertinib and for 3 weeks after the last dose. Refer to the amivantamab prescribing information for lactation information during treatment with amivantamab.
Of the 421 patients with locally advanced or metastatic NSCLC treated with lazertinib in combination with amivantamab in the MARIPOSA study, 45% were 65 years of age and older and 12% were 75 years of age and older. No overall differences in safety or effectiveness were observed between patients 65 years of age and older and younger patients.
The following prioritized warning is available for LAZCLUZE (lazertinib mesylate):
No warning message for this drug.
No warning message for this drug.
The following icd codes are available for LAZCLUZE (lazertinib mesylate)'s list of indications:
Non-small cell lung cancer with EGFR exon 19 deletion | |
C34 | Malignant neoplasm of bronchus and lung |
C34.0 | Malignant neoplasm of main bronchus |
C34.00 | Malignant neoplasm of unspecified main bronchus |
C34.01 | Malignant neoplasm of right main bronchus |
C34.02 | Malignant neoplasm of left main bronchus |
C34.1 | Malignant neoplasm of upper lobe, bronchus or lung |
C34.10 | Malignant neoplasm of upper lobe, unspecified bronchus or lung |
C34.11 | Malignant neoplasm of upper lobe, right bronchus or lung |
C34.12 | Malignant neoplasm of upper lobe, left bronchus or lung |
C34.2 | Malignant neoplasm of middle lobe, bronchus or lung |
C34.3 | Malignant neoplasm of lower lobe, bronchus or lung |
C34.30 | Malignant neoplasm of lower lobe, unspecified bronchus or lung |
C34.31 | Malignant neoplasm of lower lobe, right bronchus or lung |
C34.32 | Malignant neoplasm of lower lobe, left bronchus or lung |
C34.8 | Malignant neoplasm of overlapping sites of bronchus and lung |
C34.80 | Malignant neoplasm of overlapping sites of unspecified bronchus and lung |
C34.81 | Malignant neoplasm of overlapping sites of right bronchus and lung |
C34.82 | Malignant neoplasm of overlapping sites of left bronchus and lung |
C34.9 | Malignant neoplasm of unspecified part of bronchus or lung |
C34.90 | Malignant neoplasm of unspecified part of unspecified bronchus or lung |
C34.91 | Malignant neoplasm of unspecified part of right bronchus or lung |
C34.92 | Malignant neoplasm of unspecified part of left bronchus or lung |
C39.9 | Malignant neoplasm of lower respiratory tract, part unspecified |
NSCLC with EGFR exon 21 l858R substitution mutation | |
C34 | Malignant neoplasm of bronchus and lung |
C34.0 | Malignant neoplasm of main bronchus |
C34.00 | Malignant neoplasm of unspecified main bronchus |
C34.01 | Malignant neoplasm of right main bronchus |
C34.02 | Malignant neoplasm of left main bronchus |
C34.1 | Malignant neoplasm of upper lobe, bronchus or lung |
C34.10 | Malignant neoplasm of upper lobe, unspecified bronchus or lung |
C34.11 | Malignant neoplasm of upper lobe, right bronchus or lung |
C34.12 | Malignant neoplasm of upper lobe, left bronchus or lung |
C34.2 | Malignant neoplasm of middle lobe, bronchus or lung |
C34.3 | Malignant neoplasm of lower lobe, bronchus or lung |
C34.30 | Malignant neoplasm of lower lobe, unspecified bronchus or lung |
C34.31 | Malignant neoplasm of lower lobe, right bronchus or lung |
C34.32 | Malignant neoplasm of lower lobe, left bronchus or lung |
C34.8 | Malignant neoplasm of overlapping sites of bronchus and lung |
C34.80 | Malignant neoplasm of overlapping sites of unspecified bronchus and lung |
C34.81 | Malignant neoplasm of overlapping sites of right bronchus and lung |
C34.82 | Malignant neoplasm of overlapping sites of left bronchus and lung |
C34.9 | Malignant neoplasm of unspecified part of bronchus or lung |
C34.90 | Malignant neoplasm of unspecified part of unspecified bronchus or lung |
C34.91 | Malignant neoplasm of unspecified part of right bronchus or lung |
C34.92 | Malignant neoplasm of unspecified part of left bronchus or lung |
C39.9 | Malignant neoplasm of lower respiratory tract, part unspecified |
Formulary Reference Tool