Please wait while the formulary information is being retrieved.
Drug overview for VOSEVI (sofosbuvir/velpatasvir/voxilaprevir):
Generic name: SOFOSBUVIR/VELPATASVIR/VOXILAPREVIR (soe-FOS-bue-vir/vel-PAT-as-vir/VOX-i-LA-pre-vir)
Drug class: Hepatitis C Virus NS3/4A Serine Protease Inhibitors
Therapeutic class: Anti-Infective Agents
Sofosbuvir, velpatasvir, and voxilaprevir (sofosbuvir/velpatasvir/voxilaprevir) is a fixed combination containing 3 hepatitis C virus (HCV) antivirals; sofosbuvir is a nucleotide analog HCV nonstructural 5B (NS5B) polymerase inhibitor, velpatasvir is an HCV nonstructural 5A (NS5A) replication complex inhibitor (NS5A inhibitor), and voxilaprevir is an HCV nonstructural 3/4A (NS3/4A) protease inhibitor.
No enhanced Uses information available for this drug.
Generic name: SOFOSBUVIR/VELPATASVIR/VOXILAPREVIR (soe-FOS-bue-vir/vel-PAT-as-vir/VOX-i-LA-pre-vir)
Drug class: Hepatitis C Virus NS3/4A Serine Protease Inhibitors
Therapeutic class: Anti-Infective Agents
Sofosbuvir, velpatasvir, and voxilaprevir (sofosbuvir/velpatasvir/voxilaprevir) is a fixed combination containing 3 hepatitis C virus (HCV) antivirals; sofosbuvir is a nucleotide analog HCV nonstructural 5B (NS5B) polymerase inhibitor, velpatasvir is an HCV nonstructural 5A (NS5A) replication complex inhibitor (NS5A inhibitor), and voxilaprevir is an HCV nonstructural 3/4A (NS3/4A) protease inhibitor.
No enhanced Uses information available for this drug.
DRUG IMAGES
- VOSEVI 400-100-100 MG TABLET
The following indications for VOSEVI (sofosbuvir/velpatasvir/voxilaprevir) have been approved by the FDA:
Indications:
Chronic hepatitis C - genotype 1
Chronic hepatitis C - genotype 2
Chronic hepatitis C - genotype 3
Chronic hepatitis C - genotype 4
Chronic hepatitis C - genotype 5
Chronic hepatitis C - genotype 6
Professional Synonyms:
Chronic genotype 1 hepatitis C virus infection
Chronic genotype 2 hepatitis C virus infection
Chronic genotype 3 hepatitis C virus infection
Chronic genotype 4 hepatitis C virus infection
Chronic genotype 5 hepatitis C virus infection
Chronic genotype 6 hepatitis C virus infection
Chronic HCV genotype 1 infection
Chronic HCV genotype 2 infection
Chronic HCV genotype 3 infection
Chronic HCV genotype 4 infection
Chronic HCV genotype 5 infection
Chronic HCV genotype 6 infection
Chronic hepatitis C genotype 1 infection
Chronic hepatitis C genotype 2 infection
Chronic hepatitis C genotype 3 infection
Chronic hepatitis C genotype 4 infection
Chronic hepatitis C genotype 5 infection
Chronic hepatitis C genotype 6 infection
Indications:
Chronic hepatitis C - genotype 1
Chronic hepatitis C - genotype 2
Chronic hepatitis C - genotype 3
Chronic hepatitis C - genotype 4
Chronic hepatitis C - genotype 5
Chronic hepatitis C - genotype 6
Professional Synonyms:
Chronic genotype 1 hepatitis C virus infection
Chronic genotype 2 hepatitis C virus infection
Chronic genotype 3 hepatitis C virus infection
Chronic genotype 4 hepatitis C virus infection
Chronic genotype 5 hepatitis C virus infection
Chronic genotype 6 hepatitis C virus infection
Chronic HCV genotype 1 infection
Chronic HCV genotype 2 infection
Chronic HCV genotype 3 infection
Chronic HCV genotype 4 infection
Chronic HCV genotype 5 infection
Chronic HCV genotype 6 infection
Chronic hepatitis C genotype 1 infection
Chronic hepatitis C genotype 2 infection
Chronic hepatitis C genotype 3 infection
Chronic hepatitis C genotype 4 infection
Chronic hepatitis C genotype 5 infection
Chronic hepatitis C genotype 6 infection
The following dosing information is available for VOSEVI (sofosbuvir/velpatasvir/voxilaprevir):
Sofosbuvir/velpatasvir/voxilaprevir is commercially available as fixed-combination tablets containing 400 mg of sofosbuvir, 100 mg of velpatasvir, and 100 mg of voxilaprevir.
Sofosbuvir/velpatasvir/voxilaprevir is administered orally once daily with food.
DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
---|---|---|
VOSEVI 400-100-100 MG TABLET | Maintenance | Adults take 1 tablet by oral route once daily with food |
No generic dosing information available.
The following drug interaction information is available for VOSEVI (sofosbuvir/velpatasvir/voxilaprevir):
There are 5 contraindications.
These drug combinations generally should not be dispensed or administered to the same patient. A manufacturer label warning that indicates the contraindication warrants inclusion of a drug combination in this category, regardless of clinical evidence or lack of clinical evidence to support the contraindication.
Drug Interaction | Drug Names |
---|---|
Selected Hepatitis C Agents/P-gp Inducers; Phenobarbital SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Inducers of P-glycoprotein (P-gp) may decrease the absorption of ledipasvir,(1) sofosbuvir,(1-4) velpatasvir,(3,4) and voxilaprevir.(4) CLINICAL EFFECTS: Concurrent or recent use of a P-gp inducer may result in decreased levels and effectiveness of ledipasvir,(1) sofosbuvir,(1-4) velpatasvir,(3,4) and voxilaprevir.(4) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturers of ledipasvir-sofosbuvir,(1) sofosbuvir,(2) sofosbuvir/velpatasvir,(3) and sofosbuvir-velpatasvir-voxilaprevir,(4) do not recommend coadministration with inducers of P-gp. DISCUSSION: A study of 24 healthy subjects found that carbamazepine (300 mg twice daily) decreased the maximum concentration (Cmax) and exposure (AUC, area-under-curve) of sofosbuvir both by 48%.(3) In a study in 31 subjects, rifampin (600 mg daily) decreased the Cmax and AUC of ledipasvir by 35% and 59%, respectively.(1) In a study in 17 subjects, rifampin (600 mg daily) decreased the Cmax and AUC of sofosbuvir by 77% and 72%, respectively.(2-4) In a study in 12 subjects, rifampin (600 mg daily) decreased the Cmax and AUC of velpatasvir by 71% and 82%, respectively.(3-4) In a study in 24 subjects, rifampin (600 mg daily) decreased the Cmax and AUC of voxilaprevir by 9% and 73%, respectively.(4) Agents linked to this monograph include apalutamide, carbamazepine, fosphenytoin, lorlatinib, phenobarbital, phenytoin, primidone, rifampin, rifapentine, St. John's wort, and tipranavir.(1-6) |
APTIVUS, CARBAMAZEPINE, CARBAMAZEPINE ER, CARBATROL, CEREBYX, DILANTIN, DILANTIN-125, DONNATAL, EPITOL, EQUETRO, ERLEADA, FOSPHENYTOIN SODIUM, LORBRENA, MYSOLINE, PHENOBARBITAL, PHENOBARBITAL SODIUM, PHENOBARBITAL-BELLADONNA, PHENOBARBITAL-HYOSC-ATROP-SCOP, PHENOHYTRO, PHENYTEK, PHENYTOIN, PHENYTOIN SODIUM, PHENYTOIN SODIUM EXTENDED, PRIFTIN, PRIMIDONE, RIFADIN, RIFAMPIN, SEZABY, TEGRETOL, TEGRETOL XR |
Rosuvastatin/Sofosbuvir-Velpatasvir-Voxilaprevir SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Velpatasvir and voxilaprevir are inhibitors of BCRP, OATP1B1 and OATP1B3 transport in the intestine.(1) Rosuvastatin is a substrate for these three transporters.(2,3) CLINICAL EFFECTS: Concurrent use of sofosbuvir-velpatasvir-voxilaprevir with rosuvastatin may result in increased absorption and systemic concentration of rosuvastatin, which could result in myopathy or rhabdomyolysis.(1,2) PREDISPOSING FACTORS: The risk for myopathy or rhabdomyolysis may be greater in patients 65 years and older, inadequately treated hypothyroidism, renal impairment, carnitine deficiency, malignant hyperthermia, or in patients with a history of myopathy or rhabdomyolysis. Patients with a SLCO1B1 polymorphism that leads to decreased function of the hepatic uptake transporter OATP1B1 may have increased statin concentrations and be predisposed to myopathy or rhabdomyolysis. Patients on rosuvastatin with ABCG2 polymorphisms leading to decreased or poor BCRP transporter function may have increased rosuvastatin concentrations and risk of myopathy. PATIENT MANAGEMENT: Recommendations regarding concomitant use of rosuvastatin and sofosbuvir-velpatasvir-voxilaprevir (Vosevi) differ in different regions. The Australian, Canadian, and European manufacturers of Vosevi say that the concurrent use of sofosbuvir-velpatasvir-voxilaprevir with rosuvastatin is contraindicated.(4-6) The US manufacturers of rosuvastatin and Vosevi state that concurrent use of sofosbuvir-velpatasvir-voxilaprevir with rosuvastatin is not recommended.(1,2) If these medications are used concurrently, counsel patient to report unexplained muscle pain, tenderness, weakness, or dark, cola-colored urine. DISCUSSION: In an interaction study in 19 subjects, sofosbuvir-velpatasvir-voxilaprevir (400/100/200 mg once daily) increased rosuvastatin (10 mg single dose) maximum concentration (Cmax) 18.88-fold and exposure (area-under-curve, AUC) 7.39-fold.(1,2) |
CRESTOR, EZALLOR SPRINKLE, ROSUVASTATIN CALCIUM, ROSUVASTATIN-EZETIMIBE, ROSZET |
Pravastatin (Greater Than 40 mg)/Sofosbuvir-Velpatasvir-Voxilaprevir SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Velpatasvir and voxilaprevir are inhibitors of OATP1B1 and OATP1B3.(1) Pravastatin is a substrate for OATP1B1 and OATP1B3 transport.(2) CLINICAL EFFECTS: Concurrent use of sofosbuvir-velpatasvir-voxilaprevir may lead to higher systemic concentrations of pravastatin, increasing the risk for statin-induced myopathy or rhabdomyolysis. PREDISPOSING FACTORS: The risk for myopathy or rhabdomyolysis may be greater in patients 65 years and older, inadequately treated hypothyroidism, renal impairment, carnitine deficiency, malignant hyperthermia, or in patients with a history of myopathy or rhabdomyolysis. Patients with a SLCO1B1 polymorphism that leads to decreased function of the hepatic uptake transporter OATP1B1 may have increased statin concentrations and be predisposed to myopathy or rhabdomyolysis. PATIENT MANAGEMENT: The dose of pravastatin should be limited to 40 mg daily in patients taking sofosbuvir-velpatasvir-voxilaprevir.(1) Instruct patients to report unexplained muscle pain, tenderness, weakness, or dark, cola-colored urine. DISCUSSION: In an interaction study in 19 subjects, sofosbuvir-velpatasvir-voxilaprevir (400/100/200 mg once daily) increased pravastatin (40 mg single dose) maximum concentration (Cmax) 1.89-fold and exposure (area-under-curve, AUC) 2.16-fold. respectively.(1) |
PRAVASTATIN SODIUM |
Sofosbuvir-Containing Hepatitis C Products/Rifabutin SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Rifabutin is an inducer of P-glycoprotein (P-gp) and may decrease the absorption of ledipasvir,(1-4) sofosbuvir,(1-12) velpatasvir,(5-12) and voxilaprevir.(9-12) CLINICAL EFFECTS: Concurrent or recent use of rifabutin may result in decreased levels and effectiveness of ledipasvir,(1-4) sofosbuvir,(1-12) velpatasvir,(5-12) and voxilaprevir.(9-12) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The Australian and US manufacturers of ledipasvir-sofosbuvir,(1,4) velpatasvir-sofosbuvir,(5,8) and sofosbuvir-velpatasvir-voxilaprevir,(9,12) and the Canadian manufacturer of velpatasvir-sofosbuvir (6) do not recommend coadministration with rifabutin. The UK manufacturer of ledipasvir-sofosbuvir,(3) velpatasvir-sofosbuvir,(7) and sofosbuvir-velpatasvir-voxilaprevir,(11) and the Canadian manufacturer of sofosbuvir-velpatasvir-voxilaprevir (10) state that concurrent use with rifabutin is contraindicated. DISCUSSION: In a phase I pharmacokinetic study with 20 healthy subjects, rifabutin (300 mg daily) decreased the maximum concentration (Cmax) and area-under-curve (AUC) of sofosbuvir by 36% and 24%, respectively.(8) The impact of rifabutin on ledipasvir, velpatasvir, and voxilaprevir has not been studied, but rifabutin is expected to lower plasma concentrations of each of these substances. Although a reduction in dose of sofosbuvir of less than 50% is not expected to reduce its efficacy, the potential impact of rifabutin on ledipasvir, velpatasvir, and voxilaprevir warrants caution with concomitant use.(13) In a study in 31 subjects, rifampin (600 mg daily, a strong P-gp inducer) decreased the maximum concentration (Cmax) and AUC of ledipasvir by 35% and 59%, respectively.(4) In a study in 17 subjects, rifampin (600 mg daily) decreased the Cmax and AUC of sofosbuvir by 77% and 72%, respectively.(4) In a study in 12 subjects, rifampin (600 mg daily) decreased the Cmax and AUC of velpatasvir by 71% and 82%, respectively.(8) In a study in 24 subjects, rifampin (600 mg daily) decreased the Cmax and AUC of voxilaprevir by 9% and 73%, respectively.(12) |
RIFABUTIN, TALICIA |
Colchicine (for Cardioprotection)/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: P-glycoprotein (P-gp) inhibitors may affect the transport of colchicine, a P-gp substrate.(1,2) CLINICAL EFFECTS: Concurrent use of a P-gp inhibitor may result in elevated levels of and toxicity from colchicine. Symptoms of colchicine toxicity include abdominal pain; nausea or vomiting; severe diarrhea; muscle weakness or pain; numbness or tingling in the fingers or toes; myelosuppression; feeling weak or tired; increased infections; and pale or gray color of the lips, tongue, or palms of hands.(1,2) PREDISPOSING FACTORS: This interaction is expected to be more severe in patients with renal or hepatic impairment.(1,2) PATIENT MANAGEMENT: The manufacturer of colchicine used for cardiovascular risk reduction states that concurrent use of colchicine with P-gp inhibitors is contraindicated.(1) DISCUSSION: There are several reports of colchicine toxicity(3-5) and death(6,7) following the addition of clarithromycin to therapy. In a retrospective review of 116 patients who received clarithromycin and colchicine during the same hospitalization, 10.2% (9/88) of patients who received simultaneous therapy died, compared to 3.6% (1/28) of patients who received sequential therapy.(8) An FDA review of 117 colchicine-related deaths that were not attributable to overdose found that 60 deaths (51%) involved concurrent use of clarithromycin.(2) There is one case report of colchicine toxicity with concurrent erythromycin.(9) In a study in 20 subjects, pretreatment with diltiazem (240 mg daily for 7 days) increased the maximum concentration (Cmax) and area-under-curve (AUC) of a single dose of colchicine (0.6 mg) by 44.2% (range -46.6% to 318.3%) and by 93.4% (range -30.2% to 338.6%), respectively.(1) In a study in 24 subjects, pretreatment with verapamil (240 mg twice daily for 7 days) increased the Cmax and AUC of a single dose of colchicine (0.6 mg) by 40.1% (range -47.1% to 149.5%) and by 103.3% (range -9.8% to 217.2%), respectively.(1) Colchicine toxicity has been reported with concurrent use of CYP3A4 and P-gp inhibitors such as clarithromycin, cyclosporine, diltiazem, erythromycin, and verapamil.(1,2) P-gp inhibitors include abrocitinib, amiodarone, asciminib, asunaprevir, azithromycin, belumosudil, capmatinib, carvedilol, cimetidine, cyclosporine, danicopan, daridorexant, diltiazem, diosmin, dronedarone, erythromycin, flibanserin, fluvoxamine, fostamatinib, glecaprevir/pibrentasvir, lapatinib, ledipasvir, mavorixafor, neratinib, osimertinib, pirtobrutinib, propafenone, quinidine, ranolazine, schisandra, selpercatinib, sotorasib, tepotinib, tezacaftor, valbenazine, velpatasvir, vemurafenib, verapamil, vimseltinib, and voclosporin.(1,10,11) |
LODOCO |
There are 19 severe interactions.
These drug interactions can produce serious consequences in most patients. Actions required for severe interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration scheduling, and providing additional patient monitoring. Review the full interaction monograph for more information.
Drug Interaction | Drug Names |
---|---|
Dabigatran/Selected P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Dabigatran etexilate is a substrate for the P-glycoprotein (P-gp) system. Inhibition of intestinal P-gp leads to increased absorption of dabigatran.(1-3) CLINICAL EFFECTS: The concurrent use dabigatran with P-gp inhibitors may lead to elevated plasma levels of dabigatran, increasing the risk for bleeding. PREDISPOSING FACTORS: Factors associated with an increased risk for bleeding include renal impairment, concomitant use of P-gp inhibitors, patient age >74 years, coexisting conditions (e.g. recent trauma) or use of drugs (e.g. NSAIDs) associated with bleeding risk, and patient weight < 50 kg.(1-4) PATIENT MANAGEMENT: Assess renal function and evaluate patient for other pre-existing risk factors for bleeding prior to initiating concurrent therapy. The US manufacturer of dabigatran states that the concurrent use of dabigatran and P-gp inhibitors should be avoided in atrial fibrillation patients with severe renal impairment (CrCl less than 30 ml/min) and in patients with moderate renal impairment (CrCl less than 50 ml/min) being treated for or undergoing prophylaxis for deep vein thrombosis (DVT) or pulmonary embolism (PE). The interaction with P-gp inhibitors can be minimized by taking dabigatran several hours apart from the P-gp inhibitor dose.(1) The concomitant use of dabigatran with P-gp inhibitors has not been studied in pediatric patients but may increase exposure to dabigatran.(1) While the US manufacturer of dabigatran states that no dosage adjustment is necessary in other patients,(1) the Canadian manufacturer of dabigatran states that concomitant use of strong P-gp inhibitors (e.g., glecaprevir-pibrentasvir) is contraindicated. When dabigatran is used for the prevention of venous thromboembolism (VTE) after total hip or knee replacement concurrently with amiodarone, quinidine, or verapamil, the dose of dabigatran should be reduced from 110 mg twice daily to 150 mg once daily. For patients with CrCl less than 50 ml/min on verapamil, a further dabigatran dose reduction to 75 mg once daily should be considered. Verapamil should be given at least 2 hours after dabigatran to minimize the interaction.(2) The UK manufacturer of dabigatran also states the use of dabigatran with strong P-gp inhibitors (e.g., cyclosporine, glecaprevir-pibrentasvir or itraconazole) is contraindicated. Concurrent use of ritonavir is not recommended. When dabigatran is used in atrial fibrillation patients and for treatment of DVT and PE concurrently with verapamil, the UK manufacturer recommends reducing the dose of dabigatran from 150 mg twice daily to 110 mg twice daily, taken simultaneously with verapamil. When used for VTE prophylaxis after orthopedic surgery concurrently with amiodarone, quinidine, or verapamil, the dabigatran loading dose should be reduced from 110 mg to 75 mg, and the maintenance dose should be reduced from 220 mg daily to 150 mg daily, taken simultaneously with the P-gp inhibitor. For patients with CLcr 30-50 mL/min on concurrent verapamil, consider further lowering the dabigatran dose to 75 mg daily.(3) If concurrent therapy is warranted, monitor patients for signs of blood loss, including decreased hemoglobin and/or hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. Consider regular monitoring of hemoglobin, platelet levels, and/or activated partial thromboplastin time (aPTT) or ecarin clotting time (ECT). When applicable, perform agent-specific laboratory test (e.g. INR, aPTT) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. DISCUSSION: When dabigatran was co-administered with amiodarone, the extent and rate of absorption of amiodarone and its active metabolite DEA were essentially unchanged. The dabigatran area-under-curve (AUC) and maximum concentration (Cmax) were increased by about 60% and 50%, respectively;(1,2) however, dabigatran clearance was increased by 65%.(1) Pretreatment with quinidine (200 mg every 2 hours to a total dose of 1000 mg) increased the AUC and Cmax of dabigatran by 53% and 56%, respectively.(1,2) Chronic administration of immediate release verapamil one hour prior to dabigatran dose increased dabigatran AUC by 154%.(4) Administration of dabigatran two hours before verapamil results in a negligible increase in dabigatran AUC.(1) Administration of sofosbuvir-velpatasvir-voxilaprevir (400/100/200 mg daily) increased the Cmax and AUC of a single dose of dabigatran (75 mg) by 2.87-fold and 2.61-fold, respectively.(5) Simultaneous administration of glecaprevir-pibrentasvir (300/120 mg daily) with a single dose of dabigatran (150 mg) increased the Cmax and AUC by 2.05-fold and 2.38-fold, respectively.(6) A retrospective comparative effectiveness cohort study including data from 9,886 individuals evaluated adverse bleeding rates with standard doses of oral anticoagulants with concurrent verapamil or diltiazem in patients with nonvalvular atrial fibrillation and normal kidney function. The study compared rates of bleeding following co-administration of either dabigatran, rivaroxaban, or apixaban with verapamil or diltiazem, compared to co-administration with amlodipine or metoprolol. Results of the study found that concomitant dabigatran use with verapamil or diltiazem was associated with increased overall bleeding (hazard ratio (HR) 1.52; 95% confidence interval (CI), 1.05-2.20, p<0.05) and increased overall GI bleeding (HR 2.16; 95% CI, 1.30-3.60, p<0.05) when compared to amlodipine. When compared to metoprolol, concomitant dabigatran use with verapamil or diltiazem was also associated with increased overall bleeding (HR, 1.43; 95% CI, 1.02-2.00, p<0.05) and increased overall GI bleeding (HR, 2.32; 95% CI, 1.42-3.79, p<0.05). No association was found between increased bleeding of any kind and concurrent use of rivaroxaban or apixaban with verapamil or diltiazem.(7) A summary of pharmacokinetic interactions with dabigatran and amiodarone or verapamil concluded that concurrent use is considered safe if CrCl is greater than 50 ml/min but should be avoided if CrCl is less than 50 ml/min in VTE and less than 30 ml/min for NVAF. Concurrent use with diltiazem was considered safe.(9) P-gp inhibitors include amiodarone, asunaprevir, belumosudil, capmatinib, carvedilol, cimetidine, conivaptan, cyclosporine, daclatasvir, danicopan, daridorexant, diosmin, erythromycin, flibanserin, fostamatinib, ginseng, glecaprevir, indinavir, itraconazole, ivacaftor, josamycin, lapatinib, ledipasvir, lonafarnib, mavorixafor, neratinib, osimertinib, pibrentasvir, propafenone, quinidine, ranolazine, ritonavir, sotorasib, telaprevir, telithromycin, tepotinib, tezacaftor, tucatinib, valbenazine, velpatasvir, vemurafenib, verapamil, vimseltinib, voclosporin, and voxilaprevir.(1-9) |
DABIGATRAN ETEXILATE, PRADAXA |
Topotecan/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of P-glycoprotein may increase the absorption of topotecan.(1) CLINICAL EFFECTS: The concurrent administration of topotecan with an inhibitor of P-glycoprotein may result in elevated levels of topotecan and signs of toxicity. These signs may include but are not limited to anemia, diarrhea, and thrombocytopenia.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of topotecan states that the use of topotecan and P-glycoprotein inhibitors should be avoided. If concurrent use is warranted, carefully monitor patients for adverse effects.(1) DISCUSSION: In clinical studies, the combined use of elacridar (100 mg to 1000 mg) increased the area-under-curve (AUC) of topotecan approximately 2.5-fold.(1) Oral cyclosporine (15 mg/kg) increased the AUC of topotecan lactone and total topotecan to 2-fold to 3-fold of the control group, respectively.(1) P-gp inhibitors linked to this monograph include: adagrasib, amiodarone, asciminib, asunaprevir, azithromycin, belumosudil, bosutinib, capmatinib, carvedilol, cimetidine, clarithromycin, cobicistat, conivaptan, cyclosporine, danicopan, daridorexant, diltiazem, diosmin, dronedarone, erythromycin, flibanserin, fostamatinib, ginseng, hydroquinidine, isavuconazonium, itraconazole, ivacaftor, josamycin, ketoconazole, ledipasvir, lonafarnib, mavorixafor, neratinib, osimertinib, pibrentasvir/glecaprevir, pirtobrutinib, propafenone, quinidine, ranolazine, ritonavir, selpercatinib, sotorasib, tezacaftor, tepotinib, tucatinib, valbenazine, velpatasvir, vemurafenib, verapamil, vimseltinib, and voclosporin.(2,3) |
HYCAMTIN |
Selected Hepatitis C Agents/Efavirenz; Etravirine;Nevirapine SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Efavirenz, etravirine, and nevirapine may induce the metabolism of boceprevir,(1,2) telaprevir,(2,3) simeprevir,(4) velpatasvir(5,6) voxilaprevir, glecaprevir(7), and pibrentasvir(7) via CYP3A4. Efavirenz may also decrease absorption of these agents through the P-glycoprotein (P-gp) transporter. CLINICAL EFFECTS: Concurrent use of efavirenz, etravirine, or nevirapine(1,2) may result in decreased levels and effectiveness of boceprevir,(3,4) telaprevir,(4,5) simeprevir,(6) velpatasvir,(6,7) voxilaprevir,(8) glecaprevir,(9) and pibrentasvir(9). PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid the concurrent use of boceprevir and efavirenz.(3,4) The concurrent use of efavirenz, etravirine, or nevirapine(1,2) with simeprevir,(6) velpatasvir,(6,7) voxilaprevir,(8) glecaprevir,(9) and pibrentasvir(9) is not recommended. If concurrent therapy is warranted, monitor patients for decreased response to boceprevir,(3,4) telaprevir,(4,5) simeprevir,(6) velpatasvir,(6,7) voxilaprevir,(8) glecaprevir,(9) and pibrentasvir(9). The Swedish manufacturer of telaprevir recommends that the dose of telaprevir be increased to 1125 mg every 8 hours when used concurrently with efavirenz.(10) DISCUSSION: In a study, concurrent efavirenz (600 mg daily for 16 days) decreased the the maximum concentration (Cmax), area-under-curve (AUC), and minimum concentration (Cmin) of boceprevir (800 mg 3 times daily for 6 days) by 8%, 19%, and 44%, respectively. Efavirenz Cmax and AUC increased by 11% and 20%, respectively.(3,4) In a study in 21 subjects, efavirenz (600 mg daily for 20 days) decreased the Cmax, AUC, and Cmin of telaprevir (750 mg every 8 hours for 10 days) by 9%, 26%, and 47%, respectively. The Cmax, AUC, and Cmin of efavirenz decreased by 16%, 7%, and 2%, respectively.(4,5) In a study in 15 subjects, concurrent telaprevir (1125 mg every 8 hours for 7 days), tenofovir (300 mg daily for 7 days), and efavirenz (600 mg daily for 7 days) decreased telaprevir Cmax, AUC, and Cmin by 14%, 18%, and 25%, respectively. Efavirenz Cmax, AUC, and Cmin decreased by 24%, 18%, and 10%, respectively.(5) In a study in 16 subjects, concurrent telaprevir (1500 mg every 8 hours for 7 days), tenofovir (300 mg daily for 7 days), and efavirenz (600 mg daily for 7 days) decreased telaprevir Cmax, AUC, and Cmin by 3%, 20%, and 48%, respectively. Efavirenz Cmax, AUC, and Cmin decreased by 20%, 15%, and 11%, respectively.(5) In a study in 23 subjects, efavirenz (600 mg daily for 14 days) decreased the Cmax, AUC, and Cmin of simeprevir (150 mg daily for 14 days) by 51%, 71%, and 91%, respectively.(4,6) In a study in 23 subjects, simeprevir (150 mg daily for 14 days) decreased the AUC and Cmin of efavirenz (600 mg daily for 14 days) by 10% and 13%, respectively.(4) In an interaction study, efavirenz 600 mg daily (in combination with emtricitabine-tenofovir DF) decreased velpatasvir Cmax, AUC, and Cmin 47%, 53% and 57% respectively.(7,8) |
EFAVIRENZ, EFAVIRENZ-EMTRIC-TENOFOV DISOP, EFAVIRENZ-LAMIVU-TENOFOV DISOP, ETRAVIRINE, INTELENCE, NEVIRAPINE, NEVIRAPINE ER, SYMFI, SYMFI LO |
Ledipasvir; Velpatasvir/Proton Pump Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: The aqueous solubility of ledipasvir and velpatasvir is pH dependent. Higher gastric pH leads to lower solubility which may reduce ledipasvir and velpatasvir absorption.(1-3) CLINICAL EFFECTS: Coadministration of proton pump inhibitors (PPIs) may reduce the bioavailability of ledipasvir and velpatasvir, leading to decreased systemic levels and effectiveness.(1-3) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Omeprazole 20 mg daily, or comparable doses of other PPIs, may be administered simultaneously with ledipasvir-sofosbuvir under fasting conditions.(1) Coadministration of proton pump inhibitors is not recommended with sofosbuvir-velpatasvir. When concomitant proton pump inhibitor use is necessary in patients receiving sofosbuvir-velpatasvir, velpatasvir-sofosbuvir should be administered with food and taken 4 hours before omeprazole 20 mg. Use with other proton pump inhibitors has not been studied.(2) Omeprazole 20 mg daily may be administered with sofosbuvir-velpatasvir-voxilaprevir. Use with other proton pump inhibitors has not been studied.(3) When clinically appropriate, consider use of H2 blockers or antacids.(1-3) DISCUSSION: In an interaction study, omeprazole 20 mg given once daily simultaneously with ledipasvir-sofosbuvir, decreased ledipasvir exposure (AUC) by 4%. When omeprazole 20 mg once daily was given 2 hours prior to ledipasvir-sofosbuvir dose, ledipasvir exposure (AUC) decreased approximately 50%.(1) In an interaction study, omeprazole 20 mg given once daily simultaneously with sofosbuvir-velpatasvir decreased velpatasvir exposure (AUC) by 37%. When omeprazole 20 mg once daily was given 12 hours prior to sofosbuvir-velpatasvir dose, velpatasvir exposure (AUC) decreased 57%. When omeprazole 20 mg once daily was given 2 hours prior to sofosbuvir-velpatasvir dose, velpatasvir AUC decreased 48%. When omeprazole 20 mg once daily was given 4 hours after sofosbuvir-velpatasvir dose, velpatasvir AUC decreased 33%. When omeprazole 40 mg once daily was given 4 hours after sofosbuvir-velpatasvir dose, velpatasvir AUC decreased 56%.(2) In an interaction study, when omeprazole 20 mg once daily was given 2 hours prior to the sofosbuvir-velpatasvir-voxilaprevir dose, sofosbuvir AUC, velpatasvir AUC, and voxilaprevir AUC decreased 27%, 54%, and 20%, respectively. When omeprazole 20 mg once daily was given 4 hours after the sofosbuvir-velpatasvir-voxilaprevir dose, sofosbuvir AUC, velpatasvir AUC, and voxilaprevir AUC decreased 18%, 51%, and 5%, respectively %.(3) Proton pump inhibitors linked to this monograph are: dexlansoprazole, esomeprazole, lansoprazole, omeprazole, pantoprazole and rabeprazole. |
ACIPHEX, ACIPHEX SPRINKLE, DEXILANT, DEXLANSOPRAZOLE DR, ESOMEPRAZOLE MAGNESIUM, ESOMEPRAZOLE SODIUM, KONVOMEP, LANSOPRAZOL-AMOXICIL-CLARITHRO, LANSOPRAZOLE, NAPROXEN-ESOMEPRAZOLE MAG, NEXIUM, OMECLAMOX-PAK, OMEPRAZOLE, OMEPRAZOLE-SODIUM BICARBONATE, PANTOPRAZOLE SODIUM, PANTOPRAZOLE SODIUM-0.9% NACL, PREVACID, PRILOSEC, PROTONIX, PROTONIX IV, RABEPRAZOLE SODIUM, TALICIA, VIMOVO, VOQUEZNA, VOQUEZNA DUAL PAK, VOQUEZNA TRIPLE PAK, YOSPRALA |
Amiodarone/Sofosbuvir + Selected Direct Acting Antivirals SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: The exact mechanism is unknown.(1-7) CLINICAL EFFECTS: Concurrent or recent use of amiodarone with sofosbuvir plus another direct acting antiviral may result in symptomatic bradycardia, which can be life-threatening, and cardiac arrest.(1-7) PREDISPOSING FACTORS: Patients who are also receiving a beta-blocker or who have underlying cardiac comorbidities and/or advanced liver disease may be at a higher risk of developing symptomatic bradycardia.(1-7) PATIENT MANAGEMENT: Concurrent use is potentially life-threatening. The FDA advises that sofosbuvir/ledipasvir or sofosbuvir combined with another direct acting antiviral should not be combined with amiodarone(1) and the manufacturer states concurrent therapy should only be used when other alternative antiarrhythmic treatments are not tolerated or contraindicated.(2-7) The AASLD/IDSA hepatitis C guidelines state patients being treated with amiodarone should not receive sofosbuvir-based regimens due to risk of life-threatening arrhythmias. Due to the long half-life of amiodarone, the guidelines advise that persons should be off amiodarone for at least 6 months before initiating sofosbuvir. If alternatives are deemed not to be clinically appropriate and the decision is made to start sofosbuvir in this setting, continued vigilance for bradycardia should be exercised.(8) If alternative treatment options are unavailable, or if sofosbuvir is initiated in a patient in whom amiodarone was discontinued in the previous three months, counsel patients about the risk of serious symptomatic bradycardia. Patients should undergo cardiac monitoring in an in-patient setting for the first 48 hours of coadministration and should then self-monitor their heart rate (or be monitored in a doctor's office) on a daily basis for at least the first two-weeks of treatment.(1-7) Instruct patients receiving concurrent therapy (and patients in whom amiodarone was recently discontinued) to seek medical attention immediately if they develop signs of symptomatic bradycardia, which may include: near-fainting or fainting, dizziness or lightheadedness, malaise, weakness, excessive tiredness, shortness of breath, chest pains, and/or confusion or memory problems.(1-7) DISCUSSION: Nine cases of symptomatic bradycardia have been reported with sofosbuvir in combination with ledipasvir (n=3), simeprevir (n=1), or daclatasvir (n=5; marketed internationally, investigational agent in US). Seven patients were also receiving a beta-blocker. Six cases occurred within the first 24 hours of concurrent therapy, while the other cases occurred within 2-12 days of initiation of concurrent therapy. One case involved a fatal cardiac arrest and 3 required pacemaker insertion. In 3 cases, symptomatic bradycardia recurred following rechallenge with sofosbuvir. In one case, amiodarone was discontinued and sofosbuvir was re-initiated 8 weeks later with no reoccurrence of bradycardia.(1,2) |
AMIODARONE HCL, AMIODARONE HCL-D5W, NEXTERONE, PACERONE |
Pazopanib/Selected Inhibitors of P-gp or BCRP SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of P-glycoprotein (P-gp) or BCRP may increase the absorption of pazopanib.(1) CLINICAL EFFECTS: The concurrent administration of pazopanib with an inhibitor of P-glycoprotein or BCRP may result in elevated levels of pazopanib and signs of toxicity.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of pazopanib states concurrent use of P-gp inhibitors or BCRP inhibitors should be avoided.(1) Monitor patients for increased side effects from pazopanib. If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Pazopanib is a substrate of P-gp and BCRP. Inhibitors of these transporters are expected to increase pazopanib levels.(1) BCRP inhibitors linked to this monograph include: asciminib, belumosudil, clopidogrel, cyclosporine, darolutamide, eltrombopag, gefitinib, grazoprevir, lazertinib, leflunomide, momelotinib, oteseconazole, rolapitant, roxadustat, tafamidis, teriflunomide, and vadadustat.(1,3-5) P-glycoprotein inhibitors linked to this monograph include: asunaprevir, belumosudil, capmatinib, carvedilol, cyclosporine, danicopan, daridorexant, diltiazem, flibanserin, fostamatinib, ginseng, glecaprevir/pibrentasvir, isavuconazonium, ivacaftor, ledipasvir, neratinib, sofosbuvir/velpatasvir/voxilaprevir, tepotinib, tezacaftor, ticagrelor, valbenazine, verapamil, vimseltinib, and voclosporin.(3,4) |
PAZOPANIB HCL, VOTRIENT |
Colchicine (for Gout & FMF)/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: P-glycoprotein (P-gp) inhibitors may affect the transport of colchicine, a P-gp substrate.(1,2) CLINICAL EFFECTS: Concurrent use of a P-gp inhibitor may result in elevated levels of and toxicity from colchicine. Symptoms of colchicine toxicity include abdominal pain; nausea or vomiting; severe diarrhea; muscle weakness or pain; numbness or tingling in the fingers or toes; myelosuppression; feeling weak or tired; increased infections; and pale or gray color of the lips, tongue, or palms of hands.(1,2) PREDISPOSING FACTORS: This interaction is expected to be more severe in patients with renal and/or hepatic impairment(1,2) and in patients who receive concurrent therapy. PATIENT MANAGEMENT: The concurrent use of colchicine with P-gp inhibitors is contraindicated in patients with renal or hepatic impairment.(1-3) Avoid concurrent use in other patients, if possible.(3) In patients without renal or hepatic impairment who are currently taking or have taken a P-gp inhibitor in the previous 14 days, the dosage of colchicine should be reduced. For gout flares, the recommended dosage is 0.6 mg (1 tablet) for one dose. This dose should be repeated no earlier than in 3 days.(1,2) For gout prophylaxis, if the original dosage was 0.6 mg twice daily, use 0.3 mg daily. If the original dosage was 0.6 mg daily, use 0.3 mg every other day.(3-12) For Familial Mediterranean fever (FMF), the recommended maximum daily dose is 0.6 mg (may be given as 0.3 mg twice a day).(1,2) Patients should be instructed to immediately report any signs of colchicine toxicity, such as abdominal pain, nausea/significant diarrhea, vomiting; muscle weakness/pain; numbness/tingling in fingers/toes; unusual bleeding or bruising, infections, weakness/tiredness, or pale/gray color of the lips/tongue/palms of hands. DISCUSSION: There are several reports of colchicine toxicity(4-6) and death(7,8) following the addition of clarithromycin to therapy. In a retrospective review of 116 patients who received clarithromycin and colchicine during the same hospitalization, 10.2% (9/88) of patients who received simultaneous therapy died, compared to 3.6% (1/28) of patients who received sequential therapy.(9) An FDA review of 117 colchicine-related deaths that were not attributable to overdose found that 60 deaths (51%) involved concurrent use of clarithromycin.(2) There is one case report of colchicine toxicity with concurrent erythromycin.(10) In a study in 20 subjects, pretreatment with diltiazem (240 mg daily for 7 days) increased the maximum concentration (Cmax) and area-under-curve (AUC) of a single dose of colchicine (0.6 mg) by 44.2% (range -46.6% to 318.3%) and by 93.4% (range -30.2% to 338.6%), respectively.(1) In a study in 24 subjects, pretreatment with verapamil (240 mg twice daily for 7 days) increased the Cmax and AUC of a single dose of colchicine (0.6 mg) by 40.1% (range -47.1% to 149.5%) and by 103.3% (range -9.8% to 217.2%), respectively.(1) Colchicine toxicity has been reported with concurrent use of CYP3A4 and P-gp inhibitors such as clarithromycin, cyclosporine, diltiazem, erythromycin, and verapamil.(1,2) P-gp inhibitors include abrocitinib, amiodarone, asciminib, asunaprevir, azithromycin, belumosudil, capmatinib, carvedilol, cimetidine, danicopan, daridorexant, diltiazem, diosmin, dronedarone, erythromycin, flibanserin, fluvoxamine, fostamatinib, glecaprevir/pibrentasvir, lapatinib, ledipasvir, mavorixafor, neratinib, osimertinib, pirtobrutinib, propafenone, quinidine, ranolazine, schisandra, selpercatinib, sotorasib, tepotinib, tezacaftor, valbenazine, velpatasvir, vemurafenib, verapamil, vimseltinib, and voclosporin.(1,11,12) |
COLCHICINE, COLCRYS, GLOPERBA, MITIGARE, PROBENECID-COLCHICINE |
Venetoclax/Selected P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Venetoclax is a substrate for the P-glycoprotein (P-gp) system. P-gp inhibitors may lead to increased levels of venetoclax.(1) CLINICAL EFFECTS: Concurrent use of P-gp inhibitors may result in elevated levels of venetoclax, increasing the risk for tumor lysis syndrome and other toxicities.(1) PREDISPOSING FACTORS: Risk factors for tumor lysis syndrome include (1): - the ramp-up phase of venetoclax therapy when tumor burden is highest - initial magnitude of tumor burden - renal impairment The risk of venetoclax toxicities may be increased in patients with severe hepatic impairment.(1) PATIENT MANAGEMENT: Avoid P-gp inhibitors and consider alternative treatments when possible. If a P-gp inhibitor must be used, reduce venetoclax dose by at least 50%. Monitor more closely for signs of toxicity such as tumor lysis syndrome, hematologic and non-hematologic toxicities.(1) If the P-gp inhibitor is discontinued, the manufacturer of venetoclax recommends resuming the prior (i.e. pre-inhibitor) dose of venetoclax 2 to 3 days after discontinuation of the P-gp inhibitor.(1) DISCUSSION: In 11 healthy subjects, a single dose of rifampin (a P-gp inhibitor) increased venetoclax maximum concentration (Cmax) and area-under-curve (AUC) by 106% and 78%, respectively.(1) In 11 previously treated NHL subjects, ketoconazole (a strong CYP3A4 inhibitor which also inhibits P-gp and BCRP) 400 mg daily for 7 days increased the Cmax and AUC of venetoclax 2.3-fold and 6.4-fold respectively.(1) In 12 healthy subjects, coadministration of azithromycin (500 mg Day 1, 250 mg for Days 2-5) decreased venetoclax Cmax and AUC by 25% and 35%. No dosage adjustment is needed when venetoclax is coadministered with azithromycin.(1) P-gp inhibitors include: amiodarone, asunaprevir, belumosudil, capmatinib, carvedilol, cyclosporine, danicopan, daridorexant, diosmin, flibanserin, fostamatinib, ginseng, ivacaftor, neratinib, osimertinib, pirtobrutinib, propafenone, quinidine, ranolazine, selpercatinib, sofosbuvir/velpatasvir/voxilaprevir, tezacaftor, tepotinib, valbenazine, vemurafenib, vimseltinib, and voclosporin.(2) |
VENCLEXTA, VENCLEXTA STARTING PACK |
Voxilaprevir/Selected OATP1B1-3 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: OATP1B1 and OATP1B3 inhibitors may increase exposure to voxilaprevir.(1) CLINICAL EFFECTS: Concurrent use of OATP1B1 and OATP1B3 inhibitors may result in increased levels of and toxicity from voxilaprevir.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Concurrent administration of voxilaprevir with OATP1B1 and OATP1B3 inhibitors is not recommended.(1,4) If concurrent therapy is warranted, monitor patients for adverse effects. The American Society of Transplantation guidelines state that the combination of voxilaprevir and cyclosporine is contraindicated.(3) DISCUSSION: In a study in 25 subjects, cyclosporine (600 mg single dose) increased the maximum concentration (Cmax) and area-under-curve (AUC) of voxilaprevir (100 mg single dose) by 19.02-fold and 9.39-fold, respectively. There were no significant effects on cyclosporine levels.(1) OATP inhibitors include asciminib, atazanavir, belumosudil, cyclosporine, encorafenib, fostemsavir, letermovir, lopinavir, paritaprevir, resmetirom, roxadustat, vadadustat, and voclosporin.(1,2,4) |
ATAZANAVIR SULFATE, BRAFTOVI, CYCLOSPORINE, CYCLOSPORINE MODIFIED, EVOTAZ, GENGRAF, KALETRA, LOPINAVIR-RITONAVIR, LUPKYNIS, NEORAL, PREVYMIS, REYATAZ, REZDIFFRA, REZUROCK, RUKOBIA, SANDIMMUNE, SCEMBLIX, VAFSEO |
Oral Lefamulin/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of P-glycoprotein (P-gp) may increase the absorption of lefamulin.(1) Oral lefamulin tablets may inhibit the metabolism of P-gp inhibitors that are also sensitive CYP3A4 substrates (i.e., asunaprevir, felodipine, ivacaftor, and neratinib).(1-3) CLINICAL EFFECTS: The concurrent administration of lefamulin with an inhibitor of P-gp may result in elevated levels of lefamulin and signs of toxicity, such as QT prolongation. Coadministration of oral lefamulin with agents that are also sensitive CYP3A4 substrates (i.e., asunaprevir, felodipine, ivacaftor, and neratinib) may result in elevated levels and toxicities of the sensitive CYP3A4 substrate. PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: The US manufacturer of lefamulin states that oral lefamulin tablet coadministration with P-gp inhibitors should be avoided.(1) If concomitant therapy with a P-gp inhibitor is necessary, monitor patients closely for prolongation of the QT interval. Obtain serum calcium, magnesium, and potassium levels and monitor ECG at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. Concomitant use of asunaprevir, felodipine, ivacaftor, or neratinib requires close monitoring for adverse effects of these drugs.(1) DISCUSSION: Coadministration of ketoconazole (a strong CYP3A4 and P-gp inhibitor) with lefamulin tablets increased lefamulin area-under-the-curve (AUC) and maximum concentration (Cmax) by 165% and 58%.(1) In a study, oral lefamulin tablets administered concomitantly with and at 2 or 4 hours before oral midazolam (a CYP3A4 substrate) increased the area-under-curve (AUC) and maximum concentration (Cmax) of midazolam by 200% and 100%, respectively. No clinically significant effect on midazolam pharmacokinetics was observed when co-administered with lefamulin injection.(1) P-gp inhibitors include: asunaprevir, belumosudil, capmatinib, carvedilol, cimetidine, danicopan, daridorexant, diosmin, flibanserin, fluvoxamine, fostamatinib, ginseng, glecaprevir/pibrentasvir, hydroquinidine, ivacaftor, ledipasvir, neratinib, pirtobrutinib, propafenone, sofosbuvir/velpatasvir/voxilaprevir, tepotinib, valbenazine, vimseltinib, and voclosporin.(1,3) |
XENLETA |
Relugolix/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Relugolix is a substrate of the intestinal P-glycoprotein (P-gp) efflux transporter. Inhibitors of P-gp may increase the absorption of relugolix.(1) CLINICAL EFFECTS: The concurrent administration of relugolix with an inhibitor of P-glycoprotein may result in elevated levels of relugolix and adverse effects, including hot flashes, skin flushing, musculoskeletal pain, hyperglycemia, acute renal injury, transaminitis, arrhythmias, and hemorrhage.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of relugolix states that the coadministration of relugolix with P-gp inhibitors should be avoided. If the P-gp inhibitor is to be used short-term, relugolix may be held for up to 2 weeks. If treatment with relugolix is interrupted for longer than 7 days, resume relugolix with a loading dose of 360 mg on the first day, followed by 120 mg once daily.(1) If coadministration with a P-gp inhibitor cannot be avoided, relugolix should be taken at least 6 hours before the P-gp inhibitor. Monitor the patient more frequently for adverse events.(1) DISCUSSION: Coadministration of relugolix with erythromycin (a P-gp and moderate CYP3A4 inhibitor) increased the area-under-curve (AUC) and maximum concentration (Cmax) of relugolix by 6.2-fold. Voriconazole (a strong CYP3A4 inhibitor) did not have a clinically significant effect on the pharmacokinetics of relugolix.(1) P-gp inhibitors linked to this monograph include: amiodarone, asunaprevir, azithromycin, belumosudil, capmatinib, carvedilol, cimetidine, clarithromycin, cobicistat, conivaptan, curcumin, cyclosporine, daclatasvir, danicopan, daridorexant, diltiazem, diosmin, dronedarone, eliglustat, erythromycin, flibanserin, fluvoxamine, fostamatinib, ginkgo, ginseng, glecaprevir/pibrentasvir, indinavir, itraconazole, ivacaftor, josamycin, ketoconazole, lapatinib, lonafarnib, mavorixafor, mibefradil, mifepristone, neratinib, osimertinib, paroxetine, pirtobrutinib, propafenone, quinidine, quinine, ranolazine, ritonavir, sarecycline, schisandra, selpercatinib, simeprevir, sotorasib, telaprevir, telithromycin, tepotinib, tezacaftor, tucatinib, valbenazine, velpatasvir, vemurafenib, verapamil, vimseltinib, and voclosporin.(2,3) |
MYFEMBREE, ORGOVYX |
Brincidofovir/OATP1B1-3 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: OATP1B1 and 1B3 inhibitors may increase the absorption and/or decrease the hepatic uptake of brincidofovir.(1) CLINICAL EFFECTS: Concurrent use of OATP1B1 or 1B3 inhibitors may result in elevated levels of and side effects from brincidofovir.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of brincidofovir states that alternative medications that are not OATP1B1 or 1B3 inhibitors should be considered. If concurrent use is necessary, instruct the patient to take the OATP1B1 or 1B3 inhibitor at least 3 hours after brincidofovir and increase monitoring for side effects, including transaminase and bilirubin elevations and GI side effects like diarrhea.(1) DISCUSSION: In a clinical trial, single-dose oral cyclosporine (600 mg, an OATP1B1 and 1B3 inhibitor) increased the mean brincidofovir area-under-curve (AUC) and maximum concentration (Cmax) by 374% and 269%, respectively.(1) OATP1B1 and 1B3 inhibitors include asciminib, atazanavir, belumosudil, boceprevir, clarithromycin, cyclosporine, darunavir, eltrombopag, encorafenib, erythromycin, gemfibrozil, glecaprevir-pibrentasvir, ledipasvir, leflunomide, letermovir, lopinavir, ombitasvir-paritaprevir, paritaprevir, resmetirom, rifampin, ritonavir, roxadustat, saquinavir, simeprevir, sofosbuvir, telaprevir, teriflunomide, tipranavir, vadadustat, velpatasvir, and voclosporin.(1,2) |
TEMBEXA |
Rimegepant/P-gp Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Rimegepant is a calcitonin gene-related peptide receptor antagonist. Rimegepant is a substrate of the P-glycoprotein (P-gp) transporter. P-gp inhibitors may significantly increase the absorption of rimegepant.(1) CLINICAL EFFECTS: The concurrent administration of rimegepant with an inhibitor of P-glycoprotein may result in elevated levels of rimegepant.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of rimegepant recommends avoiding a second dose of rimegepant within 48 hours of a first dose when used concomitantly with P-gp inhibitors.(1) DISCUSSION: Rimegepant is a substrate of P-gp. Use of P-gp inhibitors may increase the exposure of rimegepant. In a study, cyclosporine (a potent P-gp and BCRP inhibitor) increased rimegepant area-under curve (AUC) and maximum concentration (Cmax) by 1.6- and 1.4-fold, respectively. Quinidine (a potent P-gp inhibitor) similarly increased rimegepant AUC and Cmax by 1.6- and 1.7-fold, respectively. Therefore, the effect of these drug interactions were concluded to be due entirely to P-gp and not BCRP.(1) P-glycoprotein inhibitors linked to this monograph include: amiodarone, azithromycin, belumosudil, capmatinib, carvedilol, cyclosporine, danicopan, daridorexant, diosmin, flibanserin, fostamatinib, glecaprevir/pibrentasvir, lapatinib, mavorixafor, osimertinib, pirtobrutinib, propafenone, quinidine, ranolazine, sofosbuvir/velpatasvir/voxilaprevir, tepotinib, vemurafenib, vimseltinib, and verapamil.(1-3) |
NURTEC ODT |
Doxorubicin/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: P-glycoprotein (P-gp) inhibition may increase doxorubicin cellular concentration, as well as decrease biliary or renal elimination.(1) CLINICAL EFFECTS: Increased cellular or systemic levels of doxorubicin may result in doxorubicin toxicity, including cardiomyopathy, myelosuppression, or hepatic impairment.(1) PREDISPOSING FACTORS: The interaction magnitude may be greater in patients with impaired renal or hepatic function. PATIENT MANAGEMENT: Avoid the concurrent use of P-gp inhibitors in patients undergoing therapy with doxorubicin.(1) Consider alternatives with no or minimal inhibition. If concurrent therapy is warranted, monitor the patient closely for signs and symptoms of doxorubicin toxicity. DISCUSSION: Doxorubicin is a substrate of P-gp.(1) Clinical studies have identified and evaluated the concurrent use of doxorubicin and P-gp inhibitors as a target to overcome P-gp mediated multidrug resistance.(2,3) P-gp inhibitors linked to this monograph include: amiodarone, asciminib, asunaprevir, azithromycin, belumosudil, capmatinib, cimetidine, cyclosporine, daclatasvir, danicopan, daridorexant, diltiazem, diosmin, dronedarone, eliglustat, erythromycin, flibanserin, fluvoxamine, fostamatinib, ginkgo, ginseng, glecaprevir/pibrentasvir, hydroquinidine, istradefylline, ivacaftor, lapatinib, ledipasvir, mavorixafor, neratinib, osimertinib, paroxetine, pirtobrutinib, propafenone, quercetin, quinidine, quinine, ranolazine, sarecycline, schisandra, selpercatinib, simeprevir, sofosbuvir/velpatasvir/voxilaprevir, sotorasib, tepotinib, tezacaftor, valbenazine, vemurafenib, verapamil, vimseltinib, and voclosporin.(4,5) |
ADRIAMYCIN, CAELYX, DOXIL, DOXORUBICIN HCL, DOXORUBICIN HCL LIPOSOME |
Zavegepant/OATP1B3 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Zavegepant is a substrate of the organic anion transporting polypeptide 1B3 (OATP1B3) transporter. Inhibitors of OATP1B3 may increase zavegepant exposure.(1) CLINICAL EFFECTS: Concurrent use of OATP1B3 inhibitors may result in increased levels of and toxicity from zavegepant.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Concurrent administration of zavegepant with OATP1B3 inhibitors should be avoided.(1) DISCUSSION: In a study, rifampin (an OATP1B3 and NTCP inhibitor) at steady state increased the area-under-curve (AUC) and maximum concentration (Cmax) of zavegepant by 2.3-fold and 2.2-fold. Since rifampin is also a CYP3A4 inducer and zavegepant is metabolized by CYP3A4, concurrent use of zavegepant with other OATP1B3 inhibitors that are not CYP3A4 inducers may have an even more significant effect on zavegepant exposure.(1) OATP1B3 inhibitors include asciminib, atazanavir, belumosudil, cobicistat, cyclosporine, darolutamide, enasidenib, encorafenib, fostemsavir, glecaprevir/pibrentasvir, leflunomide, letermovir, lopinavir/ritonavir, paritaprevir, resmetirom, rifampin, ritonavir, teriflunomide, velpatasvir, voclosporin, and voxilaprevir.(2-9) |
ZAVZPRET |
Pralsetinib/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: P-glycoprotein (P-gp) inhibitors may inhibit cellular efflux of pralsetinib.(1) CLINICAL EFFECTS: Concurrent administration of a P-gp inhibitor may result in elevated levels of and toxicity from pralsetinib, including hemorrhagic events, pneumonitis, hepatotoxicity, hypertension, and QTc prolongation, which may result in potentially life-threatening cardiac arrhythmias like torsades de pointes (TdP).(1-3) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: Coadministration of pralsetinib with a P-gp inhibitor should be avoided.(1) If coadministration with a P-gp inhibitor cannot be avoided, use with caution and reduce the dose of pralsetinib as follows: -If the current dose is 400 mg once daily, decrease the dose to 300 mg daily. -If the current dose is 300 mg once daily, decrease the dose to 200 mg daily. -If the current dose is 200 mg once daily, decrease the dose to 100 mg daily. After the inhibitor is discontinued for three to five half-lives, resume the dose of pralsetinib at the dose taken prior to initiation of the inhibitor.(1) When concurrent therapy is warranted: consider obtaining serum calcium, magnesium, and potassium levels and monitoring EKG at baseline and regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. If the QTc interval exceeds 500 ms, interrupt pralsetinib therapy until QTc is <470 ms. Resume pralsetinib at the same dose if risk factors that cause QT prolongation an are identified and corrected. If risk factors that cause QT prolongation are not identified, resume pralsetinib at a reduced dose. Permanently discontinue pralsetinib if the patient develops life-threatening arrhythmia.(3) DISCUSSION: Coadministration of a single dose of cyclosporine 600 mg (a P-gp inhibitor) with a single pralsetinib 200 mg dose increased pralsetinib concentration maximum (Cmax) by 48% and area-under-curve (AUC) by 81%.(1) P-glycoprotein inhibitors linked to this monograph include: asunaprevir, belumosudil, carvedilol, cyclosporine, danicopan, daridorexant, diosmin, flibanserin, fostamatinib, ginseng, glecaprevir/pibrentasvir, ivacaftor, ledipasvir, neratinib, sofosbuvir/velpatasvir/voxilaprevir, tezacaftor, tepotinib, valbenazine, vimseltinib, and voclosporin.(1,2) |
GAVRETO |
Vincristine/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: P-glycoprotein (P-gp) inhibitors may inhibit cellular efflux of vincristine.(1) CLINICAL EFFECTS: Concurrent administration of a P-gp inhibitor may result in elevated levels of and toxicity from vincristine including myelosuppression, neurologic toxicity, tumor lysis syndrome, hepatotoxicity, constipation, or bowel obstruction.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid the use of P-gp inhibitors in patients undergoing therapy with vincristine.(1) Consider alternatives with no or minimal P-gp inhibition. The manufacturer of vincristine states that concomitant use of P-gp inhibitors should be avoided.(1) The manufacturer of lopinavir/ritonavir states that patients who develop significant hematological or gastrointestinal toxicity on concomitant vincristine should temporarily hold lopinavir/ritonavir, or use alternative medications that do not inhibit CYP3A4 or P-gp.(2) DISCUSSION: Vincristine is a substrate of P-gp. Inhibitors of P-gp may increase toxicity of vincristine.(1) There are several case reports of neurotoxicity with concurrent administration of vincristine and itraconazole.(3-5) There is a case report of neurotoxicity with concurrent administration of lopinavir-ritonavir with vincristine.(6) In a prospective study in 22 children receiving various chemotherapy with prophylactic itraconazole oral solution (0.5 ml/kg per day), two children receiving vincristine developed non-alcoholic steatohepatitis (NASH) and one child developed syndrome of inappropriate anti-diuretic hormone secretion (SIADH).(7) Strong inhibitors of P-gp linked to this monograph include: abrocitinib, amiodarone, Asian ginseng (Panax ginseng), asunaprevir, azithromycin, belumosudil, capmatinib, carvedilol, cimetidine, cyclosporine, danicopan, daridorexant, diltiazem, diosmin, dronedarone, elagolix, eliglustat, erythromycin, flibanserin, fluvoxamine, fostamatinib, ginkgo biloba, glecaprevir and pibrentasvir, isavuconazonium, ivacaftor, lapatinib, mavorixafor, milk thistle (Silybum marianum), neratinib, osimertinib, pirtobrutinib, propafenone, quercetin, quinidine, ranolazine, rolapitant, Schisandra chinensis, selpercatinib, sofosbuvir, sotorasib, tepotinib, tezacaftor, valbenazine, velpatasvir, vemurafenib, venetoclax, verapamil, vilazodone, vimseltinib, and voclosporin.(8,9) |
VINCASAR PFS, VINCRISTINE SULFATE |
Velpatasvir/Strong and Moderate CYP3A4 Inducers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Strong or moderate CYP3A4 inducers may induce the metabolism of velpatasvir via CYP3A4.(1,2) CLINICAL EFFECTS: Concurrent use of strong or moderate CYP3A4 inducers may result in decreased levels and effectiveness of velpatasvir.(1,2) PREDISPOSING FACTORS: Induction effects may be more likely with regular use of the inducer for longer than 1-2 weeks. PATIENT MANAGEMENT: The concurrent use of velpatasvir with strong or moderate CYP3A4 inducers is not recommended.(1,2) DISCUSSION: In an interaction study, efavirenz 600 mg daily (in combination with emtricitabine-tenofovir DF) decreased velpatasvir concentration maximum (Cmax) and area-under-curve (AUC) by 47% and 53%, respectively.(1) In an interaction study, rifampin 600 mg daily decreased velpatasvir Cmax and AUC by 71% and 82%, respectively.(1) Strong and moderate CYP3A4 inducers include: belzutifan, bosentan, cenobamate, dabrafenib, elagolix, enzalutamide, ivosidenib, lesinurad, lumacaftor, mavacamten, methimazole, mitapivat, mitotane, modafinil, nafcillin, pacritinib, pexidartinib, sotorasib, telotristat, thioridazine, and tovorafenib.(3) |
BOSENTAN, CAMZYOS, DUZALLO, LUMAKRAS, LYSODREN, MITOTANE, MODAFINIL, NAFCILLIN, NAFCILLIN SODIUM, OJEMDA, ORIAHNN, ORILISSA, ORKAMBI, PROVIGIL, PYRUKYND, TAFINLAR, THIORIDAZINE HCL, THIORIDAZINE HYDROCHLORIDE, TIBSOVO, TRACLEER, TURALIO, VONJO, WELIREG, XCOPRI, XERMELO, XTANDI |
Atrasentan/OATP1B1-3 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: OATP1B1 and 1B3 inhibitors may increase the absorption and/or decrease the hepatic uptake of atrasentan.(1) CLINICAL EFFECTS: Concurrent use of OATP1B1 or 1B3 inhibitors may result in elevated levels of and side effects from atrasentan, including fluid retention and hepatotoxicity.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of atrasentan states that concurrent use of OATP1B1 or 1B3 inhibitors should be avoided.(1) DISCUSSION: In a clinical study, atrasentan maximum concentration (Cmax) was 4.3 times higher and area-under-curve (AUC) was 3.8 times higher following coadministration of a single dose of 0.75 mg atrasentan with cyclosporine (OATP1B1 and 1B3 inhibitor) compared to atrasentan alone. OATP1B1 and 1B3 inhibitors include asciminib, atazanavir, belumosudil, boceprevir, clarithromycin, cobicistat, cyclosporine, eltrombopag, erythromycin, fostemsavir, gemfibrozil, glecaprevir-pibrentasvir, leflunomide, letermovir, lopinavir, nirmatrelvir, ombitasvir-paritaprevir, resmetirom, ritonavir, roxadustat, saquinavir, simeprevir, telaprevir, teriflunomide, tipranavir, vadadustat, velpatasvir, voclosporin, and voxilaprevir.(1,2) |
VANRAFIA |
There are 16 moderate interactions.
The clinician should assess the patient’s characteristics and take action as needed. Actions required for moderate interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration.
Drug Interaction | Drug Names |
---|---|
Etoposide/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: P-glycoprotein (P-gp) inhibition may increase etoposide cellular concentration, decrease biliary or renal elimination, and increase systemic absorption of oral etoposide.(1-4) CLINICAL EFFECTS: Increased cellular or systemic levels of etoposide may result in etoposide toxicity. PREDISPOSING FACTORS: The interaction magnitude may be greater in patients receiving oral etoposide, or with impaired renal or hepatic function. PATIENT MANAGEMENT: Anticipate and monitor for increased hematologic and gastrointestinal toxicities. Adjust or hold etoposide dose when needed. In patients receiving high-dose cyclosporine therapy, etoposide dosages should be reduced by 50%.(1) Monitor for signs of etoposide toxicity. Dosages may need further adjustment. The manufacturer of vimseltinib states concurrent use with P-gp substrates should be avoided. If concurrent use cannot be avoided, take vimseltinib at least 4 hours prior to etoposide.(5) DISCUSSION: In a study in 16 patients, the administration of etoposide plus cyclosporine increased etoposide area-under-curve (AUC) by 59% and half-life by 73%. Etoposide renal clearance was decreased by 38% and nonrenal clearance was decreased by 52%. White blood cell count nadir was significantly lower during concurrent therapy with cyclosporine and etoposide (1200 mm3) when compared to etoposide alone (2500 mm3). There was also a trend for higher dosages of cyclosporine to exert increased effects on etoposide, although this difference did not reach statistical significance.(1) P-gp inhibitors linked to this monograph are asciminib, asunaprevir, azithromycin, belumosudil, cimetidine, clarithromycin, cyclosporine, daridorexant, danicopan, diosmin, flibanserin, fostamatinib, glecaprevir/pibrentasvir, itraconazole, ivacaftor, josamycin, ketoconazole, lonafarnib, mavorixafor, neratinib, osimertinib, pirtobrutinib, propafenone, quinidine, sofosbuvir/velpatasvir/voxilaprevir, tepotinib, tezacaftor, tucatinib, valbenazine, vemurafenib, verapamil, vimseltinib, and voclosporin. |
ETOPOPHOS, ETOPOSIDE |
Loperamide/CYP3A4; CYP2C8; P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Inhibitors of CYP3A4, CYP2C8, and/or P-gp may increase loperamide systemic absorption and facilitate entry into central nervous system (CNS).(1) CLINICAL EFFECTS: Concurrent use of inhibitors of CYP3A4, CYP2C8, and/or P-gp may increase levels of loperamide, resulting in respiratory depression.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Use loperamide with caution in patients receiving inhibitors of CYP3A4, CYP2C8, and/or P-gp. Consider lower doses of loperamide in these patients and monitor for adverse effects. The manufacturer of lonafarnib recommends starting loperamide at a dose of 1 mg and slowly increasing the dose as needed.(2) DISCUSSION: In a randomized, cross-over study in 12 healthy subjects, itraconazole (100 mg twice daily for 5 days - first dose 200 mg), gemfibrozil (600 mg twice daily), and the combination of itraconazole and gemfibrozil (same dosages) increased the area-under-curve (AUC) of single doses of loperamide (4 mg) by 2.9-fold, 1.6-fold, and 4.2-fold, respectively.(3) In a study of healthy subjects, lonafarnib (100 mg twice daily for 5 days) increased the AUC and maximum concentration (Cmax) of single dose loperamide (2 mg) by 299% and 214%, respectively.(3) In a study in 18 healthy males, quinidine increased the AUC of a single dose of loperamide by 2.2-fold and markedly decreased pupil size.(4) In a study in 8 healthy subjects, subjects experienced respiratory depression when a single dose of loperamide (16 mg) was administered with a single dose of quinidine (600 mg) but not when loperamide was administered alone.(6) Loperamide plasma levels increased 2-fold to 3-fold.(5) |
LOPERAMIDE |
Afatinib/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Inhibitors of P-glycoprotein (P-gp) may increase the absorption of afatinib.(1) CLINICAL EFFECTS: The concurrent administration of afatinib with an inhibitor of P-glycoprotein may result in elevated levels of afatinib and signs of toxicity. These signs may include but are not limited to worsening diarrhea, stomatitis, skin rash/exfoliation/bullae or paronychia.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of afatinib states the afatinib dose should be reduced by 10 mg if the addition of a P-glycoprotein inhibitor is not tolerated.(1) If afatinib dose was reduced due to addition of a P-gp inhibitor, resume the previous dose after the P-gp inhibitor is discontinued.(1) The manufacturer of vimseltinib states concurrent use with P-gp substrates should be avoided. If concurrent use cannot be avoided, take vimseltinib at least 4 hours prior to afatinib.(2) DISCUSSION: A drug interaction study evaluated the effects of ritonavir 200 mg twice daily on afatinib exposure. Administration of ritonavir 1 hour before afatinib administration increased systemic exposure by 48%. Afatinib exposure was not changed when ritonavir was administered simultaneously with or 6 hours after afatinib dose.(1) P-glycoprotein inhibitors linked to this monograph are: amiodarone, asunaprevir, azithromycin, belumosudil, carvedilol, cimetidine, clarithromycin, cobicistat, cyclosporine, danicopan, daridorexant, diosmin, dronedarone, erythromycin, flibanserin, fostamatinib, ginseng, glecaprevir/pibrentasvir, hydroquinidine, isavuconazonium, itraconazole, ivacaftor, josamycin, ketoconazole, lapatinib, ledipasvir, lonafarnib, mavorixafor, neratinib, osimertinib, propafenone, quinidine, ranolazine, ritonavir, saquinavir, sofosbuvir/velpatasvir/voxilaprevir, telaprevir, tepotinib, tezacaftor, tucatinib, valbenazine, vemurafenib, verapamil, vimseltinib and voclosporin.(1-3) |
GILOTRIF |
Ledipasvir; Velpatasvir/Antacids; H2 Antagonists SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The aqueous solubility of ledipasvir and velpatasvir is pH dependent. Higher gastric pH leads to lower solubility which may reduce ledipasvir and velpatasvir's absorption.(1-3) CLINICAL EFFECTS: Administration of antacids and H2 antagonists may reduce the bioavailability of ledipasvir and velpatasvir, leading to decreased systemic levels and effectiveness.(1-3) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: In order to assure systemic absorption and maximal effectiveness from use of this Hepatitis C treatment, counsel patient to separate products containing ledipasvir or velpatasvir from antacid administration by 4 hours.(1-3) H2 antagonists may be administered simultaneously or 12 hours apart from products containing ledipasvir or velpatasvir at a dose that does not exceed doses comparable to famotidine 40 mg twice daily (or a total daily dose comparable to famotidine 80 mg).(1-3) Some vitamin preparations may contain sufficient quantities of calcium and/or magnesium salts with antacid properties to interact as well. DISCUSSION: In an interaction study, famotidine 40 mg, given with or 12 hours after a ledipasvir-sofosbuvir dose did not have significant effects on ledipasvir-sofosbuvir exposure.(1) In an interaction study, famotidine 40 mg, given with or 12 hours prior to a velpatasvir-sofosbuvir dose did not have a significant effect on velpatasvir-sofosbuvir exposure.(2) In an interaction study, famotidine (dosage not stated) did not have a significant effect on the pharmacokinetic of sofosbuvir, velpatasvir, or voxilaprevir.(3) |
CALCIUM ACETATE, CALCIUM GLUCONATE MONOHYDRATE, CIMETIDINE, FAMOTIDINE, GAVILYTE-C, GAVILYTE-G, GAVILYTE-N, GOLYTELY, IBUPROFEN-FAMOTIDINE, KONVOMEP, NIZATIDINE, OMEPRAZOLE-SODIUM BICARBONATE, PEG 3350-ELECTROLYTE, PEG-3350 AND ELECTROLYTES, PEPCID, SODIUM BICARBONATE, VAXCHORA BUFFER COMPONENT |
Digoxin/Selected Hepatitis C Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Ledipasvir,(1) ombitasvir-paritaprevir-ritonavir,(2,3) velpatasvir(4,5), and glecaprevir-pibrentasvir (8) inhibit intestinal P-glycoprotein (P-gp) transport, which may increase digoxin bioavailability. Glecaprevir-pibrentasvir also inhibits OATP1B3. CLINICAL EFFECTS: Concurrent use of ledipasvir,(1) or ombitasvir-paritaprevir-ritonavir,(2,3) or velpatasvir,(4,5) or glecaprevir-pibrentasvir may result in elevated levels and toxicity from digoxin. Symptoms of digoxin toxicity can include anorexia, nausea, vomiting, headache, fatigue, malaise, drowsiness, generalized muscle weakness, disorientation, hallucinations, visual disturbances, and arrhythmias. PREDISPOSING FACTORS: Low body weight, advanced age, impaired renal function, hypokalemia, hypercalcemia, and/or hypomagnesemia may increase the risk of digoxin toxicity. PATIENT MANAGEMENT: Monitor patients receiving concurrent therapy with ledipasvir for elevated digoxin levels and adjust the dose accordingly.(1) The manufacturer of ombitasvir-paritaprevir-ritonavir recommends a digoxin dose reduction of 30-50% with follow-up digoxin monitoring in patients not also receiving concomitant dasabuvir therapy.(2) In contrast, monitoring but no automatic dose adjustment is recommended in patients receiving ombitasvir-paritaprevir-ritonavir with dasabuvir.(2,3) During concomitant therapy, the manufacturer of sofosbuvir-velpatasvir recommends digoxin therapeutic concentration monitoring and digoxin dose adjustment based upon digoxin prescribing information modifications for concentration increases less than 50%.(4) During concomitant therapy, the manufacturer of sofosbuvir-velpatasvir-voxilaprevir recommends digoxin therapeutic concentration monitoring and digoxin dose adjustment based upon digoxin prescribing information modifications for concentration increases with unclear magnitude.(5) The manufacture of glecaprevir-pibrentasvir recommends a digoxin dose reduction of 50% or modification of the dosing frequency with follow-up digoxin monitoring in patients.(8) DISCUSSION: In an interaction study, the combination of ombitasvir-paritaprevir-ritonavir increased exposure (area-under-curve, AUC) to a single dose of digoxin by 36% (range: 21 - 54%).(2) In a second evaluation, the combination of ombitasvir-paritaprevir-ritonavir and dasabuvir with digoxin increased digoxin 16% (range: 9 - 23%).(6) In an interaction study in 21 subjects, velpatasvir (100 mg) increased the Cmax and AUC of digoxin (0.25 mg single dose) by 88% and 34%, respectively.(4,5) Concomitant administration of ritonavir and digoxin increased the digoxin AUC 86%.(7) In an interaction study in 12 subjects, glecaprevir-pibrentasvir (400/120 mg daily) increased the Cmax and AUC of digoxin (0.5 mg single dose) by 72% and 48%, respectively.(8) |
DIGITEK, DIGOXIN, LANOXIN |
Edoxaban (Greater Than 30 mg)/Select P-gp Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Edoxaban is a substrate for P-glycoprotein (P-gp). Inhibitors of P-gp may increase intestinal absorption and decrease renal tubular elimination of edoxaban.(1,2) CLINICAL EFFECTS: Concurrent use with selected P-gp inhibitors may result in higher systemic concentrations of edoxaban which may increase the risk for bleeding.(1,2) PREDISPOSING FACTORS: Bleeding risk may be increased in patients with creatinine clearance below 50 mL per minute(1-4). Use of multiple agents which increase edoxaban exposure or affect hemostasis would be expected to increase the risk for bleeding. The risk for bleeding episodes may be greater in patients with disease-associated factors (e.g. thrombocytopenia). Drug associated risk factors include concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism and/or have an inherent risk for bleeding (e.g. NSAIDs). PATIENT MANAGEMENT: Management recommendations between approving regulatory agencies (FDA or European Medicines Agency, EMA) are conflicting. EMA approved prescribing information specifically states that dosage adjustments are not required solely for concomitant use with amiodarone, quinidine, or verapamil regardless of indication.(3,4) Potential interactions with azithromycin, clarithromycin, or oral itraconazole are not described.(3) FDA approved prescribing recommendations for edoxaban are indication specific:(2) - For prevention of stroke or embolic events due to nonvalvular atrial fibrillation, no edoxaban dose adjustments are recommended during concomitant therapy with P-glycoprotein inhibitors. - For treatment of deep vein thrombosis (DVT) or pulmonary embolism (PE), the edoxaban dose should be reduced to 30 mg daily during concomitant use with azithromycin, clarithromycin, oral itraconazole, quinidine or verapamil. The manufacturer of vimseltinib states concurrent use with P-gp substrates should be avoided. If concurrent use cannot be avoided, take vimseltinib at least 4 hours prior to edoxaban.(6) Monitor patients receiving anticoagulant therapy for signs of blood loss, including decreased hemoglobin and/or hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. When applicable, perform agent-specific laboratory test (e.g. anti Factor Xa inhibition) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. Discontinue edoxaban in patients with active bleeding. DISCUSSION: Edoxaban in vivo interaction studies have been performed for quinidine and verapamil. In vivo interaction studies have not been conducted for the remaining P-gp inhibitors linked to this monograph.(1,4) In an interaction study, the effect of repeat administration of quinidine (300 mg TID) on a single oral dose of edoxaban 60 mg was evaluated in healthy subjects. Both peak (Cmax) and total systemic exposure (AUC) to edoxaban and to the active M4 metabolite increased approximately 1.75-fold.(1) In an interaction study, the effect of repeat administration of verapamil (240 mg Verapamil SR Tablets (Calan SR) QD for 11 Days) on a single oral dose of edoxaban 60 mg on the morning of Day 10 was evaluated in healthy subjects. Total and peak systemic exposure to edoxaban increased 1.53-fold and 1.53-fold, respectively. Total and peak systemic exposure to the active M4 metabolite increased 1.31-fold and 1.28-fold, respectively.(1) Based upon the above results, patients in the DVT/PE trial had a 50% dose reduction (from 60 mg to 30 mg) during concomitant therapy with P-glycoprotein inhibitors. Approximately 0.5% of these patients required a dose reduction solely due to P-gp inhibitor use. This low rate of concurrent therapy was too small to allow for detailed statistical evaluation. Almost all of these patients were receiving quinidine or verapamil. In these patients, both trough edoxaban concentrations (Ctrough) used to evaluate bleeding risk, and total edoxaban exposure (AUC or area-under-curve) used to evaluate treatment efficacy, were lower than patients who did not require any edoxaban dose adjustment. In this DVT/PE comparator trial, subgroup analysis revealed that warfarin had numerically better efficacy than edoxaban in patients receiving P-gp inhibitors. Based upon the overall lower exposure to edoxaban in P-gp dose adjusted subjects, both EMA and FDA Office of Clinical Pharmacology (OCP) concluded that the edoxaban 50% dose reduction overcorrected for the difference in exposure.(1,4) Consequently, EMA recommended no edoxaban dose adjustments for patients receiving concomitant therapy with quinidine or verapamil.(3,4) A summary of pharmacokinetic interactions with edoxaban and verapamil concluded that if concurrent use is considered safe.(7) P-gp inhibitors linked to this interaction are: amiodarone, asunaprevir, azithromycin, belumosudil, capmatinib, carvedilol, cimetidine, clarithromycin, cobicistat, conivaptan, daclatasvir, danicopan, daridorexant, diltiazem, diosmin, flibanserin, fostamatinib, ginseng, glecaprevir/pibrentasvir, hydroquinidine, oral itraconazole, indinavir, ivacaftor, josamycin, ledipasvir, lonafarnib, neratinib, osimertinib, pirtobrutinib, propafenone, quinidine, ranolazine, telaprevir, telithromycin, tezacaftor, tepotinib, tucatinib, valbenazine, velpatasvir, vemurafenib, verapamil, vimseltinib, and voclosporin.(8) |
SAVAYSA |
Pravastatin (Less Than or Equal To 40 mg)/Sofosbuvir-Velpatasvir-Voxilaprevir SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Velpatasvir and voxilaprevir are inhibitors of OATP1B1 and OATP1B3.(1) Pravastatin is a substrate for OATP1B1 and OATP1B3 transport.(2) CLINICAL EFFECTS: Concurrent use of sofosbuvir-velpatasvir-voxilaprevir may lead to higher systemic concentrations of pravastatin, increasing the risk for statin-induced myopathy or rhabdomyolysis. PREDISPOSING FACTORS: The risk for myopathy or rhabdomyolysis may be greater in patients 65 years and older, inadequately treated hypothyroidism, renal impairment, carnitine deficiency, malignant hyperthermia, or in patients with a history of myopathy or rhabdomyolysis. Patients with a SLCO1B1 polymorphism that leads to decreased function of the hepatic uptake transporter OATP1B1 may have increased statin concentrations and be predisposed to myopathy or rhabdomyolysis. PATIENT MANAGEMENT: The dose of pravastatin should be limited to 40 mg daily in patients taking sofosbuvir-velpatasvir-voxilaprevir.(1) Instruct patients to report unexplained muscle pain, tenderness, weakness, or dark, cola-colored urine. DISCUSSION: In an interaction study in 19 subjects, sofosbuvir-velpatasvir-voxilaprevir (400/100/200 mg once daily) increased pravastatin (40 mg single dose) maximum concentration (Cmax) 1.89-fold and exposure (area-under-curve, AUC) 2.16-fold. respectively.(1) |
PRAVASTATIN SODIUM |
Select Anticoagulants (Vitamin K antagonists)/Selected Direct-Acting Antivirals SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The exact mechanism is unknown. Warfarin sensitivity may be decreased during concurrent therapy with direct-acting antivirals. Improved hepatic function as a result of successful treatment of Hepatitis C may also play a role. CLINICAL EFFECTS: Use of direct-acting antivirals in the treatment of Hepatitis C may result in decreased warfarin effects, which may increase the risk of thrombosis. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Monitor INR response closely in patients maintained on warfarin during treatment with direct-acting antivirals. Consider more frequent monitoring of INR during concurrent therapy and after the completion of therapy with direct-acting antivirals until a stable warfarin dose is established. DISCUSSION: In a clinical study of 43 patients treated with elbasvir-grazoprevir, the warfarin sensitivity index (WSI) (steady state INR/mean daily warfarin dose) decreased from 0.53 +/- 0.25 to 0.4 +/- 0.22 at treatment completion with elbasvir-grazoprevir which represents a 25.2% decrease. Twelve weeks after treatment completion the WSI returned to 0.51 +/- 0.28. Mean weekly warfarin dose requirement increased over the course of therapy, from 40.3 +/- 22.0 mg to 44.6 +/- 23.4 mg, and returned to near original warfarin dose requirement after therapy at 46 mg. Time in therapeutic range for INR dropped from 74.1% to 39.8% during treatment and returned to 64.9% after treatment.(1) In a retrospective review of patients treated with either ombitasvir-paritaprevir-ritonavir-dasabuvir or sofosbuvir, the warfarin sensitivity index (steady state INR/mean daily warfarin dose) decreased 23% during therapy. The percentage of subtherapeutic INRs increased from 28% prior to treatment to 58% during treatment.(2) Pharmacokinetic studies found no significant effects on warfarin from either ombitasvir-paritaprevir-ritonavir(3) or ombitasvir-paritaprevir-ritonavir-dasabuvir.(4) There have been case reports of decreased warfarin effects and increased warfarin dosage requirements during the treatment of Hepatitis C with: ombitasvir-paritaprevir-ritonavir-dasabuvir,(5) sofosbuvir,(6) sofosbuvir-ledipasvir,(7) and sofosbuvir-velpatasvir.(8) There is a case report of decreased INR following the addition of ombitasvir-paritaprevir-ritonavir-dasabuvir to acenocoumarol.(9) |
JANTOVEN, WARFARIN SODIUM |
Pitavastatin/Sofosbuvir-Velpatasvir-Voxilaprevir SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Velpatasvir and voxilaprevir are inhibitors of OATP1B1 and OATP1B3 transport in the intestine.(1) Pitavastatin is a substrate for these two transporters.(2,3) CLINICAL EFFECTS: Concurrent use of sofosbuvir-velpatasvir-voxilaprevir with pitavastatin may result in increased absorption and systemic concentration of pitavastatin, which could result in myopathy or rhabdomyolysis.(1) PREDISPOSING FACTORS: The risk for myopathy or rhabdomyolysis may be greater in patients 65 years and older, inadequately treated hypothyroidism, renal impairment, carnitine deficiency, malignant hyperthermia, or in patients with a history of myopathy or rhabdomyolysis. Patients with a SLCO1B1 polymorphism that leads to decreased function of the hepatic uptake transporter OATP1B1 may have increased statin concentrations and be predisposed to myopathy or rhabdomyolysis. PATIENT MANAGEMENT: Concurrent use of sofosbuvir-velpatasvir-voxilaprevir with pitavastatin is not recommended.(1) If concurrent use is warranted, limit pitavastatin to 1 mg daily. If these medications are used concurrently, counsel patient to report unexplained muscle pain, tenderness, weakness, or dark, cola-colored urine. DISCUSSION: In a pharmacokinetic study, when pitavastatin 2 mg daily was used concurrently with cyclosporine 2 mg/kg (another inhibitor of OATP1B1 and OATP1B3 transporters), the area-under-curve (AUC) and maximum concentration (Cmax) of pitavastatin was increased by 4.6-fold and 6.6-fold, respectively.(4) |
LIVALO, PITAVASTATIN CALCIUM, ZYPITAMAG |
Edoxaban (Less Than or Equal To 30 mg)/Select P-gp Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Edoxaban is a substrate for P-glycoprotein (P-gp). Inhibitors of P-gp may increase intestinal absorption and decrease renal tubular elimination of edoxaban.(1,2) CLINICAL EFFECTS: Concurrent use with selected P-gp inhibitors may result in higher systemic concentrations of edoxaban which may increase the risk for bleeding.(1,2) PREDISPOSING FACTORS: Bleeding risk may be increased in patients with creatinine clearance below 50 mL per minute(1-4). Use of multiple agents which increase edoxaban exposure or affect hemostasis would be expected to increase the risk for bleeding. The risk for bleeding episodes may be greater in patients with disease-associated factors (e.g. thrombocytopenia). Drug associated risk factors include concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism and/or have an inherent risk for bleeding (e.g. NSAIDs). PATIENT MANAGEMENT: Management recommendations between approving regulatory agencies (FDA or European Medicines Agency, EMA) are conflicting. EMA approved prescribing information specifically states that dosage adjustments are not required solely for concomitant use with amiodarone, quinidine, or verapamil regardless of indication.(3,4) Potential interactions with azithromycin, clarithromycin, or oral itraconazole are not described.(3) FDA approved prescribing recommendations for edoxaban are indication specific:(2) - For prevention of stroke or embolic events due to nonvalvular atrial fibrillation, no edoxaban dose adjustments are recommended during concomitant therapy with P-glycoprotein inhibitors. - For treatment of deep vein thrombosis (DVT) or pulmonary embolism (PE), the edoxaban dose should be reduced to 30 mg daily during concomitant use with azithromycin, clarithromycin, oral itraconazole, quinidine or verapamil. The manufacturer of vimseltinib states concurrent use with P-gp substrates should be avoided. If concurrent use cannot be avoided, take vimseltinib at least 4 hours prior to edoxaban.(6) Monitor patients receiving anticoagulant therapy for signs of blood loss, including decreased hemoglobin and/or hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. When applicable, perform agent-specific laboratory test (e.g. anti Factor Xa inhibition) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. Discontinue edoxaban in patients with active bleeding. DISCUSSION: Edoxaban in vivo interaction studies have been performed for quinidine and verapamil. In vivo interaction studies have not been conducted for the remaining P-gp inhibitors linked to this monograph.(1,4) In an interaction study, the effect of repeat administration of quinidine (300 mg TID) on a single oral dose of edoxaban 60 mg was evaluated in healthy subjects. Both peak (Cmax) and total systemic exposure (AUC) to edoxaban and to the active M4 metabolite increased approximately 1.75-fold.(1) In an interaction study, the effect of repeat administration of verapamil (240 mg Verapamil SR Tablets (Calan SR) QD for 11 Days) on a single oral dose of edoxaban 60 mg on the morning of Day 10 was evaluated in healthy subjects. Total and peak systemic exposure to edoxaban increased 1.53-fold and 1.53-fold, respectively. Total and peak systemic exposure to the active M4 metabolite increased 1.31-fold and 1.28-fold, respectively.(1) Based upon the above results, patients in the DVT/PE trial had a 50% dose reduction (from 60 mg to 30 mg) during concomitant therapy with P-glycoprotein inhibitors. Approximately 0.5% of these patients required a dose reduction solely due to P-gp inhibitor use. This low rate of concurrent therapy was too small to allow for detailed statistical evaluation. Almost all of these patients were receiving quinidine or verapamil. In these patients, both trough edoxaban concentrations (Ctrough) used to evaluate bleeding risk, and total edoxaban exposure (AUC or area-under-curve) used to evaluate treatment efficacy, were lower than patients who did not require any edoxaban dose adjustment. In this DVT/PE comparator trial, subgroup analysis revealed that warfarin had numerically better efficacy than edoxaban in patients receiving P-gp inhibitors. Based upon the overall lower exposure to edoxaban in P-gp dose adjusted subjects, both EMA and FDA Office of Clinical Pharmacology (OCP) concluded that the edoxaban 50% dose reduction overcorrected for the difference in exposure.(1,4) Consequently, EMA recommended no edoxaban dose adjustments for patients receiving concomitant therapy with quinidine or verapamil.(3,4) A summary of pharmacokinetic interactions with edoxaban and verapamil concluded that if concurrent use is considered safe.(7) P-gp inhibitors linked to this interaction are: amiodarone, asunaprevir, azithromycin, belumosudil, capmatinib, carvedilol, cimetidine, clarithromycin, cobicistat, conivaptan, daclatasvir, danicopan, daridorexant, diltiazem, diosmin, flibanserin, fostamatinib, ginseng, glecaprevir/pibrentasvir, hydroquinidine, indinavir, oral itraconazole, ivacaftor, josamycin, ledipasvir, lonafarnib, mavorixafor, neratinib, osimertinib, pirtobrutinib, propafenone, quinidine, ranolazine, telaprevir, telithromycin, tezacaftor, tepotinib, tucatinib, valbenazine, velpatasvir, vemurafenib, verapamil vimseltinib, and voclosporin.(8) |
SAVAYSA |
Ubrogepant/P-gp or BCRP Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Inhibitors of P-glycoprotein (P-gp) or BCRP may increase the absorption of ubrogepant.(1) CLINICAL EFFECTS: The concurrent administration of ubrogepant with an inhibitor of P-glycoprotein or BCRP may result in elevated levels of ubrogepant.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer recommends a dosage adjustment of ubrogepant when coadministered with P-gp or BCRP inhibitors. The dose of ubrogepant should not exceed 50 mg for initial dose. If a second dose of ubrogepant is needed, the dose should not exceed 50 mg.(1) The manufacturer of vimseltinib states concurrent use with P-gp substrates should be avoided. If concurrent use cannot be avoided, take vimseltinib at least 4 hours prior to ubrogepant.(3) DISCUSSION: Ubrogepant is a substrate of P-gp and BCRP transporters. Use of P-gp or BCRP inhibitors may increase the exposure of ubrogepant. Clinical drug interaction studies with inhibitors of these transporters were not conducted. The US manufacturer of ubrogepant recommends dose adjustment if ubrogepant is coadministered with P-gp or BCRP inhibitors.(1) BCRP inhibitors linked to this monograph include: belumosudil, clopidogrel, curcumin, eltrombopag, gefitinib, grazoprevir, momelotinib, oteseconazole, rolapitant, roxadustat, safinamide, tafamidis, oral tedizolid, and vadadustat.(2-5) P-glycoprotein inhibitors linked to this monograph include: asunaprevir, belumosudil, carvedilol, danicopan, daridorexant, neratinib, osimertinib, propafenone, quinidine, sofosbuvir/velpatasvir/voxilaprevir, tepotinib, tezacaftor, valbenazine, vimseltinib, and voclosporin.(2-5) |
UBRELVY |
BCRP, OATP1B1, and OATP1B3 Substrates/Enasidenib SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Enasidenib is an inhibitor of the BCRP, OATP1B1, and OATP1B3 transporters and may increase the absorption and/or decrease the elimination of drugs that are substrates of these transporters.(1) CLINICAL EFFECTS: Concurrent use of enasidenib with drugs that are substrates of the BCRP, OATP1B1, and OATP1B3 transporters may result in increased frequency and severity of toxicity of the substrate.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The dose of the BCRP, OATP1B1, and OATP1B3 substrate should be reduced as recommended in the substrate prescribing information and as clinically indicated.(1) DISCUSSION: In a study, enasidenib 100 mg daily increased the maximum concentration (Cmax) and area-under-curve (AUC) of rosuvastatin 10 mg by 366% and 244%, respectively.(1) Substrates of BCRP, OATP1B1, and OATP1B3 that are linked to this monograph include: atorvastatin, glecaprevir, pibrentasvir, simvastatin, velpatasvir, and voxilaprevir.(1,2) |
IDHIFA |
Atogepant/OATP1B1-3 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Atogepant is a substrate of OATP1B1 and 1B3. Inhibitors of these transporters may increase the GI absorption and/or decrease the hepatic uptake of atogepant.(1) CLINICAL EFFECTS: Concurrent use of OATP1B1 or 1B3 inhibitors may result in elevated levels of and side effects from atogepant, including nausea, constipation and fatigue.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of atogepant states that, when used concurrently with an OATP inhibitor for prevention of episodic migraine, the atogepant dose should be limited to 10 mg or 30 mg once daily. When used concurrently with an OATP inhibitor for prevention of chronic migraines, the atogepant dose should be limited to 30 mg once daily.(1) DISCUSSION: In a clinical trial of healthy subjects, single-dose rifampin, an OATP inhibitor, increased the atogepant area-under-curve (AUC) and maximum concentration (Cmax) by 2.85-fold and 2.23-fold, respectively.(1) OATP1B1 and 1B3 inhibitors include asciminib, atazanavir, belumosudil, cyclosporine, darunavir, eltrombopag, erythromycin, gemfibrozil, glecaprevir-pibrentasvir, ledipasvir, leflunomide, letermovir, paritaprevir, resmetirom, ritonavir, roxadustat, simeprevir, sofosbuvir, teriflunomide, vadadustat, velpatasvir, and voclosporin.(1,2) |
QULIPTA |
Sofosbuvir-Velpatasvir-Voxilaprevir/Nirmatrelvir-Ritonavir SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Nirmatrelvir-ritonavir may inhibit the hepatic uptake and elimination of voxilaprevir by OATP1B1 and OATP1B3.(1-6) CLINICAL EFFECTS: Concurrent administration of nirmatrelvir-ritonavir with sofosbuvir-velpatasvir-voxilaprevir may increase levels and toxicity of voxilaprevir.(1-6) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: There are no recommendations to guide coadministration of nirmatrelvir-ritonavir with sofosbuvir-velpatasvir-voxilaprevir. If coadministration is warranted, monitor patients closely for adverse effects.(1,2) DISCUSSION: Nirmatrelvir-ritonavir is an OATP1B1/3 inhibitor and may increase the levels of OATP substrates, including voxilaprevir.(1-6) While there are no specific recommendations regarding coadministration of nirmatrelvir-ritonavir with sofosbuvir-velpatasvir-voxilaprevir, the US manufacturer of sofosbuvir-velpatasvir-voxilaprevir does have the following recommendations for other protease inhibitors: there are no clinically significant interactions with ritonavir or darunavir. Atazanavir and lopinavir are not recommended due to the risk of increased voxilaprevir levels.(6) How nirmatrelvir affects the OATP transporters and the clinical relevance of any interaction with sofosbuvir-velpatasvir-voxilaprevir is unknown. |
PAXLOVID |
Momelotinib/OATP1B1-3 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: OATP1B1 and 1B3 inhibitors may decrease the hepatic uptake of momelotinib.(1) CLINICAL EFFECTS: Concurrent use of OATP1B1 and 1B3 inhibitors may result in elevated levels of and side effects from momelotinib, including myelosuppression and hepatotoxicity.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Concurrent use of momelotinib with OATP1B1 and 1B3 inhibitors should be approached with caution. Monitor patients closely for adverse reactions and consider dose modifications per momelotinib prescribing recommendations.(1) DISCUSSION: Concurrent administration of a single dose rifampin, an OATP1B1/1B3 inhibitor, increased the maximum concentration (Cmax) and area-under-curve (AUC) of a single dose of momelotinib by 40% and 57%, respectively. The M21 metabolite Cmax increased 6% and AUC increased 12%.(1) OATP1B1 inhibitors include asciminib, atazanavir, belumosudil, boceprevir, cobicistat, cyclosporine, darolutamide, darunavir, eltrombopag, enasidenib, encorafenib, erythromycin, fostemsavir, gemfibrozil, glecaprevir-pibrentasvir, ledipasvir, letermovir, lopinavir, nirmatrelvir, paritaprevir, resmetirom, rifampin, roxadustat, saquinavir, simeprevir, telaprevir, tipranavir, vadadustat, velpatasvir, and voclosporin.(1,2) |
OJJAARA |
Mavorixafor/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Mavorixafor is a substrate of the P-glycoprotein (P-gp) transporter. P-gp inhibitors may significantly increase the absorption of mavorixafor.(1) CLINICAL EFFECTS: Concurrent administration of mavorixafor with an inhibitor of P-glycoprotein may result in elevated levels of and effects from mavorixafor, including potentially life-threatening cardiac arrhythmias, torsades de pointes, and sudden death.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: When used concomitantly with P-gp inhibitors, monitor more frequently for mavorixafor adverse effects and reduce the dose in 100 mg increments, if necessary, but not to a dose less than 200 mg.(1) The manufacturer of vimseltinib states concurrent use with P-gp substrates should be avoided. If concurrent use cannot be avoided, take vimseltinib at least 4 hours prior to mavorixafor.(4) When concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring EKG at baseline and regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a study with healthy subjects, itraconazole 200 mg daily (a strong CYP3A4 and P-gp inhibitor) increased the exposure to single-dose mavorixafor 200 mg similar to that from single-dose mavorixafor 400 mg alone. This suggests that itraconazole increased mavorixafor exposure by about 2-fold.(1) A study in healthy volunteers found that ritonavir 100 mg twice daily (a strong CYP3A4 inhibitor and P-gp inhibitor) increased the area-under-curve (AUC) and maximum concentration (Cmax) of single-dose mavorixafor 200 mg by 60% and 39%, respectively.(1) P-glycoprotein inhibitors linked to this monograph include: abrocitinib, Asian ginseng, asunaprevir, capmatinib, carvedilol, cyclosporine, danicopan, daridorexant, diosmin, elagolix, flibanserin, fostamatinib, ginkgo biloba, glecaprevir/pibrentasvir, ivacaftor, milk thistle, neratinib, pirtobrutinib, quercetin, rolapitant, sofosbuvir/velpatasvir/voxilaprevir, tepotinib, tezacaftor, velpatasvir, vilazodone, vimseltinib, and voclosporin.(1,4-6) |
XOLREMDI |
The following contraindication information is available for VOSEVI (sofosbuvir/velpatasvir/voxilaprevir):
Drug contraindication overview.
Concomitant use of the fixed combination of sofosbuvir, velpatasvir, and voxilaprevir (sofosbuvir/velpatasvir/voxilaprevir) and rifampin is contraindicated.
Concomitant use of the fixed combination of sofosbuvir, velpatasvir, and voxilaprevir (sofosbuvir/velpatasvir/voxilaprevir) and rifampin is contraindicated.
There are 2 contraindications.
Absolute contraindication.
Contraindication List |
---|
Child-pugh class C hepatic impairment |
Hepatic failure |
There are 1 severe contraindications.
Adequate patient monitoring is recommended for safer drug use.
Severe List |
---|
Child-pugh class B hepatic impairment |
There are 2 moderate contraindications.
Clinically significant contraindication, where the condition can be managed or treated before the drug may be given safely.
Moderate List |
---|
Hypoglycemic disorder |
Reactivation of hepatitis B |
The following adverse reaction information is available for VOSEVI (sofosbuvir/velpatasvir/voxilaprevir):
Adverse reaction overview.
Adverse effects reported in 5% or more of patients receiving sofosbuvir/velpatasvir/voxilaprevir include headache, fatigue, diarrhea, nausea, asthenia, and insomnia.
Adverse effects reported in 5% or more of patients receiving sofosbuvir/velpatasvir/voxilaprevir include headache, fatigue, diarrhea, nausea, asthenia, and insomnia.
There are 9 severe adverse reactions.
More Frequent | Less Frequent |
---|---|
None. | None. |
Rare/Very Rare |
---|
Angioedema Diabetes mellitus Dysglycemia Hepatic failure Hypotension Leukopenia Peritonitis Reactivation of hepatitis B Stevens-johnson syndrome |
There are 26 less severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Diarrhea Fatigue Headache disorder Nausea |
Depression Dizziness Elevated serum lipase General weakness Hyperbilirubinemia Increased creatine kinase level Insomnia Irritability Skin rash |
Rare/Very Rare |
---|
Abdominal distension Acute abdominal pain Blistering skin Constipation Contact dermatitis Dyspepsia Gastroesophageal reflux disease Palpitations Symptoms of anxiety Tremor Vertigo Weight loss Xerostomia |
The following precautions are available for VOSEVI (sofosbuvir/velpatasvir/voxilaprevir):
Safety and efficacy of sofosbuvir/velpatasvir/voxilaprevir have not been established in pediatric patients younger than 18 years of age.
Contraindicated
Severe Precaution
Management or Monitoring Precaution
Contraindicated
None |
Severe Precaution
None |
Management or Monitoring Precaution
None |
Adequate data are not available regarding use of sofosbuvir/velpatasvir/voxilaprevir in pregnant women. In animal studies, there was no evidence that sofosbuvir, velpatasvir, or voxilaprevir affected fetal development at exposures greater than those in humans receiving the recommended human dosage.
It is not known whether sofosbuvir/velpatasvir/voxilaprevir or their metabolites are distributed into human milk, affect milk production, or have effects on the breast-fed infant. The predominant metabolite of sofosbuvir (GS-331007) is distributed into milk in rats; velpatasvir is distributed into milk in rats and has been detected in plasma of suckling rat pups; and voxilaprevir has been detected in plasma of suckling rat pups. GS-331007, velpatasvir, and voxilaprevir had no apparent effects on nursing pups. The benefits of breast-feeding and the importance of sofosbuvir/velpatasvir/voxilaprevir to the woman should be considered along with the potential adverse effects on the breast-fed child from the drug or from the underlying maternal condition.
No overall differences in safety and efficacy of sofosbuvir/velpatasvir/voxilaprevir have been observed between patients 65 years of age and older and younger adults. However, greater sensitivity in some older individuals cannot be ruled out. Population pharmacokinetic analysis in HCV-infected adults up to 85 years of age indicates that age does not have a clinically important effect on sofosbuvir, GS-331007, velpatasvir, or voxilaprevir exposures.
The following prioritized warning is available for VOSEVI (sofosbuvir/velpatasvir/voxilaprevir):
WARNING: Although this product is used to treat hepatitis C, it may rarely cause serious liver problems. It may make other liver problems (such as hepatitis B) get worse. Before starting this product, tell your doctor if you have ever had hepatitis B or any other liver problems.
See also Precautions section. Tell your doctor right away if you have new or worsening symptoms of liver disease, such as nausea/vomiting that doesn't stop, loss of appetite, stomach/abdominal pain, dark urine or yellowing eyes/skin.
WARNING: Although this product is used to treat hepatitis C, it may rarely cause serious liver problems. It may make other liver problems (such as hepatitis B) get worse. Before starting this product, tell your doctor if you have ever had hepatitis B or any other liver problems.
See also Precautions section. Tell your doctor right away if you have new or worsening symptoms of liver disease, such as nausea/vomiting that doesn't stop, loss of appetite, stomach/abdominal pain, dark urine or yellowing eyes/skin.
The following icd codes are available for VOSEVI (sofosbuvir/velpatasvir/voxilaprevir)'s list of indications:
Chronic hepatitis C - genotype 1 | |
B18.2 | Chronic viral hepatitis C |
Chronic hepatitis C - genotype 2 | |
B18.2 | Chronic viral hepatitis C |
Chronic hepatitis C - genotype 3 | |
B18.2 | Chronic viral hepatitis C |
Chronic hepatitis C - genotype 4 | |
B18.2 | Chronic viral hepatitis C |
Chronic hepatitis C - genotype 5 | |
B18.2 | Chronic viral hepatitis C |
Chronic hepatitis C - genotype 6 | |
B18.2 | Chronic viral hepatitis C |
Formulary Reference Tool