Please wait while the formulary information is being retrieved.
Drug overview for TARCEVA (erlotinib hcl):
Generic name: ERLOTINIB HCL (er-LOE-ti-nib)
Drug class: Antineoplastic - Protein-Tyrosine Kinase Inhibitors
Therapeutic class: Antineoplastics
Erlotinib hydrochloride, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, is an antineoplastic agent.
No enhanced Uses information available for this drug.
Generic name: ERLOTINIB HCL (er-LOE-ti-nib)
Drug class: Antineoplastic - Protein-Tyrosine Kinase Inhibitors
Therapeutic class: Antineoplastics
Erlotinib hydrochloride, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, is an antineoplastic agent.
No enhanced Uses information available for this drug.
DRUG IMAGES
- TARCEVA 150 MG TABLET
- TARCEVA 100 MG TABLET
The following indications for TARCEVA (erlotinib hcl) have been approved by the FDA:
Indications:
Adenocarcinoma of pancreas
Metastatic non-small cell lung cancer with EGFR exon 19 deletion
Metastatic non-small cell lung cancer with EGFR exon 21 L858R substitution mutation
Professional Synonyms:
EGFR exon 19 deletion mutation-positive metastatic non-small cell lung cancer (NSCLC)
EGFR L858R substitution mutation-positive metastatic non-small cell lung cancer (NSCLC)
Metastatic non-small cell lung cancer with EGFR exon 21 Leu858Arg substitution
Metastatic NSCLC with EGFR Ex19Del
Pancreatic adenocarcinoma
Indications:
Adenocarcinoma of pancreas
Metastatic non-small cell lung cancer with EGFR exon 19 deletion
Metastatic non-small cell lung cancer with EGFR exon 21 L858R substitution mutation
Professional Synonyms:
EGFR exon 19 deletion mutation-positive metastatic non-small cell lung cancer (NSCLC)
EGFR L858R substitution mutation-positive metastatic non-small cell lung cancer (NSCLC)
Metastatic non-small cell lung cancer with EGFR exon 21 Leu858Arg substitution
Metastatic NSCLC with EGFR Ex19Del
Pancreatic adenocarcinoma
The following dosing information is available for TARCEVA (erlotinib hcl):
Dosage of erlotinib hydrochloride is expressed in terms of erlotinib.
Dosage interruption and/or reduction, or discontinuance of erlotinib therapy, may be necessary based on severity of adverse reactions. When dosage reduction is required, reduce the dose of erlotinib by 50-mg decrements.
Dosage interruption and/or reduction, or discontinuance of erlotinib therapy, may be necessary based on severity of adverse reactions. When dosage reduction is required, reduce the dose of erlotinib by 50-mg decrements.
Administer erlotinib orally once daily. The drug should be administered on an empty stomach (e.g., at least 1 hour before or 2 hours after ingestion of food). Store erlotinib tablets at 25degreesC (excursions permitted between 15-30degreesC).
DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
---|---|---|
TARCEVA 100 MG TABLET | Maintenance | Adults take 1 tablet (100 mg) by oral route once daily on an empty stomach, 1 hour before or 2 hours after a meal |
DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
---|---|---|
ERLOTINIB HCL 100 MG TABLET | Maintenance | Adults take 1 tablet (100 mg) by oral route once daily on an empty stomach, 1 hour before or 2 hours after a meal |
ERLOTINIB HCL 150 MG TABLET | Maintenance | Adults take 1 tablet (150 mg) by oral route once daily on an empty stomach, 1 hour before or 2 hours after a meal |
The following drug interaction information is available for TARCEVA (erlotinib hcl):
There are 5 contraindications.
These drug combinations generally should not be dispensed or administered to the same patient. A manufacturer label warning that indicates the contraindication warrants inclusion of a drug combination in this category, regardless of clinical evidence or lack of clinical evidence to support the contraindication.
Drug Interaction | Drug Names |
---|---|
Irinotecan/UGT1A1 Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Inhibitors of UGT1A1 may inhibit the metabolism of SN-38, the active metabolite of irinotecan.(1) Atazanavir may inhibit the metabolism of irinotecan by UGT1A1.(1,2) This increases the system exposure to SN-38, the active metabolite of irinotecan.(3) CLINICAL EFFECTS: Concurrent use of UGT1A1 inhibitors may result in increased exposure to and toxicity from irinotecan.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of irinotecan states do not administer UGT1A1 inhibitors with irinotecan unless there are no therapeutic alternatives. The increased exposure to the active metabolite should be taken into consideration when co-administering these agents.(1) The US manufacturer of atazanavir states that concurrent use of irinotecan is contraindicated.(2) The Australian manufacturer of atazanavir states that irinotecan should not be administered with atazanavir.(3) DISCUSSION: Because atazanavir inhibits UGT1A1 at therapeutic concentrations, it is expected to interfere with the metabolism of irinotecan. Therefore, the manufacturer of atazanavir states that irinotecan should not be administered with atazanavir.(1,2) UGT1A1 inhibitors linked to this monograph include: atazanavir, capivasertib, belumosudil, erlotinib, gemfibrozil, lapatinib, nilotinib, pazopanib, probenecid, regorafenib, and sorafenib. One or more of the drug pairs linked to this monograph have been included in a list of interactions that should be considered "high-priority" for inclusion and should not be inactivated in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
CAMPTOSAR, IRINOTECAN HCL, ONIVYDE |
Efalizumab; Natalizumab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Natalizumab,(1-3) efalizumab,(4) immunosuppressives, and immunomodulators all suppress the immune system. CLINICAL EFFECTS: Concurrent use of natalizumab(1-3) or efalizumab(4) with immunosuppressives or immunomodulators may result in an increased risk of infections, including progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV). PREDISPOSING FACTORS: Previous JCV infection, longer duration of natalizumab treatment - especially if greater than 2 years, and prior or concomitant treatment with immunosuppressant medication are all independent risk factors which increase the risk for PML.(1,5) The FDA has estimated PML incidence stratified by risk factors: If anti-JCV antibody positive, no prior immunosuppressant use and natalizumab treatment less than 25 months, incidence <1/1,000. If anti-JCV antibody positive, history of prior immunosuppressant use and natalizumab treatment less than 25 months, incidence 2/1,000 If anti-JCV antibody positive, no prior immunosuppressant use and natalizumab treatment 25-48 months, incidence 4/1,000 If anti-JCV antibody positive, history of prior immunosuppressant use and natalizumab treatment 25-48 months, incidence 11/1,000. PATIENT MANAGEMENT: The US manufacturer of natalizumab states patients with Crohn's disease should not receive concurrent immunosuppressants, with the exception of limited overlap of corticosteroids, due to the increased risk for PML. For new natalizumab patients currently receiving chronic oral corticosteroids for Crohn's Disease, begin corticosteroid taper when therapeutic response to natalizumab has occurred. If corticosteroids cannot be discontinued within six months of starting natalizumab, discontinue natalizumab.(3) The US manufacturer of natalizumab states that natalizumab should not ordinarily be used in multiple sclerosis patients receiving immunosuppressants or immunomodulators due to the increased risk for PML. Immunosuppressives include, but are not limited to azathioprine, cyclophosphamide, cyclosporine, mercaptopurine, methotrexate, mitoxantrone, mycophenolate, and corticosteroids.(3,6) The UK manufacturer of natalizumab states that concurrent use with immunosuppressives or antineoplastic agents is contraindicated.(1) The Canadian manufacturer of natalizumab states that natalizumab should not be used with immunosuppressive or immunomodulatory agents.(2) The US manufacturer of certolizumab states that concurrent therapy with natalizumab is not recommended.(7) DISCUSSION: Progressive multifocal leukoencephalopathy has been reported in patients receiving concurrent natalizumab were recently or concomitantly taking immunomodulators or immunosuppressants.(1-5,8,9) In a retrospective cohort study of multiple sclerosis patients newly initiated on a disease-modifying therapy, use of high-efficacy agents (alemtuzumab, natalizumab, or ocrelizumab) resulted in the same risk of overall infections as moderate-efficacy agents, but there was an elevated risk of serious infections (adjusted hazard ratio [aHR] = 1.24, 95% confidence interval (CI) = 1.06-1.44) and UTIs (aHR = 1.21, 95% CI = 1.14-1.30).(10) |
TYSABRI |
Live Vaccines; Live BCG/Selected Immunosuppressive Agents SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: A variety of disease modifying agents suppress the immune system. Immunocompromised patients may be at increased risk for uninhibited replication after administration of live, attenuated vaccines or intravesicular BCG. Immune response to vaccines may be decreased during periods of immunocompromise.(1) CLINICAL EFFECTS: The expected serum antibody response may not be obtained and/or the vaccine may result in illness.(1) After instillation of intravesicular BCG, immunosuppression may interfere with local immune response, or increase the severity of mycobacterial infection following inadvertent systemic exposure.(2) PREDISPOSING FACTORS: Immunosuppressive diseases (e.g. hematologic malignancies, HIV disease), treatments (e.g. radiation) and drugs may all increase the magnitude of immunodeficiency. PATIENT MANAGEMENT: The Centers for Disease Control(CDC) Advisory Committee on Immunization Practices (ACIP) states that live-virus and live, attenuated vaccines should not be administered to patients who are immunocompromised. The magnitude of immunocompromise and associated risks should be determined by a physician.(1) For patients scheduled to receive chemotherapy, vaccination should ideally precede the initiation of chemotherapy by 14 days. Patients vaccinated while on immunosuppressive therapy or in the 2 weeks prior to starting therapy should be considered unimmunized and should be revaccinated at least 3 months after discontinuation of therapy.(1) Patients who receive anti-B cell therapies should not receive live vaccines for at least 6 months after such therapies due to a prolonged duration of immunosuppression. An exception is the Zoster vaccine, which can be given at least 1 month after receipt of anti-B cell therapies.(1) The US manufacturer of abatacept states live vaccines should not be given during or for up to 3 months after discontinuation of abatacept.(2) The US manufacturer of live BCG for intravesicular treatment of bladder cancer states use is contraindicated in immunosuppressed patients.(3) The US manufacturer of daclizumab states live vaccines are not recommended during and for up to 4 months after discontinuation of treatment.(4) The US manufacturer of guselkumab states that live vaccines should be avoided during treatment with guselkumab.(5) The US manufacturer of inebilizumab-cdon states that live vaccines are not recommended during treatment and after discontinuation until B-cell repletion. Administer all live vaccinations at least 4 weeks prior to initiation of inebilizumab-cdon.(6) The US manufacturer of ocrelizumab states that live vaccines are not recommended during treatment and until B-cell repletion occurs after discontinuation of therapy. Administer all live vaccines at least 4 weeks prior to initiation of ocrelizumab.(7) The US manufacturer of ozanimod states that live vaccines should be avoided during and for up to 3 months after discontinuation of ozanimod.(8) The US manufacturer of siponimod states that live vaccines are not recommended during treatment and for up to 4 weeks after discontinuation of treatment.(9) The US manufacturer of ustekinumab states BCG vaccines should not be given in the year prior to, during, or the year after ustekinumab therapy.(10) The US manufacturer of satralizumab-mwge states that live vaccines are not recommended during treatment and should be administered at least four weeks prior to initiation of satralizumab-mwge.(11) The US manufacturer of ublituximab-xiiy states that live vaccines are not recommended during treatment and until B-cell recovery. Live vaccines should be administered at least 4 weeks prior to initiation of ublituximab-xiiy.(12) The US manufacturer of etrasimod states that live vaccines should be avoided during and for 5 weeks after treatment. Live vaccines should be administered at least 4 weeks prior to initiation of etrasimod.(13) The US manufacturer of emapalumab-lzsg states that live vaccines should not be administered to patients receiving emapalumab-lzsg and for at least 4 weeks after the last dose of emapalumab-lzsg. The safety of immunization with live vaccines during or following emapalumab-lzsg therapy has not been studied.(14) DISCUSSION: Killed or inactivated vaccines do not pose a danger to immunocompromised patients.(1) Patients with a history of leukemia who are in remission and have not received chemotherapy for at least 3 months are not considered to be immunocompromised.(1) |
ACAM2000 (NATIONAL STOCKPILE), ADENOVIRUS TYPE 4, ADENOVIRUS TYPE 4 AND TYPE 7, ADENOVIRUS TYPE 7, BCG (TICE STRAIN), BCG VACCINE (TICE STRAIN), DENGVAXIA, ERVEBO (NATIONAL STOCKPILE), FLUMIST TRIVALENT 2024-2025, IXCHIQ, M-M-R II VACCINE, PRIORIX, PROQUAD, ROTARIX, ROTATEQ, STAMARIL, VARIVAX VACCINE, VAXCHORA ACTIVE COMPONENT, VAXCHORA VACCINE, VIVOTIF, YF-VAX |
Talimogene laherparepvec/Selected Immunosuppressants SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Talimogene laherparepvec is a live, attenuated herpes simplex virus.(1) CLINICAL EFFECTS: Concurrent use of talimogene laherparepvec in patients receiving immunosuppressive therapy may cause a life-threatening disseminated herpetic infection.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Talimogene laherparepvec is contraindicated in immunosuppressed patients.(1) The magnitude of immunocompromise and associated risks due to immunosuppressant drugs should be determined by a physician. DISCUSSION: Concurrent use of talimogene laherparepvec in patients receiving immunosuppressive therapy may cause a life-threatening disseminated herpetic infection.(1) |
IMLYGIC |
Nadofaragene Firadenovec/Selected Immunosuppressants SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Nadofaragene firadenovec may contain low levels of replication-competent adenovirus.(1) CLINICAL EFFECTS: Concurrent use of nadofaragene firadenovec in patients receiving immunosuppressive therapy may cause disseminated adenovirus infection.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Individuals who are immunosuppressed or immune-deficient should not receive nadofaragene firadenovec.(1) DISCUSSION: Nadofaragene firadenovec is a non-replicating adenoviral vector-based gene therapy but may contain low levels of replication-competent adenovirus. Immunocompromised persons, including those receiving immunosuppressant therapy, may be at risk for disseminated adenovirus infection.(1) |
ADSTILADRIN |
There are 29 severe interactions.
These drug interactions can produce serious consequences in most patients. Actions required for severe interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration scheduling, and providing additional patient monitoring. Review the full interaction monograph for more information.
Drug Interaction | Drug Names |
---|---|
Selected Kinase Inhibitors/Proton Pump Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: The solubility of bosutinib,(1) dacomitinib,(2) dasatinib,(3) erlotinib,(4) gefitinib,(5) neratinib,(6) nilotinib,(7) pazopanib(8), and pexidartinib (9) is pH dependent. Changes in gastric pH from proton pump inhibitors may decrease the absorption of bosutinib,(1) dacomitinib,(2) dasatinib,(3) erlotinib,(4) gefitinib,(5) neratinib,(6) nilotinib,(7) pazopanib,(8) and pexidartinib.(9) CLINICAL EFFECTS: Use of proton pump inhibitors may result in decreased levels and effectiveness of bosutinib,(1) dacomitinib,(2) dasatinib,(3) erlotinib,(4) gefitinib,(5) neratinib,(6) nilotinib,(7) pazopanib,(8) and pexidartinib.(9) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid the use of proton pump inhibitors (PPIs) in patients receiving treatment with bosutinib,(1) dacomitinib,(2) dasatinib,(3) erlotinib,(4) gefitinib,(5) neratinib,(6) nilotinib,(7) pazopanib,(8) and pexidartinib.(9) Consider the use of short-acting antacids in these patients.(1-9) If antacids are used, separate the administration times by several hours(1-9) but at least 2 hours for bosutinib,(1) dasatinib,(3) nilotinib,(7) and pexidartinib(9), 6 hours for gefitinib,(5) and 3 hours for neratinib.(6) If PPIs are required with gefitinib, administer gefitinib 12 hours after the last dose or 12 hours before the next dose of the PPI. Administer gefitinib 6 hours before or after H2-antagonists or antacids.(5) If H2 antagonist therapy is used with bosutinib, separate administration by at least 2 hours.(1) If H2 antagonist therapy is required with dacomitinib, dacomitinib must be given once daily 10 hours after the H2 blocker and 6 hours before the next dose of the H2 blocker.(2) If H2 antagonist therapy is required with erlotinib, neratinib, nilotinib, or pexidartinib, the kinase inhibitor must be given 10 hours after the H2 blocker and at least 2 hours before the next dose of the H2 blocker.(4,6,7,9) If H2 antagonist therapy is required with gefitinib, gefitinib should be given at least 6 hours before or after the H2 antagonist.(5) The manufacturer of Phyrago states that it can be administered with gastric acid reducing agents. Administration times should be separated with antacids. DISCUSSION: In a study, concurrent rabeprazole decreased the Cmax and AUC of dacomitinib by 51% and 39%, respectively.(2) In a study in 24 healthy subjects, administration of a single dose of dasatinib (50 mg) 10 hours after famotidine decreased dasatinib area-under-curve (AUC) and maximum concentration (Cmax) by 61% and 63%, respectively.(3) In a study in 14 healthy subjects, administration of a single dose of dasatinib (100 mg) 22 hours after omeprazole (40 mg at steady state) decreased dasatinib AUC and Cmax by 43% and 42%, respectively.(3) In a study in 24 healthy subjects, simultaneous administration of dasatinib (50 mg) with aluminum hydroxide/magnesium hydroxide (30 ml) decreased dasatinib AUC and Cmax by 55% and 58%, respectively. In the same subjects, administration of the antacid 2 hours before dasatinib decreased dasatinib Cmax by 26%, but had no effect on dasatinib AUC.(3) In a study, concurrent omeprazole decreased the AUC and Cmax of erlotinib by 46% and 61%, respectively.(4) In a study, administration of erlotinib two hours after a dose of ranitidine (300 mg), erlotinib AUC and Cmax decreased by 33% and 54%, respectively. Administration of erlotinib 10 hours after and two hours before ranitidine (150 mg twice daily), erlotinib AUC and Cmax decreased by 15% and 17%, respectively.(4) In a case report, a patient that was given erlotinib (150 mg daily,) with algeldrate/magnesium hydroxide (800/400 mg four times daily 4 hours before or 2 hours after erlotinib) did not see a significant reduction in serum trough concentrations of erlotinib. When the patient was switched to intravenous pantoprazole via continuous infusion (8 mg per hour), serum erlotinib levels decreased significantly below minimal trough concentrations for effective tyrosine kinase inhibition. When the patient was switched to oral pantoprazole (40 mg twice daily), serum trough levels of erlotinib returned to therapeutic levels.(9) In a study in healthy subjects, high dose ranitidine with sodium carbonate was administered to maintain gastric pH above 5.0 and gefitinib AUC decreased 47%.(5) In a study in 15 healthy subjects, lansoprazole (30 mg at steady state) decreased the Cmax and AUC of a single dose of neratinib (240 mg) by 71% and 65%, respectively.(6) In a study in 22 healthy subjects, pretreatment with esomeprazole (40 mg daily), decreased the Cmax and AUC of a single dose of nilotinib (400 mg) by 27% and 34%, respectively.(7,10) Increasing the dosage of nilotinib or separating the administration time of nilotinib and the proton pump inhibitor is not expected to eliminate the interaction.(7) There were no significant changes in nilotinib pharmacokinetics when famotidine was administered 10 hours before or 2 hours after nilotinib.(7) There were no significant changes in nilotinib pharmacokinetics when an antacid (aluminum hydroxide/magnesium hydroxide/simethicone) was administered 2 hours before or after nilotinib.(7) In a study in 13 patients, esomeprazole (40 mg daily for 5 days) decreased the Cmax and AUC of pazopanib (400 mg daily) by 42% and 40%, respectively, when compared to the administration of pazopanib alone.(11) In an open-label, crossover study in 17 evaluable patients, omeprazole (40 mg daily) had no significant effects on the pharmacokinetics, pharmacodynamics, or safety of bortezomib (1.3 mg/m2).(12) Coadministration of esomeprazole decreased pexidartinib Cmax and AUC by 55% and 50%. (13) Phyrago is not sensitive to increased gastric pH due to its polymer formulation. No clinically significant dasatinib pharmacokinetic changes were seen with concurrent administration of Phyrago with omeprazole (proton pump inhibitor) or famotidine (H2 receptor antagonist).(14) |
ACIPHEX, ACIPHEX SPRINKLE, DEXILANT, DEXLANSOPRAZOLE DR, ESOMEPRAZOLE MAGNESIUM, ESOMEPRAZOLE SODIUM, KONVOMEP, LANSOPRAZOL-AMOXICIL-CLARITHRO, LANSOPRAZOLE, NAPROXEN-ESOMEPRAZOLE MAG, NEXIUM, OMECLAMOX-PAK, OMEPRAZOLE, OMEPRAZOLE-SODIUM BICARBONATE, PANTOPRAZOLE SODIUM, PANTOPRAZOLE SODIUM-0.9% NACL, PREVACID, PRILOSEC, PROTONIX, PROTONIX IV, RABEPRAZOLE SODIUM, TALICIA, VIMOVO, YOSPRALA |
Tofacitinib/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of tofacitinib and azathioprine, other biologic disease-modifying antirheumatic drugs (DMARDs), or potent immunosuppressants may result in additive or synergistic effects on the immune system.(1) CLINICAL EFFECTS: Concurrent use of tofacitinib and azathioprine, other biologic DMARDs, or potent immunosuppressants use may increase the risk of serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Tofacitinib should not be used concurrently with azathioprine, other biologic DMARDs, or cyclosporine.(1) Patient should be monitored for decreases in lymphocytes and neutrophils. Therapy should be adjusted based on the indication. - For all indications: If absolute neutrophil count (ANC) or lymphocyte count is less than 500 cells/mm3, discontinue tofacitinib. - For rheumatoid arthritis or psoriatic arthritis and absolute neutrophil count (ANC) 500 to 1000 cells/mm3: interrupt dosing. When ANC is greater than 1000 cells/mm3, resume Xeljanz 5 mg twice daily or Xeljanz XR 11 mg once daily. - For ulcerative colitis and ANC 500 to 1000 cells/mm3: -If taking Xeljanz 10 mg twice daily, decrease to 5 mg twice daily. When ANC is greater than 1000 cells/mm3, increase to 10 mg twice daily based on clinical response. -If taking Xeljanz 5 mg twice daily, interrupt dosing. When ANC is greater than 1000 cells/mm3, resume 5 mg twice daily. -If taking Xeljanz XR 22 mg once daily, decrease to 11 mg once daily. When ANC is greater than 1000 cells/mm3, increase to 22 mg once daily based on clinical response. -If taking Xeljanz XR 11 mg once daily, interrupt dosing. When ANC is greater than 1000 cells/mm3, resume 11 mg once daily. - For polyarticular course juvenile idiopathic arthritis (pcJIA) and ANC 500 to 1000 cells/mm3: interrupt dosing until ANC is greater than 1000 cells/mm3.(1) DISCUSSION: Concurrent use of tofacitinib and azathioprine, other biologic DMARDs, or potent immunosuppressants may increase the risk of infection.(1) |
TOFACITINIB CITRATE, XELJANZ, XELJANZ XR |
Belinostat/UGT1A1 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of UGT1A1 may inhibit the metabolism of belinostat.(1) CLINICAL EFFECTS: Concurrent use of UGT1A1 inhibitor may result in increased exposure to and toxicity from belinostat. Toxicities from belinostat include thrombocytopenia, neutropenia, anemia, infections, hepatotoxicity, and gastrointestinal toxicity.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid the use of UGT1A1 inhibitors in patients receiving belinostat. If concurrent use cannot be avoided, a dose reduction by 25% is recommended as follows: -If starting dose is 1,000 mg/m2 - reduce dose to 750 mg/m2 -If starting dose is 750 mg/m2 - reduce dose to 562.5 mg/m2 -If starting dose is 500 mg/m2 - interrupt belinostat treatment for the duration of the UGT1A1 inhibitor. After discontinuation of the UGT1A1 inhibitor for 5 half-lives, resume belinostat at the dosage that was taken prior to the UGT1A1 inhibitor.(1) If concurrent use is required, the dose of belinostat may need to be reduced in response to dose-limiting toxicities. The manufacturer of belinostat recommends a 25% dose reduction (to 750 mg/m2) in patients who are homozygous for the UGT1A1*28 allele.(1) DISCUSSION: Belinostat is primarily metabolized by UGT1A1 and inhibitors of UGT1A1 are expected to increase belinostat levels and dose limiting toxicities.(1) In a PKPB model, belinostat half-life increased by 1.5-fold, area-under-curve (AUC) increased by 1.4-fold, concentration maximum (Cmax) decreased by 33%, and renal excretion increased by 2.5-fold following administration with atazanavir (UGT1A1 inhibitor).(1) UGT1A1 inhibitors linked include: atazanavir, belumosudil, capivasertib, erlotinib, gemfibrozil, indinavir, ketoconazole, lapatinib, nilotinib, pazopanib, probenecid, regorafenib, and sorafenib. |
BELEODAQ |
Selected Multiple Sclerosis Agents/Immunosuppressants; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ocrelizumab or ofatumumab in combination with immunosuppressives and immune-modulators all suppress the immune system.(1,2) CLINICAL EFFECTS: Concurrent use of ocrelizumab or ofatumumab with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1,2) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: The ocrelizumab US prescribing information states: - Ocrelizumab and other immune-modulating or immunosuppressive therapies, (including immunosuppressant doses of corticosteroids) are expected to increase the risk of immunosuppression, and the risk of additive immune system effects must be considered if these therapies are coadministered with ocrelizumab. When switching from drugs with prolonged immune effects, such as daclizumab, fingolimod, natalizumab, teriflunomide, or mitoxantrone, the duration and mode of action of these drugs must be considered to avoid unintended additive immunosuppressive effects when initiating ocrelizumab.(1) The ofatumumab US prescribing information states: - Ofatumumab and other immunosuppressive therapies (including systemic corticosteroids) may have the potential for increased immunosuppressive effects and increase the risk of infection. When switching between therapies, the duration and mechanism of action of each therapy should be considered due to the potential for additive immunosuppressive effects. Ofatumumab for MS therapy has not been studied in combination with other MS agents that suppress the immune system.(2) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1,2) In a retrospective cohort study of multiple sclerosis patients newly initiated on a disease-modifying therapy, use of high-efficacy agents (alemtuzumab, natalizumab, or ocrelizumab) resulted in the same risk of overall infections as moderate-efficacy agents, but there was an elevated risk of serious infections (adjusted hazard ratio [aHR] = 1.24, 95% confidence interval (CI) = 1.06-1.44) and UTIs (aHR = 1.21, 95% CI = 1.14-1.30).(3) |
KESIMPTA PEN, OCREVUS, OCREVUS ZUNOVO |
Erlotinib/Ciprofloxacin SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ciprofloxacin may inhibit the metabolism of erlotinib. Erlotinib is metabolized primarily by CYP3A4 and to a lesser extent by CYP1A2. Ciprofloxacin is a weak inhibitor of CYP3A4 and a moderate inhibitor of CYP1A2.(1,2) CLINICAL EFFECTS: Concurrent use of ciprofloxacin may increase systemic exposure and the risk for erlotinib toxicities. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid the concurrent use of ciprofloxacin in patients receiving therapy with erlotinib. Patients receiving concurrent therapy with erlotinib should be monitored closely for increased levels of and toxicity if ciprofloxacin is initiated. The dosage of erlotinib may need to be adjusted if ciprofloxacin is initiated or discontinued.(1) If concurrent use of ciprofloxacin cannot be avoided with erlotinib, decrease the dose of erlotinib by 50 mg decrements.(1) DISCUSSION: Co-administration of erlotinib with ciprofloxacin increased erlotinib area-under-curve (AUC) and maximum concentration (Cmax) by 39% and 17%, respectively.(1) Two patients developed gastrointestinal perforations while taking erlotinib, corticosteroids, and ciprofloxacin.(3) |
CIPRO, CIPROFLOXACIN, CIPROFLOXACIN HCL, CIPROFLOXACIN-D5W |
Upadacitinib/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Upadacitinib, immunosuppressives, and immunomodulators all suppress the immune system. CLINICAL EFFECTS: Concurrent use of upadacitinib with immunosuppressives or immunomodulators may result in an increased risk of serious infections. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of upadacitinib states that concurrent use of upadacitinib with immunosuppressives or immunomodulators is not recommended. DISCUSSION: Serious infections have been reported in patients receiving upadacitinib. Reported infections included pneumonia, cellulitis, tuberculosis, multidermatomal herpes zoster, oral/esophageal candidiasis, cryptococcosis. Reports of viral reactivation, including herpes virus reactivation and hepatitis B reactivation, were reported in clinical studies with upadacitinib.(1) |
RINVOQ, RINVOQ LQ |
Selected Antineoplastic Systemic Enzyme Inhibitors/Rifabutin SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Rifabutin is a moderate inducer of the CYP3A4 isoenzyme and may increase the metabolism of some antineoplastic systemic enzyme inhibitors, including cabozantinib,(1,2) ceritinib,(3) erlotinib,(4) imatinib,(5) lapatinib,(6) and sorafenib.(7) CLINICAL EFFECTS: Concurrent use of rifabutin may decrease the levels and effectiveness of some antineoplastic systemic enzyme inhibitors, including cabozantinib,(1,2) ceritinib,(3) erlotinib,(4) imatinib,(5) lapatinib,(6) and sorafenib.(7) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid the concurrent use of rifabutin in patients receiving therapy with cabozantinib,(1,2) ceritinib,(3) erlotinib,(4) imatinib,(5) lapatinib,(6) and sorafenib.(7) Consider the use of alternative agents with less enzyme induction potential.(1-7) If concurrent use of rifabutin cannot be avoided: Increase the daily dose of cabozantinib TABlets by 20 mg (e.g. from 60 mg to 80 mg daily) as tolerated. The daily dose should not exceed 80 mg. Resume the dose that was used prior to initiating rifabutin 2 to 3 days after discontinuation of rifabutin.(1) Increase the daily dose of cabozantinib CAPsules by 40 mg (from 140 mg to 180 mg daily or from 100 mg to 140 mg daily) as tolerated. The daily dose of cabozantinib should not exceed 180 mg. If rifabutin is discontinued, reduce the dosage of cabozantinib to the dose used prior to initiation of rifabutin 2 to 3 days after discontinuation of rifabutin.(2) Consider increasing the dosage of erlotinib by 50 mg increments as tolerated at two week intervals (to a maximum of 450 mg) while closely monitoring the patient. The highest dosage studied with concurrent rifampin is 450 mg. If the dosage of erlotinib is increased, it will need to be decreased when rifabutin is discontinued.(4) The dose of imatinib should be increased by at least 50% and clinical response should be carefully monitored. Dosages up to 1,200 mg/day (600 mg twice daily) have been used in patients receiving concurrent therapy with strong CYP3A4 inducers.(5) The dose of lapatinib should be gradually titrated from 1,250 mg/day up to 4,500 mg/day (HER2 positive metastatic breast cancer indication) or from 1,500 mg/day up to 5,500 mg/day (hormone receptor positive, HER2 positive breast cancer indication) based on patient tolerability. If rifabutin is discontinued, the dose of lapatinib should be adjusted to the normal dose.(6) DISCUSSION: The US manufacturers of cabozantinib,(2) erlotinib,(4) imatinib,(5) lapatinib,(6) and sorafenib,(7) and the UK manufacturer of ceritinib(3) include rifabutin in their list of strong CYP3A4 inducers to be avoided. Although the combinations of these agents with rifabutin have not been studied, they have been studied with other strong CYP3A4 inducers. In a study in healthy subjects, rifampin (600 mg daily for 31 days) decreased the area-under-curve (AUC) of a single dose of cabozantinib by 77%.(1) In a study in 19 healthy subjects, rifampin (600 mg daily for 14 days) decreased the maximum concentration (Cmax) and AUC of a single dose of ceritinib by 44% and 70%, respectively.(3) Pretreatment and concurrent therapy with rifampin increased erlotinib clearance by 3-fold and decreased the erlotinib AUC by 66% to 80%. This is equivalent to a dose of about 30 mg to 50 mg in NSCLC.(4) In a study, pretreatment with rifampin for 11 days decreased the AUC of a single 450 mg dose of erlotinib to 57.6% of the AUC observed with a single 150 mg dose of erlotinib.(4) In a case report, coadministration of phenytoin (180mg daily) and erlotinib (150mg daily) increased the phenytoin concentration from 8.2mcg/ml to 24.2mcg/ml and decreased the erlotinib concentration 12-fold (from 1.77mcg/ml to 0.15mcg/ml) and increased the erlotinib clearance by 10-fold (from 3.53 L/h to 41.7 L/h).(8) Pretreatment of 14 healthy subjects with rifampin (600 mg daily for 10 days) increased the clearance of a single dose of imatinib (400 mg) by 3.8-fold. The AUC and Cmax decreased by 74% and 54%, respectively.(5,9) The Cmax of the CGP74588 metabolite increased by 88.6%, but the AUC of CGP74588 decreased by 11%.(9) In healthy subjects, carbamazepine (100 mg twice daily for 3 days and 200 mg twice daily for 17 days), another CYP3A4 inducer, decreased the AUC of lapatinib by 72%. The dose adjustment recommendations are based on pharmacokinetic studies and are predicted to adjust lapatinib AUC to the range observed without concurrent CYP3A4 inducers; however, there are no clinical data with these doses in patients receiving strong CYP3A4 inducers.(6) Concurrent rifampin (600 mg daily for 5 days) decreased the AUC of a single dose of sorafenib (400 mg) by 37%.(7) |
RIFABUTIN, TALICIA |
Sacituzumab Govitecan/UGT1A1 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of UGT1A1 may inhibit the metabolism of SN-38, the topoisomerase inhibitor which is the antineoplastic component of sacituzumab govitecan.(1) CLINICAL EFFECTS: Concurrent use of UGT1A1 inhibitors may result in increased exposure to and toxicity from sacituzumab govitecan. Toxicities from sacituzumab govitecan include neutropenia, severe diarrhea, nausea, and vomiting.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid the use of inhibitors of UGT1A1 in patients receiving sacituzumab govitecan.(1) DISCUSSION: SN-38, the small molecule moiety of sacituzumab govitecan, is metabolized by UGT1A1, and inhibitors of UGT1A1 are expected to increase SN-38 levels and dose limiting toxicities.(1) In a clinical trial, patients homozygous for decreased function UGT1A1*28 allele had a 26% incidence of Grade 4 neutropenia, compared to 13% of patients heterozygous for the UGT1A1*28 allele and 11% of patients homozygous for the wild type allele.(1) Coadministration of ketoconazole (a CYP3A4 and UGT1A1 inhibitor) with irinotecan, has been reported to result in increased exposure to SN-38, an active metabolite of irinotecan.(2) UGT1A1 inhibitors linked to this monograph include: atazanavir, belumosudil, capivasertib, erlotinib, gemfibrozil, indinavir, ketoconazole, lapatinib, nilotinib, pazopanib, probenecid, regorafenib, and sorafenib. |
TRODELVY |
Inebilizumab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inebilizumab, immunosuppressives, and immunomodulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of inebilizumab with immunosuppressive or immunomodulating agents may result in myelosuppression including neutropenia resulting in an increased risk for serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of inebilizumab states that the concurrent use of inebilizumab with immunosuppressive agents, including systemic corticosteroids, may increase the risk of infection. If concurrent therapy is warranted, consider the risk of additive immune suppression and monitor based on prescribing information for both agents.(1) DISCUSSION: Inebilizumab has not been studied in combination with other immunosuppressants. If concurrent therapy is warranted, consider the potential for increased immunosuppressive risks from both agents. The most common infections reported by inebilizumab treated patients in the randomized and open-label clinical trial periods included urinary tract infections (20%), nasopharyngitis (13%), upper respiratory tract infections (8%), and influenza (7%). Although there been no cases of Hepatitis B virus reactivation or progressive multifocal leukoencephalopathy reported in patients taking inebilizumab, these infections have been observed in patients taking other B-cell-depleting antibodies.(1) |
UPLIZNA |
Baricitinib/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of baricitinib with other biologic disease-modifying antirheumatic drugs (DMARDs) or potent immunosuppressants such as azathioprine or cyclosporine may result in additive or synergistic effects on the immune system. CLINICAL EFFECTS: Concurrent use of baricitinib with other biologic DMARDs or potent immunosuppressants such as azathioprine or cyclosporine may increase the risk of serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of baricitinib states that concurrent use of baricitinib with biologic DMARDs or potent immunosuppressants is not recommended.(1) DISCUSSION: Most patients who developed serious infections while being treated with baricitinib were on concomitant immunosuppressants like methotrexate and corticosteroids. The combination of baricitinib with other biologic DMARDs has not been studied.(1) |
OLUMIANT |
Erlotinib/Strong CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Agents that inhibit the CYP3A4 isoenzyme may inhibit the metabolism of erlotinib.(1) CLINICAL EFFECTS: Concurrent use of strong CYP3A4 inhibitors may increase levels of and effects from erlotinib, including interstitial lung disease, renal failure, hepatotoxicity, gastrointestinal perforation, skin disorders, ocular disorders, or cerebrovascular events.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid the use of strong CYP3A4 inhibitors in patients undergoing therapy with erlotinib.(1) Consider alternatives with no or minimal enzyme inhibition. If concurrent therapy with erlotinib is required, decrease the dose of erlotinib by 50 mg decrements.(1) DISCUSSION: Co-administration of erlotinib with a strong CYP3A4 inhibitor, ketoconazole, increased erlotinib area-under-curve (AUC) by 67%.(1) In a study, 24 healthy subjects received a single erlotinib 100 mg dose alone or after ketoconazole 200 mg twice daily for 5 days. Mean AUC and concentration maximum (Cmax) increased by approximately 2-fold.(2) Strong inhibitors of CYP3A4 include: adagrasib, boceprevir, ceritinib, clarithromycin, cobicistat, idelalisib, indinavir, itraconazole, josamycin, ketoconazole, lonafarnib, lopinavir, mibefradil, mifepristone, nefazodone, nelfinavir, nirmatrelvir/ritonavir, paritaprevir, posaconazole, ribociclib, saquinavir, telaprevir, telithromycin, tipranavir, troleandomycin, tucatinib, or voriconazole.(3,4) |
APTIVUS, CLARITHROMYCIN, CLARITHROMYCIN ER, EVOTAZ, GENVOYA, ITRACONAZOLE, ITRACONAZOLE MICRONIZED, KALETRA, KETOCONAZOLE, KISQALI, KORLYM, KRAZATI, LANSOPRAZOL-AMOXICIL-CLARITHRO, LOPINAVIR-RITONAVIR, MIFEPREX, MIFEPRISTONE, NEFAZODONE HCL, NOXAFIL, OMECLAMOX-PAK, PAXLOVID, POSACONAZOLE, PREZCOBIX, RECORLEV, SPORANOX, STRIBILD, SYMTUZA, TOLSURA, TUKYSA, TYBOST, VFEND, VFEND IV, VIRACEPT, VORICONAZOLE, ZOKINVY, ZYDELIG, ZYKADIA |
Leflunomide; Teriflunomide/Selected Immunosuppressants SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of leflunomide or teriflunomide and potent immunosuppressants may result in additive or synergistic effects on the immune system.(1,2) Leflunomide is a prodrug and is converted to its active metabolite teriflunomide.(1) CLINICAL EFFECTS: Concurrent use of leflunomide or teriflunomide with immunosuppressants may result in an increased risk of serious infections, including opportunistic infections, especially Pneumocystis jiroveci pneumonia, tuberculosis (including extra-pulmonary tuberculosis), and aspergillosis. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: If leflunomide or teriflunomide is used concurrently with immunosuppressive agents, chronic CBC monitoring should be performed more frequently, every month instead of every 6 to 8 weeks. If bone marrow suppression or a serious infection occurs, leflunomide or teriflunomide should be stopped and rapid drug elimination procedure should be performed.(1,2) DISCUSSION: Pancytopenia, agranulocytosis and thrombocytopenia have been reported in patients receiving leflunomide or teriflunomide alone, but most frequently in patients taking concurrent immunosuppressants.(1,2) Severe and potentially fatal infections, including sepsis, have been reported in patients receiving leflunomide or teriflunomide, especially Pneumocystis jiroveci pneumonia and aspergillosis. Tuberculosis has also been reported.(1,2) |
ARAVA, AUBAGIO, LEFLUNICLO, LEFLUNOMIDE, TERIFLUNOMIDE |
Antineoplastic Systemic Enzyme Inhibitors/Carbamazepine SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Agents that induce the CYP3A4 isoenzyme, such as carbamazepine, may induce the metabolism of antineoplastic systemic enzyme inhibitors, including bosutinib,(1) cabozantinib,(2,3) dasatinib,(4) erlotinib,(5) gefitinib,(6) ibrutinib,(7) lapatinib,(8) pazopanib,(9) sorafenib,(10) sunitinib,(11) and vandetanib.(12) CLINICAL EFFECTS: Concurrent use of strong CYP3A4 inducers may decrease the levels and effectiveness of antineoplastic systemic enzyme inhibitors, including bosutinib,(1) cabozantinib,(2,3) dasatinib,(4) erlotinib,(5) gefitinib,(6) ibrutinib,(7) lapatinib,(8) pazopanib,(9) sorafenib,(10) sunitinib,(11) and vandetanib.(12) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid the concurrent use of strong CYP3A4 inducers in patients receiving therapy with antineoplastic enzyme inhibitors. Consider the use of alternative agents with less enzyme induction potential.(1-12) Pazopanib should not be administered to patients who cannot avoid chronic use of strong CYP3A4 inducers.(8) If concurrent use of a CYP3A4 inducer cannot be avoided with other antineoplastic enzyme inhibitors: Increase the daily dose of cabozantinib TABlets by 20 mg (e.g. from 60 mg to 80 mg daily) as tolerated. The daily dose should not exceed 80 mg. Resume the dose that was used prior to initiating the CYP3A4 inducer 2 to 3 days after discontinuation of the strong inducer.(2) Increase the daily dose of cabozantinib CAPsules by 40 mg (from 140 mg to 180 mg daily or from 100 mg to 140 mg daily) as tolerated. The daily dose of cabozantinib should not exceed 180 mg. If the CYP3A4 inducer is discontinued, reduce the dosage of cabozantinib to the dose used prior to initiation of the inducer 2 to 3 days after discontinuation of the strong inducer.(3) Consider increasing the dose of dasatinib.(4) Consider increasing the dosage of erlotinib by 50 mg increments as tolerated at two week intervals (to a maximum of 450 mg) while closely monitoring the patient. The highest dosage studied with concurrent rifampin is 450 mg. If the dosage of erlotinib is increased, it will need to be decreased when the inducer is discontinued. If the inducer is dexamethasone, monitor the patient for sign of gastrointestinal perforation. Discontinue erlotinib in patients who develop gastrointestinal perforation.(5) Consider a dose increase to 500 mg daily of gefitinib in the absence of severe adverse drug reaction. Clinical response and adverse events should be closely monitored.(6) The dose of lapatinib should be gradually titrated from 1,250 mg/day up to 4,500 mg/day (HER2 positive metastatic breast cancer indication) or from 1,500 mg/day up to 5,500 mg/day (hormone receptor positive, HER2 positive breast cancer indication) based on patient tolerability. If the inducer is discontinued, the dose of lapatinib should be adjusted to the normal dose.(8) A dosage increase of sunitinib to a maximum of 87.5 mg daily in patients with gastrointestinal stromal tumors (GIST) or advanced renal cell carcinoma (RCC) or to a maximum of 62.5 mg in patients with pancreatic neuroendocrine tumors (pNET) should be considered.(11) DISCUSSION: In a study in 24 healthy subjects, rifampin (a strong CYP3A4 inducer) decreased bosutinib area-under-curve (AUC) and maximum concentration (Cmax) by 94% and 86%. Bosutinib clearance increased by 13-fold.(1,14) In a study in healthy subjects, rifampin (600 mg daily for 31 days) decreased the AUC of a single dose of cabozantinib by 77%.(2) In a study in healthy subjects, concurrent rifampin (600 mg daily) decreased the Cmax and AUC of a single dose of dasatinib by 81% and 82%, respectively.(4) Pretreatment and concurrent therapy with rifampin increased erlotinib clearance by 3-fold and decreased the erlotinib area-under-curve (AUC) by 66% to 80%. This is equivalent to a dose of about 30 mg to 50 mg in NSCLC.(5) In a study, pretreatment with rifampin for 11 days decreased the AUC of a single 450 mg dose of erlotinib to 57.6% of the AUC observed with a single 150 mg dose of erlotinib.(5) In a case report, coadministration of phenytoin (180mg daily) and erlotinib (150mg daily) increased the phenytoin concentration from 8.2mcg/ml to 24.2mcg/ml and decreased the erlotinib concentration 12-fold (from 1.77mcg/ml to 0.15mcg/ml) and increased the erlotinib clearance by 10-fold (from 3.53 L/h to 41.7 L/h).(14) In a study in healthy male volunteers, rifampicin decreased AUC of gefitinib by 85%.(6) The coadministration of rifampin decreased the Cmax and AUC of ibrutinib by more than 13-fold and 10-fold.(7) In healthy subjects, carbamazepine (100 mg twice daily for 3 days and 200 mg twice daily for 17 days), another CYP3A4 inducer, decreased the AUC of lapatinib by 72%. The dose adjustment recommendations are based on pharmacokinetic studies and are predicted to adjust lapatinib AUC to the range observed without concurrent CYP3A4 inducers; however, there are no clinical data with these doses in patients receiving strong CYP3A4 inducers.(8) Pazopanib is primarily metabolized by CYP3A4.(9) Concurrent rifampin (600 mg daily for 5 days) decreased the AUC of a single dose of sorafenib (400 mg) by 37%.(10) In a study with healthy subjects, concurrent rifampin decreased the combined (sunitinib plus primary active metabolite) Cmax and AUC by 23% and 46%, respectively, of a single dose of sunitinib.(11) Strong CYP3A4 inducers are expected to alter vandetanib concentrations. The patient developed nystagmus, a sign of phenytoin toxicity.(12) |
CARBAMAZEPINE, CARBAMAZEPINE ER, CARBATROL, EPITOL, EQUETRO, TEGRETOL, TEGRETOL XR |
Antineoplastic Systemic Enzyme Inhibitors/Apalutamide SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Apalutamide(1) may induce the metabolism of antineoplastic systemic enzyme inhibitors, including bosutinib,(2) cabozantinib,(3) erlotinib,(4) gefitinib,(5) ibrutinib,(6) idelalisib,(7) and imatinib.(8) CLINICAL EFFECTS: Concurrent use of apalutamide may decrease the levels and effectiveness of antineoplastic systemic enzyme inhibitors, including bosutinib,(2) cabozantinib,(3) erlotinib,(4) gefitinib,(5) ibrutinib,(6) idelalisib,(7) and imatinib.(8) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid the concurrent use of apalutamide in patients receiving therapy with antineoplastic enzyme inhibitors. Consider the use of alternative agents with less enzyme induction potential.(1-8) If concurrent use of apalutamide cannot be avoided with antineoplastic enzyme inhibitors: Increase the daily dose of cabozantinib TABlets by 20 mg (e.g. from 60 mg to 80 mg daily) as tolerated. The daily dose should not exceed 80 mg. Resume the dose that was used prior to initiating the CYP3A4 inducer 2 to 3 days after discontinuation of the strong inducer.(9) Increase the daily dose of cabozantinib CAPsules by 40 mg (from 140 mg to 180 mg daily or from 100 mg to 140 mg daily) as tolerated. The daily dose of cabozantinib should not exceed 180 mg. If the CYP3A4 inducer is discontinued, reduce the dosage of cabozantinib to the dose used prior to initiation of the inducer 2 to 3 days after discontinuation of the strong inducer.(3) Consider increasing the dosage of erlotinib by 50 mg increments as tolerated at two week intervals (to a maximum of 450 mg) while closely monitoring the patient. The highest dosage studied with concurrent rifampin is 450 mg. If the dosage of erlotinib is increased, it will need to be decreased when the inducer is discontinued.(4) Consider a dose increase to 500 mg daily of gefitinib in the absence of severe adverse drug reaction. Clinical response and adverse events should be closely monitored.(5) The dose of imatinib should be increased by at least 50% and clinical response should be carefully monitored. Dosages up to 1200 mg/day (600 mg twice daily) have been used in patients receiving concurrent therapy with strong CYP3A4 inducers.(8) DISCUSSION: In a study in 24 healthy subjects, rifampin (a strong CYP3A4 inducer) decreased bosutinib area-under-curve (AUC) and maximum concentration (Cmax) by 94% and 86%. Bosutinib clearance increased by 13-fold.(2,11) In a study in healthy subjects, rifampin (600 mg daily for 31 days) decreased the AUC of a single dose of cabozantinib by 77%.(3) Pretreatment and concurrent therapy with rifampin increased erlotinib clearance by 3-fold and decreased the erlotinib area-under-curve (AUC) by 66% to 80%. This is equivalent to a dose of about 30 mg to 50 mg in NSCLC.(4) In a study, pretreatment with rifampin for 11 days decreased the AUC of a single 450 mg dose of erlotinib to 57.6% of the AUC observed with a single 150 mg dose of erlotinib.(4) In a case report, coadministration of phenytoin (180mg daily) and erlotinib (150mg daily) increased the phenytoin concentration from 8.2mcg/ml to 24.2mcg/ml and decreased the erlotinib concentration 12-fold (from 1.77mcg/ml to 0.15mcg/ml) and increased the erlotinib clearance by 10-fold (from 3.53 L/h to 41.7 L/h).(10) In a study in healthy male volunteers, rifampicin decreased AUC of gefitinib by 85%.(5) The coadministration of rifampin decreased the Cmax and AUC of ibrutinib by more than 13-fold and 10-fold.(6) In a study in healthy subjects, rifampin (600 mg daily for 8 days) decreased the Cmax and AUC of idelalisib (150 mg single dose) by 58% and 75%, respectively.(7) Pretreatment of 14 healthy subjects with rifampin (600 mg daily for 10 days) increased the clearance of a single dose of imatinib (400 mg) by 3.8-fold. The area-under-curve (AUC) and maximum concentration (Cmax) decreased by 74% and 54%, respectively.(8,12) The Cmax of the CGP74588 metabolite increased by 88.6%, but the AUC of CGP74588 decreased by 11%.(12) |
ERLEADA |
Slt Antineoplastic Systemic Enzyme Inh/Lumacaftor-Ivacaftor SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Lumacaftor-ivacaftor(1) may induce the metabolism of antineoplastic systemic enzyme inhibitors, including bosutinib,(2) cabozantinib,(3) crizotinib,(4) dasatinib,(5) erlotinib,(6) gefitinib,(7) ibrutinib,(8) imatinib,(9) lapatinib,(10) nilotinib,(11) pazopanib,(12) sorafenib,(13) sunitinib,(14) and vandetanib.(15) CLINICAL EFFECTS: Concurrent use of lumacaftor-ivacaftor may decrease the levels and effectiveness of antineoplastic systemic enzyme inhibitors, including bosutinib,(2) cabozantinib,(3) crizotinib,(4) dasatinib,(5) erlotinib,(6) gefitinib,(7) ibrutinib,(8) imatinib,(9) lapatinib,(10) nilotinib,(11) pazopanib,(12) sorafenib,(13) sunitinib,(14) and vandetanib.(15) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid the concurrent use of lumacaftor-ivacaftor in patients receiving therapy with antineoplastic enzyme inhibitors. Consider the use of alternative agents with less enzyme induction potential.(2-15) Because of the nonlinear pharmacokinetic profile of nilotinib, increasing its dose is unlikely to compensate for enzyme induction.(11) Pazopanib should not be administered to patients who cannot avoid chronic use of strong CYP3A4 inducers.(12) If concurrent use of a CYP3A4 inducer cannot be avoided with other antineoplastic enzyme inhibitors: Increase the daily dose of cabozantinib TABlets by 20 mg (e.g. from 60 mg to 80 mg daily) as tolerated. The daily dose should not exceed 80 mg. Resume the dose that was used prior to initiating the CYP3A4 inducer 2 to 3 days after discontinuation of the strong inducer.(16) Increase the daily dose of cabozantinib CAPsules by 40 mg (from 140 mg to 180 mg daily or from 100 mg to 140 mg daily) as tolerated. The daily dose of cabozantinib should not exceed 180 mg. If the CYP3A4 inducer is discontinued, reduce the dosage of cabozantinib to the dose used prior to initiation of the inducer 2 to 3 days after discontinuation of the strong inducer.(2) Consider increasing the dose of dasatinib.(5) Consider increasing the dosage of erlotinib by 50 mg increments as tolerated at two week intervals (to a maximum of 450 mg) while closely monitoring the patient. The highest dosage studied with concurrent rifampin is 450 mg. If the dosage of erlotinib is increased, it will need to be decreased when the inducer is discontinued. If the inducer is dexamethasone, monitor the patient for sign of gastrointestinal perforation. Discontinue erlotinib in patients who develop gastrointestinal perforation.(6) Consider a dose increase to 500 mg daily of gefitinib in the absence of severe adverse drug reaction. Clinical response and adverse events should be closely monitored.(7) The dose of imatinib should be increased by at least 50% and clinical response should be carefully monitored. Dosages up to 1200 mg/day (600 mg twice daily) have been used in patients receiving concurrent therapy with strong CYP3A4 inducers.(9) The dose of lapatinib should be gradually titrated from 1,250 mg/day up to 4,500 mg/day (HER2 positive metastatic breast cancer indication) or from 1,500 mg/day up to 5,500 mg/day (hormone receptor positive, HER2 positive breast cancer indication) based on patient tolerability. If the inducer is discontinued, the dose of lapatinib should be adjusted to the normal dose.(10) A dosage increase of sunitinib to a maximum of 87.5 mg daily in patients with gastrointestinal stromal tumors (GIST) or advanced renal cell carcinoma (RCC) or to a maximum of 62.5 mg in patients with pancreatic neuroendocrine tumors (pNET) should be considered.(14) DISCUSSION: In a study, 24 healthy subjects received a single dose of bosutinib 500 mg (days 1 and 14) and rifampin 600 mg (days 8-17). Bosutinib Cmax and AUC decreased by 86% and 92%, respectively. Bosutinib clearance increased by 13-fold.(2,17) In a study in healthy subjects, rifampin (600 mg daily for 31 days) decreased the AUC of a single dose of cabozantinib by 77%.(3) Rifampin (600 mg daily) decreased the Cmax and AUC of a single dose of crizotinib (250 mg) by 69% and 82%, respectively.(4) In a study in healthy subjects, concurrent rifampin (600 mg daily) decreased the Cmax and AUC of a single dose of dasatinib by 81% and 82%, respectively.(5) Pretreatment and concurrent therapy with rifampin increased erlotinib clearance by 3-fold and decreased the erlotinib area-under-curve (AUC) by 66% to 80%. This is equivalent to a dose of about 30 mg to 50 mg in NSCLC.(6) In a study, pretreatment with rifampin for 11 days decreased the AUC of a single 450 mg dose of erlotinib to 57.6% of the AUC observed with a single 150 mg dose of erlotinib.(6) In a case report, coadministration of phenytoin (180mg daily) and erlotinib (150mg daily) increased the phenytoin concentration from 8.2mcg/ml to 24.2mcg/ml and decreased the erlotinib concentration 12-fold (from 1.77mcg/ml to 0.15mcg/ml) and increased the erlotinib clearance by 10-fold (from 3.53 L/h to 41.7 L/h).(18) In a study in healthy male volunteers, rifampicin decreased AUC of gefitinib by 85%.(7) The coadministration of rifampin decreased the Cmax and AUC of ibrutinib by more than 13-fold and 10-fold.(8) Pretreatment of 14 healthy subjects with rifampin (600 mg daily for 10 days) increased the clearance of a single dose of imatinib (400 mg) by 3.8-fold. The area-under-curve (AUC) and maximum concentration (Cmax) decreased by 74% and 54%, respectively.(9,19) The Cmax of the CGP74588 metabolite increased by 88.6%, but the AUC of CGP74588 decreased by 11%.(19) In healthy subjects, carbamazepine (100 mg twice daily for 3 days and 200 mg twice daily for 17 days), another CYP3A4 inducer, decreased the AUC of lapatinib by 72%. The dose adjustment recommendations are based on pharmacokinetic studies and are predicted to adjust lapatinib AUC to the range observed without concurrent CYP3A4 inducers; however, there are no clinical data with these doses in patients receiving strong CYP3A4 inducers.(10) In a study in healthy subjects, concurrent rifampin (600 mg daily for 12 days) decreased nilotinib AUC by 80%.(11) Pazopanib is primarily metabolized by CYP3A4.(12) Concurrent rifampin (600 mg daily for 5 days) decreased the AUC of a single dose of sorafenib (400 mg) by 37%.(13) In a study with healthy subjects, concurrent rifampin decreased the combined (sunitinib plus primary active metabolite) Cmax and AUC by 23% and 46%, respectively, of a single dose of sunitinib.(14) Strong CYP3A4 inducers are expected to alter vandetanib concentrations. The patient developed nystagmus, a sign of phenytoin toxicity.(15) |
ORKAMBI |
Ponesimod/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ponesimod in combination with immunosuppressives and immune-modulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of ponesimod with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection, cryptococcal infection, or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: The ponesimod US prescribing information states ponesimod has not been studied in combination with anti-neoplastic, immune-modulating, or immunosuppressive therapies. Caution should be used during concomitant administration because of the risk of additive immune effects during therapy and in the weeks following administration. When switching from drugs with prolonged immune effects, the half-life and mode of action of these drugs must be considered in order to avoid unintended additive immunosuppressive effects. Initiating treatment with ponesimod after alemtuzumab is not recommended. However, ponesimod can generally be started immediately after discontinuation of beta interferon or glatiramer acetate.(1) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections, cryptococcal meningitis, disseminated cryptococcal infections, and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1) |
PONVORY |
Sodium Iodide I 131/Myelosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Sodium iodide I 131 can cause depression of the hematopoetic system. Myelosuppressives and immunomodulators also suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of sodium iodide I 131 with agents that cause bone marrow depression, including myelosuppressives or immunomodulators, may result in an enhanced risk of hematologic disorders, including anemia, blood dyscrasias, bone marrow depression, leukopenia, and thrombocytopenia. Bone marrow depression may increase the risk of serious infections and bleeding.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of sodium iodide I 131 states that concurrent use with bone marrow depressants may enhance the depression of the hematopoetic system caused by large doses of sodium iodide I 131.(1) Sodium iodide I 131 causes a dose-dependent bone marrow suppression, including neutropenia or thrombocytopenia, in the 3 to 5 weeks following administration. Patients may be at increased risk of infections or bleeding during this time. Monitor complete blood counts within one month of therapy. If results indicate leukopenia or thrombocytopenia, dosimetry should be used to determine a safe sodium iodide I 131 activity.(1) DISCUSSION: Hematologic disorders including death have been reported with sodium iodide I 131. The most common hematologic disorders reported include anemia, blood dyscrasias, bone marrow depression, leukopenia, and thrombocytopenia.(1) |
HICON, SODIUM IODIDE I-131 |
Fingolimod/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Fingolimod in combination with immunosuppressives and immune-modulators all suppress the immune system.(1-3) CLINICAL EFFECTS: Concurrent use of fingolimod with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1-3) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: Recommendations for fingolimod regarding this interaction differ between regulatory approving agencies. The fingolimod US prescribing information states: - Antineoplastic, immune-modulating, or immunosuppressive therapies, (including corticosteroids) are expected to increase the risk of immunosuppression, and the risk of additive immune system effects must be considered if these therapies are coadministered with fingolimod. When switching from drugs with prolonged immune effects, such as natalizumab, teriflunomide or mitoxantrone, the duration and mode of action of these drugs must be considered to avoid unintended additive immunosuppressive effects when initiating fingolimod.(1) The fingolimod Canadian prescribing information states: - Concurrent use with immunosuppressive or immunomodulatory agents is contraindicated due to the risk of additive immune system effects. However, co-administration of a short course of corticosteroids (up to 5 days) did not increase the overall rate of infection in patients participating Phase III clinical trials.(2) The fingolimod UK specific product characteristics states: - Fingolimod is contraindicated in patients currently receiving immunosuppressive therapies or those immunocompromised by prior therapies. When switching patients from another disease modifying therapy to Gilenya, the half-life and mode of action of the other therapy must be considered in order to avoid an additive immune effect whilst at the same time minimizing the risk of disease activation.(3) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1-3) |
FINGOLIMOD, GILENYA, TASCENSO ODT |
Ozanimod/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ozanimod in combination with immunosuppressives and immune-modulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of ozanimod with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: The ozanimod US prescribing information state this information regarding this interaction: -Ozanimod has not been studied in combination with anti-neoplastic, immune-modulating, or immunosuppressive therapies. Caution should be used during concomitant administration because of the risk of additive immune effects during therapy and in the week following administration. When switching from drugs with prolonged immune effects, the half-life and mode of action of these drugs must be considered in order to avoid unintended additive immunosuppressive effects. Initiating treatment with ozanimod after alemtuzumab is not recommended. However, ozanimod can generally be started immediately after discontinuation of beta interferon or glatiramer acetate.(1) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1) |
ZEPOSIA |
Siponimod/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Siponimod in combination with immunosuppressives and immune-modulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of siponimod with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: The siponimod US prescribing information state this information regarding this interaction: -Siponimod has not been studied in combination with anti-neoplastic, immune-modulating, or immunosuppressive therapies. Caution should be used during concomitant administration because of the risk of additive immune effects during therapy and in the week following administration. When switching from drugs with prolonged immune effects, the half-life and mode of action of these drugs must be considered in order to avoid unintended additive immunosuppressive effects. Initiating treatment with siponimod after alemtuzumab is not recommended. However, siponimod can generally be started immediately after discontinuation of beta interferon or glatiramer acetate.(1) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1) |
MAYZENT |
Cladribine/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Cladribine in combination with immunosuppressives and immune-modulators all suppress the immune system.(1-2) CLINICAL EFFECTS: Concurrent use of cladribine with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1-2) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: Recommendations for cladribine regarding this interaction differ between regulatory approving agencies. The cladribine US prescribing information states: -Concomitant use with myelosuppressive or other immunosuppressive drugs is not recommended. Acute short-term therapy with corticosteroids can be administered. In patients who have previously been treated with immunomodulatory or immunosuppressive drugs, consider potential additive effect, the mode of action, and duration of effect of the other drugs prior to initiation of cladribine.(1) The cladribine Canadian prescribing information states: -Use of cladribine in immunocompromised patients is contraindicated because of a risk of additive effects on the immune system. Acute short-term therapy with corticosteroids can be administered during cladribine treatment.(2) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1-2) |
CLADRIBINE, MAVENCLAD |
Lorazepam Extended Release/UGT Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of UDP-glucuronosyltransferases (UGT) may inhibit the metabolism of lorazepam.(1) CLINICAL EFFECTS: Concurrent use of UGT inhibitors may result in increased exposure to and toxicity from lorazepam, including profound sedation, respiratory depression, and coma.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of lorazepam extended release capsules states the initiating a UGT inhibitor during therapy with lorazepam extended release capsules should be avoided. If a UGT inhibitor is initiated, discontinue lorazepam extended release capsules and switch patient to a reduced dose of lorazepam tablets during concurrent therapy.(1) DISCUSSION: In a study in 8 healthy males, pretreatment with valproate (250 mg twice daily for 3 days) decreased the total clearance of a single dose of lorazepam (2 mg intravenously) by 40% in 6 subjects. The formation rate of lorazepam glucuronide was decreased by 55% in these subjects. Lorazepam concentrations were about 2-fold higher for at least 12 hours post-dose during concurrent valproate.(2,4) In a randomized, double-blind, placebo-controlled study in 16 healthy males, concurrent divalproex (500 mg every 12 hours for 12 days) increased the area-under-curve (AUC), maximum concentration (Cmax), and minimum concentration (Cmin) of lorazepam (1 mg every 12 hours, Days 6-10) by 20%, 8%, and 31%, respectively. Lorazepam clearance was decreased by 31% during concurrent divalproex.(5) There is one case report of coma following the injection of 6 mg of lorazepam over 24 hours in a patient maintained on valproate (1000 mg). The patient remained in a coma for between 48 and 72 hours.(6) In a study in 9 healthy subjects, pretreatment with probenecid (500 mg every 6 hours) increased the half-life (T1/2) of a single intravenous dose of lorazepam (2 mg) by 130%. Lorazepam clearance was decreased by 45%. There was no change in lorazepam apparent volume of distribution.(2,7) UGT inhibitors linked to this monograph include: atazanavir, belumosudil, capivasertib, erlotinib, gemfibrozil, indinavir, ketoconazole, lapatinib, mefenamic acid, nilotinib, pazopanib, probenecid, regorafenib, sorafenib, and valproic acid. |
LOREEV XR |
Erlotinib/Vonoprazan-Clarithromycin SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: The solubility of erlotinib is pH dependent. Changes in gastric pH from proton pump inhibitors (PPIs) may decrease the absorption of erlotinib. Vonoprazan is a PPI.(1) If erlotinib is absorbed, agents that inhibit the CYP3A4 isoenzyme may inhibit the metabolism of erlotinib. Clarithromycin is a strong CYP3A4 inhibitor.(1) CLINICAL EFFECTS: Use of proton pump inhibitors may result in decreased levels and effectiveness of erlotinib.(1) If erlotinib is absorbed, concurrent use of strong CYP3A4 inhibitors may increase levels of and effects from erlotinib, including interstitial lung disease, renal failure, hepatotoxicity, gastrointestinal perforation, skin disorders, ocular disorders, or cerebrovascular events.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid the use of proton pump inhibitors (PPIs) in patients receiving treatment with erlotinib.(1) Consider the use of short-acting antacids in these patients. If antacids are used, separate the administration times by at least several hours for erlotinib.(1) If H2 antagonist therapy is required, erlotinib must be given 10 hours after the H2 blocker and at least 2 hours before the next dose of the H2 blocker.(1) The manufacturer of erlotinib also recommends avoiding the use of strong CYP3A4 inhibitors in patients undergoing therapy with erlotinib.(1) Consider alternatives with no or minimal enzyme inhibition. If concurrent therapy with erlotinib is required, decrease the dose of erlotinib by 50 mg decrements.(1) DISCUSSION: In a study, concurrent omeprazole decreased the AUC and Cmax of erlotinib by 46% and 61%, respectively.(1) In a study, administration of erlotinib two hours after a dose of ranitidine (300 mg), erlotinib AUC and Cmax decreased by 33% and 54%, respectively. Administration of erlotinib 10 hours after and two hours before ranitidine (150 mg twice daily), erlotinib AUC and Cmax decreased by 15% and 17%, respectively.(1) Co-administration of erlotinib with a strong CYP3A4 inhibitor, ketoconazole, increased erlotinib area-under-curve (AUC) by 67%.(1) In a study, 24 healthy subjects received a single erlotinib 100 mg dose alone or after ketoconazole 200 mg twice daily for 5 days. Mean AUC and concentration maximum (Cmax) increased by approximately 2-fold.(2) Strong inhibitors of CYP3A4 include: clarithromycin.(3,4) |
VOQUEZNA TRIPLE PAK |
Selected Kinase Inhibitors/Vonoprazan SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: The solubility of bosutinib,(1) dacomitinib,(2) dasatinib,(3) erlotinib,(4) gefitinib,(5) neratinib,(6) nilotinib,(7) and pazopanib(8) is pH dependent. Changes in gastric pH from vonoprazan(9) may decrease the absorption of bosutinib,(1) dacomitinib,(2) dasatinib,(3) erlotinib,(4) gefitinib,(5) neratinib,(6) nilotinib,(7) and pazopanib.(8) CLINICAL EFFECTS: Use of vonoprazan may result in decreased levels and effectiveness of bosutinib,(1) dacomitinib,(2) dasatinib,(3) erlotinib,(4) gefitinib,(5) neratinib,(6) nilotinib,(7) and pazopanib.(8) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid the use of vonoprazan(9) in patients receiving treatment with bosutinib,(1) dacomitinib,(2) dasatinib,(3) erlotinib,(4) gefitinib,(5) neratinib,(6) nilotinib,(7) and pazopanib.(8) Consider the use of short-acting antacids in these patients.(1-8) If antacids are used, separate the administration times by several hours(1-8) but at least 2 hours for bosutinib,(1) dasatinib,(3) and nilotinib,(7) 6 hours for gefitinib,(5) and 3 hours for neratinib.(6) If H2 antagonist therapy is required with dacomitinib, dacomitinib must be given once daily 10 hours after the H2 blocker and 6 hours before the next dose of the H2 blocker.(2) If H2 antagonist therapy is required with gefitinib, administer gefitinib 6 hours before or after H2-antagonists or antacids.(5) If H2 antagonist therapy is required with erlotinib, neratinib, or nilotinib, the kinase inhibitor must be given 10 hours after the H2 blocker and at least 2 hours before the next dose of the H2 blocker.(4,6,7) The manufacturer of Phyrago states that it can be administered with gastric acid reducing agents. Administration times should be separated with antacids.(14) DISCUSSION: Vonoprazan decreases gastric acidity by suppressing gastric acid secretion and is characterized as a type of gastric proton-pump inhibitor.(9) In a pharmacodynamic study, a single 20 mg dose of vonoprazan, elevated the intragastric pH compared to placebo and was sustained for over 24-hours after dosing. The inhibitory effect of vonoprazan on acid secretion increased with repeated daily dosing and antisecretory effect reached steady state by Day 4 with a mean 24-hour intragastric pH of 6.0 following 20 mg once daily dose.(9) In a study, concurrent rabeprazole decreased the Cmax and AUC of dacomitinib by 51% and 39%, respectively.(2) In a study in 24 healthy subjects, administration of a single dose of dasatinib (50 mg) 10 hours after famotidine decreased dasatinib area-under-curve (AUC) and maximum concentration (Cmax) by 61% and 63%, respectively.(3) In a study in 14 healthy subjects, administration of a single dose of dasatinib (100 mg) 22 hours after omeprazole (40 mg at steady state) decreased dasatinib AUC and Cmax by 43% and 42%, respectively.(3) In a study in 24 healthy subjects, simultaneous administration of dasatinib (50 mg) with aluminum hydroxide/magnesium hydroxide (30 ml) decreased dasatinib AUC and Cmax by 55% and 58%, respectively. In the same subjects, administration of the antacid 2 hours before dasatinib decreased dasatinib Cmax by 26%, but had no effect on dasatinib AUC.(3) In a study, concurrent omeprazole decreased the AUC and Cmax of erlotinib by 46% and 61%, respectively.(4) In a study, administration of erlotinib two hours after a dose of ranitidine (300 mg), erlotinib AUC and Cmax decreased by 33% and 54%, respectively. Administration of erlotinib 10 hours after and two hours before ranitidine (150 mg twice daily), erlotinib AUC and Cmax decreased by 15% and 17%, respectively.(4) In a case report, a patient that was given erlotinib (150 mg daily,) with algeldrate/magnesium hydroxide (800/400 mg four times daily 4 hours before or 2 hours after erlotinib) did not see a significant reduction in serum trough concentrations of erlotinib. When the patient was switched to intravenous pantoprazole via continuous infusion (8 mg per hour), serum erlotinib levels decreased significantly below minimal trough concentrations for effective tyrosine kinase inhibition. When the patient was switched to oral pantoprazole (40 mg twice daily), serum trough levels of erlotinib returned to therapeutic levels.(10) In a study in healthy subjects, high dose ranitidine with sodium carbonate was administered to maintain gastric pH above 5.0 and gefitinib AUC decreased 47%.(5) In a study in 15 healthy subjects, lansoprazole (30 mg at steady state) decreased the Cmax and AUC of a single dose of neratinib (240 mg) by 71% and 65%, respectively.(6) In a study in 22 healthy subjects, pretreatment with esomeprazole (40 mg daily), decreased the Cmax and AUC of a single dose of nilotinib (400 mg) by 27% and 34%, respectively.(7,11) Increasing the dosage of nilotinib or separating the administration time of nilotinib and the proton pump inhibitor is not expected to eliminate the interaction.(7) There were no significant changes in nilotinib pharmacokinetics when famotidine was administered 10 hours before or 2 hours after nilotinib.(7) There were no significant changes in nilotinib pharmacokinetics when an antacid (aluminum hydroxide/magnesium hydroxide/simethicone) was administered 2 hours before or after nilotinib.(7) In a study in 13 patients, esomeprazole (40 mg daily for 5 days) decreased the Cmax and AUC of pazopanib (400 mg daily) by 42% and 40%, respectively, when compared to the administration of pazopanib alone.(12) In an open-label, crossover study in 17 evaluable patients, omeprazole (40 mg daily) had no significant effects on the pharmacokinetics, pharmacodynamics, or safety of bortezomib (1.3 mg/m2).(13) Phyrago is not sensitive to increased gastric pH due to its polymer formulation. No clinically significant pharmacokinetic changes were seen with concurrent administration of Phyrago with omeprazole (proton pump inhibitor) or famotidine (H2 receptor antagonist).(14) |
VOQUEZNA, VOQUEZNA DUAL PAK |
Ritlecitinib/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ritlecitinib, immunosuppressives, and immunomodulators all suppress the immune system. CLINICAL EFFECTS: Concurrent use of ritlecitinib with immunosuppressives or immunomodulators may result in an increased risk of serious infections. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of ritlecitinib states that concurrent use of ritlecitinib with other JAK inhibitors, biologic immunomodulators, cyclosporine or other potent immunosuppressants is not recommended.(1) DISCUSSION: Serious infections have been reported in patients receiving ritlecitinib. Reported infections included appendicitis, COVID-19 infection (including pneumonia), and sepsis. Reports of viral reactivation, including herpes virus reactivation was reported in clinical studies with ritlecitinib.(1) |
LITFULO |
Erlotinib/CYP3A4 Inducers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inducers of CYP3A4 may induce the metabolism of erlotinib.(1) CLINICAL EFFECTS: Concurrent or recent use of a CYP3A4 inducer may result in decreased levels and effectiveness of erlotinib.(1) PREDISPOSING FACTORS: Induction effects may be more likely with regular use of the inducer for longer than 1-2 weeks. PATIENT MANAGEMENT: Avoid the concurrent use of CYP3A4 inducers in patients receiving therapy with erlotinib. Consider the use of alternative agents with less enzyme induction potential.(1) Consider increasing the dosage of erlotinib by 50 mg increments as tolerated at two week intervals (to a maximum of 450 mg) while closely monitoring the patient. The highest dosage studied with concurrent rifampin is 450 mg. If the dosage of erlotinib is increased, it will need to be decreased when the inducer is discontinued.(1) DISCUSSION: Pretreatment and concurrent therapy with rifampin increased erlotinib clearance by 3-fold and decreased the erlotinib area-under-curve (AUC) by 66% to 80%. This is equivalent to a dose of about 30 mg to 50 mg in NSCLC.(1) In a study, pretreatment with rifampin for 11 days decreased the AUC of a single 450 mg dose of erlotinib to 57.6% of the AUC observed with a single 150 mg dose of erlotinib.(1) In a case report, coadministration of phenytoin (180mg daily) and erlotinib (150mg daily) increased the phenytoin concentration from 8.2mcg/ml to 24.2mcg/ml and decreased the erlotinib concentration 12-fold (from 1.77mcg/ml to 0.15mcg/ml) and increased the erlotinib clearance by 10-fold (from 3.53 L/h to 41.7 L/h).(2) In a study, concurrent use of sorafenib (400 mg twice daily) and erlotinib (150 mg daily) decreased the concentration minimum (Cmin), concentration maximum (Cmax), and AUC of erlotinib.(3) In an animal study, concurrent use of dexamethasone and erlotinib decreased the AUC of erlotinib by 0.6-fold.(4) Strong inducers of CYP3A4 include: barbiturates, encorafenib, enzalutamide, fosphenytoin, ivosidenib, mitotane, phenobarbital, phenytoin, primidone, rifampin, and rifapentine.(5,6) Moderate inducers of CYP3A4 include: belzutifan, bosentan, cenobamate, dabrafenib, dipyrone, efavirenz, elagolix, etravirine, lesinurad, lorlatinib, mavacamten, mitapivat, modafinil, nafcillin, pacritinib, pexidartinib, repotrectinib, sotorasib, telotristat, thioridazine, and tovorafenib.(5,6) Weak inducers of CYP3A4 include: amprenavir, armodafinil, bexarotene, brigatinib, brivaracetam, clobazam, danshen, darolutamide, dicloxacillin, echinacea, eslicarbazepine, flucloxacillin, garlic, genistein, ginkgo, ginseng, glycyrrhizin, mobocertinib, nevirapine, omaveloxolone, oritavancin, oxcarbazepine, pioglitazone, pitolisant, quercetin, relugolix, rufinamide, sarilumab, sulfinpyrazone, tazemetostat, tecovirimat, terbinafine, ticlopidine, topiramate, troglitazone, vemurafenib, vinblastine, and zanubrutinib.(5,6) |
ACTOPLUS MET, ACTOS, ALOGLIPTIN-PIOGLITAZONE, ALUNBRIG, APTIOM, ARMODAFINIL, ASA-BUTALB-CAFFEINE-CODEINE, ASCOMP WITH CODEINE, AUGTYRO, BANZEL, BEXAROTENE, BOSENTAN, BRAFTOVI, BRIVIACT, BRUKINSA, BUTALB-ACETAMINOPH-CAFF-CODEIN, BUTALBITAL, BUTALBITAL-ACETAMINOPHEN, BUTALBITAL-ACETAMINOPHEN-CAFFE, BUTALBITAL-ASPIRIN-CAFFEINE, CAMZYOS, CEREBYX, CLOBAZAM, DICLOXACILLIN SODIUM, DILANTIN, DILANTIN-125, DONNATAL, DUETACT, DUZALLO, EFAVIRENZ, EFAVIRENZ-EMTRIC-TENOFOV DISOP, EFAVIRENZ-LAMIVU-TENOFOV DISOP, EPRONTIA, ETRAVIRINE, FIORICET, FIORICET WITH CODEINE, FOSPHENYTOIN SODIUM, INTELENCE, KEVZARA, KIMYRSA, LORBRENA, LUMAKRAS, LYSODREN, MITOTANE, MODAFINIL, MYFEMBREE, MYSOLINE, NAFCILLIN, NAFCILLIN SODIUM, NEVIRAPINE, NEVIRAPINE ER, NUBEQA, NUVIGIL, OJEMDA, ONFI, ORBACTIV, ORGOVYX, ORIAHNN, ORILISSA, OSENI, OXCARBAZEPINE, OXCARBAZEPINE ER, OXTELLAR XR, PENTOBARBITAL SODIUM, PHENOBARBITAL, PHENOBARBITAL SODIUM, PHENOBARBITAL-BELLADONNA, PHENOBARBITAL-HYOSC-ATROP-SCOP, PHENOHYTRO, PHENYTEK, PHENYTOIN, PHENYTOIN SODIUM, PHENYTOIN SODIUM EXTENDED, PIOGLITAZONE HCL, PIOGLITAZONE-GLIMEPIRIDE, PIOGLITAZONE-METFORMIN, PRIFTIN, PRIMIDONE, PROVIGIL, PYRUKYND, QSYMIA, RIFADIN, RIFAMPIN, RUFINAMIDE, SEZABY, SKYCLARYS, SYMFI, SYMFI LO, SYMPAZAN, TAFINLAR, TARGRETIN, TAZVERIK, TENCON, TERBINAFINE HCL, THIORIDAZINE HCL, THIORIDAZINE HYDROCHLORIDE, TIBSOVO, TOPAMAX, TOPIRAMATE, TOPIRAMATE ER, TOPIRAMATE ER SPRINKLE, TPOXX (NATIONAL STOCKPILE), TRACLEER, TRILEPTAL, TROKENDI XR, TURALIO, VINBLASTINE SULFATE, VONJO, WAKIX, WELIREG, XCOPRI, XERMELO, XTANDI, ZELBORAF |
Erlotinib/Corticosteroids that Induce CYP3A4 SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inducers of CYP3A4 may induce the metabolism of erlotinib.(1) CLINICAL EFFECTS: Concurrent or recent use of a CYP3A4 inducer may result in decreased levels and effectiveness of erlotinib.(1) In addition, concurrent use of corticosteroids may increase the risk of gastrointestinal perforation in patients receiving erlotinib. Fatalities have been reported.(1) PREDISPOSING FACTORS: Patients with a history of peptic ulceration or diverticular disease or who are receiving concomitant anti-angiogenic, NSAIDs, and/or taxane-based chemotherapy may be an increased risk of gastrointestinal perforation.(1) Induction effects may be more likely with regular use of the inducer for longer than 1-2 weeks. PATIENT MANAGEMENT: Avoid the concurrent use of CYP3A4 inducers in patients receiving therapy with erlotinib. Consider the use of alternative agents with less enzyme induction potential.(1) Consider increasing the dosage of erlotinib by 50 mg increments as tolerated at two week intervals (to a maximum of 450 mg) while closely monitoring the patient. The highest dosage studied with concurrent rifampin is 450 mg. If the dosage of erlotinib is increased, it will need to be decreased when the inducer is discontinued.(1) Monitor patients receiving concurrent therapy for signs of gastrointestinal perforation. Discontinue erlotinib in patients who develop gastrointestinal perforation.(1) DISCUSSION: Pretreatment and concurrent therapy with rifampin increased erlotinib clearance by 3-fold and decreased the erlotinib area-under-curve (AUC) by 66% to 80%. This is equivalent to a dose of about 30 mg to 50 mg in NSCLC.(1) In a study, pretreatment with rifampin for 11 days decreased the AUC of a single 450 mg dose of erlotinib to 57.6% of the AUC observed with a single 150 mg dose of erlotinib.(1) In a case report, coadministration of phenytoin (180mg daily) and erlotinib (150mg daily) increased the phenytoin concentration from 8.2mcg/ml to 24.2mcg/ml and decreased the erlotinib concentration 12-fold (from 1.77mcg/ml to 0.15mcg/ml) and increased the erlotinib clearance by 10-fold (from 3.53 L/h to 41.7 L/h).(2) In a study, concurrent use of sorafenib (400 mg twice daily) and erlotinib (150 mg daily) decreased the concentration minimum (Cmin), concentration maximum (Cmax), and AUC of erlotinib.(3) In an animal study, concurrent use of dexamethasone and erlotinib decreased the AUC of erlotinib by 0.6-fold.(4) In a phase II trial of concurrent bevacizumab plus erlotinib, 2 of 13 patients suffered fatal gastrointestinal perforations.(5) In another phase II trial of concurrent bevacizumab with erlotinib, 1 of 104 patients died of gastrointestinal perforation.(6) Two patients developed gastrointestinal perforations while taking erlotinib, corticosteroids, and ciprofloxacin.(7) Corticosteroids that induce CYP3A4 include: dexamethasone and methylprednisolone.(8,9) |
BUPIVACAINE-DEXAMETH-EPINEPHRN, DEPO-MEDROL, DEXABLISS, DEXAMETHASONE, DEXAMETHASONE ACETATE, DEXAMETHASONE ACETATE MICRO, DEXAMETHASONE INTENSOL, DEXAMETHASONE ISONICOTINATE, DEXAMETHASONE MICRONIZED, DEXAMETHASONE SOD PHOS-WATER, DEXAMETHASONE SODIUM PHOSPHATE, DEXAMETHASONE-0.9% NACL, DMT SUIK, DOUBLEDEX, HEMADY, LIDOCIDEX-I, MAS CARE-PAK, MEDROL, MEDROLOAN II SUIK, MEDROLOAN SUIK, METHYLPREDNISOLONE, METHYLPREDNISOLONE AC MICRO, METHYLPREDNISOLONE ACETATE, METHYLPREDNISOLONE SODIUM SUCC, SOLU-MEDROL, TAPERDEX, ZCORT |
Etrasimod/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Etrasimod causes reversible sequestration of lymphocytes in lymphoid tissues, resulting in a mean 55% decrease in peripheral blood lymphocyte count at 52 weeks.(1) Other immunosuppressives and immune-modulators also suppress the immune system. CLINICAL EFFECTS: Concurrent use of etrasimod with immunosuppressive or immune-modulating agents may result in an increased risk of serious and fatal infections, such as disseminated herpetic infection, cryptococcal infection, or progressive multifocal leukoencephalopathy (PML).(1) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications increases the risk of adverse effects. PATIENT MANAGEMENT: The etrasimod US prescribing information states etrasimod has not been studied in combination with anti-neoplastic, immune-modulating, or immunosuppressive therapies. Concomitant administration of these therapies with etrasimod should be avoided because of the risk of additive immune effects during therapy and in the weeks following administration. Etrasimod's effect on peripheral lymphocytes may persist for up to 5 weeks after discontinuation.(1) When switching from drugs with prolonged immune effects, the half-life and mode of action of these drugs must be considered in order to avoid unintended additive immunosuppressive effects.(1) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections, cryptococcal meningitis, disseminated cryptococcal infections, and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients treated with other sphingosine-1 phosphate receptor modulators.(1) |
VELSIPITY |
Erlotinib/Ropeginterferon alfa-2b SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ropeginterferon alfa-2b and erlotinib both suppress the immune system. The exact mechanism of gastrointestinal perforation with erlotinib is unknown. CLINICAL EFFECTS: Concurrent use of ropeginterferon alfa-2b with erlotinib may result in an increased risk of serious infections and gastrointestinal perforation. Fatal cases of gastrointestinal perforation have been reported.(1) PREDISPOSING FACTORS: Patients with a history of peptic ulceration or diverticular disease or who are receiving concomitant corticosteroids, NSAIDs, and/or taxane-based chemotherapy may be an increased risk of gastrointestinal perforation.(1) PATIENT MANAGEMENT: Avoid concurrent use of ropeginterferon alfa-2b and erlotinib.(1-2) If concurrent use cannot be avoided, monitor for effects of excessive immunosuppression and gastrointestinal perforation. Discontinue erlotinib in patients who develop gastrointestinal perforation.(1) DISCUSSION: In a phase II trial of concurrent bevacizumab plus erlotinib, 2 of 13 patients suffered fatal gastrointestinal perforations.(3) In another phase II trial of concurrent bevacizumab with erlotinib, 1 of 104 patients died of gastrointestinal perforation.(4) In clinical trials of ropeginterferon alfa-2b, 20% of patients experienced leukopenia. Interferon alfa products may cause fatal or life-threatening infections.(2) |
BESREMI |
There are 12 moderate interactions.
The clinician should assess the patient’s characteristics and take action as needed. Actions required for moderate interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration.
Drug Interaction | Drug Names |
---|---|
Erlotinib; Gefitinib; Sorafenib/Warfarin SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Bleeding has been reported with the use of erlotinib,(1) gefitinib,(2) and sorafenib(3) alone. Concurrent use of warfarin may result in additive effects. CLINICAL EFFECTS: Concurrent use of erlotinib,(1) gefitinib,(2) or sorafenib(3) and warfarin may increase the risk of bleeding. PREDISPOSING FACTORS: The risk for bleeding episodes may be greater in patients with disease-associated factors (e.g. thrombocytopenia). Drug associated risk factors include concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism and/or have an inherent risk for bleeding (e.g. NSAIDs). PATIENT MANAGEMENT: Patients receiving concurrent therapy with erlotinib, gefitinib, or sorafenib and warfarin should be closely monitored for changes in International Normalized Ratio (INR) and signs of bleeding. Permanent discontinuation of erlotinib, gefitinib, and sorafenib should be considered in patients who experience a bleeding event that requires medical intervention. If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. When applicable, perform agent-specific laboratory test (e.g. INR, aPTT) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. The time of highest risk for a coumarin-type drug interaction is when the precipitant drug is initiated or discontinued. Contact the prescriber before initiating, altering the dose or discontinuing either drug. DISCUSSION: Increased INR and bleeding events, including gastrointestinal and non-gastrointestinal (including fatalities) have been reported with concurrent erlotinib and warfarin.(1,4) Elevated INR and bleeding events have also been reported with gefitinib(2,5,6) and sorafenib(3,7,8) Bleeding has been reported with erlotinib,(1) gefitinib,(2) and sorafenib(3) alone.(3) |
JANTOVEN, WARFARIN SODIUM |
Selected Kinase Inhibitors/Antacids SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The solubility of bosutinib,(1) dasatinib,(2) erlotinib,(3) gefitinib,(4) neratinib,(5) nilotinib(6), pazopanib,(7) and pexidartinib(8) is pH dependent. Antacid-induced changes in gastric pH may decrease the absorption of these agents.(1-8) CLINICAL EFFECTS: Simultaneous administration of antacids may result in decreased levels and effectiveness of bosutinib,(1) dasatinib,(2) erlotinib,(3) gefitinib,(4) neratinib,(5) nilotinib(6), pazopanib,(7) and pexidartinib.(8) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Antacid use should be considered in place of H2 blockers or proton pump inhibitors in patients receiving bosutinib,(1) dasatinib,(2) erlotinib,(3) gefitinib,(4) neratinib,(5) nilotinib(6), pazopanib,(7) and pexidartinib;(8) however, separation of administration times is required. If antacids are used, separate the administration times by several hours(1-8) but at least 2 hours for bosutinib,(1) dasatinib,(2) nilotinib,(6) and pexidartinib(8), 6 hours for gefitinib,(4) and 3 hours for neratinib.(5) Some vitamin preparations may contain sufficient quantities of calcium and/or magnesium salts with antacid properties to interact as well. DISCUSSION: In a study in 24 healthy subjects, lansoprazole (60 mg) decreased bosutinib (400 mg single dose) area-under-curve (AUC) and maximum concentration (Cmax) by 26% and 46%, respectively.(1) In a study in 24 healthy subjects, simultaneous administration of dasatinib (50 mg) with aluminum hydroxide/magnesium hydroxide (30 ml) decreased dasatinib AUC and Cmax by 55% and 58%, respectively. In the same subjects, administration of the antacid 2 hours before dasatinib decreased dasatinib Cmax by 26%, but had no effect on dasatinib AUC.(2) In a study in 24 healthy subjects, administration of a single dose of dasatinib (50 mg) 10 hours after famotidine decreased dasatinib AUC and Cmax by 61% and 63%, respectively.(2) In a study, concurrent omeprazole decreased the AUC and Cmax of erlotinib by 46% and 61%, respectively.3) In a study, concurrent esomeprazole decreased the AUC of nilotinib by 34%.(6) In a study in 15 healthy subjects, lansoprazole (30 mg at steady state) decreased the Cmax and AUC of a single dose of neratinib (240 mg) by 71% and 65%, respectively.(5) There were no significant changes in nilotinib pharmacokinetics when famotidine was administered 10 hours before or 2 hours after nilotinib.(6) There were no significant changes in nilotinib pharmacokinetics when an antacid (aluminum hydroxide/magnesium hydroxide/simethicone) was administered 2 hours before or after nilotinib.(6) Coadministration of esomeprazole decreased pexidartinib Cmax and AUC by 55% and 50%.(8) |
ALUMINUM HYDROXIDE, GAVILYTE-C, GAVILYTE-G, GAVILYTE-N, GOLYTELY, KONVOMEP, OMEPRAZOLE-SODIUM BICARBONATE, PEG 3350-ELECTROLYTE, PEG-3350 AND ELECTROLYTES, SODIUM BICARBONATE, VAXCHORA BUFFER COMPONENT |
Lorazepam; Mexazolam/UGT Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Inhibitors of UDP-glucuronosyltransferases (UGT) may inhibit the metabolism of lorazepam.(1-4) One of the active metabolites of mexazolam is lorazepam. CLINICAL EFFECTS: Concurrent use of UGT inhibitors may increase levels of and clinical effects from lorazepam, including profound sedation, respiratory depression, and coma.(1-4) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturers of lorazepam state that the dosage of lorazepam should be reduced by 50% in patients receiving UGT inhibitors.(1,2) DISCUSSION: In a study in 9 healthy subjects, pretreatment with probenecid (500 mg every 6 hours) increased the half-life (T1/2) of a single intravenous dose of lorazepam (2 mg) by 130%. Lorazepam clearance was decreased by 45%. There was no change in lorazepam apparent volume of distribution.(1,4) In 7 patients given probenecid 1G orally one hour prior to induction anesthesia with midazolam, there was no significant change in plasma protein binding due to probenecid pretreatment. The mean free midazolam fractions were 3.31% prior and 3.34% following pretreatment.(5) UGT inhibitors linked to this monograph include: atazanavir, belumosudil, capivasertib, erlotinib, gemfibrozil, indinavir, ketoconazole, lapatinib, mefenamic acid, nilotinib, pazopanib, probenecid, regorafenib, and sorafenib. |
ATIVAN, LORAZEPAM, LORAZEPAM INTENSOL |
Erlotinib/Anti-Angiogenic Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The exact mechanism is unknown. CLINICAL EFFECTS: Concurrent use of anti-angiogenic agents may increase the risk of gastrointestinal perforation in patients receiving erlotinib. Fatalities have been reported.(1) PREDISPOSING FACTORS: Patients with a history of peptic ulceration or diverticular disease or who are receiving concomitant corticosteroids, NSAIDs, and/or taxane-based chemotherapy may be an increased risk of gastrointestinal perforation.(1) PATIENT MANAGEMENT: Monitor patients receiving concurrent therapy for signs of gastrointestinal perforation. Discontinue erlotinib in patients who develop gastrointestinal perforation.(1) DISCUSSION: In a phase II trial of concurrent bevacizumab plus erlotinib, 2 of 13 patients suffered fatal gastrointestinal perforations.(2) In another phase II trial of concurrent bevacizumab with erlotinib, 1 of 104 patients died of gastrointestinal perforation.(3) |
ALFERON N, ALYMSYS, AVASTIN, MVASI, PEGASYS, VEGZELMA, ZIRABEV |
Erlotinib/Corticosteroids SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The exact mechanism is unknown. CLINICAL EFFECTS: Concurrent use of corticosteroids may increase the risk of gastrointestinal perforation in patients receiving erlotinib. Fatalities have been reported.(1) PREDISPOSING FACTORS: Patients with a history of peptic ulceration or diverticular disease or who are receiving concomitant anti-angiogenic, NSAIDs, and/or taxane-based chemotherapy may be an increased risk of gastrointestinal perforation.(1) PATIENT MANAGEMENT: Monitor patients receiving concurrent therapy for signs of gastrointestinal perforation. Discontinue erlotinib in patients who develop gastrointestinal perforation.(1) DISCUSSION: In a phase II trial of concurrent bevacizumab plus erlotinib, 2 of 13 patients suffered fatal gastrointestinal perforations.(2) In another phase II trial of concurrent bevacizumab with erlotinib, 1 of 104 patients died of gastrointestinal perforation.(3) Two patients developed gastrointestinal perforations while taking erlotinib, corticosteroids, and ciprofloxacin.(3) |
AGAMREE, ALDOSTERONE, ALKINDI SPRINKLE, ANUCORT-HC, ANUSOL-HC, BECLOMETHASONE DIPROPIONATE, BETA 1, BETALOAN SUIK, BETAMETHASONE ACETATE MICRO, BETAMETHASONE ACETATE-SOD PHOS, BETAMETHASONE DIPROPIONATE, BETAMETHASONE SOD PHOS-ACETATE, BETAMETHASONE SOD PHOS-WATER, BETAMETHASONE SODIUM PHOSPHATE, BETAMETHASONE VALERATE, BSP 0820, BUDESONIDE, BUDESONIDE DR, BUDESONIDE EC, BUDESONIDE ER, BUDESONIDE MICRONIZED, CELESTONE, CLOBETASOL PROPIONATE MICRO, CORTEF, CORTENEMA, CORTIFOAM, CORTISONE ACETATE, DEFLAZACORT, DESONIDE MICRONIZED, DESOXIMETASONE, DESOXYCORTICOSTERONE ACETATE, EMFLAZA, EOHILIA, FLUDROCORTISONE ACETATE, FLUNISOLIDE, FLUOCINOLONE ACETONIDE, FLUOCINOLONE ACETONIDE MICRO, FLUOCINONIDE MICRONIZED, FLUTICASONE PROPIONATE, FLUTICASONE PROPIONATE MICRO, HEMMOREX-HC, HEXATRIONE, HYDROCORTISONE, HYDROCORTISONE ACETATE, HYDROCORTISONE SOD SUCCINATE, HYDROCORTISONE-PRAMOXINE, KENALOG-10, KENALOG-40, KENALOG-80, MILLIPRED, MILLIPRED DP, MOMETASONE FUROATE, ORAPRED ODT, ORTIKOS, PEDIAPRED, PREDNISOLONE, PREDNISOLONE ACETATE MICRONIZE, PREDNISOLONE MICRONIZED, PREDNISOLONE SODIUM PHOS ODT, PREDNISOLONE SODIUM PHOSPHATE, PREDNISONE, PREDNISONE INTENSOL, PREDNISONE MICRONIZED, PRO-C-DURE 5, PRO-C-DURE 6, PROCTOCORT, RAYOS, SOLU-CORTEF, TARPEYO, TRIAMCINOLONE, TRIAMCINOLONE ACETONIDE, TRIAMCINOLONE DIACETATE, TRIAMCINOLONE DIACETATE MICRO, TRILOAN II SUIK, TRILOAN SUIK, UCERIS, VERIPRED 20, ZILRETTA |
Erlotinib/NSAIDs SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The exact mechanism is unknown. CLINICAL EFFECTS: Concurrent use of NSAIDs may increase the risk of gastrointestinal bleeding and/or perforation in patients receiving erlotinib. Fatalities have been reported.(1) PREDISPOSING FACTORS: Patients with a history of peptic ulceration or diverticular disease or who are receiving concomitant anti-angiogenic, corticosteroids, and/or taxane-based chemotherapy may be an increased risk of gastrointestinal perforation.(1) The risk for bleeding episodes may be greater in patients with disease-associated factors (e.g. thrombocytopenia). Drug associated risk factors include concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism and/or have an inherent risk for bleeding. PATIENT MANAGEMENT: Monitor patients receiving concurrent therapy for signs of gastrointestinal bleeding and/or perforation. Discontinue erlotinib in patients who develop gastrointestinal perforation.(1) If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. DISCUSSION: Infrequent cases of gastrointestinal bleeding were reported during erlotinib trials. Some cases were associated with NSAID administration.(1) In a phase II trial of concurrent bevacizumab plus erlotinib, 2 of 13 patients suffered fatal gastrointestinal perforations.(2) In another phase II trial of concurrent bevacizumab with erlotinib, 1 of 104 patients died of gastrointestinal perforation.(3) |
ANAPROX DS, ANJESO, ARTHROTEC 50, ARTHROTEC 75, BROMFENAC SODIUM, CALDOLOR, CAMBIA, CELEBREX, CELECOXIB, COMBOGESIC, COMBOGESIC IV, CONSENSI, COXANTO, DAYPRO, DICLOFENAC, DICLOFENAC POTASSIUM, DICLOFENAC SODIUM, DICLOFENAC SODIUM ER, DICLOFENAC SODIUM MICRONIZED, DICLOFENAC SODIUM-MISOPROSTOL, EC-NAPROSYN, ELYXYB, ETODOLAC, ETODOLAC ER, FELDENE, FENOPROFEN CALCIUM, FENOPRON, FLURBIPROFEN, HYDROCODONE-IBUPROFEN, IBU, IBUPAK, IBUPROFEN, IBUPROFEN LYSINE, IBUPROFEN-FAMOTIDINE, INDOCIN, INDOMETHACIN, INDOMETHACIN ER, INFLAMMACIN, INFLATHERM(DICLOFENAC-MENTHOL), KETOPROFEN, KETOPROFEN MICRONIZED, KETOROLAC TROMETHAMINE, KIPROFEN, LODINE, LOFENA, LURBIPR, MECLOFENAMATE SODIUM, MEFENAMIC ACID, MELOXICAM, NABUMETONE, NABUMETONE MICRONIZED, NALFON, NAPRELAN, NAPROSYN, NAPROTIN, NAPROXEN, NAPROXEN SODIUM, NAPROXEN SODIUM CR, NAPROXEN SODIUM ER, NAPROXEN-ESOMEPRAZOLE MAG, NEOPROFEN, OXAPROZIN, PHENYLBUTAZONE, PIROXICAM, RELAFEN DS, SULINDAC, SUMATRIPTAN SUCC-NAPROXEN SOD, SYMBRAVO, TOLECTIN 600, TOLMETIN SODIUM, TORONOVA II SUIK, TORONOVA SUIK, TRESNI, TREXIMET, VIMOVO, VIVLODEX, ZIPSOR, ZORVOLEX, ZYNRELEF |
Erlotinib/Docetaxel; Paclitaxel SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The exact mechanism is unknown. CLINICAL EFFECTS: Concurrent use of docetaxel or paclitaxel may increase the risk of gastrointestinal perforation in patients receiving erlotinib. Fatalities have been reported.(1) PREDISPOSING FACTORS: Patients with a history of peptic ulceration or diverticular disease or who are receiving concomitant anti-angiogenic, corticosteroids, and/or NSAIDs may be an increased risk of gastrointestinal perforation.(1) PATIENT MANAGEMENT: Monitor patients receiving concurrent therapy for signs of gastrointestinal perforation. Discontinue erlotinib in patients who develop gastrointestinal perforation.(1) DISCUSSION: In a phase II trial of concurrent bevacizumab plus erlotinib, 2 of 13 patients suffered fatal gastrointestinal perforations.(2) In another phase II trial of concurrent bevacizumab with erlotinib, 1 of 104 patients died of gastrointestinal perforation.(3) Two trials showed no benefit from combination therapy with erlotinib and paclitaxel in first-line patients with locally advanced or metastatic NSCLC.(1) |
ABRAXANE, DOCETAXEL, DOCIVYX, PACLITAXEL, PACLITAXEL PROTEIN-BOUND |
Selected Kinase Inhibitors/H2 Antagonists SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The solubility of dacomitinib,(1) erlotinib,(2) gefitinib,(3) and nilotinib(4) is pH dependent. Changes in gastric pH from H2 antagonists may decrease the absorption of dacomitinib,(1) erlotinib,(2) gefitinib,(3) and nilotinib(4). CLINICAL EFFECTS: Use of H2 antagonists may result in decreased levels and effectiveness of dacomitinib,(1) erlotinib,(2) gefitinib,(3) and nilotinib(4). PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Consider the use of short-acting antacids in patients taking dacomitinib,(1) erlotinib,(2) gefitinib,(3) and nilotinib(4). If antacids are used, separate the administration times by several hours(1-7) but at least 2 hours for bosutinib,(1) and nilotinib,(4) and 6 hours for gefitinib.(3) If H2 antagonist therapy is required with dacomitinib, dacomitinib must be given once daily 10 hours after the H2 blocker and 6 hours before the next dose of the H2 blocker.(1) If H2 antagonist therapy is required with erlotinib or nilotinib, the kinase inhibitor must be given 10 hours after the H2 blocker and at least 2 hours before the next dose of the H2 blocker.(2-4) If H2 antagonist therapy is required with gefitinib, gefitinib should be given at least 6 hours before or after the H2 antagonist.(3) Avoid the use of proton pump inhibitors (PPIs) in patients receiving treatment dacomitinib,(1) erlotinib,(2) gefitinib,(3) and nilotinib(4). DISCUSSION: In a study, concurrent rabeprazole decreased the Cmax and AUC of dacomitinib by 51% and 39%, respectively.(1) In a study, concurrent omeprazole decreased the AUC and Cmax of erlotinib by 46% and 61%, respectively.(2) In a study, administration of erlotinib two hours after a dose of ranitidine (300 mg), erlotinib AUC and Cmax decreased by 33% and 54%, respectively. Administration of erlotinib 10 hours after and two hours before ranitidine (150 mg twice daily), erlotinib AUC and Cmax decreased by 15% and 17%, respectively.(2) In a case report, a patient that was given erlotinib (150 mg daily,) with algeldrate/magnesium hydroxide (800/400 mg four times daily 4 hours before or 2 hours after erlotinib) did not see a significant reduction in serum trough concentrations of erlotinib. When the patient was switched to intravenous pantoprazole via continuous infusion (8 mg per hour), serum erlotinib levels decreased significantly below minimal trough concentrations for effective tyrosine kinase inhibition. When the patient was switched to oral pantoprazole (40 mg twice daily), serum trough levels of erlotinib returned to therapeutic levels.(5) In a study in 22 healthy subjects, pretreatment with esomeprazole (40 mg daily), decreased the Cmax and AUC of a single dose of nilotinib (400 mg) by 27% and 34%, respectively.(4,7) Increasing the dosage of nilotinib or separating the administration time of nilotinib and the proton pump inhibitor is not expected to eliminate the interaction.(4) There were no significant changes in nilotinib pharmacokinetics when famotidine was administered 10 hours before or 2 hours after nilotinib.(4) There were no significant changes in nilotinib pharmacokinetics when an antacid (aluminum hydroxide/magnesium hydroxide/simethicone) was administered 2 hours before or after nilotinib.(4) |
CIMETIDINE, FAMOTIDINE, IBUPROFEN-FAMOTIDINE, NIZATIDINE, PEPCID |
Ustekinumab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Ustekinumab, immunosuppressives, and immunomodulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of ustekinumab with immunosuppressive or immunomodulating agents may result in an increased risk for serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of ustekinumab recommends caution because the concurrent use of ustekinumab with immunosuppressive agents may increase the risk of infection. If concurrent therapy is warranted, consider the risk of additive immune suppression and monitor based on prescribing information for both agents.(1) DISCUSSION: Ustekinumab has not been studied in combination with other immunosuppressants in psoriasis studies. In psoriatic arthritis studies, concomitant methotrexate use did not appear to influence the safety or efficacy of ustekinumab. In Crohn's disease and ulcerative colitis studies, concomitant use of immunosuppressants or corticosteroids did not appear to influence the safety or efficacy of ustekinumab. If concurrent therapy is warranted, consider the potential for increased immunosuppressive risks from both agents.(1) The most common infections reported by ustekinumab treated patients in the clinical trial periods included nasopharyngitis(8%) and upper respiratory tract infection(5%). Serious bacterial, mycobacterial, fungal, and viral infections were observed in patients receiving ustekinumab. Cases of interstitial pneumonia, eosinophilic pneumonia, and cryptogenic organizing pneumonia resulting in respiratory failure or prolonged hospitalization have been reported in patients receiving ustekinumab.(1) |
OTULFI, PYZCHIVA, SELARSDI, STELARA, STEQEYMA, USTEKINUMAB, USTEKINUMAB-AEKN, USTEKINUMAB-TTWE, WEZLANA, YESINTEK |
COVID-19 Vaccines/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Immunosuppressants and immunomodulators may prevent the immune system from properly responding to the COVID-19 vaccine.(1,2) CLINICAL EFFECTS: Administration of a COVID-19 vaccine with immunosuppressants or immunomodulators may interfere with vaccine-induced immune response and impair the efficacy of the vaccine. However, patients should be offered and given a COVID-19 vaccine even if the use and timing of immunosuppressive agents cannot be adjusted.(1,2) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: In an effort to optimize COVID-19 vaccine response, the American College of Rheumatology (ACR) published conditional recommendations for administration of COVID-19 vaccines with immunosuppressants and immunomodulators.(1) The CDC also provides clinical considerations for COVID-19 vaccination in patients on immunosuppressants.(2) The CDC states that all immunocompromised patients over 6 months of age should receive at least 1 dose of COVID-19 vaccine if eligible. See the CDC's Interim Clinical Considerations for Use of COVID-19 Vaccines for specific recommendations based on age, vaccination history, and vaccine manufacturer.(2) The ACR states that in general, immunosuppressants and immunomodulators should be held for 1-2 weeks after each vaccine dose. See below for specific recommendations for certain agents.(1) The CDC advises planning for vaccination at least 2 weeks before starting or resuming immunosuppressive therapy.(2) Patients should be offered and given a COVID-19 vaccine even if the use and timing of immunosuppressive agents cannot be adjusted.(1,2) B-cell depleting agents, including rituximab: The ACR recommends consulting with the rheumatologist to determine optimal timing of COVID-19 vaccination. Measuring CD19 B cells may be considered to determine need for a booster vaccine dose. If B cell levels are not measured, a supplemental vaccine dose 2-4 weeks before the next scheduled dose of rituximab is recommended.(1) The CDC states that the utility of B-cell quantification to guide clinical care is not known and is not recommended. Patients who receive B-cell depleting therapy should receive COVID-19 vaccines about 4 weeks before the next scheduled dose. For patients who received 1 or more doses of COVID-19 vaccine during treatment with B-cell-depleting therapies that were administered over a limited period (e.g., as part of a treatment regimen for certain malignancies), revaccination may be considered. The suggested interval to start revaccination is about 6 months after completion of the B-cell-depleting therapy.(2) Abatacept: - Subcutaneous abatacept should be withheld for 1-2 weeks after each vaccine dose, as disease activity allows. - For intravenous abatacept, time administration so that vaccination will occur 1 week before the next abatacept infusion.(1) Cyclophosphamide: When feasible, administer cyclophosphamide one week after each COVID-19 vaccine dose.(1) Recipients of hematopoietic cell transplant or CAR-T-cell therapy who received one or more doses of COVID-19 vaccine prior to or during treatment should undergo revaccination following the current CDC recommendations for unvaccinated patients. Revaccination should start at least 3 months (12 weeks) after transplant or CAR-T-cell therapy.(2) TNF-alpha inhibitors and cytokine inhibitors: The ACR was not able to reach consensus on whether to modify dosing or timing of these agents with COVID-19 vaccination.(1) The CDC includes these agents in their general recommendation to hold therapy for at least 2 weeks following vaccination.(2) DISCUSSION: The ACR convened a COVID-19 Vaccine Guidance Task Force to provide guidance on optimal use of COVID-19 vaccines in rheumatology patients. These recommendations are based on limited clinical evidence of COVID-19 vaccines in patients without rheumatic and musculoskeletal disorders and evidence of other vaccines in this patient population.(1) The ACR recommendation for rituximab is based on studies of humoral immunity following receipt of other vaccines. These studies have uncertain generalizability to vaccination against COVID-19, as it is unknown if efficacy is attributable to induction of host T cells versus B cell (antibody-based) immunity.(1) The ACR recommendation for mycophenolate is based on preexisting data of mycophenolate on non-COVID-19 vaccine immunogenicity. Emerging data suggests that mycophenolate may impair SARS-CoV-2 vaccine response in rheumatic and musculoskeletal disease and transplant patients.(1) The ACR recommendation for methotrexate is based on data from influenza vaccines and pneumococcal vaccines with methotrexate.(1) The ACR recommendation for JAK inhibitors is based on concerns related to the effects of JAK inhibitors on interferon signaling that may result in a diminished vaccine response.(1) The ACR recommendation for subcutaneous abatacept is based on several studies suggesting a negative effect of abatacept on vaccine immunogenicity. The first vaccine dose primes naive T cells, naive T cell priming is inhibited by CTLA-4, and abatacept is a CTLA-4Ig construct. CTLA-4 should not inhibit boosts of already primed T cells at the time of the second vaccine dose.(1) |
COMIRNATY 2024-2025, MODERNA COVID 24-25(6M-11Y)EUA, NOVAVAX COVID 2024-2025 (EUA), PFIZER COVID 2024-25(5-11Y)EUA, PFIZER COVID 2024-25(6M-4Y)EUA, SPIKEVAX 2024-2025 |
Ublituximab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Ublituximab, immunosuppressives, and immunomodulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of ublituximab with immunosuppressive or immunomodulating agents may result in an increased risk for serious infections.(1) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: The US manufacturer of ublituximab recommends caution because the concurrent use of ublituximab with immunomodulating or immunosuppressive agents, including immunosuppressant doses of corticosteroids, may increase the risk of infection.(1) If concurrent therapy is warranted, consider the risk of additive immune suppression and monitor based on prescribing information for both agents. When switching from agents with immune effects, the half-life and mechanism of action of these drugs must be taken into consideration in order to prevent additive immunosuppressive effects.(1) DISCUSSION: The most common infections reported by ublituximab-treated patients in the clinical trial periods included upper respiratory tract infections and urinary tract infections. Serious, including life-threatening or fatal, bacterial and viral infections were observed in patients receiving ublituximab.(1) Serious and/or fatal bacterial, fungal, and new or reactivated viral infections have been associated with other anti-CD20 B-cell depleting therapies. There were no cases of progressive multifocal leukoencephalopathy (PML) reported during the clinical trials; however, there have been reports of PML during or following completion of other anti-CD20 B-cell depleting therapies.(1) |
BRIUMVI |
Tocilizumab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Tocilizumab, immunosuppressives, and immunomodulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of tocilizumab with immunosuppressive or immunomodulating agents may result in an increased risk for serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of tocilizumab recommends caution because the concurrent use of tocilizumab with immunosuppressive agents may increase the risk of infection. If concurrent therapy is warranted, consider the risk of additive immune suppression and monitor based on prescribing information for both agents.(1) DISCUSSION: Tocilizumab was studied as monotherapy and in combination with methotrexate, non-biologic DMARDs or corticosteroids, depending on the indication. Tocilizumab has not been studied with biological DMARDs and concurrent use should be avoided. If concurrent therapy is warranted, consider the potential for increased immunosuppressive risks from both agents.(1) The most common infections reported by tocilizumab treated patients in the clinical trial periods included pneumonia, urinary tract infection, cellulitis, herpes zoster, gastroenteritis, diverticulitis, sepsis and bacterial arthritis. Serious bacterial, mycobacterial, fungal, and viral infections were observed in patients receiving tocilizumab. Cases of tuberculosis, cryptococcus, aspergillosis, candidiasis, and pneumocystosis have been reported.(1) |
ACTEMRA, ACTEMRA ACTPEN, TOFIDENCE, TYENNE, TYENNE AUTOINJECTOR |
The following contraindication information is available for TARCEVA (erlotinib hcl):
Drug contraindication overview.
*The manufacturer states that there are no known contraindications to the use of erlotinib.
*The manufacturer states that there are no known contraindications to the use of erlotinib.
There are 1 contraindications.
Absolute contraindication.
Contraindication List |
---|
Lactation |
There are 15 severe contraindications.
Adequate patient monitoring is recommended for safer drug use.
Severe List |
---|
Acute respiratory distress syndrome |
Dehydration |
Disease of liver |
Gastrointestinal perforation |
Hemolytic anemia |
Hepatorenal syndrome |
Hyperbilirubinemia |
Interstitial lung disease |
Interstitial pneumonitis |
Malignant neoplasm of liver |
Pregnancy |
Pulmonary fibrosis |
Thrombocytopenic disorder |
Thrombotic thrombocytopenic purpura |
Tobacco smoker |
There are 5 moderate contraindications.
Clinically significant contraindication, where the condition can be managed or treated before the drug may be given safely.
Moderate List |
---|
Cerebrovascular accident |
Corneal ulcer |
Hemorrhage |
Hypokalemia |
Increased risk of bleeding due to coagulation disorder |
The following adverse reaction information is available for TARCEVA (erlotinib hcl):
Adverse reaction overview.
Adverse effects occurring in >=20% of patients receiving erlotinib in a pooled analysis of data from patients with NSCLC across all approved lines of therapy, with and without EGFR mutations, and in patients with pancreatic cancer were rash, diarrhea, anorexia, fatigue, dyspnea, cough, nausea, and vomiting.
Adverse effects occurring in >=20% of patients receiving erlotinib in a pooled analysis of data from patients with NSCLC across all approved lines of therapy, with and without EGFR mutations, and in patients with pancreatic cancer were rash, diarrhea, anorexia, fatigue, dyspnea, cough, nausea, and vomiting.
There are 30 severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Dyspnea Infection Skin rash |
Conjunctivitis Keratoconjunctivitis sicca Stomatitis |
Rare/Very Rare |
---|
Abnormal hepatic function tests Acute myocardial infarction Acute renal failure Bullous dermatitis Cerebrovascular accident Colitis Corneal ulcer Exfoliative dermatitis Gastrointestinal hemorrhage Gastrointestinal perforation Hepatic failure Hepatorenal syndrome Hyperbilirubinemia Interstitial lung disease Kidney disease with reduction in glomerular filtration rate (GFr) Myopathy Perforation of cornea Pulmonary infiltrates Rhabdomyolysis Stevens-johnson syndrome Thrombocytopenic disorder Thrombotic thrombocytopenic purpura Toxic epidermal necrolysis Uveitis |
There are 14 less severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Anorexia Cough Diarrhea Dry skin Fatigue Nausea Vomiting |
Arthralgia Hypertrichosis of eyelid eyelashes Myalgia Pruritus of skin |
Rare/Very Rare |
---|
Hirsutism Nail disorders Skin pigmentation enhancement |
The following precautions are available for TARCEVA (erlotinib hcl):
Safety and efficacy of erlotinib have not been established in pediatric patients. In a clinical trial, 25 patients 3-20 years of age with recurrent or refractory ependymoma received erlotinib (85 mg/m2 orally daily). No overall difference in safety relative to adults was observed. Among patients 2-21 years of age, age did not appear to substantially affect erlotinib clearance normalized to body surface area in a population pharmacokinetic analysis.
Contraindicated
Severe Precaution
Management or Monitoring Precaution
Contraindicated
None |
Severe Precaution
None |
Management or Monitoring Precaution
None |
Erlotinib may cause fetal harm if administered to pregnant women based on its mechanism of action and animal findings. (See Fetal/Neonatal Morbidity and Mortality under Cautions.)
It is not known whether erlotinib is distributed into human milk or if the drug or its metabolites have any effect on milk production or the nursing infant. Because of the potential for serious adverse reactions to erlotinib in nursing infants, women should be advised not to breast-feed while receiving the drug and for 2 weeks after the last dose of the drug.
In clinical studies in patients with NSCLC or pancreatic cancer, 40% of patients receiving erlotinib were >=65 years of age and 10% were >=75 years of age. No overall differences in safety and efficacy relative to younger adults were observed.
The following prioritized warning is available for TARCEVA (erlotinib hcl):
No warning message for this drug.
No warning message for this drug.
The following icd codes are available for TARCEVA (erlotinib hcl)'s list of indications:
Adenocarcinoma of pancreas | |
C24.1 | Malignant neoplasm of ampulla of vater |
C25 | Malignant neoplasm of pancreas |
C25.0 | Malignant neoplasm of head of pancreas |
C25.1 | Malignant neoplasm of body of pancreas |
C25.2 | Malignant neoplasm of tail of pancreas |
C25.3 | Malignant neoplasm of pancreatic duct |
C25.7 | Malignant neoplasm of other parts of pancreas |
C25.8 | Malignant neoplasm of overlapping sites of pancreas |
C25.9 | Malignant neoplasm of pancreas, unspecified |
Metastatic NSCLC with EGFR exon 19 deletion | |
C34 | Malignant neoplasm of bronchus and lung |
C34.0 | Malignant neoplasm of main bronchus |
C34.00 | Malignant neoplasm of unspecified main bronchus |
C34.01 | Malignant neoplasm of right main bronchus |
C34.02 | Malignant neoplasm of left main bronchus |
C34.1 | Malignant neoplasm of upper lobe, bronchus or lung |
C34.10 | Malignant neoplasm of upper lobe, unspecified bronchus or lung |
C34.11 | Malignant neoplasm of upper lobe, right bronchus or lung |
C34.12 | Malignant neoplasm of upper lobe, left bronchus or lung |
C34.2 | Malignant neoplasm of middle lobe, bronchus or lung |
C34.3 | Malignant neoplasm of lower lobe, bronchus or lung |
C34.30 | Malignant neoplasm of lower lobe, unspecified bronchus or lung |
C34.31 | Malignant neoplasm of lower lobe, right bronchus or lung |
C34.32 | Malignant neoplasm of lower lobe, left bronchus or lung |
C34.8 | Malignant neoplasm of overlapping sites of bronchus and lung |
C34.80 | Malignant neoplasm of overlapping sites of unspecified bronchus and lung |
C34.81 | Malignant neoplasm of overlapping sites of right bronchus and lung |
C34.82 | Malignant neoplasm of overlapping sites of left bronchus and lung |
C34.9 | Malignant neoplasm of unspecified part of bronchus or lung |
C34.90 | Malignant neoplasm of unspecified part of unspecified bronchus or lung |
C34.91 | Malignant neoplasm of unspecified part of right bronchus or lung |
C34.92 | Malignant neoplasm of unspecified part of left bronchus or lung |
C39.9 | Malignant neoplasm of lower respiratory tract, part unspecified |
Metastatic NSCLC with EGFR exon 21 l858R substitution | |
C34 | Malignant neoplasm of bronchus and lung |
C34.0 | Malignant neoplasm of main bronchus |
C34.00 | Malignant neoplasm of unspecified main bronchus |
C34.01 | Malignant neoplasm of right main bronchus |
C34.02 | Malignant neoplasm of left main bronchus |
C34.1 | Malignant neoplasm of upper lobe, bronchus or lung |
C34.10 | Malignant neoplasm of upper lobe, unspecified bronchus or lung |
C34.11 | Malignant neoplasm of upper lobe, right bronchus or lung |
C34.12 | Malignant neoplasm of upper lobe, left bronchus or lung |
C34.2 | Malignant neoplasm of middle lobe, bronchus or lung |
C34.3 | Malignant neoplasm of lower lobe, bronchus or lung |
C34.30 | Malignant neoplasm of lower lobe, unspecified bronchus or lung |
C34.31 | Malignant neoplasm of lower lobe, right bronchus or lung |
C34.32 | Malignant neoplasm of lower lobe, left bronchus or lung |
C34.8 | Malignant neoplasm of overlapping sites of bronchus and lung |
C34.80 | Malignant neoplasm of overlapping sites of unspecified bronchus and lung |
C34.81 | Malignant neoplasm of overlapping sites of right bronchus and lung |
C34.82 | Malignant neoplasm of overlapping sites of left bronchus and lung |
C34.9 | Malignant neoplasm of unspecified part of bronchus or lung |
C34.90 | Malignant neoplasm of unspecified part of unspecified bronchus or lung |
C34.91 | Malignant neoplasm of unspecified part of right bronchus or lung |
C34.92 | Malignant neoplasm of unspecified part of left bronchus or lung |
C39.9 | Malignant neoplasm of lower respiratory tract, part unspecified |
Formulary Reference Tool