Please wait while the formulary information is being retrieved.
Drug overview for ADRENOID (vit b12/iodine/mag ox/znox/selenium/herbal complex no.193):
Generic name: vit B12/iodine/mag ox/znox/selenium/herbal complex no.193
Drug class:
Therapeutic class: Alternative Therapy
Vitamin B12, a cobalt-containing B complex vitamin, is commercially available as cyanocobalamin and hydroxocobalamin, which are synthetic forms of vitamin B12. Hydroxocobalamin (Cyanokit(R)) is an antidote for cyanide poisoning.
No enhanced Uses information available for this drug.
Generic name: vit B12/iodine/mag ox/znox/selenium/herbal complex no.193
Drug class:
Therapeutic class: Alternative Therapy
Vitamin B12, a cobalt-containing B complex vitamin, is commercially available as cyanocobalamin and hydroxocobalamin, which are synthetic forms of vitamin B12. Hydroxocobalamin (Cyanokit(R)) is an antidote for cyanide poisoning.
No enhanced Uses information available for this drug.
DRUG IMAGES
- No Image Available
The following indications for ADRENOID (vit b12/iodine/mag ox/znox/selenium/herbal complex no.193) have been approved by the FDA:
Indications:
None.
Professional Synonyms:
None.
Indications:
None.
Professional Synonyms:
None.
The following dosing information is available for ADRENOID (vit b12/iodine/mag ox/znox/selenium/herbal complex no.193):
For the treatment of pernicious anemia, the usual initial IM or subcutaneous dosage of cyanocobalamin is 100 mcg daily for 6-7 days. If clinical manifestations have improved and a reticulocyte response is observed, cyanocobalamin can then be administered in a dosage of 100 mcg every other day for 7 doses and then 100 mcg every 3-4 days for 2-3 weeks. Once hematologic values have returned to normal, cyanocobalamin can be administered IM or subcutaneously in a dosage of 100 mcg once monthly for life.
Folic acid should be used concomitantly if necessary.
For the treatment of vitamin B12 deficiency in adults, the usual IM dosage of hydroxocobalamin is 30 mcg daily for 5-10 days. Once clinical symptoms have subsided and the blood components have returned to normal, monthly IM maintenance doses of 100-200 mcg appear to be sufficient to maintain a normoblastic bone marrow. For the treatment of vitamin B12 deficiency in children, the usual total IM dose of hydroxocobalamin is 1-5 mcg over 2 or more weeks, given in single doses of 100 mcg.
For maintenance, the IM or subcutaneous pediatric dosage is at least 60 mcg per month; however, smaller doses may often suffice for deficiency states not caused by pernicious anemia.
The commercially available cyanocobalamin metered-dose pump delivers 0.1 mL of solution containing 500 mcg of the drug per actuation. The recommended initial dosage of cyanocobalamin nasal spray is 500 mcg (one actuation) administered intranasally once weekly.
The dosage may need to be increased in patients who experience a decline in serum vitamin B12 concentrations after 1 month of therapy with this preparation. Therapy with a parenteral vitamin B12 preparation may be necessary in patients who do not achieve a satisfactory response to intranasal cyanocobalamin.
Folic acid should be used concomitantly if necessary.
For the treatment of vitamin B12 deficiency in adults, the usual IM dosage of hydroxocobalamin is 30 mcg daily for 5-10 days. Once clinical symptoms have subsided and the blood components have returned to normal, monthly IM maintenance doses of 100-200 mcg appear to be sufficient to maintain a normoblastic bone marrow. For the treatment of vitamin B12 deficiency in children, the usual total IM dose of hydroxocobalamin is 1-5 mcg over 2 or more weeks, given in single doses of 100 mcg.
For maintenance, the IM or subcutaneous pediatric dosage is at least 60 mcg per month; however, smaller doses may often suffice for deficiency states not caused by pernicious anemia.
The commercially available cyanocobalamin metered-dose pump delivers 0.1 mL of solution containing 500 mcg of the drug per actuation. The recommended initial dosage of cyanocobalamin nasal spray is 500 mcg (one actuation) administered intranasally once weekly.
The dosage may need to be increased in patients who experience a decline in serum vitamin B12 concentrations after 1 month of therapy with this preparation. Therapy with a parenteral vitamin B12 preparation may be necessary in patients who do not achieve a satisfactory response to intranasal cyanocobalamin.
Cyanocobalamin is administered by IM or deep subcutaneous injection. Cyanocobalamin also is administered orally and intranasally. Hydroxocobalamin is administered by IM injection or IV infusion. Oral therapy with vitamin B12 preparations is markedly inferior to parenteral therapy and should be used only for the treatment of dietary vitamin B12 deficiency in patients with normal GI absorption.
No dosing information available.
No generic dosing information available.
The following drug interaction information is available for ADRENOID (vit b12/iodine/mag ox/znox/selenium/herbal complex no.193):
There are 11 contraindications.
These drug combinations generally should not be dispensed or administered to the same patient. A manufacturer label warning that indicates the contraindication warrants inclusion of a drug combination in this category, regardless of clinical evidence or lack of clinical evidence to support the contraindication.
Drug Interaction | Drug Names |
---|---|
Sympathomimetics (Indirect & Mixed Acting)/MAOIs SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Catecholamine stores increased by MAOIs can be released by indirect acting sympathomimetics such as ephedrine and amphetamine. MAO inhibitors also interfere with gut and liver metabolism of direct acting sympathomimetics (e.g oral phenylephrine). CLINICAL EFFECTS: Concurrent use of MAOIs may result in potentiation of sympathomimetic effects, which may result in headaches, hypertensive crisis, toxic neurological effects, and malignant hyperpyrexia. Fatalities have occurred. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Concurrent use of monoamine oxidase inhibitors and sympathomimetics is contraindicated. The manufacturers of sympathomimetic agents recommend waiting 14 days after discontinuation of MAO inhibitors before initiating the sympathomimetic. DISCUSSION: Indirect acting sympathomimetic amines may cause abrupt elevation of blood pressure when administered to patients taking monoamine oxidase inhibitors, resulting in a potentially fatal hypertensive crisis. Mixed (direct and indirect) acting sympathomimetics have also been shown to interact with monoamine oxidase inhibitors depending on their degree of indirect action. The direct-acting sympathomimetics have not been reported to interact. Dopamine is metabolized by monoamine oxidase, and its pressor effect is enhanced by monoamine oxidase inhibitors. Since procarbazine, an antineoplastic agent, is a weak monoamine oxidase inhibitor, hypertensive reactions may result from its concurrent use with indirect and mixed acting sympathomimetics. Furazolidone, an antibacterial with monoamine oxidase inhibitor action, has also been shown to interact with indirect acting sympathomimetics. Linezolid is another antibacterial with monoamine oxidase inhibitor properties. Metaxalone is a weak inhibitor of MAO. Foods containing large amounts of tyramine have also been implicated in this interaction. Methylene blue, when administered intravenously, has been shown to reach sufficient concentrations to be a potent inhibitor of MAO-A. At recommended dosages, rasagiline, oral selegiline, and transdermal selegiline up to 6mg/day are selective for MAO-B; however, at higher dosages they have been shown to lose their selectivity. One or more of the drug pairs linked to this monograph have been included in a list of interactions that should be considered "high-priority" for inclusion and should not be inactivated in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
EMSAM, FURAZOLIDONE, MARPLAN, MATULANE, METAXALONE, METHYLENE BLUE, NARDIL, PARNATE, PHENELZINE SULFATE, PROCARBAZINE HCL, PROVAYBLUE, SELEGILINE HCL, TRANYLCYPROMINE SULFATE |
Flibanserin/Strong or Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Flibanserin is primarily metabolized by CYP3A4, though CYP2C19 also plays a role in metabolism.(1) CLINICAL EFFECTS: Concurrent use of a strong or moderate inhibitor of CYP3A4 may result in high to very high levels of and toxicity from flibanserin, including severe hypotension or syncope.(1) PREDISPOSING FACTORS: Patients with any degree of hepatic impairment, who are poor CYP2C19 metabolizers, or who also receive concomitant therapy with strong CYP2C19 inhibitors are expected to have increased systemic concentrations of flibanserin, adding to the risk for hypotension or syncopal episodes.(1) Hypotensive or syncopal episodes are more common when flibanserin is taken during waking hours.(1) PATIENT MANAGEMENT: The concomitant use of flibanserin with moderate or strong CYP3A4 inhibitors significantly increases flibanserin concentrations which may lead to hypotension and syncope. The manufacturer of flibanserin states moderate or strong CYP3A4 inhibitors are contraindicated.(1) If the benefit of initiating a CYP3A4 inhibitor within 2 days of stopping flibanserin clearly outweighs the risk flibanserin-associated hypotension or syncope, monitor and counsel the patient regarding symptoms of hypotension or syncope. Discontinue moderate or strong CYP3A4 inhibitors for 2 weeks before initiating or restarting flibanserin therapy.(1) DISCUSSION: In a drug interaction study with 15 healthy subjects, the combination of flibanserin (100 mg on day 6) and fluconazole (a moderate CYP3A4 and strong CYP2C19 inhibitor, 400 mg once then 200 mg daily for 5 days) resulted in an increased flibanserin exposure of 7-fold. Hypotension or syncope requiring supine placement with leg elevation occurred in 3 subjects (20%). One patient became unresponsive with a blood pressure of 64/41 mm Hg and required emergency room treatment where she required intravenous saline.(1) Though the combination has not been studied, a similar result is plausible with voriconazole, a strong CYP3A4 inhibitor and moderate CYP2C19 inhibitor.(1) In a drug interaction study with flibanserin 50 mg (one-half of the recommended dose) and ketoconazole 400 mg, flibanserin exposure increased 4.5-fold. One of 24 patients(4%) developed syncope.(1) A study of 12 healthy men and women on itraconazole (400 mg once then 200 mg daily for 4 days) with flibanserin 50 mg given 2 hours after itraconazole found that flibanserin exposure was increased 2.6-fold.(1) Strong inhibitors of CYP3A4 include: adagrasib, boceprevir, ceritinib, clarithromycin, cobicistat, idelalisib, indinavir, itraconazole, josamycin, ketoconazole, lonafarnib, lopinavir/ritonavir, mibefradil, mifepristone, nefazodone, nelfinavir, nirmatrelvir/ritonavir, paritaprevir, posaconazole, ribociclib, saquinavir, telaprevir, telithromycin, tipranavir, troleandomycin, tucatinib, and voriconazole.(1-3) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir/ritonavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole (also a CYP2C19 inhibitor), fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, ledipasvir, netupitant, schisandra, nilotinib, treosulfan and verapamil.(1-3) |
ADDYI, FLIBANSERIN |
Avanafil (Greater Than 50 mg)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of avanafil.(1) CLINICAL EFFECTS: The concurrent administration of a moderate CYP3A4 inhibitor may result in elevated levels of avanafil, which may result in increased adverse effects such as hypotension, visual changes, and priapism. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of avanafil states that in patients receiving moderate inhibitors of CYP3A4, the dose of avanafil should be limited to 50 mg in 24 hours.(1) DISCUSSION: Ketoconazole (400 mg daily), a strong inhibitor of CYP3A4, increased the maximum concentration (Cmax) and area-under-curve (AUC) of a single dose of avanafil (50 mg) by 3-fold and 13-fold, respectively. The half-life of avanafil increased from 5 hours to 9 hours.(1) Ritonavir (600 mg BID), a strong inhibitor of CYP3A4 and an inhibitor of 2C19, increased the Cmax and AUC of a single dose of avanafil (50 mg) by 2-fold and 13-fold, respectively. The half-life of avanafil increased from 5 hours to 9 hours.(1) Erythromycin (500 mg BID), a moderate inhibitor of CYP3A4, increased the Cmax and AUC of a single dose of avanafil (200 mg) by 2-fold and 3-fold, respectively. The half-life of avanafil increased from 5 hours to 8 hours.(1) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, grapefruit juice, imatinib, isavuconazonium, lefamulin, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan, and verapamil.(1-3) |
AVANAFIL, STENDRA |
Ranolazine (Greater Than 500 mg BID)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of ranolazine. Verapamil may also increase the absorption of ranolazine by inhibiting P-glycoprotein.(1) CLINICAL EFFECTS: Concurrent use of moderate inhibitors of CYP3A4 may result in elevated levels of and clinical effects from ranolazine. Elevated ranolazine levels may result in QTc prolongation, which may result in life-threatening cardiac arrhythmia, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of ranolazine states that the dosage of ranolazine should be limited to 500 mg twice daily in patients receiving moderate inhibitors of CYP3A4.(1) If concurrent therapy is deemed medically necessary, obtain serum calcium, magnesium, and potassium levels and monitor ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Concurrent use of diltiazem, a moderate inhibitor of CYP3A4, at daily doses of 180 mg to 360 mg increased plasma levels of ranolazine (1000 mg twice daily) by 50% and 130%, respectively.(1,4) In healthy subjects, concurrent ranolazine (1000 mg twice daily) had no effects on the pharmacokinetics of diltiazem (60 mg three times daily).(1) Concurrent use of verapamil (120 mg three times daily) increased plasma levels of ranolazine (750 mg twice daily) by 100%.(1) In a study in 12 healthy males, ranolazine immediate release (IR, 240 mg three times daily) had no effect on diltiazem (60 mg three times daily) pharmacokinetics. However, at ranolazine IR steady state, diltiazem increased ranolazine IR area under the curve (AUC) by 85%, on average, and increased maximum concentration (Cmax) by 1.9-fold and minimum concentration (Cmin) by 2.1-fold.(4) In a study in 12 subjects, ranolazine sustained release (SR, 500 mg twice daily) had no effect on diltiazem (60 mg three times daily) pharmacokinetics. However, at ranolazine steady state, diltiazem increased ranolazine SR Cmax, concentration minimum (Cmin), AUC by 80%, 216%, and 90%, on average, respectively.(4) In a study in 8 healthy males, diltiazem modified release (MR, 180 mg, or 240 mg, or 360 mg, once daily) increased ranolazine sustained release (SR, 1000 mg twice daily) AUC by 52%, 93%, and 139%, respectively. Ranolazine half-lives did not show any consistent trend of changes with increasing doses of diltiazem.(4) In a study of patients with severe chronic angina, the addition of ranolazine 750 mg twice daily or 1,000 mg twice daily along with their standard dose of diltiazem (180 mg once daily) provided additional antianginal relief, without evident adverse, long-term survival consequences over 1 to 2 years of therapy.(5) Ranolazine-induced QTc prolongation is dose and concentration-related.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, ledipasvir, lenacapavir, letermovir, netupitant, nilotinib, schisandra, treosulfan and verapamil.(1,3,6,7) |
ASPRUZYO SPRINKLE, RANOLAZINE ER |
Naloxegol (Greater Than 12.5 mg)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Inhibitors of CYP3A4 may inhibit the metabolism of naloxegol.(1) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 without a dosage adjustment of naloxegol may result in increased levels of naloxegol, which may precipitate opioid withdrawal symptoms.(1) PREDISPOSING FACTORS: Patients taking methadone may be more likely to experience gastrointestinal side effects such as abdominal pain and diarrhea as a result of opioid withdrawal.(1) PATIENT MANAGEMENT: The daily dose of naloxegol should be limited to 12.5 mg daily in patients taking moderate inhibitors of CYP3A4.(1) If concurrent use is deemed medically necessary, monitor patients for signs of opioid withdrawal such as sweating, chills, diarrhea, stomach pain, anxiety, irritability, yawning, restlessness, muscle/joint aches, increased lacrimation, running nose, and piloerection. Monitor patients taking methadone for abdominal pain and diarrhea as well.(1) DISCUSSION: Ketoconazole (400 mg daily for 5 days), a strong inhibitor of CYP3A4, increased the maximum concentration (Cmax) and area-under-curve (AUC) of a single dose of naloxegol by 9.58-fold and 12.85-fold, respectively.(2) Diltiazem (240 mg XR daily), a moderate inhibitor of CYP3A4, increased the Cmax and AUC of a single dose of naloxegol by 2.85 and 3.41, respectively.(2) According to Physiologically-based-Pharmacokinetic (PBPK) models, erythromycin, a moderate inhibitor of CYP3A4, at a dose of 250 mg QID is expected to increase the Cmax and AUC of naloxegol by 2.77-fold and 3.47-fold, respectively.(2) According to PBPK models, erythromycin at a dose of 400 mg QID is expected to increase the Cmax and AUC of naloxegol by 3.42-fold and 4.63-fold, respectively.(2) According to PBPK models, fluconazole, a moderate inhibitor of CYP3A4, at a dose of 200 mg daily is expected to increase the Cmax and AUC of naloxegol by 2.4-fold and 2.81-fold, respectively.(2) According to PBPK models, verapamil moderate inhibitor of CYP3A4, at a dose of 120 mg daily is expected to increase the Cmax and AUC of naloxegol by 1.97-fold and 2.21-fold, respectively.(2) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lefamulin, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan and verapamil.(1,3,4) |
MOVANTIK |
Lomitapide/Strong or Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Lomitapide is primarily metabolized via CYP3A4.(1) CLINICAL EFFECTS: Concurrent use of a strong or moderate inhibitor of CYP3A4 may result in high to very high levels of and toxicity from lomitapide.(1) PREDISPOSING FACTORS: The interaction may be more severe in patients with hepatic impairment or with end-stage renal disease.(1) PATIENT MANAGEMENT: Given the magnitude of this interaction and the potential toxicity of lomitapide, moderate and strong CYP3A4 inhibitors are contraindicated.(1) When possible use an alternative to the CYP3A4 inhibitor. If a moderate or strong CYP3A4 inhibitor is required, discontinue lomitapide. Due to its long half-life, it will take 1 to 2 weeks for remaining lomitapide to be eliminated; thus lomitapide adverse effects could occur after discontinuation. The US manufacturer of itraconazole states that concurrent use with lomitapide is contraindicated during and two weeks after itraconazole treatment.(4) DISCUSSION: Concurrent administration with ketoconazole (a strong inhibitor of CYP3A4) increased lomitapide area-under-curve (AUC) by 27-fold.(1) Strong inhibitors of CYP3A4 include: adagrasib, boceprevir, ceritinib, clarithromycin, cobicistat, idelalisib, indinavir, itraconazole, josamycin, ketoconazole, lonafarnib, lopinavir/ritonavir, mibefradil, nefazodone, nelfinavir, nirmatrelvir/ritonavir, paritaprevir, posaconazole, ribociclib, saquinavir, telaprevir, telithromycin, tipranavir, tucatinib, and voriconazole.(1-3,5) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir/ritonavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole (also a CYP2C19 inhibitor), fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, lefamulin, letermovir, netupitant, nilotinib, nirogacestat, schisandra, treosulfan and verapamil.(1-3) |
JUXTAPID |
Cilostazol (Greater than 50 mg BID)/Selected Strong & Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Strong and moderate inhibitors of CYP3A4 may inhibit the metabolism of cilostazol.(1) CLINICAL EFFECTS: The concurrent use of cilostazol and strong and moderate inhibitors of CYP3A4 may result in elevated levels of cilostazol, which may produce increased effects of cilostazol and adverse effects.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The dose of cilostazol should be limited to 50 mg twice daily in patients receiving concurrent therapy with strong and moderate inhibitors of CYP3A4.(1) DISCUSSION: In a study in 16 healthy males, the administration of a single dose of cilostazol (10 mg) with erythromycin (500 mg every eight hours) increased the maximum concentration (Cmax) and area-under-curve (AUC) of cilostazol by 47% and 73%, respectively. The Cmax and AUC of 4'-trans-hydroxy-cilostazol were increased by 29% and 141%, respectively.(2) Analysis of population pharmacokinetics indicated that the concurrent administration of diltiazem with cilostazol increased cilostazol concentrations by 53%. Concurrent administration of diltiazem and cilostazol decreased cilostazol clearance by 30%, increased the Cmax by 30%, and increased AUC by 40%.(1) In a study, the administration of a single dose of cilostazol (10 mg) with erythromycin (500 mg every eight hours) increased the Cmax and AUC of cilostazol by 47% and 73%, respectively. The AUC of 4'-trans-hydroxy-cilostazol was increased by 141%.(1) In an vitro study in human liver microsomes, ketoconazole inhibited the metabolism of cilostazol.(3) |
CILOSTAZOL |
Mitapivat (Greater Than 20 mg)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of mitapivat.(1) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 may result in increased levels of and effects from mitapivat including decreased estrone and estradiol levels in males, increased urate, back pain, and arthralgias.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The concurrent use of moderate CYP3A4 inhibitors with mitapivat should be monitored closely for increased risk of adverse reactions. Mitapivat dose should not exceed 20 mg twice daily with concurrent moderate CYP3A4 inhibitors.(1) DISCUSSION: Mitapivat is a CYP3A4 substrate. In a pharmacokinetic study with mitapivat 5, 20, or 50 mg twice daily dosing, fluconazole increased mitapivat area-under-curve (AUC) and concentration maximum (Cmax) by 2.6-fold and 1.6-fold, respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, berotralstat, clofazimine, conivaptan, darunavir, diltiazem, dronedarone, erythromycin, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, letermovir, netupitant, nilotinib, schisandra, treosulfan and verapamil.(2)(2) |
PYRUKYND |
Lumateperone (Greater Than 21 mg)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of lumateperone.(1) CLINICAL EFFECTS: Concurrent use of lumateperone with moderate CYP3A4 inhibitors increases lumateperone exposure, which may increase the risk of adverse reactions.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of lumateperone recommends decreasing the dosage of lumateperone to 21 mg once daily in patients receiving moderate CYP3A4 inhibitors.(1) DISCUSSION: Coadministration of lumateperone with itraconazole, a strong CYP3A4 inhibitor, resulted in a 4-fold and 3.5-fold increase in area-under-curve (AUC) and concentration maximum (Cmax), respectively.(1) Coadministration of lumateperone with diltiazem, a moderate CYP3A4 inhibitor, resulted in a 2.5-fold and 2-fold increase AUC and Cmax, respectively.(1) Moderate inhibitors of CYP3A4 include: aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosnetupitant, imatinib, isavuconazonium, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, verapamil, treosulfan and voxelotor.(2,3) |
CAPLYTA |
Daridorexant (Greater Than 25 mg)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of daridorexant.(1) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 may result in increased levels of and effects from daridorexant including somnolence, fatigue, CNS depressant effects, daytime impairment, or headache.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The dose of daridorexant should be limited to 25 mg daily when used with a moderate CYP3A4 inhibitor.(1) DISCUSSION: Daridorexant is a CYP3A4 substrate. In a PKPB model, concurrent use of daridorexant with diltiazem, a moderate CYP3A4 inhibitor, increased daridorexant area-under-curve (AUC) and maximum concentration (Cmax) by 2.4-fold and 1.4-fold, respectively.(1) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, treosulfan and verapamil.(2) |
QUVIVIQ |
Colchicine (for Cardioprotection)/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: P-glycoprotein (P-gp) inhibitors may affect the transport of colchicine, a P-gp substrate.(1,2) CLINICAL EFFECTS: Concurrent use of a P-gp inhibitor may result in elevated levels of and toxicity from colchicine. Symptoms of colchicine toxicity include abdominal pain; nausea or vomiting; severe diarrhea; muscle weakness or pain; numbness or tingling in the fingers or toes; myelosuppression; feeling weak or tired; increased infections; and pale or gray color of the lips, tongue, or palms of hands.(1,2) PREDISPOSING FACTORS: This interaction is expected to be more severe in patients with renal or hepatic impairment.(1,2) PATIENT MANAGEMENT: The manufacturer of colchicine used for cardiovascular risk reduction states that concurrent use of colchicine with P-gp inhibitors is contraindicated.(1) DISCUSSION: There are several reports of colchicine toxicity(3-5) and death(6,7) following the addition of clarithromycin to therapy. In a retrospective review of 116 patients who received clarithromycin and colchicine during the same hospitalization, 10.2% (9/88) of patients who received simultaneous therapy died, compared to 3.6% (1/28) of patients who received sequential therapy.(8) An FDA review of 117 colchicine-related deaths that were not attributable to overdose found that 60 deaths (51%) involved concurrent use of clarithromycin.(2) There is one case report of colchicine toxicity with concurrent erythromycin.(9) In a study in 20 subjects, pretreatment with diltiazem (240 mg daily for 7 days) increased the maximum concentration (Cmax) and area-under-curve (AUC) of a single dose of colchicine (0.6 mg) by 44.2% (range -46.6% to 318.3%) and by 93.4% (range -30.2% to 338.6%), respectively.(1) In a study in 24 subjects, pretreatment with verapamil (240 mg twice daily for 7 days) increased the Cmax and AUC of a single dose of colchicine (0.6 mg) by 40.1% (range -47.1% to 149.5%) and by 103.3% (range -9.8% to 217.2%), respectively.(1) Colchicine toxicity has been reported with concurrent use of CYP3A4 and P-gp inhibitors such as clarithromycin, cyclosporine, diltiazem, erythromycin, and verapamil.(1,2) P-gp inhibitors include abrocitinib, amiodarone, asciminib, asunaprevir, azithromycin, belumosudil, capmatinib, carvedilol, cimetidine, cyclosporine, danicopan, daridorexant, diltiazem, diosmin, dronedarone, erythromycin, flibanserin, fluvoxamine, fostamatinib, glecaprevir/pibrentasvir, lapatinib, ledipasvir, mavorixafor, neratinib, osimertinib, pirtobrutinib, propafenone, quinidine, ranolazine, schisandra, selpercatinib, sotorasib, tepotinib, tezacaftor, valbenazine, velpatasvir, vemurafenib, verapamil, vimseltinib, and voclosporin.(1,10,11) |
LODOCO |
There are 48 severe interactions.
These drug interactions can produce serious consequences in most patients. Actions required for severe interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration scheduling, and providing additional patient monitoring. Review the full interaction monograph for more information.
Drug Interaction | Drug Names |
---|---|
Eplerenone/Selected Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of eplerenone.(1) CLINICAL EFFECTS: Concurrent use of moderate inhibitors of CYP3A4 may result in a 2-fold increase in eplerenone concentration and toxicity (e.g. hyperkalemia, hypotension).(1) PREDISPOSING FACTORS: Severe renal disease increases the risk for hyperkalemia. PATIENT MANAGEMENT: The starting dose of eplerenone for hypertension should be reduced to 25 mg in patients receiving moderate CYP3A4 inhibitors. For inadequate blood pressure response, dosing may be increased to a maximum of 25 mg twice daily. Do not exceed 25 mg once daily in post-MI CHF patients receiving a moderate CYP3A4 inhibitor.(1) In all patients taking eplerenone who start taking a moderate CYP3A4 inhibitor, check serum potassium and creatinine levels after 3-7 days of concurrent therapy.(1) DISCUSSION: Ketoconazole (200 mg BID) increased the maximum concentration (Cmax) and area-under-curve (AUC) of a single dose of eplerenone (100 mg) by 1.7-fold and 5.4-fold, respectively.(1) The concurrent use of eplerenone with less potent CYP3A4 inhibitors (erythromycin 500 mg BID, fluconazole 200 mg daily, saquinavir 1200 mg TID, and verapamil 240 mg daily) increased the Cmax of eplerenone by 1.4-fold to 1.6-fold and the AUC of eplerenone by 2.0-fold and 2.9-fold.(1) Moderate inhibitors of CYP3A4 include: aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosnetupitant, imatinib, isavuconazonium, lefamulin, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, treosulfan and verapamil.(1-3) |
EPLERENONE, INSPRA |
Oral Phosphate Supplements; Urinary pH Modifiers/Aluminum; Calcium; Magnesium SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Medications containing significant amounts of aluminum, calcium, or magnesium may bind to the phosphate and prevent its absorption.(1) CLINICAL EFFECTS: Concurrent use of medications containing significant amounts of aluminum, calcium, or magnesium may result in decreased effectiveness of phosphate supplements and urinary pH modifiers high in phosphate.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Patients receiving phosphate supplements or urinary pH modifiers high in phosphate should be instructed to avoid medications containing aluminum, calcium, or magnesium.(1) Some phosphate laxative products used as phosphate supplements may contain sufficient quantities of phosphate to interact as well. DISCUSSION: The manufacturer of K-Phos states that products containing aluminum, calcium, or magnesium may bind to the phosphate and prevent its absorption. Therefore, patients receiving phosphate supplements and urinary pH modifiers high in phosphate should be instructed to avoid products containing aluminum, calcium, or magnesium.(1) |
K-PHOS NO.2, K-PHOS ORIGINAL, POTASSIUM PHOSPHATE, SODIUM PHOSPHATE DIBASIC, UROQID-ACID NO.2 |
Aspartame; Phenylalanine; Tyrosine/Nitisinone SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Aspartame contains phenylalanine, which is metabolized into tyrosine. Nitisinone prevents the breakdown of tyrosine.(1) CLINICAL EFFECTS: Elevated levels of tyrosine can cause vision changes (cornea ulcers, corneal opacities, keratitis, conjunctivitis, eye pain, and photophobia), skin problems (painful hyperkeratotic plaques on the soles and palms), and nervous system toxicity (variable degrees of mental retardation and developmental delay). PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Patients receiving nitisinone should following dietary restrictions concerning the consumption of aspartame, phenylalanine, and tyrosine, including medications that contain these ingredients.(1) DISCUSSION: In most patients, eye symptoms resulting from elevated tyrosine levels were transient, lasting less than one week; however, six patients had prolonged episodes lasting up to almost 2 years.(1) |
NITISINONE, NITYR, ORFADIN |
Ivabradine/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of ivabradine. Increased levels of ivabradine may cause ivabradine-induced reduction in heart rate which can contribute to increased QT prolongation risk.(1-3) CLINICAL EFFECTS: Concurrent use of moderate inhibitors may result in elevated levels of and toxicity from ivabradine including a reduction in heart rate which can contribute to QT prolongation or torsades de pointes.(1-3) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: The US manufacturer of ivabradine states that concurrent use of moderate inhibitors of CYP3A4, including diltiazem and verapamil, should be avoided.(1) The Australian and UK manufacturers of ivabradine state that concurrent use of diltiazem or verapamil is contraindicated but that other moderate inhibitors of CYP3A4 may be considered with monitoring of heart rate and with a starting dose of 2.5 mg ivabradine twice daily if resting heart rate is above 70 bpm.(2-3) Monitor patients receiving concurrent therapy for bradycardia (heart rate less than 50 bpm), dizziness, fatigue, hypotension, and/or symptoms of atrial fibrillation (heart palpitations, chest pressure, shortness of breath). DISCUSSION: Concurrent use of potent CYP3A4 inhibitors ketoconazole (200 mg daily) and josamycin (1000 mg twice daily) increased mean ivabradine plasma exposure by 7- to 8-fold. Concurrent use of moderate CYP3A4 inhibitors diltiazem and verapamil increased ivabradine area-under-curve (AUC) by 2- to 3-fold and reduced heart rate by an additional 5 bpm.(2) Moderate CYP3A4 inhibitors linked to this monograph include: amprenavir, aprepitant, avacopan, berotralstat, clofazimine, conivaptan, diltiazem, duvelisib, fedratinib, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nirogacestat, schisandra, tofisopam, treosulfan and verapamil.(5) |
CORLANOR, IVABRADINE HCL |
Tolvaptan/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of tolvaptan.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may result in elevated levels of and toxicity from tolvaptan.(1) Elevated levels of tolvaptan may lead to increased clinical effects such as hypotension, hypovolemia, and thirst, as well as toxicity in the form of neurologic sequelae such as osmotic demyelination syndrome (ODS). ODS can lead to coma and death. Symptoms of ODS include dysarthria, mutism, dysphagia, lethargy, affective changes, spastic quadriparesis, seizures, and coma.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of Samsca for the treatment of clinically significant hypervolemic and euvolemic hyponatremia states that concurrent administration with moderate CYP3A4 inhibitors should be avoided.(1) The US manufacturer of Jynarque for the management to slow kidney function decline in adults at risk of rapidly progressing autosomal dominant polycystic kidney disease states concurrent administration with moderate CYP3A4 inhibitors warrants a dose reduction of Jynarque as follows: - Standard morning and evening dose: 90 mg and 30 mg should be dose adjusted to 45 mg and 15 mg, respectively - Standard morning and evening dose: 60 mg and 30 mg should be dose adjusted to 30 mg and 15 mg, respectively - Standard morning and evening dose: 45 mg and 15 mg should be dose adjusted to 15 mg and 15 mg, respectively Interrupt Jynarque temporarily for short term therapy with moderate CYP3A4 inhibitors if the recommended reduced doses are not available.(2) DISCUSSION: Fluconazole 400 mg (moderate inhibitor of CYP3A4) given one day prior and 200 mg given concomitantly produced an 80% and 200% increase in tolvaptan maximum concentration (Cmax) and area-under-curve (AUC), respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, crizotinib, darunavir, diltiazem, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lefamulin, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, treosulfan and verapamil.(1-4) |
JYNARQUE, SAMSCA, TOLVAPTAN |
Mixed;Indirect Sympathomimetics/Selected MAOIs SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Catecholamine stores increased by MAOIs can be released by indirect acting sympathomimetics such as ephedrine and amphetamine. MAO inhibitors also interfere with gut and liver metabolism of direct acting sympathomimetics (e.g oral phenylephrine). CLINICAL EFFECTS: Concurrent use of MAOIs may result in potentiation of sympathomimetic effects, which may result in headaches, hypertensive crisis, toxic neurological effects, and malignant hyperpyrexia. Fatalities have occurred with combinations of sympathomimetics and MAO-A inhibitors. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Concurrent use of MAO-A inhibitors and sympathomimetics is contraindicated. The manufacturers of sympathomimetic agents recommend waiting 14 days after discontinuation of MAO inhibitors before initiating the sympathomimetic. Patients receiving direct or indirect acting sympathomimetics should not receive linezolid unless they are monitored for potential increases in blood pressure. Initial dosages of dopamine and epinephrine should be reduced. At recommended dosages, oral selegiline and transdermal selegiline up to 6mg/day are selective for MAO-B; however, at higher dosages they have been shown to lose their selectivity. Patients receiving higher dosages of selegiline should be considered susceptive to this interaction. DISCUSSION: Indirect acting sympathomimetic amines may cause abrupt elevation of blood pressure when administered to patients taking monoamine oxidase inhibitors, resulting in a potentially fatal hypertensive crisis. Mixed (direct and indirect) acting sympathomimetics have also been shown to interact with monoamine oxidase inhibitors depending on their degree of indirect action. The direct-acting sympathomimetics have not been reported to interact. Dopamine is metabolized by monoamine oxidase, and its pressor effect is enhanced by monoamine oxidase inhibitors. Furazolidone, an antibacterial with monoamine oxidase inhibitor action, has also been shown to interact with indirect acting sympathomimetics. Foods containing large amounts of tyramine have also been implicated in this interaction. A significant pressor response was observed in normal subjects receiving linezolid and tyramine doses of more than 100 mg. Administration of linezolid (600 mg BID for 3 days) with pseudoephedrine (60 mg q 4 hours for 2 doses) increased blood pressure by 32 mmHg. Administration of linezolid (600 mg BID for 3 days) with phenylpropanolamine (25 mg q 4 hours for 2 doses) increased blood pressure by 38 mmHg. One or more of the drug pairs linked to this monograph have been included in a list of interactions that should be considered "high-priority" for inclusion and should not be inactivated in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
EMSAM, LINEZOLID, LINEZOLID-0.9% NACL, LINEZOLID-D5W, SELEGILINE HCL, XADAGO, ZELAPAR, ZYVOX |
Ivacaftor/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Strong and moderate inhibitors of CYP3A4 may inhibit the metabolism of ivacaftor.(1) CLINICAL EFFECTS: Concurrent use of a strong or moderate inhibitor of CYP3A4 may result in elevated levels of and toxicity from ivacaftor.(1) PREDISPOSING FACTORS: This interaction may be more severe in patients with hepatic impairment.(1) PATIENT MANAGEMENT: In patients receiving concurrent strong CYP3A4 inhibitors such as boceprevir, ceritinib, clarithromycin, cobicistat, conivaptan, idelalisib, indinavir, itraconazole, ketoconazole, lopinavir/ritonavir, mibefradil, nefazodone, nelfinavir, nirmatrelvir/ritonavir, posaconazole, ritonavir, saquinavir, telaprevir, telithromycin, troleandomycin, tucatinib, or voriconazole, the dose of ivacaftor should be reduced to one 150 mg tablet or one packet (25 mg if body weight 5 kg to < 7 kg, 50 mg if body weight < 14 kg, 75 mg if weight equal or > 14 kg) two times a week.(1) In patients receiving concurrent moderate CYP3A4 inhibitors such as amprenavir, aprepitant, atazanavir, berotralstat, crizotinib, cyclosporine, darunavir/ritonavir, diltiazem, dronedarone, erythromycin, fluconazole, fosamprenavir, fosaprepitant, imatinib, isavuconazonium, ledipasvir, netupitant, schisandra or verapamil, the dose of ivacaftor should be reduced to one 150 mg tablet or one packet (25 mg if body weight 5 kg to < 7 kg, 50 mg if body weight < 14 kg, 75 mg if weight equal or > 14 kg) daily.(1) In patients who are less than 6 months of age, concurrent use of ivacaftor with strong or moderate CYP3A4 inhibitors is not recommended.(1) DISCUSSION: Concurrent administration with ketoconazole (a strong inhibitor of CYP3A4) increased ivacaftor area-under-curve (AUC) by 8.5-fold.(1) Concurrent administration with fluconazole (a moderate inhibitor of CYP3A4) increased ivacaftor area-under-curve (AUC) by 3-fold.(1) A study in 12 subjects compared ivacaftor alone (study A), ivacaftor with ritonavir (a strong inhibitor of CYP3A4) 50 mg daily on days 1-4 (study B), and ivacaftor with ritonavir 50 mg daily for two weeks prior and on days 1-4 of ivacaftor administration (study C). In study A, B, and C, ivacaftor AUC increased from 10.94 mcg/hr to 215.6 mcg/hr and 216 mcg/hr, respectively, with the addition of ritonavir. Ivacaftor concentration maximum (Cmax) was 0.9944 mcg, 1.812 mcg, and 2.267 mcg in study A, B, and C, respectively.(2) Strong inhibitors of CYP3A4 include: adagrasib, boceprevir, ceritinib, clarithromycin, cobicistat, idelalisib, indinavir, itraconazole, josamycin, ketoconazole, lonafarnib, lopinavir/ritonavir, mibefradil, nefazodone, nelfinavir, nirmatrelvir/ritonavir, posaconazole, ribociclib, ritonavir, saquinavir, telaprevir, telithromycin, troleandomycin, tucatinib, and voriconazole.(3-5) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir/ritonavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, ledipasvir, netupitant, nilotinib, nirogacestat, schisandra, treosulfan and verapamil.(3-5) |
KALYDECO |
Radioactive Iodide/Agents that Affect Iodide SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Many compounds can affect iodide protein binding and alter iodide pharmacokinetics and pharmacodynamics.(1) CLINICAL EFFECTS: Compounds that affect iodide pharmacokinetics and pharmacodynamics may impact the effectiveness of radioactive iodide.(1) PREDISPOSING FACTORS: Compounds that affect iodide pharmacokinetics and pharmacodynamics are expected to have the most impact during therapy using radioactive iodide. Diagnostic procedures would be expected to be impacted less. PATIENT MANAGEMENT: Discuss the use of agents that affect iodide pharmacokinetics and pharmacodynamics with the patient's oncologist.(1) Because indocyanine green contains sodium iodide, the iodine-binding capacity of thyroid tissue may be reduced for at least one week following administration. Do not perform radioactive iodine uptake studies for at least one week following administration of indocyanine green.(2) The manufacturer of iopamidol states administration may interfere with thyroid uptake of radioactive iodine and decrease therapeutic and diagnostic efficacy. Avoid thyroid therapy or testing for up to 6 weeks post administration of iopamidol.(3) DISCUSSION: Many agents interact with radioactive iodine. The average duration of effect is: anticoagulants - 1 week antihistamines - 1 week anti-thyroid drugs, e.g: carbimazole, methimazole, propylthiouracil - 3-5 days corticosteroids - 1 week iodide-containing medications, e.g: amiodarone - 1-6 months expectorants - 2 weeks Lugol solution - 3 weeks saturated solution of potassium iodine - 3 weeks vitamins - 10-14 days iodide-containing X-ray contrast agents - up to 1 year lithium - 4 weeks phenylbutazone - 1-2 weeks sulfonamides - 1 week thyroid hormones (natural or synthetic), e.g.: thyroxine - 4 weeks tri-iodothyronine - 2 weeks tolbutamide - 1 week topical iodide - 1-9 months (1) |
ADREVIEW, JEANATOPE, MEGATOPE, SODIUM IODIDE I-123 |
Bosutinib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Agents that inhibit CYP3A4 may inhibit the metabolism of bosutinib.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may increase levels of and effects from bosutinib.(1) Elevated levels of bosutinib may result in QTc prolongation, which may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes (TdP). Other toxicities include nausea, vomiting, diarrhea, abdominal pain, myelosuppression, transaminitis, renal toxicity, and cardiac failure.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid the use of moderate CYP3A4 inhibitors in patients undergoing therapy with bosutinib.(1) DISCUSSION: In a study in 24 healthy subjects, ketoconazole (400 mg daily for 5 days) increased the maximum concentration (Cmax) and area-under-curve (AUC) of bosutinib (100 mg) by 5.2-fold and 8.6-fold, respectively.(1) In a cross-over study in 18 healthy subjects, aprepitant (125 mg) increased the Cmax and AUC of bosutinib (single dose 500 mg) by 1.5-fold and 2.0-fold, respectively.(1) A study using PKPB modeling found concurrent use of bosutinib and schisandra would result in an increase in bosutinib exposure with an increased AUC by 3.0-fold.(2) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, boceprevir, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, ledipasvir, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, treosulfan and verapamil.(3-4) |
BOSULIF |
Bosentan/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Bosentan is metabolized by CYP2C9 and CYP3A4. It is also an inducer of these enzymes. With regular dosing bosentan auto-induces its own metabolism.(1) Strong and moderate CYP3A4 inhibitors may inhibit the CYP3A4 mediated metabolism of bosentan.(1,2) CLINICAL EFFECTS: Concurrent use of bosentan with an inhibitor of CYP3A4 may result in elevated levels of and toxicity from bosentan.(1) PREDISPOSING FACTORS: Concurrent use of bosentan, a CYP3A4 inhibitor and a CYP2C9 inhibitor (e.g. amiodarone, fluconazole, miconazole, oxandrolone, sulfinpyrazone, or phenylbutazone)(3) could lead to blockade of both major metabolic pathways for bosentan, resulting in large increases in bosentan plasma concentrations.(1,3) PATIENT MANAGEMENT: Review medication list to see if patient is also receiving a CYP2C9 inhibitor (e.g. amiodarone, fluconazole, miconazole, oxandrolone, sulfinpyrazone, or phenylbutazone). Concomitant use of both a CYP2C9 and CYP3A4 inhibitor is not recommended by the manufacturer as the combination may lead to large increases in bosentan plasma concentrations.(1) For patients stabilized on bosentan when a CYP3A4 inhibitor is initiated, monitor tolerance to concomitant therapy and adjust bosentan dose if needed. In patients who have been receiving a strong CYP3A4 inhibitor for at least 10 days, start bosentan at 62.5 mg once daily or every other day based upon individual tolerability. Discontinue use of bosentan at least 36 hours prior to initiation of a strong CYP3A4 inhibitor. After at least 10 days following the initiation of a strong CYP3A4 inhibitor, resume bosentan at 62.5 mg once daily or every other day based upon individual tolerability. DISCUSSION: In a study in healthy subjects, concurrent bosentan and ketoconazole (a strong CYP3A4 inhibitor) administration increased bosentan steady-state maximum concentrations (Cmax) and area-under-curve (AUC) by 2.1-fold and 2.3-fold, respectively.(2) Strong CYP3A4 inhibitors linked to this monograph include: adagrasib, boceprevir, ceritinib, clarithromycin, itraconazole, josamycin, ketoconazole, levoketoconazole, mibefradil, mifepristone, nefazodone, posaconazole, ribociclib, telaprevir, telithromycin, troleandomycin, tucatinib, and voriconazole.(3) Moderate CYP3A4 inhibitors linked to this monograph include: aprepitant, berotralstat, clofazimine, conivaptan, diltiazem, dronedarone, erythromycin, fluvoxamine, fosnetupitant, imatinib, isavuconazonium, letermovir, netupitant, nilotinib, schisandra, treosulfan and verapamil.(3) |
BOSENTAN, TRACLEER |
Guanfacine/Strong & Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Strong or moderate inhibitors of CYP3A4 may inhibit the metabolism of guanfacine.(1) CLINICAL EFFECTS: The concurrent administration of a strong or moderate CYP3A4 inhibitor may result in elevated levels of guanfacine, which may result in increased adverse effects such as hypotension, bradycardia, loss of consciousness, and drowsiness.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Patients maintained on guanfacine may need dosage adjustments if strong or moderate inhibitors of CYP3A4 are initiated or discontinued. The manufacturer of extended-release guanfacine recommends a starting dose of extended-release guanfacine initiated at half the recommended level of the weight based dosing in patients receiving strong or moderate inhibitors of CYP3A4. If a patient has been maintained on extended-release guanfacine and is started on a strong or moderate CYP3A4 inhibitor, the dose of extended-release guanfacine should be decreased to half the recommended weight based dose. If a patient has been maintained on extended-release guanfacine and a strong or moderate CYP3A4 inhibitor and the strong or moderate CYP3A4 inhibitor is discontinued, the dose of extended-release guanfacine may need to be increased to the recommended weight based dose based upon patient response. Extended-release guanfacine target dose range for attention deficit hyperactivity disorder is 0.05-0.12 mg/kg/day. Doses above 4 mg/day have not been evaluated in children ages 6-12 years and doses above 7 mg/day have not been evaluated in adolescents ages 13-17 years.(1) DISCUSSION: Ketoconazole (dosage not stated), a strong inhibitor of CYP3A4, increased the maximum concentration (Cmax) and area-under-curve (AUC) of guanfacine (dosage not stated) by approximately 1.75-fold and 3-fold, respectively.(1) Strong inhibitors of CYP3A4 include: adagrasib, boceprevir, ceritinib, clarithromycin, cobicistat, idelalisib, indinavir, itraconazole, josamycin, ketoconazole, levoketoconazole, lonafarnib, lopinavir/ritonavir, mibefradil, mifepristone, nefazodone, nelfinavir, nirmatrelvir/ritonavir, posaconazole, ribociclib, ritonavir, saquinavir, telaprevir, telithromycin, tipranavir, troleandomycin, tucatinib, and voriconazole.(1-3) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan and verapamil.(1-3) |
GUANFACINE HCL, GUANFACINE HCL ER, INTUNIV |
Pimozide/Selected Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of pimozide.(1) CLINICAL EFFECTS: Concurrent administration of a moderate inhibitor of CYP3A4 may result in elevated levels of pimozide, which may result in prolongation of the QTc interval and potentially life-threatening ventricular arrhythmias.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) The risk of anticholinergic toxicities including cognitive decline, delirium, falls and fractures is increased in geriatric patients using more than one medicine with anticholinergic properties.(3) PATIENT MANAGEMENT: Avoid concurrent use, especially when other risk factors for QT prolongation are present. The manufacturer of pimozide states that concomitant treatment with strong CYP3A4 inhibitors is contraindicated and treatment with less potent inhibitors of CYP3A4 should also be avoided.(1) If concurrent use cannot be avoided, then correct or minimize QT prolonging risk factors, e.g. correct electrolyte disturbances, use the lowest effective dose of pimozide, and discontinue other concurrent QT prolonging agents or CYP3A4 inhibitors if possible. Consider ECG to evaluate baseline and/or concurrent QT prolongation risk. Monitor patients on the combination and counsel patients accordingly. DISCUSSION: Pimozide is metabolized at CYP3A.(1,4) Elevated levels of pimozide may prolong the QTc interval resulting in life-threatening ventricular arrhythmias.(1) Moderate inhibitors of CYP3A4 include: avacopan, berotralstat, clofazimine, conivaptan, diltiazem, duvelisib, fedratinib, fosnetupitant, imatinib, isavuconazonium, lenacapavir, netupitant, schisandra, tofisopam, treosulfan and verapamil.(5,6) |
PIMOZIDE |
Ergot Alkaloids/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may inhibit the metabolism of ergot alkaloids. CLINICAL EFFECTS: Concurrent use of a moderate CYP3A4 inhibitor may result in increased levels of the ergot alkaloid, which may result in clinical signs of ergotism, including vasospasm, dysesthesia, renal ischemia, and peripheral ischemia. PREDISPOSING FACTORS: Patients receiving the maximum recommended (or higher than recommended) dosages of ergot alkaloids may be at a higher risk of adverse effects from this combination. PATIENT MANAGEMENT: When possible, avoid the concurrent use of moderate CYP3A4 inhibitors in patients taking ergot alkaloids. If concurrent use is warranted, consider reducing the dose of the ergot alkaloid during concurrent therapy. Patients receiving concurrent therapy should be monitored for and instructed to report any signs of ergotism. DISCUSSION: Coadministration of dihydroergotamine and ergotamine with potent inhibitors of CYP3A4 such as clarithromycin, erythromycin, indinavir, nelfinavir, ritonavir, and troleandomycin has resulted in ergotism, characterized by vasospasm and ischemia of the extremities. Inhibition of ergot alkaloid metabolism by moderate inhibitors would also be expected, but to a lesser degree. Moderate CYP3A4 inhibitors linked to this monograph are aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, dronedarone, duvelisib, fedratinib, fluconazole, fluvoxamine, fosnetupitant, imatinib, isavuconazonium, lenacapavir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan and verapamil. |
DIHYDROERGOTAMINE MESYLATE, ERGOLOID MESYLATES, ERGOMAR, ERGOTAMINE TARTRATE, ERGOTAMINE-CAFFEINE, METHYLERGONOVINE MALEATE, METHYSERGIDE MALEATE, MIGERGOT, MIGRANAL, TRUDHESA |
Suvorexant (Greater Than 10 mg)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate and strong inhibitors of CYP3A4 may inhibit the metabolism of suvorexant.(1) CLINICAL EFFECTS: Concurrent use of an agent that is a moderate or strong inhibitor of CYP3A4 may result in elevated levels of and clinical effects of suvorexant.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of suvorexant recommends a starting dose of 5 mg daily and a maximum dose of 10 mg daily in patients receiving concomitant therapy with a moderate inhibitor of CYP3A4.(1) Concurrent use with strong inhibitors of CYP3A4 is not recommended.(1) DISCUSSION: Diltiazem, a moderate inhibitor of CYP3A4, increased suvorexant AUC and Cmax by approximately 2-fold and 1.25-fold, respectively.(1) Ketoconazole, a strong inhibitor of CYP3A4, increased suvorexant area-under-curve (AUC) and maximum concentration (Cmax) by approximately 2.75-fold and 1.25-fold, respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan and verapamil.(1-3) |
BELSOMRA |
Eliglustat/Strong & Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Strong or moderate inhibitors of CYP3A4 may inhibit the metabolism of eliglustat. If the patient is also taking an inhibitor of CYP2D6, eliglustat metabolism can be further inhibited.(1) CLINICAL EFFECTS: Concurrent use of an agent that is a strong or moderate inhibitor of CYP3A4 may result in elevated levels of and clinical effects of eliglustat, including prolongation of the PR, QTc, and/or QRS intervals, which may result in life-threatening cardiac arrhythmias.(1) PREDISPOSING FACTORS: If the patient has liver disease, is also taking an inhibitor of CYP2D6 and/or is an intermediate or poor metabolizer of CYP2D6, eliglustat metabolism can be further inhibited.(1) The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The concurrent use of eliglustat with strong or moderate inhibitors of CYP3A4 concomitantly with strong or moderate inhibitors of CYP2D6 in both extensive and intermediate metabolizers of CYP2D6 is contraindicated.(1) The concurrent use of eliglustat with strong inhibitors of CYP3A4 in intermediate and poor metabolizers of CYP2D6 is contraindicated.(1) The concurrent use of eliglustat with moderate inhibitors of CYP3A4 in intermediate and poor metabolizers of CYP2D6 should be avoided.(1) The dosage of eliglustat with strong or moderate inhibitors of CYP3A4 in extensive metabolizers of CYP2D6 should be limited to 84 mg daily.(1) The concurrent use of eliglustat with strong inhibitors of CYP3A4 concomitantly with strong or moderate inhibitors of CYP2D6 is contraindicated.(1) The concurrent use of eliglustat with moderate inhibitors of CYP3A4 concomitantly with strong or moderate inhibitors of CYP2D6 in poor metabolizers of CYP2D6 should be avoided and is contraindicated in extensive and intermediate metabolizers of CYP2D6.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Ketoconazole (400 mg daily), a strong inhibitor of CYP3A4, increased eliglustat (84 mg BID) maximum concentration (Cmax) and area-under-curve (AUC) by 4-fold and 4.4-fold, respectively, in extensive metabolizers. Physiologically-based pharmacokinetic (PKPB) models suggested ketoconazole would increase eliglustat Cmax and AUC by 4.4-fold and 5.4-fold, respectively, in intermediate metabolizers. PKPB models suggested ketoconazole may increase the Cmax and AUC of eliglustat (84 mg daily) by 4.3-fold and 6.2-fold, respectively, in poor metabolizers.(1) PKPB models suggested fluconazole, a moderate inhibitor of CYP3A4, would increase eliglustat Cmax and AUC by 2.8-fold and 3.2-fold, respectively, in extensive metabolizers and by 2.5-fold and 2.9-fold, respectively in intermediate metabolizers. PKPB models suggest that concurrent eliglustat (84 mg BID), paroxetine (a strong inhibitor of CYP2D6), and ketoconazole would increase eliglustat Cmax and AUC by 16.7-fold and 24.2-fold, respectively, in extensive metabolizers. In intermediate metabolizers, eliglustat Cmax and AUC would be expected to increase 7.5-fold and 9.8-fold, respectively.(1) PKPB models suggest that concurrent eliglustat (84 mg BID), terbinafine (a moderate inhibitor of CYP2D6), and ketoconazole would increase eliglustat Cmax and AUC by 10.2-fold and 13.6-fold, respectively, in extensive metabolizers. In intermediate metabolizers, eliglustat Cmax and AUC would be expected to increase 4.2-fold and 5-fold, respectively.(1) Strong inhibitors of CYP3A4 include: adagrasib, boceprevir, ceritinib, clarithromycin, indinavir, itraconazole, josamycin, ketoconazole, levoketoconazole, lonafarnib, lopinavir, mibefradil, mifepristone, nefazodone, nelfinavir, nirmatrelvir/ritonavir, paritaprevir, posaconazole, ribociclib, saquinavir, telaprevir, telithromycin, tucatinib, and voriconazole.(1,3,4) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, casopitant, clofazimine, conivaptan, crizotinib, darunavir, duvelisib, erythromycin, fluconazole, fosamprenavir, fosnetupitant, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam and treosulfan.(1,3,4) |
CERDELGA |
Cobimetinib; Olaparib; Sonidegib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Agents which inhibit the CYP3A4 enzyme may inhibit the metabolism of cobimetinib, olaparib, and sonidegib.(1-4) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may increase systemic exposure and the risk for adverse effects from cobimetinib, olaparib, or sonidegib.(1-4) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: When possible, avoid the use of moderate CYP3A4 inhibitors in patients receiving cobimetinib, olaparib, or sonidegib.(1-4) For patients taking cobimetinib 60 mg daily, if concurrent short term use (14 days or less) of a moderate CYP3A4 inhibitor cannot be avoided, reduce cobimetinib dose to 20 mg daily. After discontinuation of the moderate CYP3A4 inhibitor resume the previous 60 mg dose. Patients who are taking cobimetinib 40 mg or 20 mg daily should not receive a moderate or strong CYP3A4 inhibitor.(1) If concomitant use with olaparib cannot be avoided, reduce the olaparib dose. Dosage adjustments are specific to the formulation of olaparib.(2,3) Reduce the dosage of the CAPsule formulation to 200 mg (four 50 mg CAPsules) taken twice daily.(2) Reduce the dosage of the TABlet formulation to 150 mg (one 150 mg TABlet) twice daily). If the CYP3A4 inhibitor is discontinued, resume the dose of olaparib taken prior to initiation of the CYP3A4 inhibitor after 3 to 5 half-lives.(3) If sonidegib and a moderate CYP3A4 inhibitor must be used, administer the moderate CYP3A4 inhibitor for less than 14 days and monitor closely for adverse effects, particularly musculoskeletal adverse reactions.(4) DISCUSSION: In an interaction study, itraconazole (a strong CYP3A4 inhibitor) given 200 mg once daily for 14 days followed by a single dose of cobimetinib 10 mg increased mean cobimetinib AUC 6.7-fold (90% CI 5.6, 8.0). Subsequent simulations showed that predicted steady-state concentrations of cobimetinib at a reduced daily dose of 20 mg given with short term use of a moderate CYP3A4 inhibitor were similar to observed steady-state concentrations at the 60 mg dose without an inhibitor.(1) In simulations using physiologically-based pharmacokinetic (PBPK) models, concurrent use of fluconazole, a moderate CYP3A4 inhibitor, may increase the area-under-curve (AUC) of olaparib by 2.2-fold.(2,3) Based upon PBPK simulations, sonidegib mean steady-state AUC would increase 1.8-fold if administered with a moderate CYP3A4 inhibitor for 14 days and would further increase to 2.8-fold if the moderate CYP3A4 inhibitor is coadministered with sonidegib for 4 months.(4) Moderate CYP3A4 inhibitors linked to this monograph include: aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosnetupitant, imatinib, isavuconazonium, ledipasvir, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan and verapamil.(5) |
COTELLIC, LYNPARZA, ODOMZO |
Naloxegol (Less Than or Equal To 12.5 mg)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of CYP3A4 may inhibit the metabolism of naloxegol.(1) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 without a dosage adjustment of naloxegol may result in increased levels of naloxegol, which may precipitate opioid withdrawal symptoms.(1) PREDISPOSING FACTORS: Patients taking methadone may be more likely to experience gastrointestinal side effects such as abdominal pain and diarrhea as a result of opioid withdrawal.(1) PATIENT MANAGEMENT: Avoid the use of moderate inhibitors of CYP3A4 in patients who require therapy with naloxegol. If concurrent use cannot be avoided, the daily dose of naloxegol should be limited to 12.5 mg daily in patients taking moderate inhibitors of CYP3A4.(1) Monitor patients for signs of opioid withdrawal such as sweating, chills, diarrhea, stomach pain, anxiety, irritability, yawning, restlessness, muscle/joint aches, increased lacrimation, running nose, and piloerection. Monitor patients taking methadone for abdominal pain and diarrhea as well.(1) DISCUSSION: Ketoconazole (400 mg daily for 5 days), a strong inhibitor of CYP3A4, increased the maximum concentration (Cmax) and area-under-curve (AUC) of a single dose of naloxegol by 9.58-fold and 12.85-fold, respectively.(2) Diltiazem (240 mg XR daily), a moderate inhibitor of CYP3A4, increased the Cmax and AUC of a single dose of naloxegol by 2.85 and 3.41, respectively.(2) According to Physiologically-based-Pharmacokinetic (PBPK) models, erythromycin, a moderate inhibitor of CYP3A4, at a dose of 250 mg QID is expected to increase the Cmax and AUC of naloxegol by 2.77-fold and 3.47-fold, respectively.(2) According to PBPK models, erythromycin at a dose of 400 mg QID is expected to increase the Cmax and AUC of naloxegol by 3.42-fold and 4.63-fold, respectively.(2) According to PBPK models, fluconazole, a moderate inhibitor of CYP3A4, at a dose of 200 mg daily is expected to increase the Cmax and AUC of naloxegol by 2.4-fold and 2.81-fold, respectively.(2) According to PBPK models, verapamil moderate inhibitor of CYP3A4, at a dose of 120 mg daily is expected to increase the Cmax and AUC of naloxegol by 1.97-fold and 2.21-fold, respectively.(2) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lefamulin, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan and verapamil.(1,3,4) |
MOVANTIK |
Tacrolimus/Schisandra chinensis SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Schisandra chinensis may inhibit the metabolism of tacrolimus by CYP3A4 and P-glycoprotein inhibition. CLINICAL EFFECTS: Concurrent use of Schisandra chinensis may result in increased levels of tacrolimus, including nephrotoxicity, neurotoxicity, and prolongation of the QTc interval and life-threatening cardiac arrhythmias, including torsades de pointes. PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(5) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(5) PATIENT MANAGEMENT: For patients concurrently taking tacrolimus and Schisandra chinensis, therapeutic concentration monitoring of tacrolimus is recommended. Dose decreases of tacrolimus may be required. The US manufacturer of tacrolimus recommends that the dose of tacrolimus be reduced and adjusted based on tacrolimus whole blood trough concentrations. Coadministration with Schisandra chinensis may result in a rapid and sharp rise in tacrolimus concentration despite immediate tacrolimus dose reduction. Frequent monitoring of tacrolimus levels should start within 1-3 days of initiation of concurrent therapy and continue as necessary.(1) Consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In rats, coadministration of tacrolimus and Schisandra resulted in a 128% increase in tacrolimus area-under-the-curve (AUC) (from 59.6 to 135.9 ng h/ml) and a 68% decrease in tacrolimus clearance.(2) In a 2-phase study, coadministration of low and high dose tacrolimus with Schisandra resulted in an increase in tacrolimus AUC of 262% (low dose) and 339% (high dose). The average increase of tacrolimus maximum concentration (Cmax) was 183%.(3) Coadministration of oral tacrolimus (2 mg) with Schisandra (three capsules twice daily for 13 days) resulted in increases of tacrolimus AUC, AUMC, and Cmax by 164.2%, 133.1%, and 227.1%, respectively. Tacrolimus clearance was decreased on average 49%. (4) |
ASTAGRAF XL, ENVARSUS XR, PROGRAF, TACROLIMUS, TACROLIMUS XL |
Venetoclax/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors inhibit the metabolism of venetoclax.(1) CLINICAL EFFECTS: Concurrent use of moderate inhibitors of CYP3A4 may result in elevated levels of venetoclax, increasing the risk for tumor lysis syndrome and other toxicities.(1) PREDISPOSING FACTORS: Risk factors for tumor lysis syndrome include (1): - the ramp-up phase of venetoclax therapy when tumor burden is highest - initial magnitude of tumor burden - renal impairment The risk of venetoclax toxicities may be increased in patients with severe hepatic impairment.(1) PATIENT MANAGEMENT: Avoid moderate CYP3A4 inhibitors and consider alternative treatments when possible. If a moderate CYP3A4 inhibitor must be used, reduce venetoclax dose by at least 50%. Monitor more closely for signs of toxicity such as tumor lysis syndrome, hematologic and non-hematologic toxicities.(1) Canadian labeling for atazanavir contraindicates concurrent use of atazanavir/ritonavir with venetoclax at venetoclax dose initiation and during the ramp-up phase.(2) If the moderate CYP3A4 inhibitor is discontinued, the manufacturer of venetoclax recommends resuming the prior (i.e. pre-inhibitor) dose of venetoclax 2 to 3 days after discontinuation of the moderate CYP3A4 inhibitor. DISCUSSION: In 11 previously treated NHL subjects, ketoconazole (a strong CYP3A4 inhibitor which also inhibits P-gp and BCRP) 400 mg daily for 7 days increased the maximum concentration (Cmax) and area-under-curve (AUC) of venetoclax 2.3-fold and 6.4-fold respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lefamulin, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan and verapamil.(3-4) |
VENCLEXTA, VENCLEXTA STARTING PACK |
Colchicine (for Gout & FMF)/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: P-glycoprotein (P-gp) inhibitors may affect the transport of colchicine, a P-gp substrate.(1,2) CLINICAL EFFECTS: Concurrent use of a P-gp inhibitor may result in elevated levels of and toxicity from colchicine. Symptoms of colchicine toxicity include abdominal pain; nausea or vomiting; severe diarrhea; muscle weakness or pain; numbness or tingling in the fingers or toes; myelosuppression; feeling weak or tired; increased infections; and pale or gray color of the lips, tongue, or palms of hands.(1,2) PREDISPOSING FACTORS: This interaction is expected to be more severe in patients with renal and/or hepatic impairment(1,2) and in patients who receive concurrent therapy. PATIENT MANAGEMENT: The concurrent use of colchicine with P-gp inhibitors is contraindicated in patients with renal or hepatic impairment.(1-3) Avoid concurrent use in other patients, if possible.(3) In patients without renal or hepatic impairment who are currently taking or have taken a P-gp inhibitor in the previous 14 days, the dosage of colchicine should be reduced. For gout flares, the recommended dosage is 0.6 mg (1 tablet) for one dose. This dose should be repeated no earlier than in 3 days.(1,2) For gout prophylaxis, if the original dosage was 0.6 mg twice daily, use 0.3 mg daily. If the original dosage was 0.6 mg daily, use 0.3 mg every other day.(3-12) For Familial Mediterranean fever (FMF), the recommended maximum daily dose is 0.6 mg (may be given as 0.3 mg twice a day).(1,2) Patients should be instructed to immediately report any signs of colchicine toxicity, such as abdominal pain, nausea/significant diarrhea, vomiting; muscle weakness/pain; numbness/tingling in fingers/toes; unusual bleeding or bruising, infections, weakness/tiredness, or pale/gray color of the lips/tongue/palms of hands. DISCUSSION: There are several reports of colchicine toxicity(4-6) and death(7,8) following the addition of clarithromycin to therapy. In a retrospective review of 116 patients who received clarithromycin and colchicine during the same hospitalization, 10.2% (9/88) of patients who received simultaneous therapy died, compared to 3.6% (1/28) of patients who received sequential therapy.(9) An FDA review of 117 colchicine-related deaths that were not attributable to overdose found that 60 deaths (51%) involved concurrent use of clarithromycin.(2) There is one case report of colchicine toxicity with concurrent erythromycin.(10) In a study in 20 subjects, pretreatment with diltiazem (240 mg daily for 7 days) increased the maximum concentration (Cmax) and area-under-curve (AUC) of a single dose of colchicine (0.6 mg) by 44.2% (range -46.6% to 318.3%) and by 93.4% (range -30.2% to 338.6%), respectively.(1) In a study in 24 subjects, pretreatment with verapamil (240 mg twice daily for 7 days) increased the Cmax and AUC of a single dose of colchicine (0.6 mg) by 40.1% (range -47.1% to 149.5%) and by 103.3% (range -9.8% to 217.2%), respectively.(1) Colchicine toxicity has been reported with concurrent use of CYP3A4 and P-gp inhibitors such as clarithromycin, cyclosporine, diltiazem, erythromycin, and verapamil.(1,2) P-gp inhibitors include abrocitinib, amiodarone, asciminib, asunaprevir, azithromycin, belumosudil, capmatinib, carvedilol, cimetidine, danicopan, daridorexant, diltiazem, diosmin, dronedarone, erythromycin, flibanserin, fluvoxamine, fostamatinib, glecaprevir/pibrentasvir, lapatinib, ledipasvir, mavorixafor, neratinib, osimertinib, pirtobrutinib, propafenone, quinidine, ranolazine, schisandra, selpercatinib, sotorasib, tepotinib, tezacaftor, valbenazine, velpatasvir, vemurafenib, verapamil, vimseltinib, and voclosporin.(1,11,12) |
COLCHICINE, COLCRYS, GLOPERBA, MITIGARE, PROBENECID-COLCHICINE |
Deflazacort/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Deflazacort is a prodrug and is rapidly metabolized to the active metabolite, 21-desDFZ, by esterases. The metabolite 21-desDFZ is metabolized by CYP3A4 to inactive metabolites.(1) Inhibitors of CYP3A4 may inhibit the metabolism of the active metabolite of deflazacort metabolized by CYP3A4.(1) CLINICAL EFFECTS: Concurrent use of strong or moderate CYP3A4 inhibitors may result in increased systemic exposure to and effects from deflazacort.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer recommends decreasing the dose to one-third of the recommended dose of deflazacort when used concurrently with strong or moderate CYP3A4 inhibitors. For example, if the recommended dose of deflazacort is 36 mg per day, the reduced dose would be 12 mg per day when administered with strong or moderate CYP3A4 inhibitors.(1) DISCUSSION: Deflazacort is a prodrug and is rapidly metabolized to the active metabolite, 21-desDFZ. The metabolite 21-desDFZ is metabolized by CYP3A4.(1) Coadministration of deflazacort with clarithromycin, a strong CYP3A4 inhibitor, increased total geometric mean exposure (maximum concentration (Cmax) and area-under-curve (AUC)) to the active metabolite 21-desDFZ by 2.3- to 3.4-fold.(1) |
DEFLAZACORT, EMFLAZA |
Tezacaftor-Ivacaftor/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Strong and moderate inhibitors of CYP3A4 may inhibit the metabolism of tezacaftor-ivacaftor.(1,2) CLINICAL EFFECTS: Concurrent use of a strong or moderate inhibitor of CYP3A4 may result in elevated levels of and toxicity from tezacaftor-ivacaftor.(1,2) PREDISPOSING FACTORS: This interaction may be more severe in patients with hepatic impairment.(1,2) PATIENT MANAGEMENT: Refer to current prescribing information for tezacaftor-ivacaftor for dose adjustment recommendations with strong and moderate CYP3A4 inhibitors.(2) Dose modifications for concurrent use of strong CYP3A4 inhibitors: - In adults, patients 12 years and older, and patients 6 to 12 years old weighing at least 30 kg who are receiving concurrent strong CYP3A4 inhibitors, the morning dose of tezacaftor 100 mg/ivacaftor 150 mg should be given twice a week, approximately 3 to 4 days apart. The evening dose of ivacaftor 150 mg should not be taken. - In patients 6 to 12 years old weighing less than 30 kg who are receiving concurrent strong CYP3A4 inhibitors, the morning dose of tezacaftor 50 mg/ivacaftor 75 mg should be given twice a week, approximately 3 to 4 days apart. The evening dose of ivacaftor 75 mg should not be taken.(2) Dose modifications for concurrent use of moderate CYP3A4 inhibitors: - In adults, patients 12 years and older, and patients 6 to 12 years old weighing at least 30 kg who are receiving concurrent moderate CYP3A4 inhibitors, the morning dose of tezacaftor 100 mg/ivacaftor 150 mg should be given every other day alternating with ivacaftor 150 mg. The evening dose of ivacaftor 150 mg should not be taken. - In patients 6 to 12 years old weighing less than 30 kg who are receiving concurrent moderate CYP3A4 inhibitors, the morning dose of tezacaftor 50 mg/ivacaftor 75 mg should be given every other day alternating with ivacaftor 75 mg. The evening dose of ivacaftor 75 mg should not be taken.(2) DISCUSSION: Concurrent administration with ketoconazole (a strong inhibitor of CYP3A4) increased ivacaftor area-under-curve (AUC) by 8.5-fold.(1) Concurrent administration with fluconazole (a moderate inhibitor of CYP3A4) increased ivacaftor AUC by 3-fold.(1) Concurrent administration with itraconazole (a strong inhibitor of CYP3A4) increased tezacaftor AUC by 4-fold and ivacaftor by 15.6-fold.(2) Concurrent administration with fluconazole (a moderate inhibitor of CYP3A4) increased tezacaftor AUC by 2-fold.(2) A study in 12 subjects compared ivacaftor alone (study A), ivacaftor with ritonavir (a strong inhibitor of CYP3A4) 50 mg daily on days 1-4 (study B), and ivacaftor with ritonavir 50 mg daily for two weeks prior and on days 1-4 of ivacaftor administration (study C). In study A, B, and C, ivacaftor AUC increased from 10.94 mcg/hr to 215.6 mcg/hr and 216 mcg/hr, respectively, with the addition of ritonavir. Ivacaftor concentration maximum (Cmax) was 0.9944 mcg, 1.812 mcg, and 2.267 mcg in study A, B, and C, respectively.(3) Strong inhibitors of CYP3A4 include: adagrasib, boceprevir, ceritinib, clarithromycin, cobicistat, idelalisib, indinavir, itraconazole, josamycin, ketoconazole, levoketoconazole, lonafarnib, lopinavir/ritonavir, mibefradil, nefazodone, nelfinavir, nirmatrelvir/ritonavir, posaconazole, ribociclib, ritonavir, saquinavir, telaprevir, telithromycin, troleandomycin, tucatinib, and voriconazole.(4-6) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir/ritonavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, schisandra, treosulfan and verapamil.(4-6) |
SYMDEKO |
Encorafenib/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Strong and moderate inhibitors of CYP3A4 may inhibit the metabolism of encorafenib.(1) CLINICAL EFFECTS: Concurrent use of a strong or moderate inhibitor of CYP3A4 may result in elevated levels of and toxicity from encorafenib, including QT prolongation.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Concurrent use of strong or moderate CYP3A4 inhibitors with encorafenib should be avoided. If concurrent use of strong or moderate CYP3A4 inhibitors with encorafenib is unavoidable, reduce the encorafenib dose as follows: - If the current daily dose of encorafenib is 450 mg, reduce encorafenib to 150 mg with strong CYP3A4 inhibitors, and 225 mg with moderate CYP3A4 inhibitors. - If the current daily dose of encorafenib is 300 mg, reduce encorafenib to 75 mg with strong CYP3A4 inhibitors, and 150 mg with moderate CYP3A4 inhibitors. - If the current daily dose of encorafenib is 225 mg or 150 mg, reduce encorafenib to 75 mg with both strong and moderate CYP3A4 inhibitors. - After the inhibitor has been discontinued for 3 to 5 half-lives, resume encorafenib dose that was taken prior to initiating the CYP3A4 inhibitor.(1) When concurrent therapy cannot be avoided, monitor patients closely for prolongation of the QT interval. Obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. Recommended dosage modifications for encorafenib and QTc prolongation adverse reactions include: - QTcF greater than 500 ms and less than or equal to 60 ms increase from baseline: Withhold encorafenib until QTcF less than or equal to 500 ms. Resume at reduced dose. If more than one recurrence, permanently discontinue encorafenib. - QTcF greater than 500 ms and greater than 60 ms increase from baseline: Permanently discontinue encorafenib.(1) See prescribing information for additional information regarding dose reductions.(1) DISCUSSION: Coadministration of posaconazole (strong CYP3A4 inhibitor) or diltiazem (moderate CYP3A4 inhibitor) increased the area-under-curve (AUC) of encorafenib by 3-fold and 2-fold, respectively, and increased the maximum concentration (Cmax) by 68% and 45%, respectively, after a single dose of encorafenib 50 mg (0.1 times the recommended dose).(1) Encorafenib has been associated with a dose-dependent QTc interval prolongation. Following administration of encorafenib in combination with binimetinib, the largest mean (90% CI) QTcF change from baseline was 18 ms (14-22 ms), based on central tendency analysis.(1) Strong inhibitors of CYP3A4 include: indinavir, josamycin, ketoconazole, mibefradil, nefazodone, nelfinavir, tipranavir, and troleandomycin.(4-6) Moderate inhibitors of CYP3A4 include: amprenavir, berotralstat, clofazimine, conivaptan, fluvoxamine, fosamprenavir, letermovir, schisandra, and treosulfan.(4-6) |
BRAFTOVI |
Brigatinib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Brigatinib is a substrate of CYP3A4. Moderate inhibitors of CYP3A4 may inhibit the metabolism of brigatinib.(1) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 may result in increased levels and toxicity from brigatinib.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of brigatinib states to avoid concurrent administration with moderate CYP3A4 inhibitors. If concurrent therapy cannot be avoided, reduce the once daily dose of brigatinib by approximately 40% (i.e. from 180 mg to 120 mg, 120 mg to 90 mg). Upon discontinuation of a moderate CYP3A4 inhibitor, resume the brigatinib dose that was tolerated prior to initiating the moderate CYP3A4 inhibitor.(1) Monitor patient for signs of brigatinib toxicity with concurrent use. DISCUSSION: Brigatinib is a substrate of CYP3A4.(1) Concurrent administration of itraconazole (200 mg twice daily, a strong CYP3A4 inhibitor) with a single 90 mg dose of brigatinib increased the brigatinib maximum concentration (Cmax) by 21% and area-under-curve (AUC) by 101% compared to brigatinib alone. Moderate CYP3A4 inhibitors are expected to increase the AUC of brigatinib by approximately 40%.(1) Moderate CYP3A4 inhibitors linked to this monograph include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, ledipasvir, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan and verapamil.(2,3) |
ALUNBRIG |
Entrectinib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of entrectinib.(1,2) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 may result in elevated levels and increased effects of entrectinib, such as QT prolongation, hepatotoxicity, CNS effects, hyperuricemia, anemia, or neutropenia.(1,2) Symptoms of hepatotoxicity can include nausea, vomiting, jaundice, dark urine, abdominal pain, and unexplained fatigue. PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: The US manufacturer of entrectinib states that entrectinib coadministration with moderate inhibitors of CYP3A4 should be avoided.(1) If concurrent therapy cannot be avoided, reduce the entrectinib dose as follows for adult and pediatric patients 2 years and older: -If the starting dose is 600 mg, reduce the entrectinib dose to 200 mg daily. -If the starting dose is 400 mg, reduce the entrectinib dose to 200 mg daily. -If the starting dose is 300 mg, reduce the entrectinib dose to 100 mg daily. -If the starting dose is 200 mg, reduce the entrectinib dose to 50 mg daily.(1) For pediatric patients less than 2 years old, avoid coadministration with moderate CYP3A4 inhibitors.(1) If concomitant use of a moderate CYP3A4 inhibitor is discontinued, increase the entrectinib dose to the dose that was used before starting the inhibitor after three to five plasma half-lives of the moderate CYP3A4 inhibitor. Monitor liver tests, including AST and ALT. Advise patients to immediately report any symptoms of hepatotoxicity. During concomitant therapy with a moderate CYP3A4 inhibitor, monitor patients closely for prolongation of the QT interval. Obtain serum calcium, magnesium, and potassium levels and monitor ECG at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Coadministration of itraconazole (strong CYP3A4 inhibitor) with a single 100 mg entrectinib dose increased entrectinib maximum concentration (Cmax) and area-under-the-curve (AUC) by 1.7-fold and 6-fold.(1) Coadministration of a moderate CYP3A4 inhibitor with entrectinib is predicted to increase entrectinib Cmax and AUC by 2.9-fold and 3-fold.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, ciprofloxacin, clofazimine, conivaptan, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan and verapamil.(1,3) |
ROZLYTREK |
Elexacaftor-Tezacaftor-Ivacaftor/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the CYP3A4-mediated metabolism of elexacaftor, tezacaftor, and ivacaftor.(1) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 may result in elevated levels of and toxicity from elexacaftor, tezacaftor, and ivacaftor.(1) PREDISPOSING FACTORS: This interaction may be more severe in patients with hepatic impairment.(1) PATIENT MANAGEMENT: The dosage of elexacaftor-tezacaftor-ivacaftor should be reduced when co-administered with moderate CYP3A4 inhibitors as follows: - In patients 12 years and older and patients 6 to 12 years old weighing at least 30 kg who are receiving concurrent moderate CYP3A4 inhibitors, the evening dose of ivacaftor should not be taken. The morning dose of therapy should be modified to the following alternate daily dosing schedule: Day 1 - two tablets of elexacaftor 100 mg-tezacaftor 50 mg-ivacaftor 75 mg (total dose of elexacaftor 200 mg-tezacaftor 100 mg-ivacaftor 150 mg); Day 2 - one tablet of ivacaftor 150 mg. - In patients 6 to 12 years old weighing less than 30 kg who are receiving concurrent moderate CYP3A4 inhibitors, the evening dose of ivacaftor should not be taken. The morning dose of therapy should be modified to the following alternate daily dosing schedule: Day 1 - two tablets of elexacaftor 50 mg-tezacaftor 25 mg-ivacaftor 37.5 mg (total daily dose of elexacaftor 100 mg-tezacaftor 50 mg-ivacaftor 75 mg); Day 2 - one tablet of ivacaftor 75 mg. - In patients 2 to less than 6 years old weighing at least 14 kg who are receiving concurrent moderate CYP3A4 inhibitors, the evening dose of ivacaftor should not be taken. The morning dose of therapy should be modified to the following alternate daily dosing schedule: Day 1 - one packet of oral granules containing elexacaftor 100 mg-tezacaftor 50 mg-ivacaftor 75 mg; Day 2 - one packet of oral granules containing ivacaftor 75 mg.(1) - In patients 2 to less than 6 years old weighing less than 14 kg who are receiving concurrent moderate CYP3A4 inhibitors, the evening dose of ivacaftor should not be taken. The morning dose of therapy should be modified to the following alternate daily dosing schedule: Day 1 - one packet of oral granules containing elexacaftor 80 mg-tezacaftor 40 mg-ivacaftor 60 mg; Day 2 - one packet of oral granules containing ivacaftor 59.5 mg.(1) DISCUSSION: In a study, fluconazole (400 mg on day 1 then 200 mg daily) increased the area-under-curve (AUC) and maximum concentration (Cmax) of ivacaftor (150 mg every 12 hours) by 2.95-fold and 2.45-fold, respectively.(1) Simulations suggest that moderate CYP3A inhibitors may increase the AUC of elexacaftor and tezacaftor by approximately 1.9 to 2.3-fold and 2.1-fold, respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan and verapamil.(2-4) |
TRIKAFTA |
Lemborexant/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of CYP3A4 may inhibit the metabolism of lemborexant.(1) CLINICAL EFFECTS: Concurrent use of a strong or moderate inhibitor of CYP3A4 may result in increased levels of and effects from lemborexant, including somnolence, fatigue, CNS depressant effects, daytime impairment, headache, and nightmare or abnormal dreams.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The concurrent use of strong or moderate CYP3A4 inhibitors with lemborexant should be avoided.(1) DISCUSSION: Lemborexant is a CYP3A4 substrate. In a PKPB model, concurrent use of lemborexant with itraconazole increased area-under-curve (AUC) and concentration maximum (Cmax) by 3.75-fold and 1.5-fold, respectively. Concurrent use of lemborexant with fluconazole increased AUC and Cmax by 4.25-fold and 1.75-fold, respectively.(1) Strong inhibitors of CYP3A4 include: adagrasib, boceprevir, ceritinib, clarithromycin, cobicistat, idelalisib, indinavir, itraconazole, josamycin, ketoconazole, lonafarnib, lopinavir, mibefradil, mifepristone, nefazodone, nelfinavir, nirmatrelvir, paritaprevir, posaconazole, ribociclib, saquinavir, telaprevir, telithromycin, troleandomycin, tucatinib, and voriconazole.(2) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, schisandra, treosulfan and verapamil.(2) |
DAYVIGO |
Tazemetostat/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of tazemetostat.(1) CLINICAL EFFECTS: Coadministration of tazemetostat with a moderate CYP3A4 inhibitor may increase tazemetostat plasma concentrations and increase the frequency or severity of adverse reactions.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of tazemetostat states to avoid coadministration of moderate CYP3A4 inhibitors with tazemetostat.(1) If coadministration of moderate CYP3A4 inhibitors cannot be avoided, reduce the tazemetostat dose as follows: If the current tazemetostat dose is 800 mg twice daily, reduce the dose to 400 mg twice daily. If the current tazemetostat dose is 600 mg twice daily, reduce the dose to 400 mg for the first dose and 200 mg for the second dose. If the current tazemetostat dose is 400 mg twice daily, reduce the dose to 200 mg twice daily.(1) After discontinuation of the moderate CYP3A4 inhibitor for 3 elimination half-lives, resume the prior tazemetostat dose.(1) DISCUSSION: Coadministration of fluconazole, a moderate CYP3A4 inhibitor, with tazemetostat 400 mg twice daily in patients increased tazemetostat area-under-curve (AUC) by 3.1-fold and maximum concentration (Cmax) by 2.3-fold.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan and verapamil.(2-4) |
TAZVERIK |
Selumetinib/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of CYP3A4 may inhibit the metabolism of selumetinib.(1) CLINICAL EFFECTS: Concurrent use of a strong or moderate inhibitor of CYP3A4 may result in increased levels of and effects from selumetinib, including vomiting, diarrhea, skin rashes, ocular toxicity (e.g., blurred vision, visual loss), cardiomyopathy, and rhabdomyolysis.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of selumetinib states that the coadministration of selumetinib with strong or moderate CYP3A4 inhibitors should be avoided. If coadministration cannot be avoided, the dosage of selumetinib should be reduced as follows: -If the current dose is 25 mg/m2 twice daily, reduce to 20 mg/m2 twice daily. -If the current dosage is 20 mg/m2 twice daily, reduce to 15 mg/m2 twice daily. If the strong or moderate CYP3A4 inhibitor is discontinued, resume the selumetinib dose that was taken prior to the initiation of the inhibitor after 3 half-lives of the CYP3A4 inhibitor have elapsed.(1) DISCUSSION: In a study of 26 healthy subjects, itraconazole 200 mg twice daily (a strong CYP3A4 inhibitor) increased the area-under-curve (AUC) and maximum concentration (Cmax) of selumetinib 25 mg by 49% and 19%, respectively. Fluconazole 400 mg loading dose then 200 mg daily (a moderate CYP3A4 inhibitor and strong CYP2C19 inhibitor) increased AUC and Cmax of selumetinib (25 mg) by 53% and 26%.(1,2) In a pharmacokinetic model, erythromycin (a moderate CYP3A4 inhibitor) was predicted to increase selumetinib AUC and Cmax by 41% and 23%, respectively.(1) Strong inhibitors of CYP3A4 include: adagrasib, boceprevir, ceritinib, clarithromycin, cobicistat, idelalisib, indinavir, itraconazole, josamycin, ketoconazole, levoketoconazole, lonafarnib, lopinavir/ritonavir, mibefradil, mifepristone, nefazodone, nelfinavir, nirmatrelvir/ritonavir, paritaprevir, posaconazole, ribociclib, saquinavir, telaprevir, telithromycin, tipranavir, troleandomycin, tucatinib and voriconazole.(3) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan and verapamil.(3) |
KOSELUGO |
Pemigatinib/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of CYP3A4 may inhibit the metabolism of pemigatinib.(1) CLINICAL EFFECTS: Concomitant use of a strong or moderate CYP3A4 inhibitor increases pemigatinib plasma concentrations, which may increase the incidence and severity of adverse reactions.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of pemigatinib states that coadministration with strong or moderate CYP3A4 inhibitors should be avoided. If coadministration cannot be avoided, the dosage of pemigatinib should be reduced as follows: -Reduce dose from 13.5 mg to 9 mg. -Reduce dose from 9 mg to 4.5 mg. If the strong or moderate CYP3A4 inhibitor is discontinued, resume the pemigatinib dose that was taken prior to the initiation of the inhibitor after 3 half-lives of the CYP3A4 inhibitor have elapsed.(1) DISCUSSION: Itraconazole, a strong CYP3A4 inhibitor, increased the maximum concentration (Cmax) by 17% and area-under-curve (AUC) by 88% following a single oral pemigatinib dose of 4.5 mg. Concomitant use of moderate CYP3A4 inhibitors is predicted to increase pemigatinib exposure by approximately 50-80%.(1) Strong inhibitors of CYP3A4 include: adagrasib, boceprevir, ceritinib, clarithromycin, cobicistat, grapefruit, idelalisib, indinavir, itraconazole, josamycin, ketoconazole, levoketoconazole, lonafarnib, lopinavir/ritonavir, mibefradil, mifepristone, nefazodone, nelfinavir, nirmatrelvir/ritonavir, paritaprevir, posaconazole, ribociclib, saquinavir, telaprevir, telithromycin, tipranavir, troleandomycin, tucatinib, and voriconazole.(2) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan and verapamil.(2) |
PEMAZYRE |
Selpercatinib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may inhibit the metabolism of selpercatinib.(1) Cimetidine increases gastric pH and may decrease pH-dependent solubility and absorption of selpercatinib.(1) CLINICAL EFFECTS: Concurrent administration of a moderate CYP3A4 inhibitor may result in elevated levels of and toxicity from selpercatinib.(1) Elevated levels of selpercatinib may increase the risk of QTc prolongation and potentially life-threatening arrhythmias, including torsades de pointes, hepatotoxicity, hypertension, and severe or life-threatening hemorrhagic events.(1) Conversely, concurrent use of cimetidine may result in decreased levels and effectiveness of selpercatinib. The overall effect of cimetidine on selpercatinib pharmacokinetics is unknown.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of selpercatinib recommends avoiding concomitant use of moderate CYP3A4 inhibitors with selpercatinib. If concomitant use cannot be avoided, reduce the dose of selpercatinib as follows: - If the current dose of selpercatinib is 160 mg twice daily, decrease the dose to 120 mg twice daily. - If the current dose of selpercatinib is 120 mg twice daily, decrease the dose to 80 mg twice daily. - If the current dose of selpercatinib is 80 mg twice daily, decrease the dose to 40 mg twice daily. - If the current dose of selpercatinib is 40 mg three times daily, decrease the dose to 40 mg once daily. If concomitant use of cimetidine is unavoidable, take selpercatinib at least 2 hours before or 10 hours after cimetidine. When concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. If grade 3 QT interval prolongation occurs, withhold selpercatinib until recovery to baseline or Grades 0 or 1, then resume selpercatinib at a reduced dose. If grade 4 QT interval prolongation occurs, discontinue selpercatinib.(1) After the inhibitor has been discontinued for 3 to 5 elimination half-lives, resume selpercatinib at the dose taken prior to initiating the CYP3A inhibitor.(1) DISCUSSION: Coadministration of diltiazem, fluconazole, or verapamil (moderate CYP3A inhibitors) is predicted to increase the area-under-curve (AUC) and maximum concentration (Cmax) of selpercatinib by 60-99% and 46-76%, respectively.(1) In a thorough QT study, selpercatinib 160 mg twice daily increased QTc by a mean of 10.6 msec (upper 90% confidence interval: 12.1 msec). An increase in QTcF interval to greater than 500 msec was measured in 6% of patients and an increase in the QTcF interval of at least 60 msec over baseline was measured in 15% of patients.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, conivaptan, darunavir, diltiazem, fedratinib, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(3) |
RETEVMO |
Pralsetinib/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Strong and moderate CYP3A4 inhibitors (including combined moderate CYP3A4 and P-glycoprotein (P-gp) inhibitors) may inhibit the metabolism of pralsetinib.(1) CLINICAL EFFECTS: Concurrent administration of a strong or moderate CYP3A4 inhibitor (including combined moderate CYP3A4 and P-gp inhibitors) may result in elevated levels of and toxicity from pralsetinib, including QTc prolongation which may lead to potentially life-threatening cardiac arrhythmias like torsades de pointes (TdP). Other toxicities include hemorrhagic events, pneumonitis, hepatotoxicity, and hypertension.(1-3) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: Coadministration of pralsetinib with strong or moderate CYP3A4 inhibitors (including combined moderate CYP3A4 and P-gp inhibitors) should be avoided.(1) If coadministration with a strong or moderate CYP3A4 inhibitor cannot be avoided, use with caution and reduce the dose of pralsetinib as follows: -If the current dose is 400 mg once daily, decrease the dose to 300 mg daily. -If the current dose is 300 mg once daily, decrease the dose to 200 mg daily. -If the current dose is 200 mg once daily, decrease the dose to 100 mg daily. After the inhibitor is discontinued for three to five half-lives, resume the dose of pralsetinib at the dose taken prior to initiation of the inhibitor.(1) When concurrent therapy is warranted: consider obtaining serum calcium, magnesium, and potassium levels and monitoring EKG at baseline and regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. If the QTc interval exceeds 500 ms, interrupt pralsetinib therapy until QTc is <470 ms. Resume pralsetinib at the same dose if risk factors that cause QT prolongation an are identified and corrected. If risk factors that cause QT prolongation are not identified, resume pralsetinib at a reduced dose. Permanently discontinue pralsetinib if the patient develops life-threatening arrhythmia.(3) DISCUSSION: Coadministration of voriconazole 400 mg twice daily for 1 day then 200 mg twice daily (a strong CYP3A inhibitor) resulted in 122% and 20% increase in pralsetinib area-under-curve (AUC) and maximum concentration (Cmax), respectively.(1) Fluconazole 400 mg daily (a moderate CYP3A4 inhibitor) increased pralsetinib AUC and Cmax by 71% and 15%, respectively.(1) Verapamil 80 mg three times daily (a moderate CYP3A4 and P-glycoprotein inhibitor) increased pralsetinib AUC and Cmax by 108% and 60%, respectively.(1) Strong CYP3A4 inhibitors linked to this monograph include: boceprevir, idelalisib, nelfinavir, and troleandomycin.(5,6) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, avacopan, clofazimine, conivaptan, darunavir, duvelisib, fedratinib, fosamprenavir, fosnetupitant, imatinib, letermovir, netupitant, nilotinib, tofisopam, treosulfan, and voxelotor.(5,6) Dual moderate CYP3A4 and P-gp inhibitors include: berotralstat, diltiazem, fluvoxamine, isavuconazonium, lenacapavir, schisandra, and verapamil.(5,6) |
GAVRETO |
Relugolix/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Relugolix is a substrate of the intestinal P-glycoprotein (P-gp) efflux transporter. Inhibitors of P-gp may increase the absorption of relugolix.(1) CLINICAL EFFECTS: The concurrent administration of relugolix with an inhibitor of P-glycoprotein may result in elevated levels of relugolix and adverse effects, including hot flashes, skin flushing, musculoskeletal pain, hyperglycemia, acute renal injury, transaminitis, arrhythmias, and hemorrhage.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of relugolix states that the coadministration of relugolix with P-gp inhibitors should be avoided. If the P-gp inhibitor is to be used short-term, relugolix may be held for up to 2 weeks. If treatment with relugolix is interrupted for longer than 7 days, resume relugolix with a loading dose of 360 mg on the first day, followed by 120 mg once daily.(1) If coadministration with a P-gp inhibitor cannot be avoided, relugolix should be taken at least 6 hours before the P-gp inhibitor. Monitor the patient more frequently for adverse events.(1) DISCUSSION: Coadministration of relugolix with erythromycin (a P-gp and moderate CYP3A4 inhibitor) increased the area-under-curve (AUC) and maximum concentration (Cmax) of relugolix by 6.2-fold. Voriconazole (a strong CYP3A4 inhibitor) did not have a clinically significant effect on the pharmacokinetics of relugolix.(1) P-gp inhibitors linked to this monograph include: amiodarone, asunaprevir, azithromycin, belumosudil, capmatinib, carvedilol, cimetidine, clarithromycin, cobicistat, conivaptan, curcumin, cyclosporine, daclatasvir, danicopan, daridorexant, diltiazem, diosmin, dronedarone, eliglustat, erythromycin, flibanserin, fluvoxamine, fostamatinib, ginkgo, ginseng, glecaprevir/pibrentasvir, indinavir, itraconazole, ivacaftor, josamycin, ketoconazole, lapatinib, lonafarnib, mavorixafor, mibefradil, mifepristone, neratinib, osimertinib, paroxetine, pirtobrutinib, propafenone, quinidine, quinine, ranolazine, ritonavir, sarecycline, schisandra, selpercatinib, simeprevir, sotorasib, telaprevir, telithromycin, tepotinib, tezacaftor, tucatinib, valbenazine, velpatasvir, vemurafenib, verapamil, vimseltinib, and voclosporin.(2,3) |
MYFEMBREE, ORGOVYX |
Voclosporin/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Agents that inhibit the CYP3A4 isoenzyme may inhibit the metabolism of voclosporin.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may increase levels of and effects from voclosporin, including infection, neurotoxicity, nephrotoxicity, hypertension, or hyperkalemia.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The prescribing information for voclosporin states the use of moderate CYP3A4 inhibitors in patients undergoing therapy with voclosporin requires a dose adjustment. Voclosporin dose should be reduced to 15.8 mg in the morning and 7.9 mg in the evening.(1) Consider alternatives with no or minimal enzyme inhibition. DISCUSSION: Concurrent use of voclosporin and ketoconazole 400 mg daily (strong CYP3A4 inhibitor) for 9 days increased the concentration maximum (Cmax) and area-under-curve (AUC) by 6.45-fold and 18.55-fold, respectively.(1) Concurrent use of voclosporin and verapamil 80 mg three times a day for 10 days (moderate CYP3A4 inhibitor and P-gp inhibitor) increased Cmax and AUC by 2.08-fold and 2.71-fold, respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, oral lefamulin, lenacapavir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(2,3) |
LUPKYNIS |
Carbamazepine/Selected CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of CYP3A4 may inhibit the hepatic metabolism of carbamazepine.(1,2) CLINICAL EFFECTS: Increased serum carbamazepine levels with subsequent increases in the pharmacological and toxic effects of carbamazepine. PREDISPOSING FACTORS: Simultaneous use of other drugs (i.e., other anticonvulsants) or carbamazepine blood levels already near the toxic range before initiation of a CYP3A4 inhibitor may increase the risk of a severe interaction. PATIENT MANAGEMENT: The manufacturer of carbamazepine states that CYP3A4 inhibitors may increase plasma carbamazepine levels. If concurrent use is warranted, close monitoring of carbamazepine levels is indicated and dosage adjustment may be required.(1) In patients receiving concurrent therapy with carbamazepine and a CYP3A4 inhibitor, carbamazepine levels should be monitored closely and the patient should be observed for signs of toxicity (dizziness, ataxia, blurred vision, or SIADH). The dosage of carbamazepine may need to be adjusted or carbamazepine may need to be discontinued.(1) DISCUSSION: Carbamazepine is almost completely metabolized to carbamazepine-10,11-epoxide, with only 5% of the drug excreted unchanged. Pharmacokinetic studies have indicated the major pathway for carbamazepine metabolism is catalyzed by CYP3A4, with minor contributions from CYP2C8 and CYP3A5.(1,2) In a randomized, cross-over study of ten seizure patients, the effects of grapefruit juice on the pharmacokinetics of carbamazepine were determined. Results indicate a statistically significant increase in serum concentrations and area under the concentration-time curve (AUC) in the grapefruit juice arm.(3) Selected CYP3A4 inhibitors linked to this monograph include: conivaptan, grapefruit, mibefradil, schisandra, and tofisopam.(4) |
CARBAMAZEPINE, CARBAMAZEPINE ER, CARBATROL, EPITOL, EQUETRO, TEGRETOL, TEGRETOL XR |
Alprazolam/Selected Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of alprazolam.(1) CLINICAL EFFECTS: Concurrent use may result in increased pharmacologic or toxic effects of alprazolam. Toxic effects include profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid concomitant use with moderate CYP3A4 inhibitors. Consider reducing the dose of alprazolam when coadministered with a moderate CYP3A4 inhibitor. If fluvoxamine is concurrently administered with alprazolam, the manufacturer of fluvoxamine recommends that the initial dose of alprazolam be reduced by 50%, followed by titration to the lowest effective dose.(2) If concurrent use is necessary, monitor patients for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness. DISCUSSION: Coadministration of cimetidine, a moderate CYP3A4 inhibitor, increased the maximum concentration (Cmax) of alprazolam by 82%.(1) Coadministration with erythromycin, a moderate CYP3A4 inhibitor, increased the area-under-curve (AUC) of alprazolam by 1.61-fold.(1) Coadministration of fluvoxamine 100 mg daily and alprazolam 1 mg given 4 times per day resulted in a 2-fold increase of AUC, Cmax, and half-life of alprazolam.(2) Selected moderate CYP3A4 inhibitors linked to this monograph include: aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan and verapamil.(3,4) |
ALPRAZOLAM, ALPRAZOLAM ER, ALPRAZOLAM INTENSOL, ALPRAZOLAM ODT, ALPRAZOLAM XR, XANAX, XANAX XR |
Doxorubicin/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: P-glycoprotein (P-gp) inhibition may increase doxorubicin cellular concentration, as well as decrease biliary or renal elimination.(1) CLINICAL EFFECTS: Increased cellular or systemic levels of doxorubicin may result in doxorubicin toxicity, including cardiomyopathy, myelosuppression, or hepatic impairment.(1) PREDISPOSING FACTORS: The interaction magnitude may be greater in patients with impaired renal or hepatic function. PATIENT MANAGEMENT: Avoid the concurrent use of P-gp inhibitors in patients undergoing therapy with doxorubicin.(1) Consider alternatives with no or minimal inhibition. If concurrent therapy is warranted, monitor the patient closely for signs and symptoms of doxorubicin toxicity. DISCUSSION: Doxorubicin is a substrate of P-gp.(1) Clinical studies have identified and evaluated the concurrent use of doxorubicin and P-gp inhibitors as a target to overcome P-gp mediated multidrug resistance.(2,3) P-gp inhibitors linked to this monograph include: amiodarone, asciminib, asunaprevir, azithromycin, belumosudil, capmatinib, cimetidine, cyclosporine, daclatasvir, danicopan, daridorexant, diltiazem, diosmin, dronedarone, eliglustat, erythromycin, flibanserin, fluvoxamine, fostamatinib, ginkgo, ginseng, glecaprevir/pibrentasvir, hydroquinidine, istradefylline, ivacaftor, lapatinib, ledipasvir, mavorixafor, neratinib, osimertinib, paroxetine, pirtobrutinib, propafenone, quercetin, quinidine, quinine, ranolazine, sarecycline, schisandra, selpercatinib, simeprevir, sofosbuvir/velpatasvir/voxilaprevir, sotorasib, tepotinib, tezacaftor, valbenazine, vemurafenib, verapamil, vimseltinib, and voclosporin.(4,5) |
ADRIAMYCIN, CAELYX, DOXIL, DOXORUBICIN HCL, DOXORUBICIN HCL LIPOSOME |
Mavacamten/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may decrease the metabolism of mavacamten.(1-3) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may increase the plasma levels and the incidence and severity of adverse reactions of mavacamten.(1-3) PREDISPOSING FACTORS: CYP2C19 poor metabolizers may experience an increased incidence or severity of adverse effects.(1-3) PATIENT MANAGEMENT: The US manufacturer of mavacamten recommend initiating mavacamten at the recommended starting dosage of 5 mg orally once daily in patients who are on stable therapy with a moderate CYP3A4 inhibitor. Reduce dose by one level (i.e., 15 to 10 mg, 10 to 5 mg, or 5 to 2.5 mg) in patients who are on mavacamten treatment and intend to initiate a moderate CYP3A4 inhibitor. Schedule clinical and echocardiographic assessment 4 weeks after inhibitor initiation, and do not up-titrate mavacamten until 12 weeks after inhibitor initiation.(1) Avoid initiation of concomitant moderate CYP3A4 inhibitors in patients who are on stable treatment with 2.5 mg of mavacamten because a lower dose is not available.(1) For short-term use (e.g. 1 week), interrupt mavacamten therapy for the duration of the strong CYP3A4 inhibitor. After therapy with the strong CYP3A4 inhibitor is discontinued, mavacamten may be reinitiated at the previous dose immediately upon discontinuation.(1) The Canadian manufacturer of mavacamten recommends additional monitoring when concurrent use of moderate CYP3A4 inhibitors is warranted. Adjust the dose of mavacamten based on clinical assessment.(2) The UK manufacturer of mavacamten states no dose adjustment is necessary when starting mavacamten in patients on moderate CYP3A4 inhibitors or in intermediate, normal, rapid, or ultra-rapid CYP2C19 metabolizers already on mavacamten and starting a moderate CYP3A4 inhibitor. If starting a moderate CYP3A4 inhibitor in a patient who is a poor CYP2C19 metabolizer, reduce mavacamten 5 mg to 2.5 mg or if on 2.5 mg pause treatment for 4 weeks. Monitor left ventricular ejection fraction (LVEF) in 4 weeks then resume usual monitoring schedule.(3) DISCUSSION: Concomitant use of mavacamten (25 mg) with verapamil sustained release (240 mg), a moderate CYP3A4 inhibitor, increased mavacamten area-under-curve (AUC) by 15% and maximum concentration (Cmax) by 52% in intermediate metabolizers and normal metabolizers of CYP2C19.(1) Concomitant use of mavacamten with diltiazem, a moderate CYP3A4 inhibitor, in CYP2C19 poor metabolizers is predicted to increase mavacamten AUC and Cmax up to 55% and 42%, respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, clofazimine, conivaptan, darunavir, dronedarone, erythromycin, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, and treosulfan.(4,5) |
CAMZYOS |
Pexidartinib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of pexidartinib.(1,2) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 may result in elevated levels and increased effects of pexidartinib, such as hepatotoxicity.(1,2) Symptoms can include nausea, vomiting, jaundice, dark urine, abdominal pain, and unexplained fatigue. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of pexidartinib states that pexidartinib coadministration with moderate inhibitors of CYP3A4 should be avoided.(1) If coadministration with a moderate CYP3A4 inhibitor cannot be avoided, reduce the pexidartinib dose according to the following recommendations. If the planned total daily dose is currently 500 mg, modify the total daily dose to 250 mg by administering 125 mg twice daily. If the planned total daily dose is currently 375 mg, modify the total daily dose to 250 mg by administering 125 mg twice daily. If the planned total daily dose is currently 250 mg, modify the total daily dose to 125 mg by administering 125 mg once daily. If concomitant use of a moderate CYP3A4 inhibitor is discontinued, increase the pexidartinib dose to the dose that was used before starting the inhibitor after three plasma half-lives of the moderate CYP3A4 inhibitor. Monitor liver tests, including AST, ALT, total bilirubin, direct bilirubin, ALP and gamma-glutamyltransferase (GGT) according to the recommendations in the Turalio package insert. Advise patients to immediately report any symptoms of hepatotoxicity. DISCUSSION: Coadministration of fluconazole (a moderate CYP3A4 inhibitor) increased pexidartinib maximum concentration (Cmax) and area-under-the-curve (AUC) by 41% and 67%.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, berotralstat, clofazimine, conivaptan, darunavir, diltiazem, erythromycin, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan, and verapamil.(1,3) |
TURALIO |
Elacestrant/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of CYP3A4 may inhibit the metabolism of elacestrant.(1) CLINICAL EFFECTS: Concomitant use of a strong or moderate CYP3A4 inhibitor increases elacestrant plasma concentrations, which may increase the incidence and severity of adverse reactions.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid concomitant use of strong or moderate CYP3A4 inhibitors with elacestrant.(1) DISCUSSION: Coadministration of itraconazole (a strong CYP3A4 inhibitor) increased elacestrant area-under-curve (AUC) and maximum concentration (Cmax) by 5.3-fold and 4.4-fold, respectively.(1) Coadministration of fluconazole (a moderate CYP3A4 inhibitor) is predicted to increase elacestrant AUC and Cmax by 2.3-fold and 1.6-fold, respectively.(1) Strong inhibitors of CYP3A4 include: adagrasib, boceprevir, ceritinib, clarithromycin, cobicistat, idelalisib, indinavir, itraconazole, josamycin, ketoconazole, levoketoconazole, lonafarnib, lopinavir, mibefradil, mifepristone, nefazodone, nelfinavir, nirmatrelvir, paritaprevir, posaconazole, ribociclib, saquinavir, telaprevir, telithromycin, tipranavir, troleandomycin, tucatinib, and voriconazole.(2) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(2) |
ORSERDU |
Omaveloxolone/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Agents which inhibit the CYP3A4 enzyme may inhibit the metabolism of omaveloxolone.(1) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 may result in increased levels of and effects from omaveloxolone including hepatotoxicity and hyperlipidemia.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The concurrent use of moderate CYP3A4 inhibitors with omaveloxolone should be avoided. If concurrent use cannot be avoided, reduce the omaveloxolone dosage to 100 mg daily and monitor closely. If adverse reactions emerge, reduce the dose to 50 mg once daily.(1) DISCUSSION: Coadministration of omaveloxolone with verapamil (a moderate CYP3A4 inhibitor) increased both the concentration maximum (Cmax) and area-under-curve (AUC) of omaveloxolone by 1.25-fold.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(2,3) |
SKYCLARYS |
Mixed;Indirect Sympathomimetics/Rasagiline SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Catecholamine stores increased by MAOIs can be released by indirect acting sympathomimetics such as ephedrine and amphetamine. MAO inhibitors also interfere with gut and liver metabolism of direct acting sympathomimetics (e.g oral phenylephrine). CLINICAL EFFECTS: Concurrent use of MAOIs may result in potentiation of sympathomimetic effects, which may result in headaches, hypertensive crisis, toxic neurological effects, and malignant hyperpyrexia. Hypertensive crisis has been reported in patients taking recommended doses of rasagiline with sympathomimetic agents. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: At recommended dosages, rasagiline is selective for MAO-B; however, at higher dosages it has been shown to lose its selectivity. Patients receiving higher dosages of rasagiline should be considered susceptive to this interaction. Concurrent use should be approached with caution. DISCUSSION: Indirect acting sympathomimetic amines may cause abrupt elevation of blood pressure when administered to patients taking monoamine oxidase inhibitors, resulting in a potentially fatal hypertensive crisis. Mixed (direct and indirect) acting sympathomimetics have also been shown to interact with monoamine oxidase inhibitors depending on their degree of indirect action. The direct-acting sympathomimetics have not been reported to interact. Dopamine is metabolized by monoamine oxidase, and its pressor effect is enhanced by monoamine oxidase inhibitors. |
AZILECT, RASAGILINE MESYLATE |
Lurbinectedin/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may inhibit the metabolism of lurbinectedin.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors with lurbinectedin may increase systemic exposure and the risk for toxicities such as myelosuppression, hepatotoxicity, neuropathy, fatigue, nausea, and musculoskeletal pain.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of lurbinectedin states that the concurrent use of lurbinectedin with moderate CYP3A4 inhibitors should be avoided. If the use of a moderate CYP3A4 inhibitor cannot be avoided, consider a dose reduction of lurbinectedin if clinically indicated based on adverse events as recommended in the lurbinectedin prescribing information.(1) DISCUSSION: Itraconazole (a strong CYP3A4 inhibitor) increased the area-under-curve (AUC) of total lurbinectedin by 2.7-fold and unbound lurbinectedin by 2.4-fold.(1) In a study including data from 443 patients with solid and hematologic malignancies treated in six phase I and three phase II trials with lurbinectedin as a single agent or combined with other agents, lurbinectedin clearance decreased by 30%, area-under-curve (AUC) increased by 42%, and concentration maximum (Cmax) increased by 7% when coadministered with a CYP3A inhibitor.(2) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(3,4) |
ZEPZELCA |
Repotrectinib/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of CYP3A4 may inhibit the metabolism of repotrectinib.(1) CLINICAL EFFECTS: Concomitant use of a strong or moderate CYP3A4 inhibitor increases repotrectinib plasma concentrations, which may increase the incidence and severity of adverse reactions, including CNS effects (dizziness, ataxia, cognitive disorders), interstitial lung disease/pneumonitis, hepatotoxicity, and myalgia.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid concomitant use of strong or moderate CYP3A4 inhibitors with repotrectinib. Discontinue CYP3A4 inhibitors for 3 to 5 half lives of the inhibitor prior to initiating repotrectinib.(1) DISCUSSION: In a study, itraconazole (a strong CYP3A4 and P-gp inhibitor) increased the area-under-curve (AUC) and maximum concentration (Cmax) of repotrectinib by 5.9-fold and 1.7-fold, respectively.(1) Strong inhibitors of CYP3A4 include: adagrasib, boceprevir, ceritinib, clarithromycin, cobicistat, grapefruit, indinavir, itraconazole, josamycin, ketoconazole, levoketoconazole, lopinavir, mibefradil, mifepristone, nefazodone, nelfinavir, nirmatrelvir, posaconazole, ribociclib, saquinavir, telaprevir, telithromycin, tipranavir, troleandomycin, tucatinib, and voriconazole.(2) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, berotralstat, clofazimine, conivaptan, darunavir, diltiazem, dronedarone, erythromycin, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan, and verapamil.(2) |
AUGTYRO |
Nirogacestat/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of CYP3A4 may inhibit the metabolism of nirogacestat.(1) CLINICAL EFFECTS: Concomitant use of a strong or moderate CYP3A4 inhibitor increases nirogacestat plasma concentrations, which may increase the incidence and severity of adverse reactions, including hepatotoxicity, diarrhea, hypokalemia, and hypophosphatemia.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid concomitant use of strong or moderate CYP3A4 inhibitors with nirogacestat.(1) DISCUSSION: In a study, itraconazole (a strong CYP3A4 inhibitor) increased the area-under-curve (AUC) and maximum concentration (Cmax) of nirogacestat by 8.2-fold and 2.5-fold, respectively, following a single 100 mg dose of nirogacestat. In a PKPB model, nirogacestat AUC was predicted to increase by 6.33-, 5.19-, and 3.46-fold following coadministration of multiple doses of nirogacestat (150 mg BID) with itraconazole, ketoconazole and clarithromycin (strong CYP3A inhibitors), respectively.(1) In a PKPB model, nirogacestat AUC was predicted to increase 2.73-and 3.18-fold following coadministration of multiple doses of nirogacestat (150 mg BID) with erythromycin (moderate CYP3A inhibitor) and fluconazole (moderate CYP3A inhibitor), respectively.(1) Strong inhibitors of CYP3A4 include: adagrasib, boceprevir, ceritinib, clarithromycin, cobicistat, grapefruit, idelalisib, indinavir, itraconazole, josamycin, ketoconazole, levoketoconazole, lopinavir, mibefradil, mifepristone, nefazodone, nelfinavir, nirmatrelvir, paritaprevir, posaconazole, ribociclib, saquinavir, telaprevir, telithromycin, tipranavir, troleandomycin, tucatinib, and voriconazole.(2) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(2) |
OGSIVEO |
Vincristine/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: P-glycoprotein (P-gp) inhibitors may inhibit cellular efflux of vincristine.(1) CLINICAL EFFECTS: Concurrent administration of a P-gp inhibitor may result in elevated levels of and toxicity from vincristine including myelosuppression, neurologic toxicity, tumor lysis syndrome, hepatotoxicity, constipation, or bowel obstruction.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid the use of P-gp inhibitors in patients undergoing therapy with vincristine.(1) Consider alternatives with no or minimal P-gp inhibition. The manufacturer of vincristine states that concomitant use of P-gp inhibitors should be avoided.(1) The manufacturer of lopinavir/ritonavir states that patients who develop significant hematological or gastrointestinal toxicity on concomitant vincristine should temporarily hold lopinavir/ritonavir, or use alternative medications that do not inhibit CYP3A4 or P-gp.(2) DISCUSSION: Vincristine is a substrate of P-gp. Inhibitors of P-gp may increase toxicity of vincristine.(1) There are several case reports of neurotoxicity with concurrent administration of vincristine and itraconazole.(3-5) There is a case report of neurotoxicity with concurrent administration of lopinavir-ritonavir with vincristine.(6) In a prospective study in 22 children receiving various chemotherapy with prophylactic itraconazole oral solution (0.5 ml/kg per day), two children receiving vincristine developed non-alcoholic steatohepatitis (NASH) and one child developed syndrome of inappropriate anti-diuretic hormone secretion (SIADH).(7) Strong inhibitors of P-gp linked to this monograph include: abrocitinib, amiodarone, Asian ginseng (Panax ginseng), asunaprevir, azithromycin, belumosudil, capmatinib, carvedilol, cimetidine, cyclosporine, danicopan, daridorexant, diltiazem, diosmin, dronedarone, elagolix, eliglustat, erythromycin, flibanserin, fluvoxamine, fostamatinib, ginkgo biloba, glecaprevir and pibrentasvir, isavuconazonium, ivacaftor, lapatinib, mavorixafor, milk thistle (Silybum marianum), neratinib, osimertinib, pirtobrutinib, propafenone, quercetin, quinidine, ranolazine, rolapitant, Schisandra chinensis, selpercatinib, sofosbuvir, sotorasib, tepotinib, tezacaftor, valbenazine, velpatasvir, vemurafenib, venetoclax, verapamil, vilazodone, vimseltinib, and voclosporin.(8,9) |
VINCASAR PFS, VINCRISTINE SULFATE |
Sodium Iodide I 131/Agents that Affect Iodide SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Many compounds can affect iodide protein binding and alter iodide pharmacokinetics and pharmacodynamics.(1,2) CLINICAL EFFECTS: Compounds that affect iodide pharmacokinetics and pharmacodynamics may impact the effectiveness of radioactive iodide.(1,2) PREDISPOSING FACTORS: Compounds that affect iodide pharmacokinetics and pharmacodynamics are expected to have the most impact during therapy using radioactive iodide. Diagnostic procedures would be expected to be impacted less. PATIENT MANAGEMENT: Discuss the use of agents that affect iodide pharmacokinetics and pharmacodynamics with the patient's oncologist.(1,2) Because indocyanine green contains sodium iodide, the iodine-binding capacity of thyroid tissue may be reduced for at least one week following administration. Do not perform radioactive iodine uptake studies for at least one week following administration of indocyanine green.(3) The manufacturer of iopamidol states administration may interfere with thyroid uptake of radioactive iodine and decrease therapeutic and diagnostic efficacy. Avoid thyroid therapy or testing for up to 6 weeks post administration of iopamidol.(4) DISCUSSION: Many agents interact with radioactive iodine. The average duration of effect is: anticoagulants - 1 week antihistamines - 1 week anti-thyroid drugs, e.g: carbimazole, methimazole, propylthiouracil - 3-5 days corticosteroids - 1 week iodide-containing medications, e.g: amiodarone - 1-6 months expectorants - 2 weeks Lugol solution - 3 weeks saturated solution of potassium iodine - 3 weeks vitamins - 10-14 days iodide-containing X-ray contrast agents - up to 1 year lithium - 4 weeks phenylbutazone - 1-2 weeks sulfonamides - 1 week thyroid hormones (natural or synthetic), e.g.: thyroxine - 4 weeks tri-iodothyronine - 2 weeks tolbutamide - 1 week topical iodide - 1-9 months (1,2) |
HICON, SODIUM IODIDE I-131 |
Cariprazine/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Cariprazine and its major active metabolite DDCAR are metabolized by CYP3A4.(1-4) CLINICAL EFFECTS: Concurrent use of a moderate CYP3A4 inhibitor may result in elevated levels of and toxicity from cariprazine.(1-4) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: When possible, avoid the use of moderate CYP3A4 inhibitors with cariprazine. The US manufacturer of cariprazine states that concurrent use of moderate CYP3A4 inhibitors requires a dose adjustment. If a moderate CYP3A4 inhibitor is initiated in a patient on a stable dose of cariprazine, the following dose adjustments are recommended: -If current cariprazine dose is 1.5 or 3 mg daily - Decrease cariprazine dose to 1.5 mg every other day. -If current cariprazine dose is 4.5 or 6 mg daily - Decrease cariprazine dose to 1.5 mg daily. Cariprazine has two active metabolites, DCAR and DDCAR which have similar in vitro activity and potency. However, DDCAR has a longer half-life (1-3 weeks) than cariprazine (2-4 days), resulting in systemic DDCAR concentrations that are about 4-fold higher than cariprazine. Thus although interaction onset may begin within a few days, the full effect of inhibition may not be seen for 4 or more weeks. If a patient is already on a moderate CYP3A4 inhibitor when cariprazine is started, the following dose adjustments are recommended: -For schizophrenia or bipolar mania - Start cariprazine dose at 1.5 mg every other day; Increase to 1.5 mg daily, if needed. -For bipolar depression or adjunctive therapy for treatment of Major Depressive Disorder (MDD) - Start cariprazine dose at 1.5 mg every other day.(1) When the inhibitor is discontinued, cariprazine, DCAR and DDCAR will begin to fall and the dosage may need be increased. Monitor for decreased effectiveness for 4 or more weeks. The Australian, Canadian, and UK manufacturers of cariprazine state that concurrent use of moderate CYP3A4 inhibitors is contraindicated.(2-4) The Canadian manufacturer of cariprazine states that concurrent use of moderate CYP3A4 inhibitors is also contraindicated for at least 2 weeks after cariprazine discontinuation.(3) DISCUSSION: In an interaction study, coadministration of ketoconazole 400 mg/day with cariprazine 0.5 mg/day increased cariprazine exposure (AUC, area-under-curve) 4-fold and increased DDCAR AUC about 1.5-fold.(1) In a PKPB model, coadministration of ketoconazole 400 mg/day with cariprazine 0.5 mg/day is predicted to increase cariprazine concentration maximum (Cmax) and AUC by 5.5-fold and 6-fold, respectively. Coadministration of fluconazole 200 mg/day with cariprazine 0.5 mg/day is predicted to increased cariprazine Cmax and AUC by up to 3-fold.(1) Moderate CYP3A4 inhibitors linked to this monograph include: amprenavir, aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazole, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(5,6) |
VRAYLAR |
There are 63 moderate interactions.
The clinician should assess the patient’s characteristics and take action as needed. Actions required for moderate interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration.
Drug Interaction | Drug Names |
---|---|
Tetracyclines/Divalent & Trivalent Cations SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Di- and trivalent cations may form chelation complexes with tetracyclines, preventing their absorption.(1,2) CLINICAL EFFECTS: Simultaneous administration of di- or trivalent cations may result in decreased levels of and therapeutics effects from tetracyclines. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Administer tetracyclines at least two hours before or after the di- or trivalent cations. When used for the treatment of H. pylori infection, tetracyclines and bismuth should be given simultaneously. The US manufacturer of omadacycline states to fast for at least four hours, administer omadacycline, and then wait four hours before taking di- or trivalent cations.(21) DISCUSSION: Concurrent administration of aluminum hydroxide or divalent cations (such as calcium, magnesium, or zinc) has been shown to significantly decrease the gastrointestinal absorption of tetracycline.(3-5) Concurrent administration of tetracycline and magnesium-aluminum hydroxide gel has been shown to decrease the tetracycline area-under-curve (AUC) by 90%.(6) Magnesium-aluminum silicate has been shown to decrease the AUC of tetracycline by 27%.(7) Demeclocycline(8,9) methacycline,(10) chlortetracycline,(11) and oxytetracycline(10,12) have been shown to interact with aluminum hydroxide and/or dairy products. Doxycycline has been reported to interact with aluminum hydroxide gel.(13) Aluminum magnesium hydroxide has been shown to decrease doxycycline absorption by 84%.(14) Minocycline absorption has been shown to be impaired by aluminum, calcium, and magnesium.(15) Bismuth subsalicylate has been shown to decrease absorption of doxycycline and tetracycline by 37%(16) and 34%,(17) respectively. Since sucralfate is an aluminum salt of a sulfated disaccharide, it may also prevent absorption of tetracyclines. This complex has been used to provide site-specific delivery of tetracycline to gastric ulcers in the treatment of Helicobacter pylori gastric ulcer disease and may be useful in some indications.(18) Quinapril tablets contain a high percentage of magnesium and have been shown to decrease the absorption of tetracycline by 28-37%.(19) Lanthanum is expected to interact with tetracyclines as well.(20) |
AVIDOXY, AVIDOXY DK, BENZODOX 30, BENZODOX 60, BISMUTH-METRONIDAZOLE-TETRACYC, DEMECLOCYCLINE HCL, DORYX, DORYX MPC, DOXYCYCLINE HYCLATE, DOXYCYCLINE IR-DR, DOXYCYCLINE MONOHYDRATE, EMROSI, MINOCYCLINE ER, MINOCYCLINE HCL, MINOCYCLINE HCL ER, MONDOXYNE NL, MORGIDOX, NUZYRA, ORACEA, OXYTETRACYCLINE HCL, PYLERA, SEYSARA, TARGADOX, TETRACYCLINE HCL, XIMINO |
Penicillamine, Oral/Polyvalent Cations SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Penicillamine chelates with polyvalent cations such as aluminum, calcium, iron, magnesium, and zinc in the GI tract reducing the absorption of the penicillamine. CLINICAL EFFECTS: Reduced (to 30% of fasting) bioavailability of penicillamine with decreased pharmacologic response. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: In order to assure systemic absorption and maximal effectiveness from penicillamine, counsel patient to separate penicillamine by at least 1 hour before or 1 hours after any medications or products containing polyvalent cations such as antacids or mineral supplements. Monitor clinical status for decreased effectiveness and adjust the penicillamine dose if necessary. DISCUSSION: Clinical studies with polyvalent cations have not been conducted. Multivitamins with low doses of cations including iron and zinc may decrease penicillamine absorption so insure patient is aware of the risks. |
CUPRIMINE, D-PENAMINE, DEPEN, PENICILLAMINE, PENICILLAMINE(D-) |
Slt Cation-Donating Antacids/Polystyrene Sulfonate SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Polystyrene sulfonate may bind the cation from the antacid, resulting in increased intestinal absorption of non-neutralized bicarbonate, which may result in systemic alkalosis and decreased potassium binding by polystyrene sulfonate. Intestinal obstruction has occurred with aluminum hydroxide because of concretion. CLINICAL EFFECTS: Simultaneous oral use may result in metabolic alkalosis and a decrease in the potassium lowering effect of polystyrene sulfonate. Intestinal obstruction has been reported with aluminum hydroxide. PREDISPOSING FACTORS: Patients with renal failure may be at a higher risk of systemic alkalosis. PATIENT MANAGEMENT: Consider the use of alternative agents to cation-donating antacids in patients receiving oral polystyrene sulfonate when possible. If concurrent use is required, separate the dosing by several hours.(1) Some vitamin preparations may contain sufficient quantities of calcium and/or magnesium salts with antacid properties to interact as well. DISCUSSION: In a study in 11 patients with decreased renal function, the administration of magnesium hydroxide and sodium polystyrene sulfonate produced moderate to moderately severe metabolic alkalosis.(2) There are case reports documenting this affect as well.(3-7) Intestinal obstruction has been reported with aluminum hydroxide and sodium polystyrene sulfonate.(8) If the polystyrene sulfonate is administered rectally, a clinically significant interaction is not likely to occur. |
KIONEX, SODIUM POLYSTYRENE SULFONATE, SPS |
Itraconazole; Ketoconazole/Agents Affecting Gastric pH SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Antacids, buffers in didanosine products, H2 antagonists, and proton-pump inhibitors increase the stomach pH. Quinapril tablets may contain a high percentage of magnesium. Since some orally administered azole antifungal agents require an acidic medium for optimal absorption, agents may decrease the absorption of azole antifungal agents. CLINICAL EFFECTS: Simultaneous administration of an antacid, buffered didanosine, a H2 antagonist, or a proton-pump inhibitor may result in decreased therapeutic effects of the azole antifungal. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: If the concurrent administration of these two agents cannot be avoided, consider administering two capsules of glutamic acid hydrochloride 15 minutes before administering the antifungal and separate the administration times of the antifungal and the agent affecting gastric pH by at least two hours. DISCUSSION: Itraconazole, ketoconazole, and posaconazole require an acidic medium for predictable dissolution and absorption decreases as pH increases and proton pump inhibitors are expected to decrease their absorption.(1-4) In a study in 11 healthy subjects, omeprazole (40 mg daily) decreased the maximum concentration (Cmax) and area-under-curve (AUC) of itraconazole (200 mg single dose) by 66% and 64%, respectively.(5) In a study in 15 healthy subjects, omeprazole (40 mg daily) had no effect on the pharmacokinetics of itraconazole solution.(6) In a study in 9 healthy subjects, omeprazole (60 mg) decreased the AUC of ketoconazole (200 mg single dose) by 83.4% compared to control (ketoconazole alone). Administration of Coca-Cola (240 ml) with ketoconazole and omeprazole raised ketoconazole AUC to 65% of control values.(7) Omeprazole has been shown to have no significant effect on the absorption of fluconazole(8) or voriconazole.(9) Case reports and in-vivo studies have documented significant decreases in ketoconazole levels during concurrent therapy with H-2 antagonists, including cimetidine and ranitidine. Concurrent administration of itraconazole and famotidine resulted in a significant decrease in itraconazole levels, but no significant changes in famotidine levels. An interaction should be expected to occur between both ketoconazole or itraconazole and the other H-2 antagonists.(10-14) In randomized, open-labeled, cross-over study in 12 healthy subjects, simultaneous administration of an antacid decreased the area-under-curve (AUC) and maximum concentration (Cmax) of a single dose of itraconazole (200 mg) by 66% and 70%, respectively. Time to Cmax (Tmax) increased by 70%.(15) This interaction has also been reported in a case report.(16) In a study in 3 subjects, simultaneous administration of a combination aluminum hydroxide/magnesium hydroxide (30 ml) decreased the AUC of a single dose of ketoconazole (200 mg) by 41%.(172) In a case report, a patient receiving concurrent ketoconazole with aluminum hydroxide, cimetidine, and sodium bicarbonate did not respond to therapy until cimetidine was discontinued and the administration time of aluminum hydroxide and cimetidine was changed to 2 hours after ketoconazole. In a follow-up study in 2 subjects, concurrent cimetidine and sodium hydroxide lowered ketoconazole levels.(18) In a study in 14 subjects, simultaneous administration of aluminum hydroxide/magnesium hydroxide (20 ml, 1800 mg/1200 mg) had no significant effects on fluconazole pharmacokinetics.(3) In a randomized, open-label, cross-over study in 6 subjects, simultaneous administration of itraconazole with buffered didanosine tablets resulted in undetectable levels of itraconazole.(19) In a randomized cross-over study in 12 HIV-positive subjects, administration of buffered didanosine tablets 2 hours after ketoconazole had no effects on ketoconazole levels.(20) In a randomized, cross-over, open-label study in 24 healthy subjects, simultaneous administration of enteric-coated didanosine had no effect on ketoconazole pharmacokinetics.(21) One or more of the drug pairs linked to this monograph have been included in a list of interactions that could be considered for classification as "non-interruptive" in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
ITRACONAZOLE, ITRACONAZOLE MICRONIZED, KETOCONAZOLE, SPORANOX, TOLSURA |
Cilostazol (Less Than or Equal To 50 mg BID)/Selected Strong & Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Strong and moderate inhibitors of CYP3A4 may inhibit the metabolism of cilostazol.(1) CLINICAL EFFECTS: The concurrent use of cilostazol and strong and moderate inhibitors of CYP3A4 may result in elevated levels of cilostazol, which may produce increased effects of cilostazol and adverse effects.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The dose of cilostazol should be limited to 50 mg twice daily in patients receiving concurrent therapy with strong and moderate inhibitors of CYP3A4.(1) DISCUSSION: In a study in 16 healthy males, the administration of a single dose of cilostazol (10 mg) with erythromycin (500 mg every eight hours) increased the maximum concentration (Cmax) and area-under-curve (AUC) of cilostazol by 47% and 73%, respectively. The Cmax and AUC of 4'-trans-hydroxy-cilostazol were increased by 29% and 141%, respectively.(2) Analysis of population pharmacokinetics indicated that the concurrent administration of diltiazem with cilostazol increased cilostazol concentrations by 53%. Concurrent administration of diltiazem and cilostazol decreased cilostazol clearance by 30%, increased the Cmax by 30%, and increased AUC by 40%.(1) In a study, the administration of a single dose of cilostazol (10 mg) with erythromycin (500 mg every eight hours) increased the Cmax and AUC of cilostazol by 47% and 73%, respectively. The AUC of 4'-trans-hydroxy-cilostazol was increased by 141%.(1) In an vitro study in human liver microsomes, ketoconazole inhibited the metabolism of cilostazol.(3) |
CILOSTAZOL |
Quinine/Aluminum and Magnesium Antacids SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Aluminum and magnesium antacids may delay or decrease the absorption of quinine. CLINICAL EFFECTS: Concurrent use of antacids may result in decreased levels and effectiveness of quinine. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of quinine states that concurrent use with aluminum or magnesium containing antacids should be avoided. Some vitamin preparations may contain sufficient quantities of magnesium salts with antacid properties to interact as well. DISCUSSION: Aluminum and magnesium antacids have been shown to decrease quinine absorption in rats. |
QUALAQUIN, QUININE HCL, QUININE SULFATE |
Mycophenolate/Aluminum & Magnesium Antacids; Lanthanum; Sevelamer SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Aluminum or magnesium antacids and non-calcium containing phosphate binders such as lanthanum and sevelamer decrease the absorption of mycophenolate.(1-3) CLINICAL EFFECTS: The simultaneous administration of mycophenolate with aluminum or magnesium antacids and non-calcium containing phosphate binders such as lanthanum and sevelamer may decrease the levels of mycophenolate and its clinical effects. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of mycophenolate mofetil states that calcium free phosphate binders, such as sevelamer, should not be administered simultaneously with mycophenolate mofetil. Administer sevelamer at least 2 hours after administration of mycophenolate mofetil to decrease the extent of the interaction.(1) The US manufacturer of mycophenolate sodium states that mycophenolate sodium should not be administered simultaneously with antacids. Administer aluminum or magnesium containing antacids at least 2 hours after mycophenolate.(2) Close monitoring of mycophenolic acid levels may be warranted in patients on mycophenolate mofetil therapy that are initiating or discontinuing concurrent therapy with these agents. Patients on concurrent therapies may also require higher doses of mycophenolate mofetil in order to achieve desired blood levels. DISCUSSION: In a study in 10 rheumatoid arthritis patients, the simultaneous administration of mycophenolate and Maalox TC (an antacid containing magnesium and aluminum hydroxide) resulted in decreases in the maximum concentration (Cmax) and area-under-curve (AUC) of mycophenolate by 33% and 17%, respectively.(1,2) In a study of 3 adult patients and 6 pediatric patients with stable renal graft function receiving mycophenolate mofetil, sevelamer (3-4 capsules of 403 mg twice daily) decreased the AUC and Cmax of mycophenolic acid by 26% and 36%, respectively.(1,3) In a study in 12 stable renal transplant patients, administration of magnesium-aluminum-containing antacids (30 ml) increased the Cmax and AUC of a single dose of mycophenolate sodium by 25% and 37%, respectively.(2) |
CELLCEPT, MYCOPHENOLATE MOFETIL, MYCOPHENOLIC ACID, MYFORTIC, MYHIBBIN |
Gabapentin/Aluminum; Magnesium-Containing Compounds SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Aluminum or magnesium containing products may reduce the bioavailability of gabapentin.(1) CLINICAL EFFECTS: Simultaneous administration of aluminum or magnesium containing products and gabapentin may result in decreased absorption of gabapentin by 20% and reduce its clinical effectiveness.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: If the use of both medications is unavoidable, it is recommended that gabapentin be taken at least 2 hours following the administration of aluminum or magnesium containing products.(1) DISCUSSION: In 16 subjects, Maalox reduced the bioavailability of gabapentin by about 20%. The reduction was only 5% when gabapentin was administered 2 hours after the Maalox dose. It is for this reason that the manufacturer of gabapentin recommends that it be taken at least 2 hours after the administration of aluminum or magnesium containing products.(1) |
GABAPENTIN, GABAPENTIN ER, GABARONE, GRALISE, HORIZANT, NEURONTIN |
Selected Cephalosporins/Aluminum; Magnesium Compounds SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Aluminum and magnesium containing antacids may form chelation complexes with some cephalosporins, preventing their absorption.(1,2) CLINICAL EFFECTS: Simultaneous administration of an aluminum and/or magnesium containing antacid with some cephalosporins may result in decreased levels and effectiveness of the cephalosporin.(1,2) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of cefdinir recommends that cefdinir be taken at least 2 hours before or after an aluminum and/or magnesium containing antacid.(1) It would be prudent to separate the administration of cefaclor by at least this amount of time as well.(2) DISCUSSION: Simultaneous administration of cefdinir (300 mg) with Maalox TC (30 ml) decreased cefdinir area-under-curve (AUC) and maximum concentration (Cmax) by 40%.(1) In a study in 15 healthy subjects, simultaneous administration of cefaclor advanced formulation (500 mg) with Maalox TC decreased the extent of cefaclor absorption.(2) |
CEFACLOR, CEFACLOR ER, CEFDINIR |
Ranolazine (Less than or Equal To 500 mg BID)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of ranolazine. Verapamil may also increase the absorption of ranolazine by inhibiting P-glycoprotein.(1) CLINICAL EFFECTS: Concurrent use of moderate inhibitors of CYP3A4 may result in elevated levels of and clinical effects from ranolazine. Elevated ranolazine levels may result in QTc prolongation, which may result in life-threatening cardiac arrhythmia, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(5) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of ranolazine states that the dosage of ranolazine should be limited to 500 mg twice daily in patients receiving moderate inhibitors of CYP3A4.(1) Consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Concurrent use of diltiazem, a moderate inhibitor of CYP3A4, at daily doses of 180 mg to 360 mg increased plasma levels of ranolazine (1000 mg twice daily) by 50% and 130%, respectively.(1,3) In healthy subjects, concurrent ranolazine (1000 mg twice daily) had no effects on the pharmacokinetics of diltiazem (60 mg three times daily).(1) Concurrent use of verapamil (120 mg three times daily) increased plasma levels of ranolazine (750 mg twice daily) by 100%.(1) In a study in 12 healthy males, ranolazine immediate release (IR, 240 mg three times daily) had no effect on diltiazem (60 mg three times daily) pharmacokinetics. However, at ranolazine IR steady state, diltiazem increased ranolazine IR area under the curve (AUC) by 85%, on average, and increased maximum concentration (Cmax) by 1.9-fold and minimum concentration (Cmin) by 2.1-fold.(4) In a study in 12 subjects, ranolazine sustained release (SR, 500 mg twice daily) had no effect on diltiazem (60 mg three times daily) pharmacokinetics. However, at ranolazine steady state, diltiazem increased ranolazine SR Cmax, concentration minimum (Cmin), AUC by 80%, 216%, and 90%, on average, respectively.(4) In a study in 8 healthy males, diltiazem modified release (MR, 180 mg, or 240 mg, or 360 mg, once daily) increased ranolazine sustained release (SR, 1000 mg twice daily) AUC by 52%, 93%, and 139%, respectively. Ranolazine half-lives did not show any consistent trend of changes with increasing doses of diltiazem.(4) In a study of patients with severe chronic angina, the addition of ranolazine 750 mg twice daily or 1,000 mg twice daily along with their standard dose of diltiazem (180 mg once daily) provided additional antianginal relief, without evident adverse, long-term survival consequences over 1 to 2 years of therapy.(5) Ranolazine-induced QTc prolongation is dose and concentration-related.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, erythromycin, dronedarone, duvelisib, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, ledipasvir, lenacapavir, letermovir, netupitant, nilotinib, schisandra, treosulfan and verapamil.(1,3,6,7) |
ASPRUZYO SPRINKLE, RANOLAZINE ER |
Oral Bisphosphonates/Oral Multivalent Cations SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Multivalent cations may bind to and inhibit the absorption of oral bisphosphonates.(1-6) CLINICAL EFFECTS: Simultaneous administration of products containing multivalent cations may result in decreased levels of and clinical effects from oral bisphosphonates.(1-6) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Instruct patients to separate the administration times of products containing multivalent cations and oral bisphosphonates. Manufacturer recommendations regarding the separation of administration times of oral bisphosphonates and multivalent cations vary. Do NOT give multivalent cation-containing products: - until at least 30 minutes after taking alendronate(1) - within 2 hours of etidronate(2) - until at least 1 hour after taking ibandronate(3) - until at least 30 minutes after taking risedronate(4) - within 2 hours of tiludronate(5) DISCUSSION: Multivalent cations may bind to and inhibit the absorption of oral bisphosphonates, resulting in decreased levels of and clinical effects from these agents.(1-6) Administration of aluminum- or magnesium-containing antacids 1 hour before tiludronate decreased the bioavailability of tiludronate by 60%.(5) |
ACTONEL, ALENDRONATE SODIUM, ATELVIA, BINOSTO, FOSAMAX, FOSAMAX PLUS D, IBANDRONATE SODIUM, RISEDRONATE SODIUM, RISEDRONATE SODIUM DR |
Chloroquine; Hydroxychloroquine/Di-; Trivalent Cations SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Di- and trivalent cations such as aluminum, calcium, lanthanum, and magnesium may adsorb chloroquine and hydroxychloroquine; preventing their absorption.(1-5) The adsorption may also limit the effectiveness of the di- or trivalent cation.(1) CLINICAL EFFECTS: Simultaneous administration of di- or trivalent cations may result in decreased levels and effectiveness of chloroquine and hydroxychloroquine(2-5) and decreased effectiveness of the di- or trivalent cation.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Instruct patients to separate the administration times of these medicines by 2 to 4 hours.(2,3) DISCUSSION: Adsorption of chloroquine by magnesium trisilicate was found to decrease hydrochloric acid uptake and decrease the amount of magnesium released in an acidic environment.(1) In a study, calcium carbonate, kaolin, and magnesium trisilicate were found to decrease the absorption of chloroquine by 52.8%, 46.5%, and 31.3%, respectively.(3) Magnesium trisilicate and magnesium oxide have been shown to decrease the release of chloroquine from tablets and to adsorb chloroquine after its release.(4) In a study in 6 subjects, magnesium trisilicate and kaolin decreased the area-under-curve (AUC) of chloroquine by 18.2% and 28.6%, respectively.(5) |
CHLOROQUINE PHOSPHATE, HYDROXYCHLOROQUINE SULFATE, PLAQUENIL, SOVUNA |
Oral Iron Supplements/Antacids and Selected Minerals SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Some antacids may bind to iron, preventing its absorption. Alterations in gastric pH by antacids may also play a role. Iron may bind to other minerals such as calcium, manganese, tin, and zinc in the GI tract. CLINICAL EFFECTS: Simultaneous administration of an antacid or minerals may decrease the absorption of orally administered iron. PREDISPOSING FACTORS: The interaction with some combinations may be affected by the presence or absence of food. PATIENT MANAGEMENT: Iron supplements should not be taken within 1 hour before or 2 hours after antacids, calcium, manganese, or zinc.(1) Some vitamin preparations may contain sufficient quantities of calcium and/or magnesium salts with antacid properties to interact as well. DISCUSSION: Magnesium hydroxide has been shown to inhibit the absorption of elemental iron,(2) although other studies have shown conflicting results.(3,4) Sodium bicarbonate has been shown to decrease the absorption of iron by 50%.(3) In a study in 61 healthy subjects, calcium citrate, calcium carbonate, and calcium phosphate inhibited iron absorption when taken with food. However, in the fasted state, calcium carbonate had no effect on iron absorption. In the fasted state, calcium citrate and calcium phosphate decreased iron absorption by 49% and 62%, respectively,(6) In a study in 23 healthy subjects, calcium acetate and calcium carbonate decreased the area-under-curve (AUC) of elemental iron (65 mg) by 27% and 19%, respectively.(7) In a study, manganese decreased iron absorption. A ratio of 5:1 of zinc:iron decreased iron absorption by 56%.(8) In a study, inorganic iron decreased zinc absorption.(9) In another study, ferrous sulfate decreased the absorption of zinc sulfate in a concentration dependent manner; however, heme chloride had no effect on zinc sulfate.(10) In a study in premature infants, administration of liquid zinc and iron supplements between feedings decreased iron uptake; however, no effect was seen when the supplements were mixed with feedings.(11) One or more of the drug pairs linked to this monograph have been included in a list of interactions that could be considered for classification as "non-interruptive" in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
ACCRUFER, AUROVELA 24 FE, AUROVELA FE, AURYXIA, BALCOLTRA, BLISOVI 24 FE, BLISOVI FE, CHARLOTTE 24 FE, FEIRZA, FERRIC CITRATE, FINZALA, GEMMILY, HAILEY 24 FE, HAILEY FE, JOYEAUX, JUNEL FE, JUNEL FE 24, KAITLIB FE, LARIN 24 FE, LARIN FE, LAYOLIS FE, LEVONORG-ETH ESTRAD-FE BISGLYC, LO LOESTRIN FE, LOESTRIN FE, MERZEE, MIBELAS 24 FE, MICROGESTIN FE, MINZOYA, NORETHIN-ETH ESTRA-FERROUS FUM, NORETHINDRONE-E.ESTRADIOL-IRON, TARINA 24 FE, TARINA FE, TARINA FE 1-20 EQ, TAYTULLA, TILIA FE, TRI-LEGEST FE, VELPHORO, WYMZYA FE, XARAH FE, XELRIA FE |
Eltrombopag/Polyvalent Cations SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Eltrombopag chelates polyvalent cations such as aluminum, calcium, iron, magnesium, selenium, and zinc.(1) CLINICAL EFFECTS: Simultaneous administration of eltrombopag and polyvalent cations may decrease the absorption and clinical effects of eltrombopag. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of eltrombopag states that it should be administered at least 2 hours before or 4 hours after any medications or products containing polyvalent cations such as antacids or mineral supplements.(1) DISCUSSION: In a crossover study in 25 healthy subjects, administration of eltrombopag with an antacid (1524 mg aluminum hydroxide/1425 mg magnesium carbonate/sodium alginate) decreased eltrombopag levels by 70%.(1,2) |
ALVAIZ, PROMACTA |
Everolimus/Moderate CYP3A4; P-gp Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 and/or p-glycoprotein (P-gp) may inhibit the metabolism of everolimus.(1) CLINICAL EFFECTS: Concurrent use of moderate inhibitors of CYP3A4 and/or P-gp may result in elevated levels of and toxicity from everolimus.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: If concurrent therapy with everolimus and moderate inhibitors of CYP3A4 and/or P-gp is warranted, reduce the dosage of everolimus.(1) In patients with advanced hormone receptor-positive, HER2-negative breast cancer (HR+BC); advanced pancreatic neuroendocrine tumors (PNET); or advanced renal cell carcinoma; or renal angiomyolipoma with TSC, decrease the dose of everolimus to 2.5 mg daily. An increase to 5 mg daily may be considered based on patient tolerance. If the inhibitor is discontinued, allow an elimination period of 2-3 days before increasing the dose to that used prior to the inhibitor.(1) In patients with subependymal giant cell astrocytoma with TSC, reduce the dosage of everolimus by 50% to maintain trough concentrations of 5 ng/ml to 15 ng/ml. If the patient is already receiving 2.5 mg daily, consider a dose of 2.5 mg every other day. Assess everolimus levels 2 weeks after the addition of the inhibitor. Resume the everolimus dose used prior to initiation of the inhibitor after the inhibitor has been discontinued for 3 days, and assess everolimus trough levels 2 weeks later.(1) Guidelines from the American Society of Transplantation state that protease inhibitors are contraindicated, and recommend avoiding the use of erythromycin with everolimus. If the combination must be used, lower the dose of everolimus by up to 50% upon initiation of the antibiotic and monitor levels daily.(3) DISCUSSION: In a study in healthy subjects, concurrent use of erythromycin, a moderate CYP3A4 inhibitor and a P-gp inhibitor, increased everolimus AUC and Cmax by 2.0-fold and 4.4-fold, respectively.(1) In a study in healthy subjects, concurrent use of ketoconazole, a strong CYP3A4 inhibitor and a P-gp inhibitor, increased everolimus area-under-curve (AUC) and maximum concentration (Cmax) by 3.9-fold and 15.0-fold, respectively.(1) In a study in healthy subjects, concurrent use of verapamil, a moderate CYP3A4 inhibitor and a P-gp inhibitor, increased everolimus AUC and Cmax by 2.3-fold and 3.5-fold, respectively.(1) In a study in 16 healthy subjects, concurrent use of verapamil increased everolimus Cmax and AUC by 130% and 250%, respectively.(4) Moderate CYP3A4 and/or P-gp inhibitors include: abrocitinib, amiodarone, amprenavir, aprepitant, asciminib, asunaprevir, atazanavir, avacopan, azithromycin, belumosudil, cimetidine, clofazimine, conivaptan, crizotinib, danicopan, daridorexant, delavirdine, diltiazem, diosmin, dronedarone, duvelisib, erythromycin, fedratinib, flibanserin, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, fostamatinib, imatinib, isavuconazonium, ivacaftor, ledipasvir, lenacapavir, letermovir, mavorixafor, netupitant, nilotinib, nirogacestat, pirtobrutinib, propafenone, schisandra, tepotinib, tezacaftor, tofisopam, treosulfan, vemurafenib, verapamil, vimseltinib, and voclosporin.(5-7) |
AFINITOR, AFINITOR DISPERZ, EVEROLIMUS, TORPENZ, ZORTRESS |
Selected Opioids/Selected Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Inhibitors of CYP3A4 may inhibit the metabolism of alfentanil, benzhydrocodone, fentanyl,(1) hydrocodone, meperidine,(2) oxycodone,(3) and sufentanil.(4) CLINICAL EFFECTS: The concurrent administration of a CYP3A4 inhibitor may result in elevated levels of and toxicity from alfentanil, benzhydrocodone, fentanyl,(1,5) hydrocodone, meperidine,(2) oxycodone(3) and sufentanil(4), including somnolence and potentially fatal respiratory depression. PREDISPOSING FACTORS: Heat. PATIENT MANAGEMENT: Monitor patients receiving moderate CYP3A4 inhibitors for an extended period of time. Dosage adjustments should be made if warranted. The manufacturer of sufentanil sublingual tablets states that if concomitant use with CYP3A4 inhibitors is necessary, consider use of an alternate agent that allows dose adjustment.(4) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with agents that may increase opioid drug levels.(6) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(7) Avoid exposing the fentanyl patch application site and surrounding area to direct external heat sources as there have been reports of overdose and death as a result of exposure to heat.(1) DISCUSSION: Fentanyl(1) and oxycodone(3) are metabolized by the CYP3A4 isoenzyme. Moderate and strong inhibitors of this isoenzyme are expected to increase fentanyl(1) and oxycodone(3) levels. In a single dose study of sufentanil sublingual tablet 15 mcg with a strong CYP3A4 inhibitor, ketoconazole, resulted in 77% and 19% greater AUC and Cmax values of sufentanil, respectively, compared to its administration alone.(4) In a randomized study in 30 patients, continuous diltiazem (1 mcg/kg/min) infusion had no effect on epidural fentanyl consumption when compared to placebo. There were no significant differences in Visual Analogue Scores (VAS), Verbal Rating Scores (VRS), or incidence of side effects, although there was a trend towards increased nausea with concurrent diltiazem.(5) In a randomized study of coronary artery bypass patients, concurrent diltiazem (60 mg orally 2 hours before induction of anesthesia then 0.1 mg/kg/hr infusion) increased the area-under-curve (AUC) and half-life of alfentanil by 40% and 50%, respectively, when compared to placebo. Patients who received diltiazem were extubated an average of 2.5 hours later than in patients who received placebo.(8) In a study in 13 patients, administration of a single dose of verapamil (75mcg/kg to 150mcg/kg) had no significant effects on the pharmacodynamic effects of a single dose of fentanyl; however, individual patients had modest decreases in blood pressure.(9) In a case report, concurrent diltiazem and fentanyl produced delirium.(10) A study in healthy subjects shown that the application of heat over the fentanyl patch system increased mean overall fentanyl exposure by 120% and average maximum fentanyl level by 61%.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, darunavir, diltiazem, dronedarone, duvelisib, fedratinib, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, schisandra, treosulfan and verapamil.(11,12) |
APADAZ, BENZHYDROCODONE-ACETAMINOPHEN, DEMEROL, DSUVIA, ENDOCET, FENTANYL, FENTANYL CITRATE, FENTANYL CITRATE-0.9% NACL, FENTANYL CITRATE-D5W, FENTANYL CITRATE-STERILE WATER, FENTANYL CITRATE-WATER, FENTANYL-BUPIVACAINE-0.9% NACL, FENTANYL-BUPIVACAINE-NACL, FENTANYL-ROPIVACAINE-0.9% NACL, FENTANYL-ROPIVACAINE-NACL, HYCODAN, HYDROCODONE BITARTRATE, HYDROCODONE BITARTRATE ER, HYDROCODONE-ACETAMINOPHEN, HYDROCODONE-CHLORPHENIRAMNE ER, HYDROCODONE-HOMATROPINE MBR, HYDROCODONE-IBUPROFEN, HYDROMET, HYSINGLA ER, MEPERIDINE HCL, MEPERIDINE HCL-0.9% NACL, NALOCET, OXYCODONE HCL, OXYCODONE HCL ER, OXYCODONE HYDROCHLORIDE, OXYCODONE-ACETAMINOPHEN, OXYCONTIN, PERCOCET, PRIMLEV, PROLATE, ROXICODONE, ROXYBOND, SUFENTANIL CITRATE, XTAMPZA ER |
Selected Oral Quinolones/Selected Oral Cations SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Aluminum, calcium, iron, lanthanum, magnesium, and zinc may form chelation compounds with the quinolones.(1-39) CLINICAL EFFECTS: Simultaneous administration or administration of products containing aluminum, calcium, iron, lanthanum, magnesium, and/or zinc close to the administration time of an oral quinolone may result in decreased absorption and clinical effectiveness of the quinolone. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: If possible, avoid concurrent therapy with quinolones and cation-containing products. If it is necessary to administer these agents concurrently, follow the manufacturers' recommendations regarding timing of administration of the quinolone and cation-containing products. Manufacturer recommendations regarding the separation of administration times of quinolones and products containing aluminum, calcium, iron, lanthanum, magnesium, and/or zinc vary: ---Do not give ciprofloxacin for at least 2 hours before or 6 hours after oral cations.(1) ---Do not give delafloxacin for at least 2 hours before or 6 hours after oral cations.(2) ---Do not give enoxacin for at least 2 hours before or 8 hours after oral cations.(3) ---Do not give levofloxacin for at least 2 hours before or 2 hours after oral cations.(4) ---Do not give nalidixic acid for at least 2 hours before or 2 hours after oral cations.(5) ---Do not give norfloxacin for at least 2 hours before or 2 hours after oral cations.(6) ---Do not give ofloxacin for at least 2 hours before or 2 hours after oral cations.(7) ---Do not give sparfloxacin for at least 4 hours before oral cations.(8) The US manufacturer of lanthanum recommends that quinolones be taken at least 1 hour before or 4 hours after lanthanum;(9) however, it would be prudent to follow the specific quinolone manufacturers' recommendations regarding concurrent administration of cations. For quinolones not listed above, separate their administration from oral cations by as much time as feasible. DISCUSSION: Aluminum, calcium, iron, magnesium, and zinc products have been shown to form chelation compounds with quinolone antibiotics, resulting in decreased absorption of the quinolone.(1-38) Treatment failures have been reported.(10-12) In a study in 12 healthy subjects, simultaneous administration of didanosine chewable tablets, which contain aluminum and magnesium, decreased ciprofloxacin area-under-curve (AUC) and maximum concentration (Cmax) by 92% and 98%, respectively.(13) The administration of ciprofloxacin 2 hours prior to Videx chewable/dispersible tablets decreased ciprofloxacin concentrations by 26%.(14,15) In a study in healthy subjects, pretreatment with an antacid containing aluminum-magnesium hydroxide at 5-10 minutes, 2 hours, and 4 hours before a single dose of ciprofloxacin decreased ciprofloxacin AUC by 84.9%, 76.8%, and 30%, respectively. There was no effect when the antacid was administered 6 hours before or 2 hours after.(16) In a study in 12 healthy subjects, aluminum hydroxide decreased ciprofloxacin AUC by 85%.(17) In a study in patients on continuous ambulatory peritoneal dialysis, peak levels of ciprofloxacin were decreased by 67% to 92% in patients receiving aluminum-containing antacids.(18) In a study in 15 healthy subjects, simultaneous administration of calcium acetate decreased the bioavailability of ciprofloxacin by 51%.(19) In a study in 6 healthy males, simultaneous administration of calcium carbonate decreased ciprofloxacin Cmax and AUC by 40% and 43%, respectively.(20) In a study in 12 healthy subjects, calcium carbonate decreased ciprofloxacin AUC by 40%.(17) In a study in 13 healthy males, calcium carbonate had no effect on ciprofloxacin bioavailability when administered 2 hours prior to the antibiotic.(21,22) In a study in healthy males, simultaneous administration of calcium polycarbophil decreased ciprofloxacin AUC by 50%.(23) In a study in 8 healthy males, simultaneous administration of ferrous fumarate (200 mg) decreased ciprofloxacin AUC by 70%.(24) In a study in healthy subjects, ferrous gluconate decreased ciprofloxacin bioavailability by 50%; however, no significant effects were seen with iron-ovotransferrin.(25) In a study in 8 healthy subjects, ferrous sulfate decreased the Cmax and AUC of simultaneously administered ciprofloxacin by 54% and 57%, respectively.(26) In a study in 8 healthy subjects, administration of ferrous sulfate decreased the Cmax and AUC of ciprofloxacin by 33% and 46%, respectively. Administration of ferrous gluconate decreased the Cmax and AUC of ciprofloxacin by 57% and 67%, respectively. Administration of a multivitamin product containing calcium, copper, iron, magnesium, manganese, and zinc decreased the Cmax and AUC of ciprofloxacin by 53% and 56%, respectively.(27) In a study in 12 healthy males, ferrous sulfate decreased ciprofloxacin AUC by 63%.(28) In a study in 12 healthy subjects, lanthanum carbonate decreased the area-under-curve (AUC) and maximum concentration (Cmax) of concurrently administered ciprofloxacin by 54% and 56%, respectively.(29) In a study in 12 healthy males, a multivitamin containing zinc decreased ciprofloxacin AUC by 22%.(28) In a study in 12 healthy subjects, an antacid containing aluminum-magnesium hydroxide had no effect on the pharmacokinetics of intravenous enoxacin.(30) In a study in 10 healthy subjects, administration of an aluminum-magnesium hydroxide antacid 0.5 hours or 2 hours before oral enoxacin (400 mg single dose) decreased the AUC of enoxacin by 73% and 43%, respectively. There were no significant effects on enoxacin AUC when the antacid was administered 8 hours before or 2 hours after enoxacin.(31) In a study in 9 healthy subjects, colloidal aluminum phosphate had no effect on the amount of enoxacin absorbed; however, ferrous sulfate (1050 mg) decreased the amount of enoxacin absorption by 10%.(32) In a study in 5 healthy subjects and 5 patients with cystic fibrosis, separation of levofloxacin (750 mg) and calcium carbonate (500 mg 3 times daily with meals) by 2 hours resulted in no interaction in healthy subjects; however, levofloxacin levels were not bioequivalent in patients with cystic fibrosis.(33) Concurrent magnesium-aluminum hydroxide or calcium have been shown to decrease the bioavailability of norfloxacin by 91.0% and 63.5%, respectively.(34) Concurrent zinc has been shown to decrease the bioavailability of norfloxacin.(35) In a study in 8 healthy subjects, ferrous sulfate decreased the Cmax and AUC of simultaneously administered norfloxacin by 75% and 73%, respectively.(26) Simultaneous aluminum phosphate was found to decrease the rate, but not the extent, of absorption of ofloxacin.(36) In a study in 8 healthy subjects, ferrous sulfate decreased the Cmax and AUC of simultaneously administered norfloxacin by 36% and 25%, respectively.(26) In an in vitro study, ferrous sulfate, aluminum hydroxide, and calcium carbonate decreased ofloxacin availability by 32.6%, 30.7%, and 26.2%, respectively. However, in vivo tests showed a significant effect with only aluminum hydroxide.(37) In a study in 9 healthy subjects, simultaneous administration colloidal aluminum phosphate had no effect on ofloxacin (200 mg) absorption; however, ferrous sulfate (1050 mg) decreased the ofloxacin fraction of dose absorbed by 10.85%.(32) In a study in 16 subjects, administration of either aluminum-magnesium hydroxide or calcium carbonate at least 2 hours before or after ofloxacin administration had no significant effects on ofloxacin levels.(38) The administration of an antacid containing aluminum hydroxide and magnesium hydroxide 2 hours before, 2 hours after, and 4 hours after sparfloxacin decreased sparfloxacin levels by 23%, 17%, and 5%, respectively.(39) One or more of the drug pairs linked to this monograph have been included in a list of interactions that could be considered for classification as "non-interruptive" in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
BAXDELA, CIPRO, CIPROFLOXACIN, CIPROFLOXACIN HCL, LEVOFLOXACIN, LEVOFLOXACIN HEMIHYDRATE, NALIDIXIC ACID, OFLOXACIN |
Deferiprone/Aluminum, Iron, Zinc SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Deferiprone chelates polyvalent cations such as aluminum, iron, and zinc.(1) CLINICAL EFFECTS: Deferiprone chelation with oral aluminum, iron or zinc containing products in the gastrointestinal tract may decrease the amount of free deferiprone available for systemic iron chelation. Zinc supplements prescribed to counteract deferiprone-induced zinc deficiency may not be effective if taken near time of deferiprone administration. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer recommends at least a four hour interval between deferiprone dose and administration of aluminum, iron or zinc containing medications or supplements.(1) Avoid use of iron-containing vitamins or nutritional supplements in patients who require chelation therapy for iron overload. DISCUSSION: The US manufacturer has not studied this interaction. The recommendation to separate deferiprone and polyvalent cation doses by at least four hours is based upon the deferiprone mechanism of action.(1) |
DEFERIPRONE, DEFERIPRONE (3 TIMES A DAY), FERRIPROX, FERRIPROX (2 TIMES A DAY), FERRIPROX (3 TIMES A DAY) |
Selected Oral Quinolones/Selected Oral Cations SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Aluminum, iron, lanthanum, magnesium, and zinc may form chelation compounds with the quinolones.(1-23) CLINICAL EFFECTS: Simultaneous administration or administration of products containing aluminum, iron, lanthanum, magnesium, and/or zinc close to the administration time of an oral quinolone may result in decreased absorption and clinical effectiveness of the quinolone PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: If possible, avoid concurrent therapy with quinolones and cation-containing products. If it is necessary to administer these agents concurrently, follow the manufacturers' recommendations regarding timing of administration of the quinolone and cation-containing products. Manufacturer recommendations regarding the separation of administration times of quinolones and products containing aluminum, iron, lanthanum, magnesium, and/or zinc vary: ---Do not give gatifloxacin for at least 4 hours before oral cations(1) ---Do not give gemifloxacin for at least 2 hours before or 3 hours after oral cations.(2) ---Do not give lomefloxacin for at least 2 hours before or 4 hours after oral cations.(3) ---Do not give moxifloxacin for at least 4 hours before or 8 hours after oral cations.(4) ---Do not give trovafloxacin for at least 2 hours before or after oral cations.(5) ---Do not give prulifloxacin for at least 2 hours before or 4 hours after oral cations.(23) The US manufacturer of lanthanum recommends that quinolones be taken at least 1 hour before or 4 hours after lanthanum;(6) however, it would be prudent to follow the specific quinolone manufacturers' recommendations regarding concurrent administration of cations. For quinolones not listed above, separate their administration from oral cations by as much time as feasible. DISCUSSION: Magnesium and aluminum compounds have been shown to form chelation compounds with quinolone antibiotics, resulting in decreased absorption of the quinolone.(1-22) Treatment failures during concurrent use of cations and gatifloxacin(7) and pefloxacin(8) have been reported. In a study in 24 healthy subjects, administration of an aluminum-magnesium hydroxide antacid simultaneously, 2 hours before, or 2 hours after decreased the area-under-curve (AUC) of a single dose of gatifloxacin (400 mg) by 42%, 64%, or 18%, respectively. There were no affects on gatifloxacin AUC when the antacid was administered 4 hours after gatifloxacin.(9) In a study in 16 healthy males, administration of an aluminum-magnesium hydroxide antacid 10 minutes before or 3 hours after a single dose of gemifloxacin (320 mg) decreased the gemifloxacin AUC by 85% and 15%, respectively. There was no affect when the antacid was administered 2 hours after gemifloxacin.(10) In a study in 16 subjects, simultaneous administration of calcium carbonate decreased the maximum concentration (Cmax) and AUC of a single dose of gemifloxacin (320 mg) by 17% and 21%, respectively. There was no effect of calcium carbonate when administered either 2 hours before or after gemifloxacin.(11) In a study in 27 healthy males, the administration of ferrous sulfate (325 mg) 3 hours before a single dose of gemifloxacin (320 mg) decreased the Cmax and AUC of gemifloxacin by 20% and 11%, respectively. There were no effects when ferrous sulfate was administered 2 hours after gemifloxacin.(12) In a study in 8 healthy subjects, ferrous sulfate (100 mg elemental iron) decreased the Cmax and AUC of a single dose of lomefloxacin by 26% and 13%, respectively. There were no effects with concurrent calcium carbonate (500 mg calcium).(13) Magnesium- and aluminum-containing antacids have been shown to decrease the bioavailability of lomefloxacin by 40%.(14) Administration of moxifloxacin 2 hours before, simultaneously, or 4 hours after a magnesium- and aluminum-containing antacid decreased moxifloxacin AUC by 26%, 60%, and 23%, respectively.(15) Simultaneous administration of moxifloxacin and ferrous sulfate (100 mg) decreased the area-under-curve (AUC) and maximum concentration (Cmax) of moxifloxacin by 39% and 59%, respectively.(16) Concurrent administration of calcium had no affect on moxifloxacin pharmacokinetics.(17) In a study in 10 healthy subjects, an aluminum-magnesium hydroxide antacid decreased the bioavailability of pefloxacin (400 mg) by 44.4%.(18) The administration of an antacid containing aluminum hydroxide and magnesium hydroxide 5 minutes before rufloxacin decreased rufloxacin levels by 36%. Administration of the antacid 4 hours after rufloxacin decreased rufloxacin levels by 13%.(19) Magnesium- and aluminum-containing antacids have been shown to decrease the bioavailability of temafloxacin by 40%.(20) Aluminum hydroxide has been shown to decrease the bioavailability of tosufloxacin by 31.6%.(21) Administration of an antacid containing aluminum hydroxide and magnesium hydroxide 30 minutes before trovafloxacin decreased trovafloxacin levels by 66%.(22) One or more of the drug pairs linked to this monograph have been included in a list of interactions that could be considered for classification as "non-interruptive" in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
GATIFLOXACIN SESQUIHYDRATE, MOXIFLOXACIN HCL |
Elvitegravir/Selected Oral Cations SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The exact mechanism is unknown, but aluminum, calcium, iron, magnesium, sucralfate, and zinc may bind to elvitegravir in GI tract. CLINICAL EFFECTS: Simultaneous administration or administration of products containing aluminum, calcium, iron, magnesium, and/or sucralfate may result in decreased levels and effectiveness of elvitegravir, as well as the development of resistance.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Separate the administration of elvitegravir and products containing aluminum, calcium, iron, magnesium, and/or sucralfate by at least 2 hours.(1) Some vitamin preparations may contain sufficient quantities of calcium and/or magnesium salts with antacid properties to interact as well. DISCUSSION: Administration of an antacid (exact formulation not stated) 2 hours before elvitegravir (50 mg) decreased the maximum concentration (Cmax), area-under-curve (AUC), or minimum concentration (Cmin) of elvitegravir by 18%, 15%, and 10%, respectively.(1) Administration of an antacid 2 hours after elvitegravir (50 mg) decreased the Cmax, AUC, or Cmin of elvitegravir by 21%, 20%, and 20%, respectively.(1) Administration of an antacid 4 hours before elvitegravir (50 mg) decreased the Cmax and AUC of elvitegravir by 5%, and 4%, respectively.(1) Administration of an antacid 4 hours before elvitegravir (50 mg) decreased both the Cmax and AUC of elvitegravir by 2%.(1) |
GENVOYA, STRIBILD |
Dolutegravir/Selected Oral Cations SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Aluminum, calcium, iron, lanthanum, magnesium, sucralfate, and zinc may form chelation compounds with dolutegravir.(1) CLINICAL EFFECTS: Simultaneous administration or administration of products containing aluminum, calcium, iron, lanthanum, magnesium, and/or sucralfate close to the administration time of dolutegravir may result in decreased absorption and clinical effectiveness of dolutegravir.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: If possible, avoid concurrent therapy with dolutegravir and cation-containing products. If it is necessary to use these agents concurrently, dolutegravir should be administered 2 hours before or 6 hours after taking these medications.(1) Alternatively, dolutegravir and supplements containing calcium or iron can be taken together with food.(1) DISCUSSION: In a study in 16 subjects, the administration of an antacid (Maalox - aluminum and magnesium hydroxide) simultaneously with dolutegravir (50 mg single dose) decreased the maximum concentration (Cmax), area-under-curve (AUC), and minimum concentration (Cmin) of dolutegravir by 72%, 74%, and 74%, respectively.(1) In a study in 16 subjects, the administration of an antacid (Maalox - aluminum and magnesium hydroxide) 2 hours after dolutegravir (50 mg single dose) decreased dolutegravir Cmax, AUC, and Cmin by 18%, 26%, and 30%, respectively.(1) In a study in 16 subjects, the administration of a multiple vitamin (One-A-Day) simultaneously with dolutegravir (50 mg single dose) decreased dolutegravir Cmax, AUC, and Cmin by 35%, 33%, and 32%, respectively.(1) |
DOVATO, TIVICAY, TIVICAY PD, TRIUMEQ, TRIUMEQ PD |
Ibrutinib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Agents that inhibit the CYP3A4 isoenzyme may inhibit the metabolism of ibrutinib.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may increase levels of and effects from ibrutinib.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Concurrent use of moderate CYP3A4 inhibitors in patients undergoing therapy with ibrutinib requires a dose adjustment.(1) If a moderate CYP3A4 inhibitor is required for B-cell malignancies treatment, reduce the dose of ibrutinib to 280 mg daily.(1) If a moderate CYP3A4 inhibitor is required for chronic graft versus host disease treatment, reduce the dose of ibrutinib in patients 12 years and older to 420 mg once daily, and in patients 1 year to 12 years old to 240 mg/m2 once daily.(1) After discontinuation of a CYP3A4 inhibitor, resume previous dose of ibrutinib.(1) DISCUSSION: The coadministration of multiple doses of erythromycin (moderate CYP3A inhibitor) increased ibrutinib's concentration maximum (Cmax) and area-under-curve (AUC) by 3.4-fold and 3-fold.(1) In a case report, concomitant administration of ibrutinib and verapamil/trandolapril resulted in ibrutinib toxicity consisting of nausea, dizziness, malaise, and severe diarrhea.(2) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, casopitant, clofazimine, clotrimazole, conivaptan, crizotinib, darunavir, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, grapefruit juice, imatinib, isavuconazonium, ledipasvir, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan and verapamil.(1,3,4) |
IMBRUVICA |
Avanafil (Less Than or Equal To 50 mg)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of avanafil.(1) CLINICAL EFFECTS: The concurrent administration of a moderate CYP3A4 inhibitor may result in elevated levels of avanafil, which may result in increased adverse effects such as hypotension, visual changes, and priapism. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of avanafil states that in patients receiving moderate inhibitors of CYP3A4, the dose of avanafil should be limited to 50 mg in 24 hours.(1) DISCUSSION: Ketoconazole (400 mg daily), a strong inhibitor of CYP3A4, increased the maximum concentration (Cmax) and area-under-curve (AUC) of a single dose of avanafil (50 mg) by 3-fold and 13-fold, respectively. The half-life of avanafil increased from 5 hours to 9 hours.(1) Ritonavir (600 mg BID), a strong inhibitor of CYP3A4 and an inhibitor of 2C19, increased the Cmax and AUC of a single dose of avanafil (50 mg) by 2-fold and 13-fold, respectively. The half-life of avanafil increased from 5 hours to 9 hours.(1) Erythromycin (500 mg BID), a moderate inhibitor of CYP3A4, increased the Cmax and AUC of a single dose of avanafil (200 mg) by 2-fold and 3-fold, respectively. The half-life of avanafil increased from 5 hours to 8 hours.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, grapefruit juice, imatinib, isavuconazonium, lefamulin, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan and verapamil.(1-3) |
AVANAFIL, STENDRA |
Suvorexant (Less Than or Equal To 10 mg)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of suvorexant.(1) CLINICAL EFFECTS: Concurrent use of an agent that is a moderate inhibitor of CYP3A4 may result in elevated levels of and clinical effects of suvorexant.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of suvorexant recommends a starting dose of 5 mg daily and a maximum dose of 10 mg daily in patients receiving concurrent therapy with a moderate CYP3A4 inhibitor.(1) DISCUSSION: Diltiazem, a moderate inhibitor of CYP3A4, increased suvorexant AUC and Cmax by approximately 2-fold and 1.25-fold, respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, dronedarone, erythromycin, duvelisib, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, ledipasvir, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan and verapamil.(1-3) |
BELSOMRA |
Nintedanib/Dual CYP3A4 & P-gp Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Nintedanib is a substrate for the P-glycoprotein (P-gp) transporter and is metabolized to a minor extent by CYP3A4. CLINICAL EFFECTS: Concurrent use of an agent that is both an inhibitor of P-gp and CYP3A4 may result in elevated levels of and clinical effects of nintedanib. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of nintedanib recommends close monitoring for nintedanib patients receiving drugs which are both P-gp and CYP3A4 inhibitors. In an interaction study ketoconazole increased exposure to nintedanib by 60%. Nintedanib therapy may need to be interrupted or the dose may need to be reduced.(1) DISCUSSION: In an interaction study coadministration with ketoconazole, a P-gp and CYP3A4 inhibitor, increased nintedanib exposure (area-under-curve, AUC) and maximum concentration (Cmax) by 1.61-fold and 1.83 fold respectively.(1) Strong CYP3A4 & P-gp inhibitors include: adagrasib, boceprevir, clarithromycin, cobicistat, grapefruit, indinavir, itraconazole, josamycin, ketoconazole, levoketoconazole, lonafarnib, lopinavir, mibefradil, mifepristone, nefazodone, nelfinavir, nirmatrelvir, paritaprevir, posaconazole, ritonavir, saquinavir, telaprevir, telithromycin, tipranavir, and tucatinib. Moderate CYP3A4 & P-gp inhibitors include: conivaptan, diltiazem, dronedarone, erythromycin, fluvoxamine, isavuconazonium, schisandra, and verapamil. Weak CYP3A4 & P-gp inhibitors include: amiodarone, azithromycin, cimetidine, cyclosporine, daclatasvir, daridorexant, diosmin, flibanserin, fluvoxamine, fostamatinib, glecaprevir/pibrentasvir, ivacaftor, lapatinib, mavorixafor, and ranolazine.(2) |
OFEV |
Brexpiprazole/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Strong CYP3A4 inhibitors may inhibit the metabolism of brexpiprazole.(1) CLINICAL EFFECTS: Concurrent administration of a strong CYP3A4 inhibitor may result in elevated levels of and toxicity from brexpiprazole.(1) PREDISPOSING FACTORS: This interaction is expected to be more severe in patients who are CYP2D6 poor metabolizers, or who receive concomitant treatment with a strong or moderate CYP2D6 inhibitor (e.g. bupropion, fluoxetine, paroxetine, quinidine) in addition to treatment with a moderate CYP3A4 inhibitor. PATIENT MANAGEMENT: The US manufacturer of brexpiprazole recommends the following dose adjustments for patients who are receiving a moderate CYP3A4 inhibitor: - in patients taking a moderate CYP3A4 inhibitor who are poor CYP2D6 metabolizers or are receiving a strong or moderate inhibitor of CYP2D6, decrease the dose to one-fourth the usual dose. The dose of brexpiprazole should be adjusted to its original level if the CYP3A4 inhibitor is discontinued.(1) No empiric dosage adjustment is recommended in other patients. DISCUSSION: Coadministration of ketoconazole, a strong inhibitor of CYP3A4, increased the area-under-curve (AUC) of brexpiprazole approximately 2-fold.(1) Moderate CYP3A4 inhibitors linked to this monograph include aprepitant, avacopan, clofazimine, conivaptan, crizotinib, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosnetupitant, imatinib, isavuconazonium, ledipasvir, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan and verapamil. |
REXULTI |
Bromocriptine/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may inhibit the metabolism of bromocriptine. CLINICAL EFFECTS: Concurrent use of a moderate CYP3A4 inhibitor may result in increased levels of bromocriptine, which may result in increased side effects of these agents. PREDISPOSING FACTORS: Patients receiving the maximum recommended (or higher than recommended) dosages of ergotamine derivatives may be at a higher risk of adverse effects from this combination. PATIENT MANAGEMENT: Use caution with concurrent therapy with bromocriptine with azole antifungals. The US manufacturer of bromocriptine states use caution when co-administering drugs that are inhibitors of CYP3A4. Bromocriptine dose should not exceed 1.6 mg per day when used with a moderate CYP3A4 inhibitor. Concomitant use of strong CYP3A4 inhibitors should be avoided. Ensure adequate washout of strong CYP3A4 inhibitor drug before initiating bromocriptine.(1) DISCUSSION: A study in five healthy subjects found that concurrent administration of erythromycin and bromocriptine resulted in a 268% increase in area-under-curve (AUC) for bromocriptine and a 4.6-fold increase in bromocriptine maximum concentration (Cmax).(2) Inhibition of ergotamine derivative metabolism by moderate inhibitors would also be expected, but to a lesser degree. Moderate CYP3A4 inhibitors linked to this monograph are aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, dronedarone, duvelisib, fedratinib, fluconazole, fluvoxamine, fosnetupitant, imatinib, isavuconazonium, ledipasvir, lenacapavir, letermovir, netupitant, nilotinib, schisandra, stiripentol, tofisopam, treosulfan and verapamil.(3,4) |
BROMOCRIPTINE MESYLATE, CYCLOSET |
Quetiapine/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may inhibit the metabolism of quetiapine. Quetiapine is a sensitive substrate for CYP3A4 and so an approximately 2-fold or higher increase in exposure (AUC, area-under-curve) is possible when quetiapine is given with a moderate CYP3A4 inhibitor.(1-4) CLINICAL EFFECTS: Concurrent use of a strong or moderate CYP3A4 inhibitor may result in elevated levels of and toxicity from quetiapine, including potentially life-threatening cardiac arrhythmias such as torsades de pointes.(2,3) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: Monitor patients when moderate inhibitors of CYP3A4 are co-prescribed with quetiapine as the magnitude of the interaction is highly variable between patients.(6) Use of higher doses of either the CYP3A4 inhibitor or quetiapine are other factors which may affect the magnitude of this interaction. Decrease the quetiapine dose if needed. If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, fainting, excessive drowsiness, rapid pulse/hypotension, weakness, fatigue, dizziness, or muscle stiffness/tremors (EPS). DISCUSSION: In a study in 19 Chinese patients with schizophrenia, patients received quetiapine (200 mg twice daily) alone and with erythromycin (500 mg 3 times daily, a moderate inhibitor of CYP3A4). Erythromycin increased the quetiapine maximum concentration (Cmax)by 68%(range approximately 20-130%), area-under-curve (AUC) 129% (range approximately 20-300%), and half-life by 92% (range approximately 0-250%). Quetiapine clearance decreased 52% (range approximately -15 to -80%).(6) Moderate inhibitors of CYP3A4 include: aprepitant, avacopan, berotralstat, clofazimine, conivaptan, diltiazem, duvelisib, fedratinib, fluvoxamine, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nirogacestat, schisandra, schisandra sphenanthera, tofisopam, treosulfan and verapamil.(4) |
QUETIAPINE FUMARATE, QUETIAPINE FUMARATE ER, SEROQUEL, SEROQUEL XR |
Acalabrutinib/Selected Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Agents that inhibit the CYP3A4 isoenzyme may inhibit the metabolism of acalabrutinib.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may increase levels of and effects from acalabrutinib.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Recommendations for management of this interaction vary in different regions. The US and Australian manufacturers of acalabrutinib state that the concurrent chronic use of strong CYP3A4 inhibitors with acalabrutinib is not recommended. For short-term use of strong CYP3A4 inhibitors, such as 7 days or less of antibiotics/antifungals, consider interruption of acalabrutinib therapy. If a moderate CYP3A4 inhibitor is required, reduce the dose of acalabrutinib to 100 mg once daily.(1,2) The UK manufacturer of acalabrutinib makes the same recommendation regarding strong CYP3A4 inhibitors, but states that no dose adjustment is needed for concurrent use of acalabrutinib with moderate CYP3A4 inhibitors. Patients should be monitored closely for adverse effects.(3) DISCUSSION: In a study with healthy volunteers, single-dose fluconazole 400 mg and isavuconazole 200 mg daily for 5 days (both moderate CYP3A4 inhibitors) increased the maximum concentration (Cmax) and area-under-curve (AUC) of acalabrutinib by 1.4- to 2-fold. The Cmax and AUC of the active metabolite ACP-5862 was decreased by 0.65- to 0.88-fold.(2) A physiologically based pharmacokinetic simulation with acalabrutinib and moderate CYP3A inhibitors (erythromycin, fluconazole, diltiazem) predicted that coadministration increases acalabrutinib Cmax and AUC by 2- to almost 3-fold.(1) In a study in healthy subjects, itraconazole (200mg once daily for 5 days, a strong inhibitor) increased the Cmax and AUC of acalabrutinib by 3.9-fold and 5.1-fold, respectively.(1) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, grapefruit juice, imatinib, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan and verapamil.(4,5) |
CALQUENCE |
Dolutegravir-Rilpivirine/Selected Oral Cations; Antacids; H2 Antagonists SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Aluminum, calcium, iron, lanthanum, magnesium, sucralfate, and zinc may form chelation compounds with dolutegravir.(1) Rilpivirine requires an acidic medium for absorption. Antacid or H2 antagonist induced decrease in gastric pH may result in decrease in rilpivirine absorption.(1) CLINICAL EFFECTS: Simultaneous administration or administration of products containing aluminum, calcium, iron, lanthanum, magnesium, and/or sucralfate close to the administration time of dolutegravir may result in decreased absorption and clinical effectiveness of dolutegravir.(1) Simultaneous administration of an antacid or a H2 antagonist may result in decreased levels and effectiveness of rilpivirine, as well as the development of resistance.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: If possible, avoid concurrent therapy with dolutegravir-rilpivirine and cation-containing products. If it is necessary to use these agents concurrently, dolutegravir-rilpivirine should be administered 4 hours before or 6 hours after taking these medications.(1) Alternatively, dolutegravir-rilpivirine and supplements containing calcium or iron can be taken together with food.(1) In patients maintained on dolutegravir-rilpivirine, administer dolutegravir-rilpivirine at least 4 hours before or 6 hours after antacids .(1) In patients maintained on dolutegravir-rilpivirine, administer dolutegravir-rilpivirine at least 4 hours before or 12 hours after H2 antagonists.(1) Concurrent use of proton pump inhibitors will dolutegravir-rilpivirine is contraindicated.(1) DISCUSSION: In a study in 16 subjects, the administration of an antacid (Maalox - aluminum and magnesium hydroxide) simultaneously with dolutegravir (50 mg single dose) decreased the maximum concentration (Cmax), area-under-curve (AUC), and minimum concentration (Cmin) of dolutegravir by 72%, 74%, and 74%, respectively.(1) In a study in 16 subjects, the administration of an antacid (Maalox - aluminum and magnesium hydroxide) 2 hours after dolutegravir (50 mg single dose) decreased dolutegravir Cmax, AUC, and Cmin by 18%, 26%, and 30%, respectively.(1) In a study in 16 subjects, the administration of a multiple vitamin (One-A-Day) simultaneously with dolutegravir (50 mg single dose) decreased dolutegravir Cmax, AUC, and Cmin by 35%, 33%, and 32%, respectively.(1) In a study in 16 subjects, omeprazole (20 mg daily) decreased the Cmax, AUC, and Cmin of rilpivirine (150 mg daily) by 40%, 40%, and 33%, respectively. The Cmax and AUC of omeprazole decreased by 14% and 14%, respectively.(1) In a study in 24 subjects, famotidine (40 mg single dose) administered 12 hours before a single dose of rilpivirine (150 mg) had no significant effect on rilpivirine Cmax or AUC.(1) In a study in 23 subjects, famotidine (40 mg single dose) administered 2 hours before a single dose of rilpivirine (150 mg) decreased the rilpivirine Cmax and AUC by 85% and 76%, respectively.(1) In a study in 24 subjects, famotidine (40 mg single dose) administered 4 hours before a single dose of rilpivirine (150 mg) increased the rilpivirine Cmax and AUC by 21% and 13%, respectively.(1) |
JULUCA |
Bictegravir/Polyvalent Cations; Sucralfate SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Polyvalent cations and sucralfate may bind to bictegravir in the GI tract, preventing its absorption.(1) CLINICAL EFFECTS: Polyvalent cations and sucralfate may reduce levels and clinical effectiveness of bictegravir.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Bictegravir must be taken 2 hours before or 6 hours after polyvalent cations or sucralfate. Medicines containing calcium can be taken together with bictegravir if taken with food.(1) Some vitamin preparations may contain sufficient quantities of polyvalent cations to interact as well. DISCUSSION: Simultaneous administration of aluminum and magnesium hydroxide (20 ml) in a fasted state with bictegravir (50 mg single dose) decreased bictegravir maximum concentration (Cmax) and area-under-curve (AUC) by 80% and 79%, respectively.(1) Administration of aluminum and magnesium hydroxide (20 ml) 2 hours after bictegravir (50 mg single dose) in a fasted state decreased bictegravir Cmax and AUC by 7% and 13%, respectively.(1) Administration of aluminum and magnesium hydroxide (20 ml) 2 hours before bictegravir (50 mg single dose) in a fasted state decreased bictegravir Cmax and AUC by 58% and 52%, respectively.(1) Simultaneous administration of aluminum and magnesium hydroxide (20 ml) in a fed state with bictegravir (50 mg single dose) decreased bictegravir Cmax and AUC by 49% and 47%, respectively.(1) Simultaneous administration of calcium carbonate (1200 mg single dose) in a fasted state with bictegravir (50 mg single dose) decreased bictegravir Cmax and AUC by 42% and 33%, respectively.(1) Simultaneous administration of calcium carbonate (1200 mg single dose) in a fed state with bictegravir (50 mg single dose) decreased bictegravir Cmax by 10% and increased AUC 3%, respectively.(1) Simultaneous administration of ferrous fumarate (324 mg single dose) in a fasted state with bictegravir (50 mg single dose) decreased bictegravir Cmax and AUC by 71% and 63%, respectively.(1) Simultaneous administration of ferrous fumarate (324 mg single dose) in a fed state with bictegravir (50 mg single dose) decreased bictegravir Cmax and AUC by 25% and 16%, respectively.(1) |
BIKTARVY |
Ivosidenib/Selected Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Agents which inhibit the CYP3A4 enzyme may inhibit the metabolism of ivosidenib.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may increase systemic exposure and the risk for ivosidenib toxicities such as QT prolongation.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of ivosidenib recommends considering an alternative concomitant medication with less potential for CYP3A4 inhibition.(1) During concomitant therapy with a moderate CYP3A4 inhibitor, monitor patients closely for prolongation of the QT interval. Obtain serum calcium, magnesium, and potassium levels and monitor ECG at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a drug interaction study in healthy subjects, coadministration of itraconazole (200 mg once daily for 18 days) with a single dose of ivosidenib (250 mg) increased ivosidenib area-under-the-curve (AUC) by 269%. No change was seen in ivosidenib's maximum concentration (Cmax).(1) Data from a pharmacokinetic simulation suggests that fluconazole, a moderate CYP3A4 inhibitor, may increase ivosidenib (500 mg) single-dose AUC by 173%. In regards to multiple-dosing, coadministration of ivosidenib with fluconazole is predicted to increase ivosidenib Cmax and AUC by 152% and 190%, respectively.(1) Moderate CYP3A4 inhibitors linked to this monograph include amprenavir, berotralstat, clofazimine, conivaptan, fluvoxamine, fosamprenavir, letermovir, schisandra, tofisopam, and treosulfan.(3) |
TIBSOVO |
Abemaciclib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Abemaciclib is a substrate of CYP3A4. Moderate inhibitors of CYP3A4 may inhibit the metabolism of abemaciclib.(1) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 may result in increased levels and toxicity from abemaciclib.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of abemaciclib recommends monitoring for adverse reactions and consider a dose reduction of abemaciclib dose in 50 mg decrements as detailed in prescribing information (based on starting dose, previous dose reductions, and combination or monotherapy use) with concurrent use of moderate CYP3A4 inhibitors.(1) Monitor patient for signs and symptoms of abemaciclib toxicity with concurrent use. DISCUSSION: Abemaciclib is a substrate of CYP3A4.(1) Concurrent administration of verapamil and diltiazem (moderate CYP3A4 inhibitors) are predicted to increase the relative adjusted unbound area-under-curve (AUC) of abemaciclib and its active metabolites (M2, M18, and M20) by approximately 1.6-fold and 2.4-fold, respectively.(1) Concurrent administration of ketoconazole (a strong CYP3A4 inhibitor) is predicted to increase the AUC of abemaciclib up to 16-fold.(1) Concurrent administration of itraconazole (a strong CYP3A4 inhibitor) is predicted to increase the relative potency adjusted unbound AUC of abemaciclib and its active metabolites (M2, M18, and M20) by 2.2-fold.(1) Concurrent administration of clarithromycin (500 mg twice daily, a strong CYP3A4 inhibitor) with a single dose of 50 mg of abemaciclib increased the relative potency adjusted unbound AUC of abemaciclib and its active metabolites (M2, M18, and M20) by 2.5-fold.(1) Moderate CYP3A4 inhibitors linked to this monograph include: amprenavir, aprepitant, avacopan, berotralstat, clofazimine, conivaptan, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan and verapamil.(2,3) |
VERZENIO |
Baloxavir/Polyvalent Cations SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Aluminum, calcium, iron, magnesium, selenium, and zinc may form chelation compounds with baloxavir.(1) CLINICAL EFFECTS: Simultaneous administration of products containing aluminum, calcium, iron, magnesium, selenium, and zinc may result in decreased levels of and clinical effects from baloxavir.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid concurrent administration of baloxavir with cation-containing products.(1) DISCUSSION: A significant decrease in baloxavir exposure was observed when baloxavir was coadministered with calcium, aluminum, magnesium, or iron in monkeys. No studies have been conducted in humans.(1) |
XOFLUZA |
Selected Sensitive CYP3A4 Substrates/Schisandra SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Schisandra is considered a moderate inhibitor of CYP3A4. FDA defines a moderate inhibitor as a drug which increases the area-under-curve (AUC) of a sensitive substrate by 2- to 5-fold.(1,2) CLINICAL EFFECTS: Concurrent use of Schisandra may lead to increased serum levels and adverse effects of drugs sensitive to inhibition of the CYP3A4 pathway.(3-7) PREDISPOSING FACTORS: With darifenacin, the risk of anticholinergic toxicities including cognitive decline, delirium, falls and fractures is increased in geriatric patients using more than one medicine with anticholinergic properties.(8) PATIENT MANAGEMENT: If Schisandra must be coadministered with a sensitive CYP3A4 substrate, it is recommended to closely monitor the CYP3A4 substrate and adjust its dose as appropriate.(3-7) The US manufacturer of sirolimus protein-bound injection (Fyarro) states a dose reduction to 56 mg/m2 is recommended when used concurrently with moderate or weak CYP3A4 inhibitors. Concurrent use with strong CYP3A4 inhibitors should be avoided.(8) DISCUSSION: A study in 12 healthy volunteers found that Schisandra led to an increase in midazolam area-under-curve (AUC) and maximum concentration (Cmax) of 2.05- and 1.65-fold, respectively, compared to midazolam administered alone.(3) In a study of 18 healthy volunteers, sirolimus AUC and Cmax increased by 2.07-fold and 1.96-fold, respectively when given with Schisandra compared to sirolimus administered alone.(4) The effect of Schisandra on tacrolimus has been examined in several small pharmacokinetic studies in healthy volunteers as well as liver and kidney transplant patients. Compared to tacrolimus given alone, tacrolimus AUC when administered with Schisandra was consistently increased by 2.1-fold, while the increase in Cmax varied between 1.83- and 2.11-fold in the transplant studies(5-6) and 3-fold in the study on healthy subjects.(7) In the study with kidney transplant patients, a decrease in tacrolimus dose of 40.9 % was required to bring tacrolimus levels into the therapeutic range.(5) |
AIRSUPRA, ALTOPREV, AMLODIPINE-ATORVASTATIN, APONVIE, APREPITANT, ATORVALIQ, ATORVASTATIN CALCIUM, BREYNA, BREZTRI AEROSPHERE, BRILINTA, BUDESONIDE, BUDESONIDE DR, BUDESONIDE EC, BUDESONIDE ER, BUDESONIDE MICRONIZED, BUDESONIDE-FORMOTEROL FUMARATE, BUSPIRONE HCL, CADUET, CINVANTI, COARTEM, CONIVAPTAN-D5W, CRESEMBA, DARIFENACIN ER, DASATINIB, ELETRIPTAN HBR, ELLA, EMEND, EOHILIA, EZETIMIBE-SIMVASTATIN, FELODIPINE ER, FLOLIPID, FOCINVEZ, FOSAPREPITANT DIMEGLUMINE, FYARRO, HALCION, LATUDA, LIPITOR, LOVASTATIN, LURASIDONE HCL, MARAVIROC, MIDAZOLAM, MIDAZOLAM HCL, MIDAZOLAM HCL-0.8% NACL, MIDAZOLAM HCL-0.9% NACL, MIDAZOLAM HCL-D5W, MIDAZOLAM HCL-NACL, MIDAZOLAM-0.9% NACL, MIDAZOLAM-NACL, MKO (MIDAZOLAM-KETAMINE-ONDAN), MULTAQ, NAYZILAM, NISOLDIPINE, ORTIKOS, PULMICORT, PULMICORT FLEXHALER, RELPAX, REVATIO, RYDAPT, SELZENTRY, SILDENAFIL CITRATE, SIMVASTATIN, SIROLIMUS, SPRYCEL, SULAR, SYMBICORT, TARPEYO, TICAGRELOR, TRIAZOLAM, UCERIS, VAPRISOL-5% DEXTROSE, VARDENAFIL HCL, VIAGRA, VYTORIN, ZOCOR |
Oral Lefamulin/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of oral lefamulin.(1,2) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 may result in elevated levels and increased effects of lefamulin, such as QT prolongation. PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: The US manufacturer of lefamulin states that oral lefamulin coadministration with moderate inhibitors of CYP3A4 should be monitored for adverse effects.(1) During concomitant therapy with a moderate CYP3A4 inhibitor, monitor patients closely for prolongation of the QT interval. Obtain serum calcium, magnesium, and potassium levels and monitor ECG at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Coadministration of ketoconazole (strong CYP3A4 inhibitor) with lefamulin tablets increased lefamulin area-under-the-curve (AUC) and maximum concentration (Cmax) by 165% and 58%.(1) Moderate inhibitors of CYP3A4 include: amprenavir, avacopan, clofazimine, conivaptan, duvelisib, fedratinib, fosamprenavir, fosnetupitant, imatinib, lenacapavir, letermovir, netupitant, schisandra, tofisopam and treosulfan.(1,3) |
XENLETA |
Trientine/Selected Minerals, Oral SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Mineral supplements may bind to trientine and block its absorption. CLINICAL EFFECTS: The levels and clinical effects of trientine may be decreased. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of trientine states that mineral supplements should not be given with trientine. If concomitant therapy is necessary, take trientine on an empty stomach and separate administration at least one hour apart from any other drug. Monitor clinical status for decreased effectiveness and adjust the trientine dose if necessary. DISCUSSION: Multivitamins with minerals may decrease trientine absorption so ensure patient is aware of the risks. |
CUVRIOR, SYPRINE, TRIENTINE HCL |
Zanubrutinib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of zanubrutinib.(1) CLINICAL EFFECTS: Concurrent use of a moderate CYP3A4 inhibitor may result in elevated levels of and toxicity from zanubrutinib.(1) PREDISPOSING FACTORS: Patients with severe hepatic impairment (Child-Pugh class C) have elevated zanubrutinib plasma concentrations and may be more susceptible to the effects of this interaction.(1) PATIENT MANAGEMENT: The dosage of zanubrutinib should be reduced to 80 mg twice daily when co-administered with moderate CYP3A4 inhibitors. Modify the dose as recommended by prescribing information for adverse reactions.(1) DISCUSSION: Co-administration with itraconazole 200 mg once daily, a strong CYP3A4 inhibitor, increased zanubrutinib concentration maximum (Cmax) and area-under-curve (AUC) by 157% and 278%, respectively. It is predicted co-administration with fluconazole 200 mg daily, a moderate CYP3A4 inhibitor, would increase zanubrutinib Cmax and AUC by 179% and 177%, respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan and verapamil.(2-4) |
BRUKINSA |
Ubrogepant/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of ubrogepant.(1) CLINICAL EFFECTS: Concurrent use of a moderate CYP3A4 inhibitor may result in elevated levels of ubrogepant.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer recommends a dosage adjustment of ubrogepant when used concomitantly with moderate CYP3A4 inhibitors. Initial dose of ubrogepant should not exceed 50 mg. A second dose should be avoided within 24 hours of the first dose when used concurrently with moderate CYP3A4 inhibitors.(1) DISCUSSION: Co-administration with verapamil, a moderate CYP3A4 inhibitor, resulted in a 3.5-fold and 2.8-fold increase in area-under-curve (AUC) and concentration maximum (Cmax), respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan and verapamil.(2-4) |
UBRELVY |
Avapritinib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of avapritinib.(1) CLINICAL EFFECTS: Concurrent use of avapritinib with a moderate CYP3A4 inhibitor increases avapritinib plasma concentrations, which may increase the incidence and severity of adverse reactions of avapritinib.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid concomitant use of avapritinib with strong or moderate CYP3A4 inhibitors. If coadministration of avapritinib with a moderate CYP3A4 inhibitor cannot be avoided, reduce the dose of avapritinib to 100 mg once daily for treatment of gastrointestinal stromal tumors or 50 mg once daily for treatment of advanced systemic mastocytosis.(1) DISCUSSION: Coadministration of avapritinib 300 mg once daily with fluconazole 200 mg once daily, a moderate CYP3A4 inhibitor, is predicted to increase avapritinib AUC by 210% at steady state.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan and verapamil.(2,3) |
AYVAKIT |
Rimegepant/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Rimegepant is primarily metabolized by CYP3A4. Moderate inhibitors of CYP3A4 may decrease the metabolism of rimegepant.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may result in increased levels of and toxicity from rimegepant.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of rimegepant recommends avoiding a second dose of rimegepant within 48 hours of a first dose when used concomitantly with moderate CYP3A4 inhibitors.(1) DISCUSSION: In a drug interaction study (n=23), fluconazole, a moderate CYP3A4 inhibitor, increased rimegepant mean area-under-curve from time 0 to infinity (AUC 0-inf) by 1.8-fold (90% confidence interval 1.68-1.93), with no impact on the maximum concentration (Cmax) (1.04-fold; 90% CI 0.94-1.15). (2) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam and treosulfan.(3-4) |
NURTEC ODT |
Cabotegravir/Polyvalent Cations SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Cabotegravir chelates polyvalent cations such as aluminum, calcium, iron, magnesium, selenium, and zinc.(1) CLINICAL EFFECTS: Simultaneous administration of cabotegravir and polyvalent cations may decrease the absorption and clinical effects of cabotegravir.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of cabotegravir states that it should be administered at least 2 hours before or 4 hours after any medications or products containing polyvalent cations such as antacids or mineral supplements.(1) DISCUSSION: Clinical studies have not been conducted. Prescribing information states cabotegravir levels may be decreased when coadministered with antacids containing polyvalent cations (examples include aluminum or magnesium hydroxide, calcium carbonate) suggesting cabotegravir is susceptible to chelation.(1) |
VOCABRIA |
Daridorexant (Less Than or Equal To 25 mg)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of daridorexant.(1) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 may result in increased levels of and effects from daridorexant including somnolence, fatigue, CNS depressant effects, daytime impairment, or headache.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The dose of daridorexant should be limited to 25 mg daily when used with a moderate CYP3A4 inhibitor.(1) DISCUSSION: Daridorexant is a CYP3A4 substrate. In a PKPB model, concurrent use of daridorexant with diltiazem, a moderate CYP3A4 inhibitor, increased daridorexant area-under-curve (AUC) and maximum concentration (Cmax) by 2.4-fold and 1.4-fold, respectively.(1) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, treosulfan and verapamil.(2) |
QUVIVIQ |
Mitapivat (Less Than or Equal To 20 mg)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of mitapivat.(1) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 may result in increased levels of and effects from mitapivat including decreased estrone and estradiol levels in males, increased urate, back pain, and arthralgias.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The concurrent use of moderate CYP3A4 inhibitors with mitapivat should be monitored closely for increased risk of adverse reactions. Mitapivat dose should not exceed 20 mg twice daily with concurrent moderate CYP3A4 inhibitors.(1) DISCUSSION: Mitapivat is a CYP3A4 substrate. In a pharmacokinetic study with mitapivat 5, 20, or 50 mg twice daily dosing, fluconazole increased mitapivat area-under-curve (AUC) and concentration maximum (Cmax) by 2.6-fold and 1.6-fold, respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, berotralstat, clofazimine, conivaptan, darunavir, diltiazem, dronedarone, erythromycin, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, letermovir, netupitant, nilotinib, schisandra, treosulfan and verapamil.(2)(2) |
PYRUKYND |
Pacritinib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Agents that inhibit the CYP3A4 isoenzyme may inhibit the metabolism of pacritinib.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may increase levels of and effects from pacritinib.(1) Elevated levels of pacritinib may result in QTc prolongation, which may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes (TdP). Other toxicities include bleeding, diarrhea, thrombocytopenia, major adverse cardiovascular events, thrombosis, and infection.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of pacritinib recommends monitoring patients concomitantly receiving moderate CYP3A4 inhibitors (e.g., fluconazole) for increased adverse reactions and considering pacritinib dose modifications based on safety.(1) When concurrent therapy is warranted monitor for prolongation of the QTc interval.(1) Consider obtaining serum calcium, magnesium, and potassium levels and monitoring EKG at baseline and regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. If patients develop QTc prolongation >500 msec or >60 msec from baseline, hold pacritinib. If QTc prolongation resolves to <=480 msec or to baseline within 1 week, resume pacritinib at the same dose. If time to resolution of the QTc interval takes greater than 1 week to resolve, reduce the pacritinib dose according to labeling.(1) DISCUSSION: Fluconazole (200 mg once daily for 7 days, a moderate CYP3A4 inhibitor) increased maximum concentration (Cmax) and area-under-curve (AUC) of pacritinib (200 mg twice daily at steady state) by 41% and 45%, respectively.(1) Concomitant use of pacritinib with doses of fluconazole greater than 200 mg once daily have not been studied.(1) Clarithromycin (500 mg twice daily for 5 days, a strong CYP3A4 inhibitor) increased maximum concentration (Cmax) and area-under-curve (AUC) of a single dose of pacritinib (400 mg) by 80% and 30%, respectively.(1) In a 24 week clinical study, patients treated with pacritinib 200 mg twice daily had a change in QTc from baseline of 11 msec (90% CI: 5-17).(1) Pacritinib has been associated with QTc interval prolongation. In clinical trials, patients with QTc prolongation >500 msec occurred in 1.4% of patients in the treatment arm compared to 1% in the control arm. The treatment arm had a greater incidence of an increase in QTc > 60 msec from baseline than the control arm (1.9% vs 1%, respectively). QTc prolongation adverse reactions were higher in the treatment arm than the control group (3.8% vs 2%, respectively).(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, berotralstat, clofazimine, conivaptan, darunavir, diltiazem, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, letermovir, netupitant, schisandra, tofisopam, treosulfan, verapamil and voxelotor.(3,4) |
VONJO |
Lumateperone (Less Than or Equal To 21 mg)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of lumateperone.(1) CLINICAL EFFECTS: Concurrent use of lumateperone with moderate CYP3A4 inhibitors increases lumateperone exposure, which may increase the risk of adverse reactions.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of lumateperone recommends decreasing the dosage of lumateperone to 21 mg once daily in patients receiving moderate CYP3A4 inhibitors.(1) DISCUSSION: Coadministration of lumateperone with itraconazole, a strong CYP3A4 inhibitor, resulted in a 4-fold and 3.5-fold increase in area-under-curve (AUC) and concentration maximum (Cmax), respectively.(1) Coadministration of lumateperone with diltiazem, a moderate CYP3A4 inhibitor, resulted in a 2.5-fold and 2-fold increase AUC and Cmax, respectively.(1) Moderate inhibitors of CYP3A4 include: aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosnetupitant, imatinib, isavuconazonium, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(2,3) |
CAPLYTA |
Larotrectinib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Agents which inhibit the CYP3A4 enzyme may inhibit the metabolism of larotrectinib.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may increase systemic exposure and the risk for larotrectinib toxicities such as neurotoxicity or hepatotoxicity.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Patients receiving a moderate CYP3A4 inhibitor concurrently with larotrectinib should be monitored for adverse effects more frequently. A dose reduction may be needed based on the severity of adverse effects. Refer to prescribing information for dosage modifications. DISCUSSION: In a drug interaction study in healthy subjects, coadministration of itraconazole (a strong CYP3A4 inhibitor) with a single dose of larotrectinib (100 mg) increased larotrectinib maximum concentration (Cmax) and area-under-the-curve (AUC) by 2.8 and 4.3-fold, respectively.(1) Fluconazole (a moderate CYP3A4 inhibitor) is predicted to increase the AUC and Cmax of larotrectinib by 2.7-fold and 1.9-fold, respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(2,3) |
VITRAKVI |
Palovarotene/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may inhibit the metabolism of palovarotene.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may result in elevated levels of and toxicity from palovarotene, including rash, alopecia, skin exfoliation, photosensitivity, reduction in bone mass, hyperostosis, and night blindness.(1,2) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The concurrent use of moderate CYP3A4 inhibitors with palovarotene should be avoided. If concurrent use cannot be avoided, reduce the dose of palovarotene by half, according to the US prescribing information.(1) DISCUSSION: In a clinical trial, erythromycin, a moderate CYP3A4 inhibitor, increased the maximum concentration (Cmax) and area-under-curve (AUC) of palovarotene by 1.6- and 2.5-fold, respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lefamulin, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan, verapamil, voxelotor.(3,4) |
SOHONOS |
Etrasimod/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Strong and moderate inhibitors of CYP3A4 may impair the CYP3A4-mediated metabolism of etrasimod.(1) Etrasimod is metabolized by CYP2C8, CYP2C9, and CYP3A4.(1) CLINICAL EFFECTS: In patients who are poor metabolizers of CYP2C9 or are also taking a strong or moderate CYP2C9 inhibitor, concurrent use of a strong or moderate inhibitor of CYP3A4 may result in elevated levels of and clinical effects from etrasimod including immunosuppression, decreased lung function, bradycardia, and AV conduction delays. PREDISPOSING FACTORS: CYP2C9 poor metabolizers (e.g., *2/*3, *3/*3) may have decreased clearance of etrasimod when etrasimod is used concomitantly with strong or moderate inhibitors of CYP3A4. Patients who are also taking a strong or moderate CYP2C9 inhibitor may also have decreased etrasimod clearance.(1) PATIENT MANAGEMENT: Concomitant use of etrasimod with strong or moderate CYP3A4 inhibitors in patients who are CYP2C9 poor metabolizers is not recommended.(1) Concomitant use with strong or moderate CYP3A4 inhibitors in patients who are also taking a strong or moderate CYP2C9 inhibitor is not recommended. (1) DISCUSSION: CYP2C9 activity is decreased in individuals with genetic variants such as CYP2C9*2 and CYP2C9*3 alleles. The impact of CYP2C9 genetic variants on the pharmacokinetics of etrasimod has not been directly evaluated. Increased exposure of etrasimod in patients who are CYP2C9 poor metabolizers is expected with concomitant use of moderate to strong inhibitors of CYP3A4.(1) Concomitant use of etrasimod with steady-state fluconazole (a moderate CYP2C9 and CYP3A4 inhibitor) increased etrasimod area-under-curve (AUC) by 84%.(1) Strong inhibitors of CYP3A4 include: boceprevir, cobicistat, grapefruit, indinavir, itraconazole, josamycin, ketoconazole, mibefradil, nefazodone, nelfinavir, nirmatrelvir/ritonavir, paritaprevir, telaprevir, tipranavir, troleandomycin, and tucatinib.(2,3) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, darunavir, fluvoxamine, fosamprenavir, fosnetupitant, isavuconazonium, letermovir, lenacapavir, netupitant, schisandra, tofisopam, and voxelotor.(2,3) |
VELSIPITY |
Cyclosporine/Selected Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may inhibit the metabolism of cyclosporine.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may result in elevated levels of and toxicity from cyclosporine, including serious infections, nephrotoxicity, and hepatotoxicity.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: If cyclosporine is used with a moderate CYP3A4 inhibitor, dose adjustment of cyclosporine may be necessary to achieve the desired cyclosporine concentration.(1) DISCUSSION: In a study, renal and cardiac patients required a cyclosporine dose reduction of 15% to 48% when diltiazem was co-administered to maintain a cyclosporine trough similar to cyclosporine alone.(2) In a study, cyclosporine required a 25% dose reduction when co-administered with fluconazole to maintain a goal serum concentration similar to cyclosporine alone.(3) Moderate inhibitors of CYP3A4 include: aprepitant, avacopan, berotralstat, clofazimine, duvelisib, fedratinib, fluvoxamine, oral lefamulin, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, and treosulfan.(4,5) |
CYCLOSPORINE, CYCLOSPORINE MODIFIED, GENGRAF, NEORAL, SANDIMMUNE |
Capivasertib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may inhibit the CYP3A4 metabolism of capivasertib.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may result in increased systemic exposure to and effects from capivasertib, hyperglycemia, severe diarrhea, and cutaneous adverse reactions.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Concomitant use of capivasertib with moderate CYP3A4 inhibitors requires a dose reduction of capivasertib. Reduce the capivasertib dose to 320 mg twice daily for 4 days followed by 3 days off.(1) After discontinuation of the strong CYP3A4 inhibitor for 3 to 5 half-lives of the inhibitor, resume the capivasertib dosage that was taken prior to initiating the strong CYP3A4 inhibitor.(1) DISCUSSION: Itraconazole (strong CYP3A4 inhibitor) is predicted to increase capivasertib area-under-curve (AUC) by up to 1.7-fold and maximum concentration (Cmax) by up to 1.4-fold.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan, verapamil, voxelotor.(2,3) |
TRUQAP |
Finerenone/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of finerenone.(1) CLINICAL EFFECTS: Concurrent use of finerenone with a moderate inhibitor of CYP3A4 increases finerenone concentrations and may increase the risk of toxicity (e.g., hyperkalemia, hypotension).(1) PREDISPOSING FACTORS: Severe renal disease and concurrent use of potassium supplements increase the risk for hyperkalemia. PATIENT MANAGEMENT: The manufacturer of finerenone states that use with moderate CYP3A4 inhibitors should be closely monitored. Check serum potassium during drug initiation or dosage adjustment of either finerenone or the moderate CYP3A4 inhibitor. Dose adjustment of finerenone may be necessary.(1) DISCUSSION: Concurrent use of finerenone with erythromycin, a moderate CYP3A4 inhibitor, increased finerenone area-under-curve (AUC) by 248% and maximum concentration (Cmax) by 88%.(1) Moderate CYP3A4 inhibitors linked to this monograph include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan, verapamil, voxelotor.(2,3) |
KERENDIA |
Macitentan/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Macitentan is primarily metabolized by CYP3A4, with minor contributions from CYP2C8, CYP2C9, and CYP2C19. Moderate inhibitors of CYP3A4 may inhibit the metabolism of macitentan.(1) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 may result in elevated levels and increased effects of macitentan, including hepatotoxicity and fluid retention.(1) PREDISPOSING FACTORS: Concomitant use of a moderate CYP2C9 inhibitor increases the magnitude of this interaction and the risk of adverse events. PATIENT MANAGEMENT: The manufacturer of macitentan states that concurrent use of both a moderate CYP2C9 inhibitor and a moderate CYP3A4 inhibitor should be avoided.(1) While the manufacturer does not provide recommendations for concurrent use of a moderate CYP3A4 inhibitor alone, it would be prudent to use caution and monitor for adverse effects. DISCUSSION: Based on pharmacokinetic (PBPK) modeling, dual moderate inhibitors of CYP2C9 and CYP3A4 such as fluconazole are predicted to increase macitentan exposure by 4-fold.(1) Pretreatment with ketoconazole increased the area-under-curve (AUC) and maximum concentration (Cmax) of macitentan by approximately 2.3 and 1.3-fold, respectively.(1) Moderate CYP3A4 inhibitors linked to this monograph include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(2) |
OPSUMIT, OPSYNVI |
Vadadustat/Polyvalent Cations and Phosphate Binders SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Vadadustat may form a chelate with iron supplements, phosphate binders, and other medicinal products whose primary component consists of polyvalent cations such as aluminum, calcium, magnesium, selenium, and zinc.(1) CLINICAL EFFECTS: Simultaneous administration of vadadustat and polyvalent cations and phosphate binders decreases the exposure and effectiveness of vadadustat.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of vadadustat states that it should be administered at least 1 hour before or 2 hours after any medications or products whose primary component consists of iron, phosphate binders and polyvalent cations.(1) DISCUSSION: Two studies evaluating the pharmacokinetics, safety, and tolerability of a single oral dose of vadadustat coadministered with a phosphate binder or iron supplement were conducted in healthy adult participants. Vadadustat exposure was reduced by coadministration with sevelamer carbonate, calcium acetate, ferric citrate, and ferrous sulfate. Geometric least squares mean ratios for area under the concentration-time curve (AUC) were reduced 37% to 55% by phosphate binders and 46% by ferrous sulfate. However, when vadadustat was administered 1 hour before phosphate binders, 90% confidence intervals for vadadustat exposure were within the no-effect boundaries of +50% to -33%, indicating that drug-drug interactions can be reduced by administering vadadustat 1 hour before phosphate binders.(2) |
VAFSEO |
Sotalol/Aluminium And Magnesium Antacids SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Aluminum- and magnesium-containing antacids may reduce the absorption of sotalol.(1) CLINICAL EFFECTS: Simultaneous administration of sotalol with antacids containing aluminum or magnesium may result in decreased levels and effectiveness of sotalol.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: If coadministration with an aluminum- or magnesium-containing antacid agent is unavoidable, take the antacid 2 hours before or 2 hours after sotalol.(1) DISCUSSION: In a study with 6 healthy volunteers, administration of oral sotalol simultaneously with antacids reduced the maximum concentration (Cmax) and area under the curve (AUC) of sotalol by 26% and 20%, respectively, compared to sotalol alone. There was a 25% reduction in the bradycardic effect at rest. Administration of the antacid two hours after oral sotalol had no effect on the pharmacokinetics or pharmacodynamics of sotalol.(1,2) |
BETAPACE, BETAPACE AF, SOTALOL, SOTALOL AF, SOTYLIZE |
Lonafarnib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may inhibit the metabolism of lonafarnib.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors with lonafarnib may increase the risk of adverse reactions including QT prolongation and potentially life-threatening cardiac arrhythmias like torsades de pointes, nausea and vomiting, increased liver enzymes, myelosuppression, and hypertension.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The use of lonafarnib with moderate CYP3A4 inhibitors should be approached with caution. No dose adjustment of lonafarnib is recommended when moderate CYP3A4 inhibitors are added to steady-state lonafarnib. When initiating lonafarnib therapy in a patient already taking a moderate CYP3A4 inhibitor, monitor the patient closely for the first 7 days of therapy. If the patient does not tolerate lonafarnib, consider an alternative that is not a moderate CYP3A4 inhibitor.(1) Lonafarnib dose modification recommendation: if the QTc interval is greater than or equal to 500 msec, withhold lonafarnib until the QTc interval is less than 470 msec, then resume lonafarnib at the same dosage.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: With coadministration of a single oral dose of 50 mg lonafarnib following 200 mg ketoconazole (a strong CYP3A4 inhibitor) once daily for 5 days, the area-under-curve (AUC) and maximum concentration (Cmax) were increased by 425% and 270%, respectively.(1) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, berotralstat, clofazimine, darunavir, diltiazem, duvelisib, fedratinib, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nirogacestat, schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(2,3) |
ZOKINVY |
Mavorixafor/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may inhibit the metabolism of mavorixafor.(1) Mavorixafor is also a substrate of P-glycoprotein (P-gp). P-gp inhibitors may increase mavorixafor exposure.(1) Many CYP3A4 inhibitors also inhibit P-glycoprotein (P-gp), including cimetidine, diltiazem, fluvoxamine, isavuconazonium, schisandra, and verapamil.(2) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may increase the levels and effects of mavorixafor, including thrombocytopenia and QTc prolongation, which may result in potentially life-threatening cardiac arrhythmias like torsades de pointes (TdP).(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: When used concomitantly with moderate CYP3A4 inhibitors, monitor more frequently for mavorixafor adverse effects and reduce the dose in 100 mg increments, if necessary, but not to a dose less than 200 mg.(1) When concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring EKG at baseline and regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: There are no clinical studies for the combination of mavorixafor and moderate CYP3A4 inhibitors. In a study with healthy subjects, itraconazole 200 mg daily (a strong CYP3A4 and P-gp inhibitor) increased the exposure to single-dose mavorixafor 200 mg similar to that from single-dose mavorixafor 400 mg alone. This suggests that itraconazole increased mavorixafor exposure by about 2-fold.(1) A study in healthy volunteers found that ritonavir 100 mg twice daily (a strong CYP3A4 inhibitor and P-gp inhibitor) increased the area-under-curve (AUC) and maximum concentration (Cmax) of single-dose mavorixafor 200 mg by 60% and 39%, respectively.(4) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, cimetidine, clofazimine, conivaptan, darunavir, diltiazem, duvelisib, fedratinib, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, schisandra, tofisopam, treosulfan, verapamil and voxelotor.(2,5) |
XOLREMDI |
Oliceridine/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Oliceridine is metabolized equally by CYP2D6 and CYP3A4. Oliceridine metabolism may be inhibited by inhibitors of CYP2D6 or CYP3A4.(1) CLINICAL EFFECTS: The concurrent administration of a strong or moderate CYP2D6 or strong or moderate CYP3A4 inhibitor may result in elevated levels of and toxicity from oliceridine including profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Patients with CYP2D6 poor metabolizer phenotype may be affected to a greater extent by CYP3A4 inhibitors. Inhibition of both CYP2D6 and CYP3A4 pathways may result in a greater increase in the levels of and toxcity of oliceridine.(1) PATIENT MANAGEMENT: Caution should be used when administering oliceridine to patients taking strong or moderate inhibitors of CYP2D6 or CYP3A4. Dosage adjustments should be made if warranted. Closely monitor these patients for respiratory depression and sedation at frequent intervals and evaluate subsequent doses based on response. If concomitant use of a strong or moderate CYP2D6 or CYP3A4 inhibitor is necessary, less frequent dosing of oliceridine may be required. If a strong or moderate CYP2D6 or CYP3A4 inhibitor is discontinued, increase of the oliceridine dosage may be necessary. Monitor for signs of opioid withdrawal. Patients receiving concurrent therapy with both a strong or moderate CYP3A4 inhibitor and CYP2D6 inhibitors may be at greater risk of adverse effects. Patient who are CYP2D6 normal metabolizers taking a CYP2D6 inhibitor and a strong CYP3A4 inhibitor may require less frequent dosing of oliceridine.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with agents that may increase opioid drug levels.(2) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: In a study of four healthy subjects who are CYP2D6 poor metabolizers, itraconazole (200 mg daily for 5 days) increased the area-under-curve (AUC) of single-dose oliceridine (0.25 mg) by 80%.(1) In a study of subjects who were not CYP2D6 poor metabolizers, ketoconazole (200 mg for 2 doses 10 hours apart) did not affect the pharmacokinetics of oliceridine.(1) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lefamulin, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, Schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(4) |
OLINVYK |
Tretinoin/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of tretinoin.(1) CLINICAL EFFECTS: Concurrent use of a moderate CYP3A4 inhibitor may result in increased levels of and effects from tretinoin including hepatotoxicity and hyperlipidemia.(1) Retinoids, including tretinoin, have been associated with intracranial hypertension, especially in pediatric patients. Early signs and symptoms include papilledema, headache, nausea, vomiting, and visual disturbances.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of tretinoin recommends monitoring patients taking a moderate CYP3A4 inhibitor in combination with tretinoin more frequently for adverse reactions.(1) Evaluate patients with symptoms for intracranial hypertension (such as papilledema, headache, nausea, vomiting, and visual disturbances), and, if present, institute care in concert with neurological assessment. Consider interruption, dose reduction, or discontinuation of tretinoin as appropriate.(1) DISCUSSION: In 13 patients on tretinoin for 4 weeks, single-dose ketoconazole (400 to 1200 mg) (strong CYP3A4 inhibitor) increased tretinoin area-under-curve (AUC) by 72%.(1) There are no clinical pharmacokinetic studies on the combination of tretinoin with a moderate CYP3A4 inhibitor. The US manufacturer of tretinoin states increased tretinoin toxicity following concomitant use of tretinoin with certain antimycotics that are moderate CYP3A4 inhibitors has been reported post-marketing.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, and treosulfan.(2-3) |
RETINOIC ACID, TRETINOIN, TRETINOIN ACID |
Vanzacaftor-Tezacaftor-Deutivacaftor/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of vanzacaftor-tezacaftor-deutivacaftor. Vanzacaftor, tezacaftor, and deutivacaftor are CYP3A substrates.(1) CLINICAL EFFECTS: Concurrent use of a moderate CYP3A4 inhibitor may result in elevated levels of and toxicity from vanzacaftor-tezacaftor-deutivacaftor, such as hepatotoxicity.(1) PREDISPOSING FACTORS: This interaction may be more severe in patients with hepatic impairment.(1) PATIENT MANAGEMENT: The US manufacturer of vanzacaftor-tezacaftor-deutivacaftor states that concurrent use with moderate CYP3A4 inhibitors requires a dose adjustment. If concurrent use is warranted, the following dose adjustments are recommended: -For age 6 to less than 12 years old AND less than 40 kg - Two tablets of vanzacaftor 4 mg/tezacaftor 20 mg/deutivacaftor 50 mg every other day; -For age 6 to less than 12 years old AND greater than or equal to 40 kg - One tablet of vanzacaftor 10 mg/tezacaftor 50 mg/deutivacaftor 125 mg every other day; -For age 12 years and older AND any weight - One tablet of vanzacaftor 10 mg/tezacaftor 50 mg/deutivacaftor 125 mg every other day.(1) DISCUSSION: Concurrent administration with itraconazole (200 mg every 12 hours on Day 1, followed by 200 mg daily, a strong inhibitor of CYP3A4) with tezacaftor (25 mg daily)-ivacaftor (50 mg daily) increased tezacaftor area-under-curve (AUC) and concentration maximum (Cmax) by 4-fold and 2.83-fold, respectively.(1) Concurrent administration with itraconazole (200 mg daily, a strong inhibitor of CYP3A4) with single-dose elexacaftor 20 mg-tezacaftor 50 mg-deutivacaftor 50 mg increased tezacaftor AUC and Cmax by 4.51-fold and 1.48-fold and deutivacaftor AUC and Cmax by 11.1-fold and 1.96-fold.(1) Concurrent administration with itraconazole (200 mg daily, a strong inhibitor of CYP3A4) with vanzacaftor (5 mg single dose) increased vanzacaftor AUC and Cmax by 6.37-fold and 1.55-fold, respectively.(1) Concurrent administration with fluconazole (200 mg daily, a moderate inhibitor of CYP3A4) with vanzacaftor (20 mg daily)-tezacaftor (100 mg daily)-deutivacaftor (250 mg daily) is predicted to increase vanzacaftor AUC and Cmax by 2.55-fold and 2.48-fold and deutivacaftor by 3.13-fold and 2.27-fold, respectively.(1) Concurrent administration with erythromycin (500 mg four times daily, a moderate inhibitor of CYP3A4) with vanzacaftor (20 mg daily)-tezacaftor (100 mg daily)-deutivacaftor (250 mg daily) is predicted to increase vanzacaftor AUC and Cmax by 3.29-fold and 3.19-fold and deutivacaftor by 4.13-fold and 2.89-fold, respectively.(1) Concurrent administration with verapamil (80 mg three times daily, a moderate inhibitor of CYP3A4) with vanzacaftor (20 mg daily)-tezacaftor (100 mg daily)-deutivacaftor (250 mg daily) is predicted to increase vanzacaftor AUC and Cmax by 3.93-fold and 3.8-fold and deutivacaftor by 5.11-fold and 3.43-fold, respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, Schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(2-4) |
ALYFTREK |
Apixaban/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Apixaban is a substrate of CYP3A4 and P-glycoprotein (P-gp). It is about 20% metabolized, mainly by CYP3A4.(1-4) Strong and moderate CYP3A4 inhibitors may inhibit the metabolism of apixaban by CYP3A4. CLINICAL EFFECTS: Concurrent use of a CYP3A4 inhibitor may result in elevated levels of and clinical effects of apixaban, including an increased risk of bleeding, especially in the setting of concurrent therapy with an agent that inhibits P-gp.(1-4) PREDISPOSING FACTORS: The risk for bleeding episodes may be greater in patients with disease-associated factors (e.g. thrombocytopenia). Drug-associated risk factors include concurrent use of P-gp inhibitors and concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism or have an inherent risk for bleeding (e.g. NSAIDs). PATIENT MANAGEMENT: The US manufacturer of apixaban provides recommendations regarding concurrent use with strong inhibitors of both CYP3A4 and P-gp, but does not provide guidance for concurrent use with agents that inhibit CYP3A4 alone.(1) The Australian, Canadian, and UK labels for apixaban state that no dose adjustment for apixaban is required when co-administered with agents that are not strong inhibitors of both CYP3A4 and P-gp.(2-4) Expert opinion on the clinical significance of this interaction is varied and depends on the inhibitor. Some experts state that specific agents (i.e., voriconazole, imatinib, and crizotinib) should be contraindicated.(5) Others state that concurrent use is acceptable if there are no other pharmacokinetic interactions; otherwise, a 50% dose reduction of apixaban is suggested.(6) In patients who are also on concurrent P-gp inhibitors, consider the manufacturer recommendations for use with dual CYP3A4 and P-gp inhibitors. The US manufacturer of apixaban states that if concurrent use of strong CYP3A4 and P-gp inhibitors cannot be avoided, the dosage of apixaban should be reduced by 50%. In patients already receiving apixaban 2.5 mg twice daily, avoid the concurrent use of strong inhibitors of both P-gp and CYP3A4.(1) The Australian(2) and Canadian(3) manufacturers of apixaban states that the concurrent use of agents that are strong inhibitors of both P-gp and CYP3A4 with apixaban is contraindicated. The UK manufacturer of apixaban states that concurrent use of these agents is not recommended.(4) Concurrent use of agents that are dual P-gp and moderate CYP3A4 inhibitors are expected to increase apixaban levels to a lesser extent than agents that are P-gp and strong CYP3A4 inhibitors. No dose adjustment of apixaban is necessary. Use caution when administering apixaban with moderate inhibitors of CYP3A4. If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. When applicable, perform agent-specific laboratory test (e.g. INR, aPTT) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. DISCUSSION: The US manufacturer of apixaban states that apixaban dose reduction is recommended when apixaban exposure increases by more than 50%, while efficacy is maintained when exposure is 25% lower. Therefore, no dose adjustment of apixaban is recommended for drug interactions that affect apixaban exposure by 75% to 150%.(7) In a microdose cocktail study using apixaban 25 mcg, voriconazole 400 mg every 12 hours for 2 doses then 200 mg every 12 hours (strong CYP3A4 inhibitor) had "only a minor interaction," increasing the AUC of apixaban by 1.33-fold (95% CI 1.01-1.75) while the Cmax and half-life remained unchanged.(8) Another microdose cocktail study with apixaban 25 mcg and voriconazole 400 mg twice daily found that apixaban AUC increased by 1.24-fold with a non-significant change in Cmax.(9) A retrospective cohort study of 50 oncology patients on apixaban identified 14 patients on concurrent voriconazole, with 3 of those patients receiving reduced-dose apixaban. No bleeding or thrombosis occurred in any of the patients on concurrent voriconazole.(10) An article evaluating the clinical significance of efflux transporters like P-gp and BCRP in apixaban exposure analyzed pharmacokinetic data from drug-drug interaction studies and concluded that all apixaban interactions can be explained by inhibition of intestinal CYP3A4. The authors explain that apixaban is a highly permeable and soluble compound, so its ability to undergo passive diffusion renders the role of membrane transporters irrelevant, as evidenced by a lack of change in apixaban absorption rate in the presence of drugs known to inhibit P-gp and BCRP.(11) A review article on DOAC drug-drug interactions suggests that the combination of voriconazole, crizotinib or imatinib with apixaban or rivaroxaban is contraindicated due to the potential for significant increases in DOAC AUC. The authors state that data with voriconazole is missing and thus the interactions are unpredictable.(5) Another review article states that apixaban may be used with voriconazole if no other pharmacokinetic inhibitor is present; otherwise, concurrent use requires a 50% apixaban dose reduction. No dose adjustment is recommended with moderate CYP3A4 inhibitors.(6) Strong CYP3A4 inhibitors linked to this monograph include: boceprevir, ceritinib, ensartinib, idelalisib, mibefradil, nefazodone, ribociclib, troleandomycin, and voriconazole.(12,13) Moderate CYP3A4 inhibitors linked to this monograph include: aprepitant, avacopan, berotralstat, clofazimine, crizotinib, duvelisib, fedratinib, fosnetupitant, imatinib, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, ritlecitinib, schisandra, tofisopam, treosulfan, and voxelotor.(12,13) |
ELIQUIS |
Rivaroxaban/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Rivaroxaban is a substrate of CYP3A4 and P-glycoprotein (P-gp). It is about 18% metabolized, mainly by CYP3A4.(1-4) Strong and moderate CYP3A4 inhibitors may inhibit the metabolism of rivaroxaban by CYP3A4. CLINICAL EFFECTS: Concurrent use of a CYP3A4 inhibitor may result in elevated levels of and clinical effects of rivaroxaban, including an increased risk of bleeding, especially in the setting of concurrent therapy with an agent that inhibits P-gp.(1-4) PREDISPOSING FACTORS: The risk for bleeding episodes may be greater in patients with disease-associated factors (e.g. thrombocytopenia). Patients with renal impairment may be at higher risk of elevated rivaroxaban levels. Drug-associated risk factors include concurrent use of P-gp inhibitors and concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism or have an inherent risk for bleeding (e.g. NSAIDs). PATIENT MANAGEMENT: The US manufacturer of rivaroxaban provides recommendations regarding concurrent use with strong and moderate inhibitors of both CYP3A4 and P-gp, but does not provide guidance for concurrent use with agents that inhibit CYP3A4 alone.(1) The Canadian manufacturer of rivaroxaban states that increases in rivaroxaban levels by drugs inhibiting only CYP3A4 are expected to be less clinically relevant compared to drugs inhibiting both CYP3A4 and P-gp.(2) The UK manufacturer of rivaroxaban states that drug interactions with agents that inhibit only CYP3A4 are likely not clinically relevant in most patients but may be significant in high-risk patients (e.g., renal impairment).(3) The Australian manufacturer of rivaroxaban states that drug interactions with drugs that inhibit only CYP3A4 are not clinically relevant.(4) Expert opinion on the clinical significance of this interaction is varied and depends on the inhibitor. Some experts state that specific agents (i.e., voriconazole, imatinib, and crizotinib) should be contraindicated.(5) Others state that concurrent use is acceptable if there are no other pharmacokinetic interactions; otherwise, the combination should be avoided.(6) In patients who are also on concurrent P-gp inhibitors, consider the manufacturer recommendations for use with dual CYP3A4 and P-gp inhibitors. The Australian and Canadian manufacturers of rivaroxaban state that the concurrent use of agents that are both an inhibitor of P-gp and a strong inhibitor of CYP3A4 with rivaroxaban is contraindicated.(2,4) The US manufacturer states that concurrent use of strong CYP3A4 and P-gp inhibitors should be avoided(1) while the UK manufacturer states that concurrent use is not recommended.(3) Agents that are not strong inhibitors of both CYP3A4 and P-gp, including fluconazole, are expected to increase rivaroxaban levels to a lesser extent and can be used with rivaroxaban with caution in patients with normal renal function; however, in patients with decreased renal function (CrCL of 15 ml/min to 80 ml/min) these agents should only be used if the benefits of concurrent therapy outweigh the increased risk of bleeding.(1-4) If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. When applicable, perform agent-specific laboratory test (e.g. INR, aPTT) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. DISCUSSION: In a microdose cocktail study using rivaroxaban 25 mcg, voriconazole 400 mg every 12 hours for 2 doses then 200 mg every 12 hours (strong CYP3A4 inhibitor) had "only a minor interaction," increasing the AUC of rivaroxaban by 1.33-fold (p<0.05) while the Cmax and half-life remained unchanged.(7) Another microdose cocktail study with rivaroxaban 25 mcg and voriconazole 400 mg twice daily found that rivaroxaban AUC increased by 1.16-fold with a non-significant change in Cmax.(8) A review article on DOAC drug-drug interactions suggests that the combination of voriconazole, crizotinib or imatinib with apixaban or rivaroxaban is contraindicated due to the potential for significant increases in DOAC AUC. The authors state that data with voriconazole is missing and thus the interactions are unpredictable.(5) Another review article states that rivaroxaban may be used with voriconazole if no other pharmacokinetic inhibitor is present; otherwise, concurrent use should be avoided. No dose adjustment is recommended with moderate CYP3A4 inhibitors.(6) Strong CYP3A4 inhibitors linked to this monograph include: boceprevir, ceritinib, ensartinib, idelalisib, mibefradil, nefazodone, ribociclib, troleandomycin, and voriconazole.(9,10) Moderate CYP3A4 inhibitors linked to this monograph include: aprepitant, avacopan, berotralstat, clofazimine, crizotinib, duvelisib, fedratinib, fosnetupitant, imatinib, oral lefamulin, lenacapavir, letermovir, netupitant, nirogacestat, ritlecitinib, schisandra, tofisopam, treosulfan, and voxelotor.(9,10) |
RIVAROXABAN, XARELTO |
Suzetrigine/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Suzetrigine and M6-SUZ (active metabolite of suzetrigine) are CYP3A4 substrates. Moderate CYP3A4 inhibitors increase suzetrigine and M6-SUZ exposures, which may cause suzetrigine adverse reactions.(1) CLINICAL EFFECTS: The concurrent administration of a moderate CYP3A4 inhibitor may result in elevated levels of and toxicity from suzetrigine including pruritis, muscle spasms, increased blood creatine phosphokinase, and rash.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: When possible, avoid the use of moderate CYP3A4 inhibitors with suzetrigine. The US manufacturer of suzetrigine states when suzetrigine is administered to patients taking moderate CYP3A4 inhibitors reduce the suzetrigine dose as follows: -Dose 1: The recommended starting dose of suzetrigine is 100 mg orally. -Dose 2, 3, and 4: Starting 12 hours after the initial dose, take 50 mg of suzetrigine orally every 12 hours. -Dose 5 and Subsequent Doses: Starting 12 hours after Dose 4, take 50 mg of suzetrigine orally every 24 hours.(1) DISCUSSION: In a PKPB model, concomitant administration of fluconazole (a moderate CYP3A4 inhibitor) with suzetrigine with the recommended dosage modification is predicted to increase the area-under-curve (AUC) of suzetrigine and active metabolite M6-SUZ by 1.5-fold and 1.2-fold, respectively, while the maximum concentration (Cmax) of suzetrigine and M6-SUZ by 1.4-fold and 1.1-fold, respectively, when compared to the regular recommended dosage in the absence of fluconazole.(1) Moderate CYP3A4 inhibitors linked to this monograph include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazole, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(2-3) |
JOURNAVX |
The following contraindication information is available for ADRENOID (vit b12/iodine/mag ox/znox/selenium/herbal complex no.193):
Drug contraindication overview.
No enhanced Contraindications information available for this drug.
No enhanced Contraindications information available for this drug.
There are 1 contraindications.
Absolute contraindication.
Contraindication List |
---|
Leber's hereditary optic atrophy |
There are 1 severe contraindications.
Adequate patient monitoring is recommended for safer drug use.
Severe List |
---|
Diarrhea |
There are 3 moderate contraindications.
Clinically significant contraindication, where the condition can be managed or treated before the drug may be given safely.
Moderate List |
---|
Atrophic gastritis |
Hypokalemia |
Kidney disease with reduction in glomerular filtration rate (GFr) |
The following adverse reaction information is available for ADRENOID (vit b12/iodine/mag ox/znox/selenium/herbal complex no.193):
Adverse reaction overview.
No enhanced Common Adverse Effects information available for this drug.
No enhanced Common Adverse Effects information available for this drug.
There are 0 severe adverse reactions.
There are 4 less severe adverse reactions.
More Frequent | Less Frequent |
---|---|
None. | None. |
Rare/Very Rare |
---|
Abdominal pain with cramps Anorexia CNS depression Skin rash |
The following precautions are available for ADRENOID (vit b12/iodine/mag ox/znox/selenium/herbal complex no.193):
No enhanced Pediatric Use information available for this drug.
Contraindicated
Severe Precaution
Management or Monitoring Precaution
Contraindicated
None |
Severe Precaution
None |
Management or Monitoring Precaution
None |
Adequate and well-controlled studies have not been conducted in pregnant women. However, vitamin B12 requirements are increased in pregnant women. Parenteral preparations should be used during pregnancy only when the potential benefits justify the potential risks to the fetus.
Vitamin B12 is distributed into human milk. Vitamin B12 requirements are increased in lactating women. Hydroxocobalamin may be administered to lactating women with suspected or known cyanocobalamin poisoning. There is no data available to determine when breastfeeding may be restarted following administration of IV hydroxocobalamin.
No enhanced Geriatric Use information available for this drug.
The following prioritized warning is available for ADRENOID (vit b12/iodine/mag ox/znox/selenium/herbal complex no.193):
No warning message for this drug.
No warning message for this drug.
The following icd codes are available for ADRENOID (vit b12/iodine/mag ox/znox/selenium/herbal complex no.193)'s list of indications:
No ICD codes found for this drug.
No ICD codes found for this drug.
Formulary Reference Tool