Please wait while the formulary information is being retrieved.
Drug overview for ALZ (vinpocetine/huperzine/ginko/a-cyst/phospserin/acetylcarnitin):
Generic name: VINPOCETINE/HUPERZINE/GINKO/A-CYST/PHOSPSERIN/ACETYLCARNITIN
Drug class: Acetylcysteine, Systemic
Therapeutic class: Electrolyte Balance-Nutritional Products
No enhanced Introduction information available for this drug.
No enhanced Uses information available for this drug.
Generic name: VINPOCETINE/HUPERZINE/GINKO/A-CYST/PHOSPSERIN/ACETYLCARNITIN
Drug class: Acetylcysteine, Systemic
Therapeutic class: Electrolyte Balance-Nutritional Products
No enhanced Introduction information available for this drug.
No enhanced Uses information available for this drug.
DRUG IMAGES
- No Image Available
The following indications for ALZ (vinpocetine/huperzine/ginko/a-cyst/phospserin/acetylcarnitin) have been approved by the FDA:
Indications:
None.
Professional Synonyms:
None.
Indications:
None.
Professional Synonyms:
None.
The following dosing information is available for ALZ (vinpocetine/huperzine/ginko/a-cyst/phospserin/acetylcarnitin):
No enhanced Dosing information available for this drug.
No enhanced Administration information available for this drug.
No dosing information available.
No generic dosing information available.
The following drug interaction information is available for ALZ (vinpocetine/huperzine/ginko/a-cyst/phospserin/acetylcarnitin):
There are 1 contraindications.
These drug combinations generally should not be dispensed or administered to the same patient. A manufacturer label warning that indicates the contraindication warrants inclusion of a drug combination in this category, regardless of clinical evidence or lack of clinical evidence to support the contraindication.
Drug Interaction | Drug Names |
---|---|
Lemborexant (Greater Than 5 mg)/Weak CYP3A4 Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Inhibitors of CYP3A4 may inhibit the metabolism of lemborexant.(1) CLINICAL EFFECTS: Concurrent use of an inhibitor of CYP3A4 may result in increased levels of and effects from lemborexant, including somnolence, fatigue, CNS depressant effects, daytime impairment, headache, and nightmare or abnormal dreams.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The maximum recommended dose of lemborexant with concurrent use of a weak CYP3A4 inhibitors should not exceed 5 mg per dose.(1) DISCUSSION: Lemborexant is a CYP3A4 substrate. In a PKPB model, concurrent use of lemborexant with itraconazole increased area-under-curve (AUC) and concentration maximum (Cmax) by 3.75-fold and 1.5-fold, respectively. Concurrent use of lemborexant with fluconazole increased AUC and Cmax by 4.25-fold and 1.75-fold, respectively.(1) Weak inhibitors of CYP3A4 include: alprazolam, amiodarone, amlodipine, asciminib, azithromycin, Baikal skullcap, belumosudil, berberine, bicalutamide, blueberry, brodalumab, cannabidiol, capivasertib, chlorzoxazone, cilostazol, cimetidine, ciprofloxacin, clotrimazole, cranberry, cyclosporine, daclatasvir, daridorexant, delavirdine, dihydroberberine, diosmin, everolimus, flibanserin, fosaprepitant, fostamatinib, gepotidacin, ginkgo, givinostat, glecaprevir/pibrentasvir, goldenseal, grazoprevir, isoniazid, istradefylline, ivacaftor, lacidipine, lapatinib, larotrectinib, lazertinib, leflunomide, levamlodipine, linagliptin, lomitapide, lurasidone, mavorixafor, olaparib, osilodrostat, palbociclib, pazopanib, peppermint oil, piperine, propiverine, propofol, ranitidine, ranolazine, remdesivir, resveratrol, roxithromycin, rucaparib, selpercatinib, simeprevir, sitaxsentan, skullcap, suvorexant, teriflunomide, ticagrelor, tolvaptan, trofinetide, viloxazine, and vonoprazan.(1,2) |
DAYVIGO |
There are 8 severe interactions.
These drug interactions can produce serious consequences in most patients. Actions required for severe interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration scheduling, and providing additional patient monitoring. Review the full interaction monograph for more information.
Drug Interaction | Drug Names |
---|---|
Lomitapide (Less Than or Equal To 30 mg)/Weak CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Weak inhibitors of CYP3A4 may inhibit the metabolism of lomitapide.(1) Lomitapide is very susceptible to CYP3A4 inhibition. For example, in an interaction study with a strong CYP3A4 inhibitor (ketoconazole) lomitapide exposure was increased 27-fold.(2) Thus even weak CYP3A4 inhibitors may affect lomitapide exposure (AUC, area-under-curve). CLINICAL EFFECTS: Concurrent use of a weak inhibitor of CYP3A4 may result in 2-fold increases in lomitapide levels and toxicity from lomitapide.(1) PREDISPOSING FACTORS: This interaction may be more severe in patients with hepatic impairment or with end-stage renal disease.(1) PATIENT MANAGEMENT: The maximum lomitapide dose should be 30 mg daily for patients taking concomitant weak CYP3A4 inhibitors. Due to lomitapide's long half-life, it may take 1 to 2 weeks to see the full effect of this interaction. When initiating a weak CYP3A4 inhibitor in patients taking lomitapide 10 mg daily or more, decrease the dose of lomitapide by 50%. In patients taking lomitapide 5 mg daily, continue current dose. DISCUSSION: Lomitapide is very susceptible to CYP3A4 inhibition. For example, in an interaction study with a strong CYP3A4 inhibitor (ketoconazole) lomitapide exposure was increased 27-fold.(2) Based upon interactions with stronger inhibitors, weak inhibitors of CYP3A4 are predicted to increase lomitapide area-under-curve(AUC) 2-fold.(1) Weak CYP3A4 inhibitors linked to this interaction include alprazolam, amiodarone, amlodipine, asciminib, atorvastatin, azithromycin, Baikal skullcap, belumosudil, bicalutamide, blueberry juice, brodalumab, cannabidiol, capivasertib, cilostazol, cimetidine, ciprofloxacin, chlorzoxazone, clotrimazole, cranberry juice, cyclosporine, daridorexant, delavirdine, diosmin, everolimus, flibanserin, fosaprepitant, fostamatinib, gepotidacin, ginkgo, givinostat, glecaprevir/pibrentasvir, goldenseal, grazoprevir, isoniazid, istradefylline, ivacaftor, larotrectinib, lacidipine, lapatinib, lazertinib, leflunomide, levamlodipine, linagliptin, lurasidone, maribavir, mavorixafor, olaparib, osilodrostat, palbociclib, pazopanib, peppermint oil, piperine, propiverine, propofol, ranitidine, ranolazine, remdesivir, resveratrol, roxithromycin, rucaparib, selpercatinib, sitaxsentan, skullcap, teriflunomide, ticagrelor, tolvaptan, trofinetide, viloxazine, vonoprazan, and zileuton.(1-3) |
JUXTAPID |
Eliglustat/Weak CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Weak inhibitors of CYP3A4 may inhibit the metabolism of eliglustat. If the patient is also taking an inhibitor of CYP2D6, eliglustat metabolism can be further inhibited.(1) CLINICAL EFFECTS: Concurrent use of an agent that is a weak inhibitor of CYP3A4 may result in elevated levels of and clinical effects of eliglustat, including prolongation of the PR, QTc, and/or QRS intervals, which may result in life-threatening cardiac arrhythmias.(1) PREDISPOSING FACTORS: If the patient is also taking an inhibitor of CYP2D6, is a poor metabolizer of CYP2D6, and/or has hepatic impairment, eliglustat metabolism can be further inhibited.(1) The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The concurrent use of eliglustat with weak inhibitors of CYP3A4 in poor metabolizers of CYP2D6 should be avoided.(1) The dosage of eliglustat with weak inhibitors of CYP3A4 in extensive metabolizers of CYP2D6 with mild (Child-Pugh Class A) hepatic impairment should be limited to 84 mg daily.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Ketoconazole (400 mg daily), a strong inhibitor of CYP3A4, increased eliglustat (84 mg BID) maximum concentration (Cmax) and area-under-curve (AUC) by 4-fold and 4.4-fold, respectively, in extensive metabolizers. Physiologically-based pharmacokinetic (PKPB) models suggested ketoconazole would increase eliglustat Cmax and AUC by 4.4-fold and 5.4-fold, respectively, in intermediate metabolizers. PKPB models suggested ketoconazole may increase the Cmax and AUC of eliglustat (84 mg daily) by 4.3-fold and 6.2-fold, respectively, in poor metabolizers.(1) PKPB models suggested fluconazole, a moderate inhibitor of CYP3A4, would increase eliglustat Cmax and AUC by 2.8-fold and 3.2-fold, respectively, in extensive metabolizers and by 2.5-fold and 2.9-fold, respectively in intermediate metabolizers. PKPB models suggest that concurrent eliglustat (84 mg BID), paroxetine (a strong inhibitor of CYP2D6), and ketoconazole would increase eliglustat Cmax and AUC by 16.7-fold and 24.2-fold, respectively, in extensive metabolizers. In intermediate metabolizers, eliglustat Cmax and AUC would be expected to increase 7.5-fold and 9.8-fold, respectively.(1) PKPB models suggest that concurrent eliglustat (84 mg BID), terbinafine (a moderate inhibitor of CYP2D6), and ketoconazole would increase eliglustat Cmax and AUC by 10.2-fold and 13.6-fold, respectively, in extensive metabolizers. In intermediate metabolizers, eliglustat Cmax and AUC would be expected to increase 4.2-fold and 5-fold, respectively.(1) Weak inhibitors of CYP3A4 include: alprazolam, amlodipine, asciminib, azithromycin, Baikal skullcap, belumosudil, berberine, bicalutamide, blueberry, brodalumab, cannabidiol, chlorzoxazone, cilostazol, cimetidine, ciprofloxacin, clotrimazole, cranberry, cyclosporine, daclatasvir, daridorexant, delavirdine, dihydroberberine, diosmin, everolimus, flibanserin, fosaprepitant, fostamatinib, gepotidacin, ginkgo, givinostat, glecaprevir/pibrentasvir, goldenseal, grazoprevir, isoniazid, istradefylline, ivacaftor, lacidipine, lapatinib, larotrectinib, lazertinib, leflunomide, levamlodipine, linagliptin, lomitapide, lurasidone, olaparib, osilodrostat, palbociclib, pazopanib, peppermint oil, piperine, propiverine, propofol, ranolazine, remdesivir, resveratrol, roxithromycin, rucaparib, selpercatinib, simeprevir, sitaxsentan, skullcap, suvorexant, teriflunomide, ticagrelor, tolvaptan, trofinetide, and vonoprazan.(3,4) |
CERDELGA |
Lumateperone/CYP3A4 Inducers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Lumateperone is a substrate of CYP3A4. Inducers of CYP3A4 may induce the metabolism of lumateperone.(1) CLINICAL EFFECTS: The concurrent administration of a CYP3A4 inducer may decrease the exposure to lumateperone.(1) PREDISPOSING FACTORS: Induction effects may be more likely with regular use of the inducer for longer than 1-2 weeks. PATIENT MANAGEMENT: The manufacturer of lumateperone states that concurrent use with CYP3A4 inducers should be avoided.(1) DISCUSSION: Coadministration of lumateperone with rifampin, a strong CYP3A4 inducer, resulted in a 98% reduction in area-under-curve (AUC) and a 90% reduction in concentration maximum (Cmax).(1) Strong inducers of CYP3A4 include: apalutamide, barbiturates, carbamazepine, encorafenib, enzalutamide, fosphenytoin, ivosidenib, lumacaftor, mitotane, phenobarbital, phenytoin, primidone, rifampin, rifapentine, and St. John's wort.(2,3) Moderate inducers of CYP3A4 include: belzutifan, bosentan, cenobamate, dabrafenib, efavirenz, elagolix, etravirine, lesinurad, lorlatinib, mavacamten, mitapivat, modafinil, nafcillin, pacritinib, repotrectinib, rifabutin, telotristat, thioridazine, and tovorafenib.(2,3) Weak inducers of CYP3A4 include: amprenavir, armodafinil, bexarotene, brivaracetam, clobazam, danshen, darolutamide, dexamethasone, dicloxacillin, echinacea, eslicarbazepine, garlic, genistein, gingko, ginseng, glycyrrhizin, nevirapine, omaveloxolone, oxcarbazepine, pioglitazone, quercetin, rufinamide, sotorasib, sulfinpyrazone, tecovirimat, terbinafine, ticlopidine, troglitazone, vemurafenib, and vinblastine.(2,3) |
CAPLYTA |
Relugolix/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Relugolix is a substrate of the intestinal P-glycoprotein (P-gp) efflux transporter. Inhibitors of P-gp may increase the absorption of relugolix.(1) CLINICAL EFFECTS: The concurrent administration of relugolix with an inhibitor of P-glycoprotein may result in elevated levels of relugolix and adverse effects, including hot flashes, skin flushing, musculoskeletal pain, hyperglycemia, acute renal injury, transaminitis, arrhythmias, and hemorrhage.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of relugolix states that the coadministration of relugolix with P-gp inhibitors should be avoided. If the P-gp inhibitor is to be used short-term, relugolix may be held for up to 2 weeks. If treatment with relugolix is interrupted for longer than 7 days, resume relugolix with a loading dose of 360 mg on the first day, followed by 120 mg once daily.(1) If coadministration with a P-gp inhibitor cannot be avoided, relugolix should be taken at least 6 hours before the P-gp inhibitor. Monitor the patient more frequently for adverse events.(1) DISCUSSION: Coadministration of relugolix with erythromycin (a P-gp and moderate CYP3A4 inhibitor) increased the area-under-curve (AUC) and maximum concentration (Cmax) of relugolix by 6.2-fold. Voriconazole (a strong CYP3A4 inhibitor) did not have a clinically significant effect on the pharmacokinetics of relugolix.(1) P-gp inhibitors linked to this monograph include: amiodarone, asunaprevir, azithromycin, belumosudil, capmatinib, carvedilol, cimetidine, clarithromycin, cobicistat, conivaptan, curcumin, cyclosporine, daclatasvir, danicopan, daridorexant, diltiazem, diosmin, dronedarone, eliglustat, erythromycin, flibanserin, fluvoxamine, fostamatinib, ginkgo, ginseng, glecaprevir/pibrentasvir, indinavir, itraconazole, ivacaftor, josamycin, ketoconazole, lapatinib, lonafarnib, mavorixafor, mibefradil, mifepristone, neratinib, osimertinib, paroxetine, pirtobrutinib, propafenone, quinidine, quinine, ranolazine, ritonavir, sarecycline, schisandra, selpercatinib, simeprevir, sotorasib, telaprevir, telithromycin, tepotinib, tezacaftor, tucatinib, valbenazine, velpatasvir, vemurafenib, verapamil, vimseltinib, and voclosporin.(2,3) |
MYFEMBREE, ORGOVYX |
Doxorubicin/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: P-glycoprotein (P-gp) inhibition may increase doxorubicin cellular concentration, as well as decrease biliary or renal elimination.(1) CLINICAL EFFECTS: Increased cellular or systemic levels of doxorubicin may result in doxorubicin toxicity, including cardiomyopathy, myelosuppression, or hepatic impairment.(1) PREDISPOSING FACTORS: The interaction magnitude may be greater in patients with impaired renal or hepatic function. PATIENT MANAGEMENT: Avoid the concurrent use of P-gp inhibitors in patients undergoing therapy with doxorubicin.(1) Consider alternatives with no or minimal inhibition. If concurrent therapy is warranted, monitor the patient closely for signs and symptoms of doxorubicin toxicity. DISCUSSION: Doxorubicin is a substrate of P-gp.(1) Clinical studies have identified and evaluated the concurrent use of doxorubicin and P-gp inhibitors as a target to overcome P-gp mediated multidrug resistance.(2,3) P-gp inhibitors linked to this monograph include: amiodarone, asciminib, asunaprevir, azithromycin, belumosudil, capmatinib, cimetidine, cyclosporine, daclatasvir, danicopan, daridorexant, diltiazem, diosmin, dronedarone, eliglustat, erythromycin, flibanserin, fluvoxamine, fostamatinib, ginkgo, ginseng, glecaprevir/pibrentasvir, hydroquinidine, istradefylline, ivacaftor, lapatinib, ledipasvir, mavorixafor, neratinib, osimertinib, paroxetine, pirtobrutinib, propafenone, quercetin, quinidine, quinine, ranolazine, sarecycline, schisandra, selpercatinib, simeprevir, sofosbuvir/velpatasvir/voxilaprevir, sotorasib, tepotinib, tezacaftor, valbenazine, vemurafenib, verapamil, vimseltinib, and voclosporin.(4,5) |
ADRIAMYCIN, CAELYX, DOXIL, DOXORUBICIN HCL, DOXORUBICIN HCL LIPOSOME |
Ubrogepant/Ginkgo Biloba SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ubrogepant is a CYP3A4 substrate.(1) Ginkgo biloba is both a weak CYP3A4 inhibitor and inducer.(2,3) CLINICAL EFFECTS: Concurrent use of ubrogepant with ginkgo biloba may lead to increased or decreased levels and effectiveness of ubrogepant.(1) The net effect of ginkgo biloba on ubrogepant is unknown. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of ubrogepant does not have recommendations for concurrent use with agents that are both weak CYP3A4 inducers and inhibitors. Concurrent use should be avoided.(1) For concurrent use with weak CYP3A4 inhibitors: The manufacturer recommends a dosage adjustment of ubrogepant. Initial dose of ubrogepant should not exceed 50 mg when used concomitantly with weak inhibitors of CYP3A4. A second dose may be given within 24 hours but should not exceed 50 mg when used concurrently with weak CYP3A4 inhibitors.(1) For concurrent use with moderate or weak CYP3A4 inducers: The manufacturer recommends a dosage adjustment of ubrogepant. Initial dose of ubrogepant should be 100 mg. If a second dose is needed, the the dose of ubrogepant should be 100 mg.(1) DISCUSSION: Coadministration of ubrogepant with verapamil, a moderate CYP3A4 inhibitor, resulted in a 3.5-fold and 2.8-fold increase in area-under-curve (AUC) and concentration maximum (Cmax), respectively. No dedicated drug interaction study was conducted to assess concomitant use with weak CYP3A4 inhibitors. The conservative prediction of the maximal potential increase in ubrogepant exposure with weak CYP3A4 inhibitors is not expected to be more than 2-fold.(1) Coadministration of ubrogepant with rifampin, a strong CYP3A4 inducer, resulted in an 80% reduction in ubrogepant exposure. No dedicated drug interaction studies were conducted to assess concomitant use with moderate or weak CYP3A4 inducers. Dose adjustment for concomitant use of ubrogepant with moderate or weak CYP3A4 inducers is recommended based on a conservative prediction of 50% reduction in exposure of ubrogepant.(1) |
UBRELVY |
Erlotinib/CYP3A4 Inducers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inducers of CYP3A4 may induce the metabolism of erlotinib.(1) CLINICAL EFFECTS: Concurrent or recent use of a CYP3A4 inducer may result in decreased levels and effectiveness of erlotinib.(1) PREDISPOSING FACTORS: Induction effects may be more likely with regular use of the inducer for longer than 1-2 weeks. PATIENT MANAGEMENT: Avoid the concurrent use of CYP3A4 inducers in patients receiving therapy with erlotinib. Consider the use of alternative agents with less enzyme induction potential.(1) Consider increasing the dosage of erlotinib by 50 mg increments as tolerated at two week intervals (to a maximum of 450 mg) while closely monitoring the patient. The highest dosage studied with concurrent rifampin is 450 mg. If the dosage of erlotinib is increased, it will need to be decreased when the inducer is discontinued.(1) DISCUSSION: Pretreatment and concurrent therapy with rifampin increased erlotinib clearance by 3-fold and decreased the erlotinib area-under-curve (AUC) by 66% to 80%. This is equivalent to a dose of about 30 mg to 50 mg in NSCLC.(1) In a study, pretreatment with rifampin for 11 days decreased the AUC of a single 450 mg dose of erlotinib to 57.6% of the AUC observed with a single 150 mg dose of erlotinib.(1) In a case report, coadministration of phenytoin (180mg daily) and erlotinib (150mg daily) increased the phenytoin concentration from 8.2mcg/ml to 24.2mcg/ml and decreased the erlotinib concentration 12-fold (from 1.77mcg/ml to 0.15mcg/ml) and increased the erlotinib clearance by 10-fold (from 3.53 L/h to 41.7 L/h).(2) In a study, concurrent use of sorafenib (400 mg twice daily) and erlotinib (150 mg daily) decreased the concentration minimum (Cmin), concentration maximum (Cmax), and AUC of erlotinib.(3) In an animal study, concurrent use of dexamethasone and erlotinib decreased the AUC of erlotinib by 0.6-fold.(4) Strong inducers of CYP3A4 include: barbiturates, encorafenib, enzalutamide, fosphenytoin, ivosidenib, mitotane, phenobarbital, phenytoin, primidone, rifampin, and rifapentine.(5,6) Moderate inducers of CYP3A4 include: belzutifan, bosentan, cenobamate, dabrafenib, dipyrone, efavirenz, elagolix, etravirine, lesinurad, lorlatinib, mavacamten, mitapivat, modafinil, nafcillin, pacritinib, pexidartinib, repotrectinib, sotorasib, telotristat, thioridazine, and tovorafenib.(5,6) Weak inducers of CYP3A4 include: amprenavir, armodafinil, bexarotene, brigatinib, brivaracetam, clobazam, danshen, darolutamide, dicloxacillin, echinacea, eslicarbazepine, flucloxacillin, garlic, genistein, ginkgo, ginseng, glycyrrhizin, mobocertinib, nevirapine, omaveloxolone, oritavancin, oxcarbazepine, pioglitazone, pitolisant, quercetin, relugolix, rufinamide, sarilumab, sulfinpyrazone, tazemetostat, tecovirimat, terbinafine, ticlopidine, topiramate, troglitazone, vemurafenib, vinblastine, and zanubrutinib.(5,6) |
ERLOTINIB HCL |
Vincristine/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: P-glycoprotein (P-gp) inhibitors may inhibit cellular efflux of vincristine.(1) CLINICAL EFFECTS: Concurrent administration of a P-gp inhibitor may result in elevated levels of and toxicity from vincristine including myelosuppression, neurologic toxicity, tumor lysis syndrome, hepatotoxicity, constipation, or bowel obstruction.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid the use of P-gp inhibitors in patients undergoing therapy with vincristine.(1) Consider alternatives with no or minimal P-gp inhibition. The manufacturer of vincristine states that concomitant use of P-gp inhibitors should be avoided.(1) The manufacturer of lopinavir/ritonavir states that patients who develop significant hematological or gastrointestinal toxicity on concomitant vincristine should temporarily hold lopinavir/ritonavir, or use alternative medications that do not inhibit CYP3A4 or P-gp.(2) DISCUSSION: Vincristine is a substrate of P-gp. Inhibitors of P-gp may increase toxicity of vincristine.(1) There are several case reports of neurotoxicity with concurrent administration of vincristine and itraconazole.(3-5) There is a case report of neurotoxicity with concurrent administration of lopinavir-ritonavir with vincristine.(6) In a prospective study in 22 children receiving various chemotherapy with prophylactic itraconazole oral solution (0.5 ml/kg per day), two children receiving vincristine developed non-alcoholic steatohepatitis (NASH) and one child developed syndrome of inappropriate anti-diuretic hormone secretion (SIADH).(7) Strong inhibitors of P-gp linked to this monograph include: abrocitinib, amiodarone, Asian ginseng (Panax ginseng), asunaprevir, azithromycin, belumosudil, capmatinib, carvedilol, cimetidine, cyclosporine, danicopan, daridorexant, diltiazem, diosmin, dronedarone, elagolix, eliglustat, erythromycin, flibanserin, fluvoxamine, fostamatinib, ginkgo biloba, glecaprevir and pibrentasvir, isavuconazonium, ivacaftor, lapatinib, mavorixafor, milk thistle (Silybum marianum), neratinib, osimertinib, pirtobrutinib, propafenone, quercetin, quinidine, ranolazine, rolapitant, Schisandra chinensis, selpercatinib, sofosbuvir, sotorasib, tepotinib, tezacaftor, valbenazine, velpatasvir, vemurafenib, venetoclax, verapamil, vilazodone, vimseltinib, and voclosporin.(8,9) |
VINCASAR PFS, VINCRISTINE SULFATE |
There are 10 moderate interactions.
The clinician should assess the patient’s characteristics and take action as needed. Actions required for moderate interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration.
Drug Interaction | Drug Names |
---|---|
Anticholinesterases/Succinylcholine SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Anticholinesterases inhibit plasma cholinesterases, delaying succinylcholine hydrolysis and prolonging its duration of action. CLINICAL EFFECTS: May see an increase in the neuromuscular blocking effects of succinylcholine, producing profound sedation, respiratory depression, coma, and/or death. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid concurrent administration of anticholinesterases and succinylcholine in patients with depolarizing type (phase I) neuromuscular blockade. In addition, use with caution in the presence of a nondepolarizing type (phase II) blockade. If concurrent use is necessary, monitor patients for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness. DISCUSSION: Concomitant administration of anticholinesterases and succinylcholine has been associated with prolonged respiratory depression and apnea. |
ANECTINE, QUELICIN, SUCCINYLCHOLINE CHLORIDE, SUCCINYLCHOLINE CHLORIDE-NACL |
Loperamide/CYP3A4; CYP2C8; P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Inhibitors of CYP3A4, CYP2C8, and/or P-gp may increase loperamide systemic absorption and facilitate entry into central nervous system (CNS).(1) CLINICAL EFFECTS: Concurrent use of inhibitors of CYP3A4, CYP2C8, and/or P-gp may increase levels of loperamide, resulting in respiratory depression.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Use loperamide with caution in patients receiving inhibitors of CYP3A4, CYP2C8, and/or P-gp. Consider lower doses of loperamide in these patients and monitor for adverse effects. The manufacturer of lonafarnib recommends starting loperamide at a dose of 1 mg and slowly increasing the dose as needed.(2) DISCUSSION: In a randomized, cross-over study in 12 healthy subjects, itraconazole (100 mg twice daily for 5 days - first dose 200 mg), gemfibrozil (600 mg twice daily), and the combination of itraconazole and gemfibrozil (same dosages) increased the area-under-curve (AUC) of single doses of loperamide (4 mg) by 2.9-fold, 1.6-fold, and 4.2-fold, respectively.(3) In a study of healthy subjects, lonafarnib (100 mg twice daily for 5 days) increased the AUC and maximum concentration (Cmax) of single dose loperamide (2 mg) by 299% and 214%, respectively.(3) In a study in 18 healthy males, quinidine increased the AUC of a single dose of loperamide by 2.2-fold and markedly decreased pupil size.(4) In a study in 8 healthy subjects, subjects experienced respiratory depression when a single dose of loperamide (16 mg) was administered with a single dose of quinidine (600 mg) but not when loperamide was administered alone.(6) Loperamide plasma levels increased 2-fold to 3-fold.(5) |
LOPERAMIDE |
Midazolam/Ginkgo Biloba SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Ginkgo biloba may inhibit the metabolism of midazolam by CYP3A4. CLINICAL EFFECTS: The concurrent use of midazolam and ginkgo biloba may result in an increase in the midazolam area-under curve (AUC) and clinical effects. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The concurrent use of midazolam and ginkgo biloba should be approached with caution. The patient should be monitored for a possible change in midazolam clinical effect if ginkgo biloba is added to or removed from concurrent therapy. DISCUSSION: A study involving ten healthy nonsmoking volunteers found that concurrent use of ginkgo biloba and midazolam showed an increase in the midazolam AUC of 25%.(1) |
MIDAZOLAM, MIDAZOLAM HCL, MIDAZOLAM HCL-0.8% NACL, MIDAZOLAM HCL-0.9% NACL, MIDAZOLAM HCL-D5W, MIDAZOLAM HCL-NACL, MIDAZOLAM-0.9% NACL, MIDAZOLAM-NACL, MKO (MIDAZOLAM-KETAMINE-ONDAN), NAYZILAM |
Exemestane/Selected Moderate-Weak CYP3A4 Inducers SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: CYP3A4 inducers may induce the metabolism of exemestane.(1) CLINICAL EFFECTS: Concurrent use of a CYP3A4 inducer may result in decreased levels and effectiveness of exemestane.(1) PREDISPOSING FACTORS: Induction effects may be more likely with regular use of the inducer for longer than 1-2 weeks. PATIENT MANAGEMENT: The US manufacturer of exemestane recommends that patients receiving concurrent therapy with a strong CYP3A4 inducer receive 50 mg of exemestane daily after a meal.(1) It may be prudent to consider a dosage increase for patients receiving weaker CYP3A4 inducers. DISCUSSION: In a study in 10 healthy postmenopausal subjects, pretreatment with rifampin (a strong CYP3A4 inducer, 600 mg daily for 14 days) decreased the area-under-curve (AUC) and maximum concentration (Cmax) of a single dose of exemestane (25 mg) by 54% and 41%, respectively.(1) Strong inducers of CYP3A4 would be expected to decrease the AUC of a sensitive 3A4 substrate by 80% or more and include: carbamazepine, enzalutamide, mitotane, phenobarbital, phenytoin, rifabutin, rifampin, and St. John's wort.(1-3) Moderate inducers of CYP3A4 would be expected to decrease the AUC of a sensitive 3A4 substrate by 50-80% and include: belzutifan, bosentan, cenobamate, dabrafenib, dipyrone, efavirenz, elagolix, etravirine, lesinurad, mavacamten, mitapivat, modafinil, nafcillin, pacritinib, pexidartinib, repotrectinib, rifabutin, sotorasib, telotristat ethyl, thioridazine, and tovorafenib.(2,3) Weak inducers of CYP3A4 would be expected to decrease the AUC of a sensitive 3A4 substrate by 20-50% and include: armodafinil, bexarotene, brigatinib, brivaracetam, clobazam, danshen, darolutamide, dexamethasone, dicloxacillin, echinacea, elafibranor, enasidenib, eslicarbazepine, floxacillin, garlic, gingko, ginseng, glycyrrhizin, lorlatinib, meropenem-vaborbactam, methylprednisolone, nevirapine, omaveloxolone, oritavancin, oxcarbazepine, pioglitazone, pitolisant, quercetin, relugolix, rufinamide, sarilumab, sulfinpyrazone, suzetrigine, tazemetostat, tecovirimat, terbinafine, ticlopidine, topiramate, troglitazone, vemurafenib, vinblastine, and zanubrutinib.(2,3) |
AROMASIN, EXEMESTANE |
Anticholinesterases/Beta-Blockers SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Anticholinesterases inhibit plasma cholinesterases and increase cholinergic activity. Use of anticholinesterases may have vagotonic effects on heart rate (e.g. bradycardia). Concurrent use of anticholinesterases and beta-blockers may have additive effects on bradycardia.(1) CLINICAL EFFECTS: Concurrent use of anticholinesterases and beta-blockers may have additive effects on bradycardia.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Concurrent use of anticholinesterases and beta-blockers is not recommended. Additive effects may be increased with cardioselective beta-blockers (e.g. atenolol). Monitor patients closely if concurrent use is warranted.(1) DISCUSSION: Concurrent use of anticholinesterases and beta-blockers may have additive effects on cardiac conduction and increase the risk of bradycardia.(1) A case report of a 65 year old African American female had a witnessed a presyncopal episode followed by a true syncopal episode with concurrent use of rivastigmine and atenolol. On day 2 of the hospital stay, the patient developed bradycardia with a heart rate in the 40s and sinus pauses greater than 2 seconds. Atenolol was discontinued yet bradycardia persisted. Following discontinuation of rivastigmine, sinus pauses resolved and heart rate returned to normal.(2) A population-based cohort study in Ontario, Canada reviewed the relationship between cholinesterase inhibitor use and syncope-related outcomes over a two year period. Hospital visits for syncope were more frequent in patients receiving cholinesterase inhibitors than controls (31.5 vs 18.6 events per 1000 person-years; adjusted hazard ratio (HR) 1.76; 95% confidence interval (CI) 1.57-1.98). Other syncope-related events were also more common in patients receiving cholinesterase inhibitors than controls: hospital visits for bradycardia (6.9 vs 4.4 events per 1000 person-years; HR 1.69; 95% CI 1.32-2.15); permanent pacemaker insertion (4.7 vs 3.3 events per 1000 person-years; HR 1.49; 95% CI 1.12-2.00); and hip fracture (22.4 vs 19.8 events per 1000 person-years; HR 1.18; 95% CI 1.04-1.34).(3) A population based case-time-control study of 1,009 patients hospitalized for bradycardia within 9 months of using a cholinesterase inhibitor were reviewed for outcomes. Of these patients, 11% required pacemaker insertion during hospitalization and 4% died prior to discharge. With adjustment for temporal changes in drug utilization, hospitalization for bradycardia was associated with recent initiation of a cholinesterase inhibitor drug (adjusted odds ratio (OR) 2.13; 95% CI 1.29-3.51). Risk was similar in patients with pre-existing cardiac disease (adjusted OR 2.25; 95% CI 1.18-4.28) and those receiving negative chronotropic drugs (adjusted OR 2.34; 95% CI 1.16-4.71).(4) |
ACEBUTOLOL HCL, ATENOLOL, ATENOLOL-CHLORTHALIDONE, BETAPACE, BETAPACE AF, BETAXOLOL HCL, BISOPROLOL FUMARATE, BISOPROLOL-HYDROCHLOROTHIAZIDE, BREVIBLOC, BYSTOLIC, CARVEDILOL, CARVEDILOL ER, COREG, COREG CR, CORGARD, ESMOLOL HCL, ESMOLOL HCL-SODIUM CHLORIDE, ESMOLOL HCL-WATER, HEMANGEOL, INDERAL LA, INDERAL XL, INNOPRAN XL, KAPSPARGO SPRINKLE, LABETALOL HCL, LABETALOL HCL-WATER, LOPRESSOR, METOPROLOL SUCCINATE, METOPROLOL TARTRATE, METOPROLOL-HYDROCHLOROTHIAZIDE, NADOLOL, NEBIVOLOL HCL, PINDOLOL, PROPRANOLOL HCL, PROPRANOLOL HCL ER, PROPRANOLOL-HYDROCHLOROTHIAZID, RAPIBLYK, SOTALOL, SOTALOL AF, SOTALOL HCL, SOTYLIZE, TENORETIC 100, TENORETIC 50, TENORMIN, TIMOLOL MALEATE, TOPROL XL |
Tacrolimus/Moderate and Weak CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate and weak inhibitors of CYP3A4 may inhibit the metabolism of tacrolimus.(1) CLINICAL EFFECTS: Concurrent use of a CYP3A4 inhibitor may result in elevated levels of and toxicity from tacrolimus, including nephrotoxicity, neurotoxicity, and prolongation of the QTc interval and life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of tacrolimus recommends monitoring tacrolimus whole blood trough concentrations and reducing tacrolimus dose if needed.(1) Consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a study of 26 renal transplant recipients, conjugated estrogens 3.75 mg daily increased the tacrolimus dose-corrected concentration of tacrolimus by 85.6%. Discontinuation of the conjugated estrogens led to a decrease in tacrolimus concentration of 46.6%.(3) A case report describes a 65-year-old kidney transplant recipient who was stable on tacrolimus 9 mg per day with trough levels of 5 to 7.5 ng/mL. Ten days after starting on estradiol gel 0.5 mg per day, her tacrolimus level rose to 18.3 ng/mL and serum creatinine (Scr) rose from 1.1 mg/dL at baseline to 2 mg/dL. Tacrolimus dose was reduced by 60%, and trough levels and Scr normalized after two weeks.(4) A study of 16 healthy volunteers found that elbasvir 50 mg/grazoprevir 200 mg daily increased the area-under-curve (AUC) of tacrolimus by 43%, while the maximum concentration (Cmax) of tacrolimus was decreased by 40%.(5) An analysis of FAERS data from 2004-2017, found a significant assoc ation between transplant rejection and concurrent use of tacrolimus and clotrimazole (reporting odds ration 1.92, 95% CI). A retrospective study of 7 heart transplant patients on concurrent tacrolimus and clotrimazole troche showed a significant correlation between tacrolimus trough concentration and AUC after clotrimazole discontinuation. Tacrolimus clearance and bioavailability after clotrimazole discontinuation was 2.2-fold greater (0.27 vs. 0.59 L/h/kg) and the trough concentration decreased from 6.5 ng/mL at 1 day to 5.3 ng/mL at 2 days after clotrimazole discontinuation.(7) A retrospective study of 26 heart transplant patients found that discontinuation of concurrent clotrimazole with tacrolimus in the CYP3A5 expresser group had a 3.3-fold increase in apparent oral clearance and AUC of tacrolimus (0.27 vs. 0.89 L/h/kg) compared to the CYP3A5 non expresser group with a 2.2-fold mean increase (0.18 vs. 0.39 L/h/kg).(8) A study of 6 adult kidney transplant recipients found that clotrimazole (5-day course) increased the tacrolimus AUC 250% and the blood trough concentrations doubled (27.7 ng/ml versus 27.4 ng/ml). Tacrolimus clearance decreased 60% with coadministration of clotrimazole.(9) A case report describes a 23-year-old kidney transplant recipient who was stable on tacrolimus 5 mg twice daily, mycophenolate mofetil 30 mg daily, prednisone (30 mg daily tapered over time to 5 mg), and clotrimazole troche 10 mg four times daily. Discontinuation of clotrimazole resulted in a decrease in tacrolimus trough levels from 13.7 ng/ml to 5.4 ng/ml over a period of 6 days. Clotrimazole was restarted with tacrolimus 6 mg resulting in an increased tacrolimus level of 19.2 ng/ml.(10) A retrospective study in 95 heart transplant recipients on concurrent clotrimazole and tacrolimus found a median tacrolimus dose increase of 66.7% was required after clotrimazole discontinuation. Tacrolimus trough concentration was found to have decreased 42.5% after clotrimazole discontinuation.(11) A retrospective study in 65 pancreas transplant patients on concurrent tacrolimus, clotrimazole, cyclosporine, and prednisone found that clotrimazole discontinuation at 3 months after transplantation may cause significant tacrolimus trough level reductions.(12) Moderate CYP3A4 inhibitors linked to this monograph include: aprepitant, berotralstat, clofazimine, conivaptan, fluvoxamine, lenacapavir, letermovir, netupitant, nirogacestat, and tofisopam.(6) Weak CYP3A4 inhibitors linked to this monograph include: alprazolam, avacopan, baikal skullcap, berberine, bicalutamide, blueberry, brodalumab, chlorzoxazone, cimetidine, cranberry juice, daclatasvir, daridorexant, delavirdine, diosmin, estrogens, flibanserin, fosaprepitant, fostamatinib, ginkgo biloba, givinostat, glecaprevir/pibrentasvir, goldenseal, grazoprevir, isoniazid, istradefylline, ivacaftor, lacidipine, lazertinib, linagliptin, lomitapide, lumateperone, lurasidone, peppermint oil, piperine, propiverine, ranitidine, remdesivir, resveratrol, rimegepant, simeprevir, sitaxsentan, skullcap, suvorexant, ticagrelor, tolvaptan, trofinetide, viloxazine, and vonoprazan-amoxicillin.(6) |
ASTAGRAF XL, ENVARSUS XR, PROGRAF, TACROLIMUS, TACROLIMUS XL |
Lemborexant (Less Than or Equal To 5 mg)/Weak CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Inhibitors of CYP3A4 may inhibit the metabolism of lemborexant.(1) CLINICAL EFFECTS: Concurrent use of an inhibitor of CYP3A4 may result in increased levels of and effects from lemborexant, including somnolence, fatigue, CNS depressant effects, daytime impairment, headache, and nightmare or abnormal dreams.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The maximum recommended dose of lemborexant with concurrent use of a weak CYP3A4 inhibitors should not exceed 5 mg per dose.(1) DISCUSSION: Lemborexant is a CYP3A4 substrate. In a PKPB model, concurrent use of lemborexant with itraconazole increased area-under-curve (AUC) and concentration maximum (Cmax) by 3.75-fold and 1.5-fold, respectively. Concurrent use of lemborexant with fluconazole increased AUC and Cmax by 4.25-fold and 1.75-fold, respectively.(1) Weak inhibitors of CYP3A4 include: alprazolam, amiodarone, amlodipine, asciminib, azithromycin, Baikal skullcap, belumosudil, berberine, bicalutamide, blueberry, brodalumab, cannabidiol, capivasertib, chlorzoxazone, cilostazol, cimetidine, ciprofloxacin, clotrimazole, cranberry, cyclosporine, daclatasvir, daridorexant, delavirdine, dihydroberberine, diosmin, everolimus, flibanserin, fosaprepitant, fostamatinib, gepotidacin, ginkgo, givinostat, glecaprevir/pibrentasvir, goldenseal, grazoprevir, isoniazid, istradefylline, ivacaftor, lacidipine, lapatinib, larotrectinib, lazertinib, leflunomide, levamlodipine, linagliptin, lomitapide, lurasidone, mavorixafor, olaparib, osilodrostat, palbociclib, pazopanib, peppermint oil, piperine, propiverine, propofol, ranitidine, ranolazine, remdesivir, resveratrol, roxithromycin, rucaparib, selpercatinib, simeprevir, sitaxsentan, skullcap, suvorexant, teriflunomide, ticagrelor, tolvaptan, trofinetide, viloxazine, and vonoprazan.(1,2) |
DAYVIGO |
Sirolimus Protein-Bound/Slt Moderate and Weak CYP3A4 Inhibit SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate and weak CYP3A4 inhibitors may inhibit the metabolism of sirolimus by CYP3A4.(1) CLINICAL EFFECTS: Concurrent use of moderate or weak CYP3A4 inhibitors may result in elevated levels of and side effects from sirolimus.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of sirolimus protein-bound injection (Fyarro) states a dose reduction to 56 mg/m2 is recommended when used concurrently with moderate or weak CYP3A4 inhibitors. Concurrent use with strong CYP3A4 inhibitors should be avoided.(1) DISCUSSION: In an open, randomized, cross-over trial in 18 healthy subjects, concurrent single doses of diltiazem (120 mg) and sirolimus (10 mg) increased sirolimus area-under-curve (AUC) and maximum concentration (Cmax) by 60% and by 43%, respectively. Sirolimus apparent oral clearance and volume of distribution decreased by 38% and 45%, respectively. There were no effects on diltiazem pharmacokinetics or pharmacodynamics.(2) In a study in 26 healthy subjects, concurrent sirolimus (2 mg daily) with verapamil (180 mg twice daily) increased sirolimus AUC and Cmax by 2.2-fold and 2.3-fold, respectively. The AUC and Cmax of the active S-enantiomer of verapamil each increased by 1.5-fold. Verapamil time to Cmax (Tmax) was increased by 1.2 hours.(2) Moderate and weak CYP3A4 inhibitors linked to this monograph include: alprazolam, amlodipine, aprepitant, avacopan, azithromycin, berberine, berotralstat, bicalutamide, blueberry, brodalumab, chlorzoxazone, cilostazol, cimetidine, ciprofloxacin, clofazimine, conivaptan, daclatasvir, daridorexant, delavirdine, diosmin, entrectinib, erythromycin, estrogen, flibanserin, fluvoxamine, fosaprepitant, fosnetupitant, fostamatinib, ginkgo, givinostat, glecaprevir/pibrentasvir, goldenseal, grazoprevir, isoniazid, istradefylline, ivacaftor, lacidipine, lazertinib, lenacapavir, levamlodipine, linagliptin, lomitapide, lumateperone, lurasidone, mavorixafor, netupitant, omeprazole, osilodrostat, peppermint oil, piperine, propiverine, propofol, ranitidine, ranolazine, remdesivir, resveratrol, rimegepant, roxithromycin, scutellarin, simeprevir, sitaxsentan, suvorexant, ticagrelor, tofisopam, tolvaptan, trofinetide and vonoprazan.(3,4) |
FYARRO |
Mavorixafor/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Mavorixafor is a substrate of the P-glycoprotein (P-gp) transporter. P-gp inhibitors may significantly increase the absorption of mavorixafor.(1) CLINICAL EFFECTS: Concurrent administration of mavorixafor with an inhibitor of P-glycoprotein may result in elevated levels of and effects from mavorixafor, including potentially life-threatening cardiac arrhythmias, torsades de pointes, and sudden death.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: When used concomitantly with P-gp inhibitors, monitor more frequently for mavorixafor adverse effects and reduce the dose in 100 mg increments, if necessary, but not to a dose less than 200 mg.(1) The manufacturer of vimseltinib states concurrent use with P-gp substrates should be avoided. If concurrent use cannot be avoided, take vimseltinib at least 4 hours prior to mavorixafor.(4) When concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring EKG at baseline and regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a study with healthy subjects, itraconazole 200 mg daily (a strong CYP3A4 and P-gp inhibitor) increased the exposure to single-dose mavorixafor 200 mg similar to that from single-dose mavorixafor 400 mg alone. This suggests that itraconazole increased mavorixafor exposure by about 2-fold.(1) A study in healthy volunteers found that ritonavir 100 mg twice daily (a strong CYP3A4 inhibitor and P-gp inhibitor) increased the area-under-curve (AUC) and maximum concentration (Cmax) of single-dose mavorixafor 200 mg by 60% and 39%, respectively.(1) P-glycoprotein inhibitors linked to this monograph include: abrocitinib, Asian ginseng, asunaprevir, capmatinib, carvedilol, cyclosporine, danicopan, daridorexant, diosmin, elagolix, flibanserin, fostamatinib, ginkgo biloba, glecaprevir/pibrentasvir, ivacaftor, milk thistle, neratinib, pirtobrutinib, quercetin, rolapitant, sofosbuvir/velpatasvir/voxilaprevir, tepotinib, tezacaftor, velpatasvir, vilazodone, vimseltinib, and voclosporin.(1,4-6) |
XOLREMDI |
Mavacamten/Weak CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Weak CYP3A4 inhibitors may decrease the metabolism of mavacamten.(1) CLINICAL EFFECTS: Concurrent use of weak CYP3A4 inhibitors may increase the plasma levels and the incidence and severity of adverse reactions of mavacamten.(1) PREDISPOSING FACTORS: CYP2C19 poor metabolizers may experience an increased incidence or severity of adverse effects.(1) PATIENT MANAGEMENT: The UK manufacturer of mavacamten states no dose adjustment is necessary when starting mavacamten in patients on weak CYP3A4 inhibitors or in intermediate, normal, rapid, or ultra-rapid CYP2C19 metabolizers already on mavacamten and starting a weak CYP3A4 inhibitor. In poor CYP2C19 metabolizers already on mavacamten and starting a weak CYP3A4 inhibitor, reduce mavacamten 5 mg to 2.5 mg or if on 2.5 mg pause treatment for 4 weeks. If CYP2C19 phenotype is unknown, consider a mavacamten starting dose of 2.5 mg daily.(1) DISCUSSION: In a PBPK model, concomitant use of mavacamten (15 mg daily) with cimetidine 400 mg twice daily, a weak CYP3A4 inhibitor, was predicted to increase mavacamten area-under-curve (AUC) by 6% and maximum concentration (Cmax) by 4% in poor CYP2C19 metabolizers and by 3% and 2%, respectively, in both intermediate and normal CYP2C19 metabolizers.(2) Weak CYP3A4 inhibitors include: alprazolam, amiodarone, amlodipine, asciminib, azithromycin, Baikal skullcap, belumosudil, berberine, bicalutamide, blueberry, brodalumab, chlorzoxazone, cilostazol, ciprofloxacin, clotrimazole, cranberry, cyclosporine, delavirdine, dihydroberberine, diosmin, everolimus, flibanserin, fosaprepitant, fostamatinib, gepotidacin, ginkgo, givinostat, glecaprevir/pibrentasvir, goldenseal, istradefylline, ivacaftor, lacidipine, lapatinib, leflunomide, levamlodipine, linagliptin, lomitapide, lurasidone, mavorixafor, pazopanib, peppermint oil, propiverine, propofol, ranitidine, remdesivir, resveratrol, roxithromycin, sitaxsentan, skullcap, suvorexant, teriflunomide, ticagrelor, tolvaptan, trofinetide, and viloxazine.(4,5) |
CAMZYOS |
The following contraindication information is available for ALZ (vinpocetine/huperzine/ginko/a-cyst/phospserin/acetylcarnitin):
Drug contraindication overview.
No enhanced Contraindications information available for this drug.
No enhanced Contraindications information available for this drug.
There are 2 contraindications.
Absolute contraindication.
Contraindication List |
---|
Chronic kidney disease stage 5 (failure) GFr<15 ml/min |
Intracranial bleeding |
There are 3 severe contraindications.
Adequate patient monitoring is recommended for safer drug use.
Severe List |
---|
Increased risk of bleeding due to coagulation disorder |
Pregnancy |
Qualitative platelet disorder |
There are 1 moderate contraindications.
Clinically significant contraindication, where the condition can be managed or treated before the drug may be given safely.
Moderate List |
---|
Seizure disorder |
The following adverse reaction information is available for ALZ (vinpocetine/huperzine/ginko/a-cyst/phospserin/acetylcarnitin):
Adverse reaction overview.
No enhanced Common Adverse Effects information available for this drug.
No enhanced Common Adverse Effects information available for this drug.
There are 5 severe adverse reactions.
More Frequent | Less Frequent |
---|---|
None. | None. |
Rare/Very Rare |
---|
Bradycardia Hemorrhage Paroxysmal atrial fibrillation Unconsciousness Ventricular arrhythmias |
There are 8 less severe adverse reactions.
More Frequent | Less Frequent |
---|---|
None. |
Dizziness Gastrointestinal irritation Headache disorder Vertigo |
Rare/Very Rare |
---|
Constipation Palpitations Skin rash Tachycardia |
The following precautions are available for ALZ (vinpocetine/huperzine/ginko/a-cyst/phospserin/acetylcarnitin):
No enhanced Pediatric Use information available for this drug.
Contraindicated
Severe Precaution
Management or Monitoring Precaution
Contraindicated
None |
Severe Precaution
None |
Management or Monitoring Precaution
None |
No enhanced Pregnancy information available for this drug.
No enhanced Lactation information available for this drug.
No enhanced Geriatric Use information available for this drug.
The following prioritized warning is available for ALZ (vinpocetine/huperzine/ginko/a-cyst/phospserin/acetylcarnitin):
No warning message for this drug.
No warning message for this drug.
The following icd codes are available for ALZ (vinpocetine/huperzine/ginko/a-cyst/phospserin/acetylcarnitin)'s list of indications:
No ICD codes found for this drug.
No ICD codes found for this drug.
Formulary Reference Tool