Please wait while the formulary information is being retrieved.
Drug overview for COLD AND FLU HBP (acetaminophen/chlorpheniramine maleate):
Generic name: acetaminophen/chlorpheniramine maleate
Drug class: Antihistamines
Therapeutic class: Analgesic, Anti-inflammatory or Antipyretic
Acetaminophen is a synthetic nonopiate derivative of p-aminophenol that Chlorpheniramine is an alkylamine (propylamine)-derivative, first generation antihistamine. produces analgesia and antipyresis.
Acetaminophen is used extensively in the treatment of mild to moderate pain and fever.
Generic name: acetaminophen/chlorpheniramine maleate
Drug class: Antihistamines
Therapeutic class: Analgesic, Anti-inflammatory or Antipyretic
Acetaminophen is a synthetic nonopiate derivative of p-aminophenol that Chlorpheniramine is an alkylamine (propylamine)-derivative, first generation antihistamine. produces analgesia and antipyresis.
Acetaminophen is used extensively in the treatment of mild to moderate pain and fever.
DRUG IMAGES
- No Image Available
The following indications for COLD AND FLU HBP (acetaminophen/chlorpheniramine maleate) have been approved by the FDA:
Indications:
Cold symptoms
Fever
Flu-like symptoms
Headache disorder
Pain
Professional Synonyms:
Cephalgia
Cephalodynia
Febrile reaction
Febrile
Pyrexia
Indications:
Cold symptoms
Fever
Flu-like symptoms
Headache disorder
Pain
Professional Synonyms:
Cephalgia
Cephalodynia
Febrile reaction
Febrile
Pyrexia
The following dosing information is available for COLD AND FLU HBP (acetaminophen/chlorpheniramine maleate):
Dosage of chlorpheniramine and dexchlorpheniramine should be individualized according to the patient's response and tolerance. Dosage of dexchlorpheniramine maleate is approximately 50% that of chlorpheniramine maleate.
Acetaminophen is relatively safe when used at recommended dosages. However, acetaminophen overdosage has been the leading cause of acute liver failure in the US, United Kingdom, and most of Europe, with about 50% of US cases in recent years resulting from inadvertent overdosage (e.g., in patients not recognizing the presence of the drug in multiple over-the-counter (OTC) and/or prescription products that they may be taking). Therefore, patients should be warned about the importance of determining whether acetaminophen is present in their medications (e.g., by examining labels carefully, by consulting their clinician and pharmacist) and of not exceeding recommended dosages or combining acetaminophen-containing preparations.
Acetaminophen should not be used for self-medication of pain for longer than 10 days (in adults or children 12 years of age and older) or 5 days (in children 2-11 years of age), unless directed by a clinician because pain of such intensity and duration may indicate a pathologic condition requiring medical evaluation and supervised treatment.
Acetaminophen should not be used in adults or children for self-medication of marked fever (greater than 39.5degreesC), fever persisting longer than 3 days, or recurrent fever, unless directed by a clinician because such fevers may indicate serious illness requiring prompt medical evaluation.
Acetaminophen should not be used in adults or children for self-medication of sore throat pain (pharyngitis, laryngitis, tonsillitis) for longer than 2 days.
To minimize the risk of overdosage, recommended age-appropriate daily dosages of acetaminophen should not be exceeded. Because severe liver toxicity and death have occurred in children who received multiple excessive doses of acetaminophen as part of therapeutic administration, parents or caregivers should be instructed to use weight-based dosing for acetaminophen, to use only the calibrated measuring device provided with the particular acetaminophen formulation for measuring dosage, to ensure that the correct number of tablets required for the intended dose is removed from the package, and not to exceed the recommended daily dosage because serious adverse effects could result. In addition, patients should be warned that the risk of overdosage and severe liver damage is increased if more than one preparation containing acetaminophen are used concomitantly.
Pharmacists have an important role in preventing acetaminophen-induced hepatotoxicity by advising consumers about the risk of failing to recognize that a wide variety of OTC and prescription preparations contain acetaminophen. Failure to recognize acetaminophen as an ingredient may be particularly likely with prescription drugs because the label of the dispensed drug may not clearly state its presence. Educating consumers about the risk of exceeding recommended acetaminophen dosages also is important.
The US Food and Drug Administration (FDA) recommends that pharmacists receiving prescriptions for fixed-combination preparations containing more than 325 mg of acetaminophen per dosage unit contact the prescriber to discuss use of a preparation containing no more than 325 mg of the drug per dosage unit. (See Preparations.)
Clinicians should exercise caution when prescribing, preparing, and administering IV acetaminophen to avoid dosing errors that could result in accidental overdosage and death. In particular, clinicians should ensure that the dose (in mg) and the volume (in mL) are not confused, the dose for patients weighing less than 50 kg is based on body weight, the infusion pump is programmed correctly, and the total daily dosage of acetaminophen from all sources does not exceed the maximum recommended daily dosage.
In patients with hepatic impairment or active liver disease, reduction of the total daily dosage of acetaminophen may be warranted. In patients with severe renal impairment (creatinine clearance of 30 mL/minute or less), longer dosing intervals and a reduced total daily dosage of acetaminophen may be warranted. (See Cautions: Precautions and Contraindications.)
Acetaminophen is relatively safe when used at recommended dosages. However, acetaminophen overdosage has been the leading cause of acute liver failure in the US, United Kingdom, and most of Europe, with about 50% of US cases in recent years resulting from inadvertent overdosage (e.g., in patients not recognizing the presence of the drug in multiple over-the-counter (OTC) and/or prescription products that they may be taking). Therefore, patients should be warned about the importance of determining whether acetaminophen is present in their medications (e.g., by examining labels carefully, by consulting their clinician and pharmacist) and of not exceeding recommended dosages or combining acetaminophen-containing preparations.
Acetaminophen should not be used for self-medication of pain for longer than 10 days (in adults or children 12 years of age and older) or 5 days (in children 2-11 years of age), unless directed by a clinician because pain of such intensity and duration may indicate a pathologic condition requiring medical evaluation and supervised treatment.
Acetaminophen should not be used in adults or children for self-medication of marked fever (greater than 39.5degreesC), fever persisting longer than 3 days, or recurrent fever, unless directed by a clinician because such fevers may indicate serious illness requiring prompt medical evaluation.
Acetaminophen should not be used in adults or children for self-medication of sore throat pain (pharyngitis, laryngitis, tonsillitis) for longer than 2 days.
To minimize the risk of overdosage, recommended age-appropriate daily dosages of acetaminophen should not be exceeded. Because severe liver toxicity and death have occurred in children who received multiple excessive doses of acetaminophen as part of therapeutic administration, parents or caregivers should be instructed to use weight-based dosing for acetaminophen, to use only the calibrated measuring device provided with the particular acetaminophen formulation for measuring dosage, to ensure that the correct number of tablets required for the intended dose is removed from the package, and not to exceed the recommended daily dosage because serious adverse effects could result. In addition, patients should be warned that the risk of overdosage and severe liver damage is increased if more than one preparation containing acetaminophen are used concomitantly.
Pharmacists have an important role in preventing acetaminophen-induced hepatotoxicity by advising consumers about the risk of failing to recognize that a wide variety of OTC and prescription preparations contain acetaminophen. Failure to recognize acetaminophen as an ingredient may be particularly likely with prescription drugs because the label of the dispensed drug may not clearly state its presence. Educating consumers about the risk of exceeding recommended acetaminophen dosages also is important.
The US Food and Drug Administration (FDA) recommends that pharmacists receiving prescriptions for fixed-combination preparations containing more than 325 mg of acetaminophen per dosage unit contact the prescriber to discuss use of a preparation containing no more than 325 mg of the drug per dosage unit. (See Preparations.)
Clinicians should exercise caution when prescribing, preparing, and administering IV acetaminophen to avoid dosing errors that could result in accidental overdosage and death. In particular, clinicians should ensure that the dose (in mg) and the volume (in mL) are not confused, the dose for patients weighing less than 50 kg is based on body weight, the infusion pump is programmed correctly, and the total daily dosage of acetaminophen from all sources does not exceed the maximum recommended daily dosage.
In patients with hepatic impairment or active liver disease, reduction of the total daily dosage of acetaminophen may be warranted. In patients with severe renal impairment (creatinine clearance of 30 mL/minute or less), longer dosing intervals and a reduced total daily dosage of acetaminophen may be warranted. (See Cautions: Precautions and Contraindications.)
Chlorpheniramine maleate and dexchlorpheniramine maleate are administered orally. Acetaminophen is administered orally, rectally as suppositories, and by IV infusion over 15 minutes. Acetaminophen preparations for self-medication should not be used unless seals on the tamper-resistant packaging are intact.
No dosing information available.
No generic dosing information available.
The following drug interaction information is available for COLD AND FLU HBP (acetaminophen/chlorpheniramine maleate):
There are 1 contraindications.
These drug combinations generally should not be dispensed or administered to the same patient. A manufacturer label warning that indicates the contraindication warrants inclusion of a drug combination in this category, regardless of clinical evidence or lack of clinical evidence to support the contraindication.
Drug Interaction | Drug Names |
---|---|
Selected Antihistamines/Selected MAOIs SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: MAOIs prolong and intensify the effects of antihistamines.(1-6) CLINICAL EFFECTS: Concurrent use of antihistamines and a MAOI may result in severe hypotension.(1-6) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Concurrent use of antihistamines and a MAOI is contraindicated.(1-6) DISCUSSION: MAOIs may prolong and intensify the effects of antihistamines, resulting in severe hypotension.(1-6) A case report describes a patient having cyproheptadine added to their phenelzine therapy in an attempt to relieve the patients anorgasmia. The patient began to suddenly experience visual hallucination after taking the cyproheptadine for two months. Once the medication was terminated, the hallucinations stopped occurring within 48 hours.(7) Methylene blue, when administered intravenously, has been shown to reach sufficient concentrations to be a potent inhibitor of MAO-A.(8,9) |
AZILECT, EMSAM, FURAZOLIDONE, MARPLAN, MATULANE, METHYLENE BLUE, NARDIL, PARNATE, PHENELZINE SULFATE, PROCARBAZINE HCL, PROVAYBLUE, RASAGILINE MESYLATE, SELEGILINE HCL, TRANYLCYPROMINE SULFATE, XADAGO, ZELAPAR |
There are 9 severe interactions.
These drug interactions can produce serious consequences in most patients. Actions required for severe interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration scheduling, and providing additional patient monitoring. Review the full interaction monograph for more information.
Drug Interaction | Drug Names |
---|---|
Solid Oral Potassium Tablets/Anticholinergics SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concentrated potassium may damage the lining of the GI tract. Anticholinergics delay gastric emptying, resulting in the potassium product remaining in the gastrointestinal tract for a longer period of time.(1-16) CLINICAL EFFECTS: Use of solid oral dosage forms of potassium in patients treated with anticholinergics may result in gastrointestinal erosions, ulcers, stenosis and bleeding.(1-16) PREDISPOSING FACTORS: Diseases or conditions which may increase risk for GI damage include: preexisting dysphagia, strictures, cardiomegaly, diabetic gastroparesis, elderly status, or insufficient oral intake to allow dilution of potassium.(1-10,21) Other drugs which may add to risk for GI damage include: nonsteroidal anti-inflammatory drugs (NSAIDs), bisphosphonates, or tetracyclines.(21) PATIENT MANAGEMENT: Regulatory agency and manufacturer recommendations regarding this interaction: - In the US, all solid oral dosage forms (including tablets and extended release capsules) of potassium are contraindicated in patients receiving anticholinergics at sufficient dosages to result in systemic effects.(2-8) Patients receiving such anticholinergic therapy should use a liquid form of potassium chloride.(2) - In Canada, solid oral potassium is contraindicated in any patient with a cause for arrest or delay in tablet/capsule passage through the gastrointestinal tract and the manufacturers recommend caution with concurrent anticholinergic medications.(1,9-10) Evaluate each patient for predisposing factors which may increase risk for GI damage. In patients with multiple risk factors for harm, consider use of liquid potassium supplements, if tolerated. For patients receiving concomitant therapy, assure any potassium dose form is taken after meals with a large glass of water or other fluid. To decrease potassium concentration in the GI tract, limit each dose to 20 meq; if more than 20 meq daily is required, give in divided doses.(2) If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. Patients should be instructed to immediately report any difficulty swallowing, abdominal pain, distention, severe vomiting, or gastrointestinal bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. DISCUSSION: In clinical trials, there was a higher incidence of gastric and duodenal lesions in patients receiving a high dose of a wax-matrix controlled-release formulation with a concurrent anticholinergic agent. Some lesions were asymptomatic and not accompanied by bleeding, as shown by a lack of positive Hemoccult tests.(1-17) Several studies suggest that the incidence of gastric and duodenal lesions may be less with the microencapsulated formulation of potassium chloride.(14-17) |
K-TAB ER, KLOR-CON 10, KLOR-CON 8, KLOR-CON M10, KLOR-CON M15, KLOR-CON M20, POTASSIUM CHLORIDE, POTASSIUM CITRATE ER, UROCIT-K |
Solid Oral Potassium Capsules/Anticholinergics SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concentrated potassium may damage the lining of the GI tract. Anticholinergics delay gastric emptying, resulting in the potassium product remaining in the gastrointestinal tract for a longer period of time.(1-16)) CLINICAL EFFECTS: Use of solid oral dosage forms of potassium in patients treated with anticholinergics may result in gastrointestinal erosions, ulcers, stenosis and bleeding.(1-16) PREDISPOSING FACTORS: Diseases or conditions which may increase risk for GI damage include: preexisting dysphagia, strictures, cardiomegaly, diabetic gastroparesis, elderly status, or insufficient oral intake to allow dilution of potassium.(1-10,21) Other drugs which may add to risk for GI damage include: nonsteroidal anti-inflammatory drugs (NSAIDs), bisphosphonates, or tetracyclines.(21) PATIENT MANAGEMENT: Regulatory agency and manufacturer recommendations regarding this interaction: - In the US, all solid oral dosage forms (including tablets and extended release capsules) of potassium are contraindicated in patients receiving anticholinergics at sufficient dosages to result in systemic effects.(2-8) Patients receiving such anticholinergic therapy should use a liquid form of potassium chloride.(2) - In Canada, solid oral potassium is contraindicated in any patient with a cause for arrest or delay in tablet/capsule passage through the gastrointestinal tract and the manufacturers recommend caution with concurrent anticholinergic medications.(1,9-10) Evaluate each patient for predisposing factors which may increase risk for GI damage. In patients with multiple risk factors for harm, consider use of liquid potassium supplements, if tolerated. For patients receiving concomitant therapy, assure any potassium dose form is taken after meals with a large glass of water or other fluid. To decrease potassium concentration in the GI tract, limit each dose to 20 meq; if more than 20 meq daily is required, give in divided doses.(2) If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. Patients should be instructed to immediately report any difficulty swallowing, abdominal pain, distention, severe vomiting, or gastrointestinal bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. DISCUSSION: In clinical trials, there was a higher incidence of gastric and duodenal lesions in patients receiving a high dose of a wax-matrix controlled-release formulation with a concurrent anticholinergic agent. The lesions were asymptomatic and not accompanied by bleeding, as shown by a lack of positive Hemoccult tests.(1-17) Several studies suggest that the incidence of gastric and duodenal lesions may be less with the microencapsulated formulation of potassium chloride.(14-17) |
POTASSIUM CHLORIDE |
Radioactive Iodide/Agents that Affect Iodide SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Many compounds can affect iodide protein binding and alter iodide pharmacokinetics and pharmacodynamics.(1) CLINICAL EFFECTS: Compounds that affect iodide pharmacokinetics and pharmacodynamics may impact the effectiveness of radioactive iodide.(1) PREDISPOSING FACTORS: Compounds that affect iodide pharmacokinetics and pharmacodynamics are expected to have the most impact during therapy using radioactive iodide. Diagnostic procedures would be expected to be impacted less. PATIENT MANAGEMENT: Discuss the use of agents that affect iodide pharmacokinetics and pharmacodynamics with the patient's oncologist.(1) DISCUSSION: Many agents interact with radioactive iodine. The average duration of effect is: anticoagulants - 1 week antihistamines - 1 week anti-thyroid drugs, e.g: carbimazole, methimazole, propylthiouracil - 3-5 days corticosteroids - 1 week iodide-containing medications, e.g: amiodarone - 1-6 months expectorants - 2 weeks Lugol solution - 3 weeks saturated solution of potassium iodine - 3 weeks vitamins - 10-14 days iodide-containing X-ray contrast agents - up to 1 year lithium - 4 weeks phenylbutazone - 1-2 weeks sulfonamides - 1 week thyroid hormones (natural or synthetic), e.g.: thyroxine - 4 weeks tri-iodothyronine - 2 weeks tolbutamide - 1 week topical iodide - 1-9 months (1) |
ADREVIEW, JEANATOPE, MEGATOPE, SODIUM IODIDE I-123 |
Clozapine/Anticholinergics SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Clozapine has potent anticholinergic properties and inhibits serotonin receptors, including 5-HT3.(1-4) Both of these properties may cause inhibition of gastrointestinal (GI) smooth muscle contraction, resulting in decreased peristalsis.(3,4) These effects may be compounded by concurrent use of anticholinergic agents.(1-6) CLINICAL EFFECTS: Concurrent use of clozapine with other anticholinergic agents may increase the risk of constipation (common) and serious bowel complications (uncommon), including complete bowel obstruction, fecal impaction, paralytic ileus and intestinal ischemia or infarction.(1-6) PREDISPOSING FACTORS: The risk for serious bowel complications is higher with increasing age, higher frequency of constipation, and in patients on higher doses of clozapine or multiple anticholinergic agents.(1,5) PATIENT MANAGEMENT: Avoid the use of other anticholinergic agents with clozapine.(1-6) If concurrent use is necessary, evaluate the patient's bowel function regularly. Monitor for symptoms of constipation and GI hypomotility, including having bowel movements less than three times weekly or less than usual, difficulty having a bowel movement or passing gas, nausea, vomiting, and abdominal pain or distention.(2) Consider a prophylactic laxative in those with a history of constipation or bowel obstruction.(2) Review patient medication list for other anticholinergic agents. When possible, decrease the dosage or number of prescribed anticholinergic agents, particularly in the elderly. Counsel the patient about the importance of maintaining adequate hydration. Encourage regular exercise and eating a high-fiber diet.(2) DISCUSSION: In a prospective cohort study of 26,720 schizophrenic patients in the Danish Central Psychiatric Research Registry, the odds ratio (OR) for ileus was 1.99 with clozapine and 1.48 with anticholinergics. The OR for fatal ileus was 6.73 with clozapine and 5.88 with anticholinergics. Use of anticholinergics with 1st generation antipsychotics (FGA) increased the risk of ileus compare to FGA alone, but this analysis was not done with clozapine.(5) A retrospective cohort study of 24,970 schizophrenic patients from the Taiwanese National Health Insurance Research Database found that the hazard ratio (HR) for clozapine-induced constipation increased from 1.64 when clozapine is used alone, to 2.15 when used concomitantly with anticholinergics. However, there was no significant difference in the HR for ileus when clozapine is used with and without anticholinergics (1.95 and 2.02, respectively).(6) In the French Pharmacovigilance Database, 7 of 38 cases of antipsychotic-associated ischemic colitis or intestinal necrosis involved clozapine, and 5 of these cases involved use of concomitant anticholinergic agents. Three patients died, one of whom was on concomitant anticholinergics.(3) In a case series, 4 of 9 cases of fatal clozapine-associated GI dysfunction involved concurrent anticholinergic agents.(4) |
CLOZAPINE, CLOZAPINE ODT, CLOZARIL, VERSACLOZ |
Zonisamide/Anticholinergics SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Zonisamide can cause decreased sweating and elevated body temperature. Agents with anticholinergic activity can predispose patients to heat-related disorders.(1-2) CLINICAL EFFECTS: Concurrent use of zonisamide with agents with anticholinergic activity may increase the incidence of oligohidrosis and hyperthermia, especially in pediatric or adolescent patients.(1-2) Overheating and dehydration can lead to brain damage and death. PREDISPOSING FACTORS: Pediatric and adolescent patients and patients with dehydration may be more likely to experience heat-related disorders.(1) PATIENT MANAGEMENT: The UK and US manufacturers of zonisamide state that caution should be used in adults when zonisamide is prescribed with other medicinal products that predispose to heat-related disorders, such as agents with anticholinergic activity.(1-2) Pediatric and adolescent patients must not take anticholinergic agents (e.g. clomipramine, hydroxyzine, diphenhydramine, haloperidol, imipramine, and oxybutynin) concurrently with zonisamide.(1) Monitor for signs and symptoms of heat stroke: skin feels very hot with little or no sweating, confusion, muscle cramps, rapid heartbeat, or rapid breathing. Monitor for signs and symptoms of dehydration: dry mouth, urinating less than usual, dark-colored urine, dry skin, feeling tired, dizziness, or irritability. If signs or symptoms of dehydration, oligohidrosis, or elevated body temperature occur, discontinuation of zonisamide should be considered. DISCUSSION: Case reports of decreased sweating and elevated temperature have been reported, especially in pediatric patients. Some cases resulted in heat stroke that required hospital treatment and resulted in death.(1) |
ZONEGRAN, ZONISADE, ZONISAMIDE |
Eluxadoline/Anticholinergics; Opioids SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Eluxadoline is a mixed mu-opioid and kappa-opioid agonist and delta-opioid antagonist and may alter or slow down gastrointestinal transit.(1) CLINICAL EFFECTS: Constipation related adverse events that sometimes required hospitalization have been reported, including the development of intestinal obstruction, intestinal perforation, and fecal impaction.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid use with other drugs that may cause constipation. If concurrent use is necessary, evaluate the patient's bowel function regularly. Monitor for symptoms of constipation and GI hypomotility, including having bowel movements less than three times weekly or less than usual, difficulty having a bowel movement or passing gas, nausea, vomiting, and abdominal pain or distention.(1) Instruct patients to stop eluxadoline and immediately contact their healthcare provider if they experience severe constipation. Loperamide may be used occasionally for acute management of severe diarrhea, but must be discontinued if constipation develops.(1) DISCUSSION: In phase 3 clinical trials, constipation was the most commonly reported adverse reaction (8%). Approximately 50% of constipation events occurred within the first 2 weeks of treatment while the majority occurred within the first 3 months of therapy. Rates of severe constipation were less than 1% in patients receiving eluxadoline doses of 75 mg and 100 mg.(1) |
VIBERZI |
Alprostadil/Acetaminophen; NSAIDs SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Alprostadil is a prostaglandin E1 product used to maintain patency of a patent ductus arteriosus (PDA).(1) Acetaminophen and nonsteroidal anti-inflammatory (NSAID) agents inhibit prostaglandins and may be used for PDA closure in addition to pain/fever management.(2-4) CLINICAL EFFECTS: Simultaneous administration of acetaminophen or NSAIDs may result in decreased clinical effects from alprostadil, including reduction in PDA.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid concurrent administration of acetaminophen or NSAIDs in patients on alprostadil for maintaining patency of a patent ductus arteriosus (PDA).(1) DISCUSSION: NSAIDs and acetaminophen are used as management for patent ductus arteriosus (PDA) closure.(2-4) Alprostadil is used to maintain patency of a PDA.(1) In a case report, a 37-week gestational age neonate with cardiac defects required alprostadil therapy for PDA patency. After multiple doses of acetaminophen for pain, an echocardiogram showed reduction of the PDA requiring increased doses of alprostadil. Additional acetaminophen was discontinued. Follow up echocardiogram showed successful reversal of PDA reduction and alprostadil dose was reduced.(5) |
ALPROSTADIL, PROSTAGLANDIN E1, PROSTIN VR PEDIATRIC |
Glucagon (Diagnostic)/Anticholinergics SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Glucagon and anticholinergic agents may have additive effects on inhibition of gastrointestinal motility.(1) CLINICAL EFFECTS: Concurrent use of glucagon with anticholinergic agents may increase the risk of gastrointestinal hypomotility, including constipation and bowel complications.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Concurrent use of glucagon as a diagnotic aid is not recommended with the use of anticholinergic agents.(1) If concurrent use is necessary, evaluate the patient's bowel function. Monitor for symptoms of constipation and gastrointestinal hypomotility. DISCUSSION: Both glucagon and anticholinergic agents may have additive effects on inhibition of gastrointestinal motility and increase the risk of gastrointestinal adverse effects.(1) |
GLUCAGON HCL |
Sodium Iodide I 131/Agents that Affect Iodide SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Many compounds can affect iodide protein binding and alter iodide pharmacokinetics and pharmacodynamics.(1,2) CLINICAL EFFECTS: Compounds that affect iodide pharmacokinetics and pharmacodynamics may impact the effectiveness of radioactive iodide.(1,2) PREDISPOSING FACTORS: Compounds that affect iodide pharmacokinetics and pharmacodynamics are expected to have the most impact during therapy using radioactive iodide. Diagnostic procedures would be expected to be impacted less. PATIENT MANAGEMENT: Discuss the use of agents that affect iodide pharmacokinetics and pharmacodynamics with the patient's oncologist.(1,2) DISCUSSION: Many agents interact with radioactive iodine. The average duration of effect is: anticoagulants - 1 week antihistamines - 1 week anti-thyroid drugs, e.g: carbimazole, methimazole, propylthiouracil - 3-5 days corticosteroids - 1 week iodide-containing medications, e.g: amiodarone - 1-6 months expectorants - 2 weeks Lugol solution - 3 weeks saturated solution of potassium iodine - 3 weeks vitamins - 10-14 days iodide-containing X-ray contrast agents - up to 1 year lithium - 4 weeks phenylbutazone - 1-2 weeks sulfonamides - 1 week thyroid hormones (natural or synthetic), e.g.: thyroxine - 4 weeks tri-iodothyronine - 2 weeks tolbutamide - 1 week topical iodide - 1-9 months (1,2) |
HICON, SODIUM IODIDE I-131 |
There are 4 moderate interactions.
The clinician should assess the patient’s characteristics and take action as needed. Actions required for moderate interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration.
Drug Interaction | Drug Names |
---|---|
Acetaminophen/Isoniazid SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Isoniazid may induce the metabolism of acetaminophen to its toxic N-acetyl-p-benzoquinone imine (NAPQI) metabolite by CYP2E1.(1) CLINICAL EFFECTS: Concurrent isoniazid and acetaminophen may result in hepatotoxicity.(1) Symptoms can include nausea, vomiting, jaundice, dark urine, abdominal pain, and unexplained fatigue. PREDISPOSING FACTORS: The interaction may be more severe in fast acetylators. PATIENT MANAGEMENT: Concurrent use of acetaminophen in patients treated with isoniazid should be approached with caution. Consider an alternative analgesic agent. If concurrent therapy is warranted, advise patients not to exceed the maximum recommended daily dose of acetaminophen and to immediately report any symptoms of hepatotoxicity. DISCUSSION: Isoniazid has been shown to induce, after initially inhibiting, the metabolism of acetaminophen to N-acetyl-p-benzoquinone imine (NAPQI), which is hepatotoxicity. Normally, NAPQI is rapidly converted to non-toxic metabolites by glutathione; however, high levels of NAPQI can overwhelm this system.(2-4) In a case report, a patient receiving isoniazid developed severe acetaminophen toxicity following a suicide attempt, despite only having ingested a maximum of 11.5 grams of acetaminophen and having a blood acetaminophen level of 15 mmol/L 13 hours later. Toxicity is usually seen with levels greater than 26 mmol/L.(5) In a retrospective review of 20 deaths in patients taking isoniazid alone or with ethambutol during a 13 year period, two deaths involved patients receiving concurrent isoniazid and acetaminophen.(6,7) |
ISONIAZID |
Selected Anticoagulants/Acetaminophen SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Acetaminophen may reduce levels of functional Factor VI, thereby increasing the International Normalized Ratio (INR).(1) In one trial factors II and VII levels were also reduced, thereby increasing the INR. (2) CLINICAL EFFECTS: Concurrent use of routine acetaminophen, especially at dosages greater than 2 grams/day, and coumarin anticoagulants may result in elevated anticoagulant effects. PREDISPOSING FACTORS: Routine use of acetaminophen at dosages greater than 2 grams/day may increase the risk of the interaction. PATIENT MANAGEMENT: Patients receiving routine acetaminophen at dosages greater than 2 grams/day with coumarin anticoagulants should be closely monitored for changes in anticoagulant effects. The dosage of the anticoagulant may need to be adjusted. Patients receiving coumarin anticoagulants should be counseled on the use of acetaminophen. DISCUSSION: A large systematic review was performed on 72 warfarin drug-drug interactions studies that reported on bleeding, thromboembolic events, or death. Most studies were retrospective cohorts. A meta-analysis of 4 of those studies found a higher rate of clinically significant bleeding in patients on warfarin and non-NSAID analgesics (OR=2.12; 95% CI 1.65-2.73). Increased bleeding risk was also seen in subgroup analyses with acetaminophen (OR=2.32; 95% CI 1.22-4.44).(3) In a study in 11 patients maintained on warfarin, use of acetaminophen (4 grams daily for 14 days) increased INR values by an average of 1.04.(4) In a study in 36 patients maintained on warfarin, the addition of acetaminophen (2 grams/day or 4 grams/day) increased INR values.(5) In a study in 20 patients maintained on warfarin, the addition of acetaminophen (4 grams/day for 14 days) increased average INR values by 1.20 (from 2.6 to 3.45).(6) In a study, 12 patients maintained on various anticoagulants (anisindione, dicoumarol, phenprocoumon, and warfarin) who received 4 weeks of acetaminophen (2.6 grams/day) were compared to 50 subjects maintained on various anticoagulants who did not receive acetaminophen. By the third week of concurrent acetaminophen, prothrombin times increased from 23 seconds to 28.4 seconds. The average warfarin-equivalent dose decreased by 5.8 mg to 4.4 mg. In another phase, 50 subjects maintained on various anticoagulants received acetaminophen (2.6 grams/day for 14 days). The mean prothrombin increase was 3.6 seconds.(7) There have been case reports of increased INRs following concurrent acetaminophen in patients maintained on warfarin(8-11) and acenocoumarol.(12) In contrast to the above reports, other studies have found no effects on acenocoumarol,(14) phenprocoumon,(13-15) or warfarin(16,17) by acetaminophen. In a study in 45 patients maintained on warfarin, the addition of acetaminophen (2 or 3 grams/day for 10 days) increased average INR by 0.7 and 0.67 with 2 grams/day and 3 grams/day, respectively. This increase was apparent by day 3, and a decrease in factor II and VII was observed.(2) A self-controlled case study of 1,622 oral anticoagulant-precipitant drug pairs were reviewed and found 14% of drug pairs were associated with a statistically significant elevated risk of thromboembolism. Concurrent use of warfarin and acetaminophen resulted in a ratio of rate ratios (95% CI) of 1.28 (1.18-1.38).(18) One or more of the drug pairs linked to this monograph have been included in a list of interactions that could be considered for classification as "non-interruptive" in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
DICUMAROL, JANTOVEN, WARFARIN SODIUM |
Busulfan/Acetaminophen SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Busulfan is eliminated from the body via glutathione conjugation. Acetaminophen reduces glutathione levels in the blood and tissues and therefore could decrease the elimination rate of busulfan.(1,2) CLINICAL EFFECTS: Concurrent use of acetaminophen may result in elevated levels of, prolonged exposure to, and toxicity from busulfan, including myelosuppression, granulocytopenia, thrombocytopenia, anemia, seizures, hepatic veno-occlusive disease, cardiac tamponade, bronchopulmonary dysplasia, or cellular dysplasia.(1,2) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Use acetaminophen concurrent with busulfan with caution.(1) Consider withholding acetaminophen for 72 hours before and during busulfan therapy. If concurrent use cannot be avoided, monitor patients for busulfan toxicity. DISCUSSION: Although a small population study in adult patients found no effect of acetaminophen on busulfan clearance,(3) caution is still warranted.(1) |
BUSULFAN, BUSULFEX, MYLERAN |
Topiramate/Anticholinergics SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Topiramate can cause decreased sweating and elevated body temperature. Agents with anticholinergic activity can predispose patients to heat-related disorders.(1-2) CLINICAL EFFECTS: Concurrent use of topiramate with agents with anticholinergic activity may increase the incidence of oligohidrosis and hyperthermia, especially in pediatric or adolescent patients.(1-2) Overheating and dehydration can lead to brain damage and death. PREDISPOSING FACTORS: Pediatric and adolescent patients and patients with dehydration may be more likely to experience heat-related disorders.(1) PATIENT MANAGEMENT: The manufacturer of topiramate states that caution should be used when topiramate is prescribed with other medicinal products that predispose to heat-related disorders, such as agents with anticholinergic activity (e.g. clomipramine, hydroxyzine, diphenhydramine, haloperidol, imipramine, and oxybutynin) concurrently with zonisamide.(1) Monitor for signs and symptoms of heat stroke: skin feels very hot with little or no sweating, confusion, muscle cramps, rapid heartbeat, or rapid breathing. Monitor for signs and symptoms of dehydration: dry mouth, urinating less than usual, dark-colored urine, dry skin, feeling tired, dizziness, or irritability. If signs or symptoms of dehydration, oligohidrosis, or elevated body temperature occur, discontinuation of zonisamide should be considered. DISCUSSION: Case reports of decreased sweating and elevated temperature have been reported, especially in pediatric patients. Some cases resulted in heat stroke that required hospital treatment.(1) A 64-year old woman developed non-exertional hyperthemia while taking multiple psychiatric medications with topiramate.(2) |
EPRONTIA, QSYMIA, QUDEXY XR, TOPAMAX, TOPIRAMATE, TOPIRAMATE ER, TROKENDI XR |
The following contraindication information is available for COLD AND FLU HBP (acetaminophen/chlorpheniramine maleate):
Drug contraindication overview.
No enhanced Contraindications information available for this drug.
No enhanced Contraindications information available for this drug.
There are 3 contraindications.
Absolute contraindication.
Contraindication List |
---|
Acetaminophen overdose |
Acute hepatic failure |
Acute hepatitis C |
There are 10 severe contraindications.
Adequate patient monitoring is recommended for safer drug use.
Severe List |
---|
Angle-closure glaucoma |
Benign prostatic hyperplasia |
Bladder outflow obstruction |
Chronic idiopathic constipation |
Disease of liver |
Gastrointestinal obstruction |
Protein-calorie malnutrition |
Shock |
Stenosing peptic ulcer |
Urinary retention |
There are 3 moderate contraindications.
Clinically significant contraindication, where the condition can be managed or treated before the drug may be given safely.
Moderate List |
---|
Chronic obstructive pulmonary disease |
Hypertension |
Hyperthyroidism |
The following adverse reaction information is available for COLD AND FLU HBP (acetaminophen/chlorpheniramine maleate):
Adverse reaction overview.
No enhanced Common Adverse Effects information available for this drug.
No enhanced Common Adverse Effects information available for this drug.
There are 22 severe adverse reactions.
More Frequent | Less Frequent |
---|---|
None. |
Abnormal hepatic function tests |
Rare/Very Rare |
---|
Acute generalized exanthematous pustulosis Acute hepatic failure Agranulocytosis Allergic dermatitis Anaphylaxis Angioedema Blood dyscrasias Drug-induced hepatitis Extrasystoles Hallucinations Hemolytic anemia Hypersensitivity drug reaction Hypotension Laryngeal edema Leukopenia Maculopapular rash Neutropenic disorder Seizure disorder Stevens-johnson syndrome Thrombocytopenic disorder Toxic epidermal necrolysis |
There are 54 less severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Anticholinergic toxicity Dizziness Drowsy Thick bronchial secretions |
Muscle weakness Sedation |
Rare/Very Rare |
---|
Abdominal distension Accidental fall Acute abdominal pain Acute cognitive impairment Agitation Anorexia Ataxia Blurred vision Chest discomfort Chills Constipation Diarrhea Diplopia Dry nose Dry throat Dyspnea Dysuria Erythema Euphoria Excitement Fatigue Headache disorder Hyperhidrosis Insomnia Irritability Maculopapular rash Malaise Medication overuse headache Migraine Nausea Nervousness Nightmares Palpitations Paresthesia Pruritus of skin Skin photosensitivity Skin rash Symptoms of anxiety Tachycardia Tinnitus Tremor Urinary retention Urticaria Vertigo Visual changes Vomiting Wheezing Xerostomia |
The following precautions are available for COLD AND FLU HBP (acetaminophen/chlorpheniramine maleate):
No enhanced Pediatric Use information available for this drug.
Contraindicated
Contraindicated
Severe Precaution
Management or Monitoring Precaution
Contraindicated
Chlorpheniramine | 30 Days – 2 Years | Risk of serious and life-threatening adverse effects of CNS depression or excitation. Not recommended age <2 years. Avoid using with underlying asthma. |
Contraindicated
Chlorpheniramine (Oral) | 1 Day – 29 Days | Possible paradoxical CNS excitation. Seizure risk in newborns. |
Severe Precaution
Chlorpheniramine | 2 Years – 6 Years | Risk of CNS depression and paradoxical excitation. Consult healthcare provider for age< 6 years. |
Management or Monitoring Precaution
Acetaminophen (oral,rectal) | 1 Day – 12 Years | Use weight based dosing in children less than 12 years. |
Reproduction studies in animals using dexchlorpheniramine have not been performed to date, but reproduction studies in rabbits and rats using chlorpheniramine maleate dosages up to 50 and 85 times the usual human dosage, respectively, have not revealed evidence of harm to the fetus. Decreased postnatal survival in offspring of rats receiving 33 and 67 times the usual human dosage of chlorpheniramine maleate has been reported. There are no adequate and controlled studies to date using chlorpheniramine or dexchlorpheniramine in pregnant women, and the drugs should be used during the first 2 trimesters only when clearly needed.
In one epidemiologic study, use of chlorpheniramine was not associated with an increased risk of teratogenic effects; however, only a limited number of pregnant women received the drug in this study. Because of the risk of severe reactions (e.g., seizures) to antihistamines in neonates, chlorpheniramine or dexchlorpheniramine should not be used during the third trimester. Epidemiologic data regarding oral acetaminophen use in pregnant women have shown no increased risk of major congenital malformations in infants exposed in utero to the drug.
In a large population-based prospective cohort study involving more than 26,000 women with live-born singleton infants who were exposed to oral acetaminophen during the first trimester of pregnancy, no increase in the risk of congenital malformations was observed in exposed children compared with a control group of unexposed children; the rate of congenital malformations (4.3%) was similar to the rate in the general population. A population-based, case-control study from the National Birth Defects Prevention Study also found no increase in the risk of major birth defects in a group of 11,610 children who had been exposed to acetaminophen during the first trimester of pregnancy compared with a control group of 4500 children. Animal reproduction studies in pregnant rats given oral acetaminophen during organogenesis at dosages up to 0.85
times the maximum recommended human daily dosage (4 g daily, based on body surface area comparison) showed evidence of fetotoxicity (reduced fetal weight and length) and a dose-related increase in bone variations (reduced ossification and rudimentary rib changes); the offspring showed no evidence of external, visceral, or skeletal malformations. When pregnant rats received oral acetaminophen throughout gestation at a dosage of 1.2 times the maximum recommended human daily dosage, areas of necrosis occurred in both the liver and kidney of pregnant rats and fetuses; these effects did not occur in animals given acetaminophen at dosages of 0.3
times the maximum recommended human dosage. In a continuous breeding study in which pregnant mice were given acetaminophen at dosages approximately equivalent to 0.43, 0.87,
or 1.7 times the maximum recommended human daily dosage (based on body surface area comparison), a dose-related reduction in body weight of the fourth and fifth litter offspring of the treated mating pair occurred during lactation and following weaning at all dosages studied. Animals receiving the highest dosage had a reduced number of litters per mating pair, male offspring with an increased percentage of abnormal sperm, and reduced birth weights in the next-generation pups.
Acetaminophen is commonly used during all stages of pregnancy for its analgesic and antipyretic effects. Although acetaminophen has been thought not to be associated with risk in offspring, some recent reports have questioned this assessment, especially with frequent maternal use or in cases involving genetic variability. FDA reviewed data on a possible association between acetaminophen use during pregnancy and risk of attention deficit hyperactivity disorder (ADHD) in children and announced in January 2015 that the data were inconclusive.
Some experts state that as with all drug use during pregnancy, routine use of acetaminophen should be avoided. The manufacturer states that there are no studies of IV acetaminophen in pregnant women and animal reproduction studies have not been conducted with this preparation. Therefore, the manufacturer states that IV acetaminophen should be used during pregnancy only when clearly needed. Because there are no adequate and well-controlled studies of IV acetaminophen during labor and delivery, the manufacturer states that IV acetaminophen should be used in this setting only after careful assessment of potential benefits and risks.
In one epidemiologic study, use of chlorpheniramine was not associated with an increased risk of teratogenic effects; however, only a limited number of pregnant women received the drug in this study. Because of the risk of severe reactions (e.g., seizures) to antihistamines in neonates, chlorpheniramine or dexchlorpheniramine should not be used during the third trimester. Epidemiologic data regarding oral acetaminophen use in pregnant women have shown no increased risk of major congenital malformations in infants exposed in utero to the drug.
In a large population-based prospective cohort study involving more than 26,000 women with live-born singleton infants who were exposed to oral acetaminophen during the first trimester of pregnancy, no increase in the risk of congenital malformations was observed in exposed children compared with a control group of unexposed children; the rate of congenital malformations (4.3%) was similar to the rate in the general population. A population-based, case-control study from the National Birth Defects Prevention Study also found no increase in the risk of major birth defects in a group of 11,610 children who had been exposed to acetaminophen during the first trimester of pregnancy compared with a control group of 4500 children. Animal reproduction studies in pregnant rats given oral acetaminophen during organogenesis at dosages up to 0.85
times the maximum recommended human daily dosage (4 g daily, based on body surface area comparison) showed evidence of fetotoxicity (reduced fetal weight and length) and a dose-related increase in bone variations (reduced ossification and rudimentary rib changes); the offspring showed no evidence of external, visceral, or skeletal malformations. When pregnant rats received oral acetaminophen throughout gestation at a dosage of 1.2 times the maximum recommended human daily dosage, areas of necrosis occurred in both the liver and kidney of pregnant rats and fetuses; these effects did not occur in animals given acetaminophen at dosages of 0.3
times the maximum recommended human dosage. In a continuous breeding study in which pregnant mice were given acetaminophen at dosages approximately equivalent to 0.43, 0.87,
or 1.7 times the maximum recommended human daily dosage (based on body surface area comparison), a dose-related reduction in body weight of the fourth and fifth litter offspring of the treated mating pair occurred during lactation and following weaning at all dosages studied. Animals receiving the highest dosage had a reduced number of litters per mating pair, male offspring with an increased percentage of abnormal sperm, and reduced birth weights in the next-generation pups.
Acetaminophen is commonly used during all stages of pregnancy for its analgesic and antipyretic effects. Although acetaminophen has been thought not to be associated with risk in offspring, some recent reports have questioned this assessment, especially with frequent maternal use or in cases involving genetic variability. FDA reviewed data on a possible association between acetaminophen use during pregnancy and risk of attention deficit hyperactivity disorder (ADHD) in children and announced in January 2015 that the data were inconclusive.
Some experts state that as with all drug use during pregnancy, routine use of acetaminophen should be avoided. The manufacturer states that there are no studies of IV acetaminophen in pregnant women and animal reproduction studies have not been conducted with this preparation. Therefore, the manufacturer states that IV acetaminophen should be used during pregnancy only when clearly needed. Because there are no adequate and well-controlled studies of IV acetaminophen during labor and delivery, the manufacturer states that IV acetaminophen should be used in this setting only after careful assessment of potential benefits and risks.
Drug/Drug Class | Severity | Precaution Description | Pregnancy Category Description |
---|---|---|---|
Acetaminophen | 2 | Available data suggest no known risk; otc product, no fda pregnancy warnings | No fda rating but may have precautions or warnings; may have animal and/or human studies or pre or post marketing information. |
Chlorpheniramine | 2 | Low risk, premature infant at risk of retrolental fibroplasia | No fda rating but may have precautions or warnings; may have animal and/or human studies or pre or post marketing information. |
It is not known whether chlorpheniramine or dexchlorpheniramine is distributed into milk, but other antihistamines (e.g., diphenhydramine) have been detected in milk. Because of the potential for serious adverse reactions to antihistamines in nursing infants, a decision should be made whether to discontinue nursing or chlorpheniramine or dexchlorpheniramine, taking into account the importance of the drug to the woman. Acetaminophen is distributed into human milk in small quantities after oral administration.
Data from more than 15 nursing women suggest that approximately 1-2% of the maternal daily dosage would be ingested by a nursing infant. A case of maculopapular rash in a breast-fed infant has been reported; the rash resolved when the mother discontinued acetaminophen use and recurred when she resumed acetaminophen therapy. The American Academy of Pediatrics and other experts state that acetaminophen is an acceptable choice for use in nursing women. The manufacturer states that IV acetaminophen should be used with caution in nursing women.
Precaution Exists
Precaution exists. (No data or inconclusive human data.) Use of this drug by breast feeding mothers should be evaluated carefully.
No Known Risk
No known risk. This drug has no known risks to nursing infants and does not adversely affect lactation.
Data from more than 15 nursing women suggest that approximately 1-2% of the maternal daily dosage would be ingested by a nursing infant. A case of maculopapular rash in a breast-fed infant has been reported; the rash resolved when the mother discontinued acetaminophen use and recurred when she resumed acetaminophen therapy. The American Academy of Pediatrics and other experts state that acetaminophen is an acceptable choice for use in nursing women. The manufacturer states that IV acetaminophen should be used with caution in nursing women.
Precaution Exists
Precaution exists. (No data or inconclusive human data.) Use of this drug by breast feeding mothers should be evaluated carefully.
Drug Name | Excretion Potential | Effect on Infant | Notes |
---|---|---|---|
Chlorpheniramine | Unknown. It is unknown whether the drug is excreted in human breast milk. | It is not known whether this drug has an adverse effect on the nursing infant. (No data or inconclusive human data) | Insufficient data available; may cause sedation and inhibit lactation |
No Known Risk
No known risk. This drug has no known risks to nursing infants and does not adversely affect lactation.
Drug Name | Excretion Potential | Effect on Infant | Notes |
---|---|---|---|
Acetaminophen | Excreted.This drug is known to be excreted in human breast milk. | This drug has been shown not to have an adverse effect on the nursing infant. | Low levels excreted with low risk for adverse effects in infant |
No enhanced Geriatric Use information available for this drug.
Precaution Exists
Geriatric management or monitoring precaution exists.
Precaution Exists
Geriatric management or monitoring precaution exists.
Drug Name | Narrative | REN | HEP | CARDIO | NEURO | PULM | ENDO |
---|---|---|---|---|---|---|---|
Acetaminophen (oral,rectal) | Hepatic-Elderly may be more susceptible to hepatotoxicity. Strict adherence to a maximum daily dose is recommended; maximum dose 3000-3800 mg depending on dose form strength used and recommendation source. | N | Y | N | N | N | N |
Chlorpheniramine | Neuro/Psych-Anticholinergic effects may cause sedation, worsen cognitive impairment and increase fall risk. Non-sedating antihistamine preferred. Gastrointestinal-May cause or worsen pre-existing constipation. Genitourinary-Best avoided in patients with urinary retention from any cause. | N | N | N | Y | N | N |
The following prioritized warning is available for COLD AND FLU HBP (acetaminophen/chlorpheniramine maleate):
WARNING: One ingredient in this product is acetaminophen. Taking too much acetaminophen may cause serious (possibly fatal) liver disease. Adults should not take more than 4000 milligrams (4 grams) of acetaminophen a day.
People with liver problems and children should take less acetaminophen. Ask your doctor or pharmacist how much acetaminophen is safe to take. Do not use with any other drug containing acetaminophen without asking your doctor or pharmacist first.
Acetaminophen is in many nonprescription and prescription medications (such as pain/fever drugs or cough-and-cold products). Check the labels on all your medicines to see if they contain acetaminophen, and ask your pharmacist if you are unsure. Get medical help right away if you take too much acetaminophen (overdose), even if you feel well.
Overdose symptoms may include nausea, vomiting, loss of appetite, sweating, stomach/abdominal pain, extreme tiredness, yellowing eyes/skin, and dark urine. Daily alcohol use, especially when combined with acetaminophen, may damage your liver. Avoid alcohol.
WARNING: One ingredient in this product is acetaminophen. Taking too much acetaminophen may cause serious (possibly fatal) liver disease. Adults should not take more than 4000 milligrams (4 grams) of acetaminophen a day.
People with liver problems and children should take less acetaminophen. Ask your doctor or pharmacist how much acetaminophen is safe to take. Do not use with any other drug containing acetaminophen without asking your doctor or pharmacist first.
Acetaminophen is in many nonprescription and prescription medications (such as pain/fever drugs or cough-and-cold products). Check the labels on all your medicines to see if they contain acetaminophen, and ask your pharmacist if you are unsure. Get medical help right away if you take too much acetaminophen (overdose), even if you feel well.
Overdose symptoms may include nausea, vomiting, loss of appetite, sweating, stomach/abdominal pain, extreme tiredness, yellowing eyes/skin, and dark urine. Daily alcohol use, especially when combined with acetaminophen, may damage your liver. Avoid alcohol.
The following icd codes are available for COLD AND FLU HBP (acetaminophen/chlorpheniramine maleate)'s list of indications:
Cold symptoms | |
J00 | Acute nasopharyngitis [common cold] |
Fever | |
R50 | Fever of other and unknown origin |
R50.2 | Drug induced fever |
R50.8 | Other specified fever |
R50.81 | Fever presenting with conditions classified elsewhere |
R50.82 | Postprocedural fever |
R50.83 | Postvaccination fever |
R50.84 | Febrile nonhemolytic transfusion reaction |
R50.9 | Fever, unspecified |
Flu-like symptoms | |
J02.9 | Acute pharyngitis, unspecified |
R05 | Cough |
R05.1 | Acute cough |
R05.2 | Subacute cough |
R05.9 | Cough, unspecified |
R09.81 | Nasal congestion |
R50.9 | Fever, unspecified |
R53.1 | Weakness |
R53.81 | Other malaise |
R53.83 | Other fatigue |
R68.83 | Chills (without fever) |
Headache disorder | |
G43 | Migraine |
G43.0 | Migraine without aura |
G43.00 | Migraine without aura, not intractable |
G43.009 | Migraine without aura, not intractable, without status migrainosus |
G43.01 | Migraine without aura, intractable |
G43.019 | Migraine without aura, intractable, without status migrainosus |
G43.1 | Migraine with aura |
G43.10 | Migraine with aura, not intractable |
G43.109 | Migraine with aura, not intractable, without status migrainosus |
G43.11 | Migraine with aura, intractable |
G43.119 | Migraine with aura, intractable, without status migrainosus |
G43.4 | Hemiplegic migraine |
G43.40 | Hemiplegic migraine, not intractable |
G43.409 | Hemiplegic migraine, not intractable, without status migrainosus |
G43.41 | Hemiplegic migraine, intractable |
G43.419 | Hemiplegic migraine, intractable, without status migrainosus |
G43.5 | Persistent migraine aura without cerebral infarction |
G43.50 | Persistent migraine aura without cerebral infarction, not intractable |
G43.509 | Persistent migraine aura without cerebral infarction, not intractable, without status migrainosus |
G43.51 | Persistent migraine aura without cerebral infarction, intractable |
G43.519 | Persistent migraine aura without cerebral infarction, intractable, without status migrainosus |
G43.6 | Persistent migraine aura with cerebral infarction |
G43.60 | Persistent migraine aura with cerebral infarction, not intractable |
G43.609 | Persistent migraine aura with cerebral infarction, not intractable, without status migrainosus |
G43.61 | Persistent migraine aura with cerebral infarction, intractable |
G43.619 | Persistent migraine aura with cerebral infarction, intractable, without status migrainosus |
G43.7 | Chronic migraine without aura |
G43.70 | Chronic migraine without aura, not intractable |
G43.709 | Chronic migraine without aura, not intractable, without status migrainosus |
G43.71 | Chronic migraine without aura, intractable |
G43.719 | Chronic migraine without aura, intractable, without status migrainosus |
G43.8 | Other migraine |
G43.80 | Other migraine, not intractable |
G43.809 | Other migraine, not intractable, without status migrainosus |
G43.81 | Other migraine, intractable |
G43.819 | Other migraine, intractable, without status migrainosus |
G43.82 | Menstrual migraine, not intractable |
G43.829 | Menstrual migraine, not intractable, without status migrainosus |
G43.83 | Menstrual migraine, intractable |
G43.839 | Menstrual migraine, intractable, without status migrainosus |
G43.9 | Migraine, unspecified |
G43.90 | Migraine, unspecified, not intractable |
G43.909 | Migraine, unspecified, not intractable, without status migrainosus |
G43.91 | Migraine, unspecified, intractable |
G43.919 | Migraine, unspecified, intractable, without status migrainosus |
G43.B | Ophthalmoplegic migraine |
G43.B0 | Ophthalmoplegic migraine, not intractable |
G43.B1 | Ophthalmoplegic migraine, intractable |
G43.C | Periodic headache syndromes in child or adult |
G43.C0 | Periodic headache syndromes in child or adult, not intractable |
G43.C1 | Periodic headache syndromes in child or adult, intractable |
G43.D | Abdominal migraine |
G43.D0 | Abdominal migraine, not intractable |
G43.D1 | Abdominal migraine, intractable |
G43.E | Chronic migraine with aura |
G43.E0 | Chronic migraine with aura, not intractable |
G43.E09 | Chronic migraine with aura, not intractable, without status migrainosus |
G43.E1 | Chronic migraine with aura, intractable |
G43.E19 | Chronic migraine with aura, intractable, without status migrainosus |
G44 | Other headache syndromes |
G44.0 | Cluster headaches and other trigeminal autonomic cephalgias (TAc) |
G44.00 | Cluster headache syndrome, unspecified |
G44.001 | Cluster headache syndrome, unspecified, intractable |
G44.009 | Cluster headache syndrome, unspecified, not intractable |
G44.01 | Episodic cluster headache |
G44.011 | Episodic cluster headache, intractable |
G44.019 | Episodic cluster headache, not intractable |
G44.02 | Chronic cluster headache |
G44.021 | Chronic cluster headache, intractable |
G44.029 | Chronic cluster headache, not intractable |
G44.03 | Episodic paroxysmal hemicrania |
G44.031 | Episodic paroxysmal hemicrania, intractable |
G44.039 | Episodic paroxysmal hemicrania, not intractable |
G44.04 | Chronic paroxysmal hemicrania |
G44.041 | Chronic paroxysmal hemicrania, intractable |
G44.049 | Chronic paroxysmal hemicrania, not intractable |
G44.05 | Short lasting unilateral neuralgiform headache with conjunctival injection and tearing (SUNCt) |
G44.051 | Short lasting unilateral neuralgiform headache with conjunctival injection and tearing (SUNCt), intractable |
G44.059 | Short lasting unilateral neuralgiform headache with conjunctival injection and tearing (SUNCt), not intractable |
G44.09 | Other trigeminal autonomic cephalgias (TAc) |
G44.091 | Other trigeminal autonomic cephalgias (TAc), intractable |
G44.099 | Other trigeminal autonomic cephalgias (TAc), not intractable |
G44.1 | Vascular headache, not elsewhere classified |
G44.2 | Tension-type headache |
G44.20 | Tension-type headache, unspecified |
G44.201 | Tension-type headache, unspecified, intractable |
G44.209 | Tension-type headache, unspecified, not intractable |
G44.21 | Episodic tension-type headache |
G44.211 | Episodic tension-type headache, intractable |
G44.219 | Episodic tension-type headache, not intractable |
G44.22 | Chronic tension-type headache |
G44.221 | Chronic tension-type headache, intractable |
G44.229 | Chronic tension-type headache, not intractable |
G44.3 | Post-traumatic headache |
G44.30 | Post-traumatic headache, unspecified |
G44.301 | Post-traumatic headache, unspecified, intractable |
G44.309 | Post-traumatic headache, unspecified, not intractable |
G44.31 | Acute post-traumatic headache |
G44.311 | Acute post-traumatic headache, intractable |
G44.319 | Acute post-traumatic headache, not intractable |
G44.32 | Chronic post-traumatic headache |
G44.321 | Chronic post-traumatic headache, intractable |
G44.329 | Chronic post-traumatic headache, not intractable |
G44.4 | Drug-induced headache, not elsewhere classified |
G44.40 | Drug-induced headache, not elsewhere classified, not intractable |
G44.41 | Drug-induced headache, not elsewhere classified, intractable |
G44.5 | Complicated headache syndromes |
G44.51 | Hemicrania continua |
G44.52 | New daily persistent headache (NDPh) |
G44.53 | Primary thunderclap headache |
G44.59 | Other complicated headache syndrome |
G44.8 | Other specified headache syndromes |
G44.81 | Hypnic headache |
G44.82 | Headache associated with sexual activity |
G44.83 | Primary cough headache |
G44.84 | Primary exertional headache |
G44.85 | Primary stabbing headache |
G44.89 | Other headache syndrome |
R51 | Headache |
R51.9 | Headache, unspecified |
Pain | |
G43 | Migraine |
G43.0 | Migraine without aura |
G43.00 | Migraine without aura, not intractable |
G43.001 | Migraine without aura, not intractable, with status migrainosus |
G43.009 | Migraine without aura, not intractable, without status migrainosus |
G43.01 | Migraine without aura, intractable |
G43.011 | Migraine without aura, intractable, with status migrainosus |
G43.019 | Migraine without aura, intractable, without status migrainosus |
G43.1 | Migraine with aura |
G43.10 | Migraine with aura, not intractable |
G43.101 | Migraine with aura, not intractable, with status migrainosus |
G43.109 | Migraine with aura, not intractable, without status migrainosus |
G43.11 | Migraine with aura, intractable |
G43.111 | Migraine with aura, intractable, with status migrainosus |
G43.119 | Migraine with aura, intractable, without status migrainosus |
G43.4 | Hemiplegic migraine |
G43.40 | Hemiplegic migraine, not intractable |
G43.401 | Hemiplegic migraine, not intractable, with status migrainosus |
G43.409 | Hemiplegic migraine, not intractable, without status migrainosus |
G43.41 | Hemiplegic migraine, intractable |
G43.411 | Hemiplegic migraine, intractable, with status migrainosus |
G43.419 | Hemiplegic migraine, intractable, without status migrainosus |
G43.5 | Persistent migraine aura without cerebral infarction |
G43.50 | Persistent migraine aura without cerebral infarction, not intractable |
G43.501 | Persistent migraine aura without cerebral infarction, not intractable, with status migrainosus |
G43.509 | Persistent migraine aura without cerebral infarction, not intractable, without status migrainosus |
G43.51 | Persistent migraine aura without cerebral infarction, intractable |
G43.511 | Persistent migraine aura without cerebral infarction, intractable, with status migrainosus |
G43.519 | Persistent migraine aura without cerebral infarction, intractable, without status migrainosus |
G43.6 | Persistent migraine aura with cerebral infarction |
G43.60 | Persistent migraine aura with cerebral infarction, not intractable |
G43.601 | Persistent migraine aura with cerebral infarction, not intractable, with status migrainosus |
G43.609 | Persistent migraine aura with cerebral infarction, not intractable, without status migrainosus |
G43.61 | Persistent migraine aura with cerebral infarction, intractable |
G43.611 | Persistent migraine aura with cerebral infarction, intractable, with status migrainosus |
G43.619 | Persistent migraine aura with cerebral infarction, intractable, without status migrainosus |
G43.7 | Chronic migraine without aura |
G43.70 | Chronic migraine without aura, not intractable |
G43.701 | Chronic migraine without aura, not intractable, with status migrainosus |
G43.709 | Chronic migraine without aura, not intractable, without status migrainosus |
G43.71 | Chronic migraine without aura, intractable |
G43.711 | Chronic migraine without aura, intractable, with status migrainosus |
G43.719 | Chronic migraine without aura, intractable, without status migrainosus |
G43.8 | Other migraine |
G43.80 | Other migraine, not intractable |
G43.801 | Other migraine, not intractable, with status migrainosus |
G43.809 | Other migraine, not intractable, without status migrainosus |
G43.81 | Other migraine, intractable |
G43.811 | Other migraine, intractable, with status migrainosus |
G43.819 | Other migraine, intractable, without status migrainosus |
G43.82 | Menstrual migraine, not intractable |
G43.821 | Menstrual migraine, not intractable, with status migrainosus |
G43.829 | Menstrual migraine, not intractable, without status migrainosus |
G43.83 | Menstrual migraine, intractable |
G43.831 | Menstrual migraine, intractable, with status migrainosus |
G43.839 | Menstrual migraine, intractable, without status migrainosus |
G43.9 | Migraine, unspecified |
G43.90 | Migraine, unspecified, not intractable |
G43.901 | Migraine, unspecified, not intractable, with status migrainosus |
G43.909 | Migraine, unspecified, not intractable, without status migrainosus |
G43.91 | Migraine, unspecified, intractable |
G43.911 | Migraine, unspecified, intractable, with status migrainosus |
G43.919 | Migraine, unspecified, intractable, without status migrainosus |
G43.B | Ophthalmoplegic migraine |
G43.B0 | Ophthalmoplegic migraine, not intractable |
G43.B1 | Ophthalmoplegic migraine, intractable |
G43.C | Periodic headache syndromes in child or adult |
G43.C0 | Periodic headache syndromes in child or adult, not intractable |
G43.C1 | Periodic headache syndromes in child or adult, intractable |
G43.D | Abdominal migraine |
G43.D0 | Abdominal migraine, not intractable |
G43.D1 | Abdominal migraine, intractable |
G43.E | Chronic migraine with aura |
G43.E0 | Chronic migraine with aura, not intractable |
G43.E01 | Chronic migraine with aura, not intractable, with status migrainosus |
G43.E09 | Chronic migraine with aura, not intractable, without status migrainosus |
G43.E1 | Chronic migraine with aura, intractable |
G43.E11 | Chronic migraine with aura, intractable, with status migrainosus |
G43.E19 | Chronic migraine with aura, intractable, without status migrainosus |
G44 | Other headache syndromes |
G44.00 | Cluster headache syndrome, unspecified |
G44.001 | Cluster headache syndrome, unspecified, intractable |
G44.009 | Cluster headache syndrome, unspecified, not intractable |
G44.01 | Episodic cluster headache |
G44.011 | Episodic cluster headache, intractable |
G44.019 | Episodic cluster headache, not intractable |
G44.02 | Chronic cluster headache |
G44.021 | Chronic cluster headache, intractable |
G44.029 | Chronic cluster headache, not intractable |
G44.03 | Episodic paroxysmal hemicrania |
G44.031 | Episodic paroxysmal hemicrania, intractable |
G44.039 | Episodic paroxysmal hemicrania, not intractable |
G44.04 | Chronic paroxysmal hemicrania |
G44.041 | Chronic paroxysmal hemicrania, intractable |
G44.049 | Chronic paroxysmal hemicrania, not intractable |
G44.05 | Short lasting unilateral neuralgiform headache with conjunctival injection and tearing (SUNCt) |
G44.051 | Short lasting unilateral neuralgiform headache with conjunctival injection and tearing (SUNCt), intractable |
G44.059 | Short lasting unilateral neuralgiform headache with conjunctival injection and tearing (SUNCt), not intractable |
G44.1 | Vascular headache, not elsewhere classified |
G44.2 | Tension-type headache |
G44.20 | Tension-type headache, unspecified |
G44.201 | Tension-type headache, unspecified, intractable |
G44.209 | Tension-type headache, unspecified, not intractable |
G44.21 | Episodic tension-type headache |
G44.211 | Episodic tension-type headache, intractable |
G44.219 | Episodic tension-type headache, not intractable |
G44.22 | Chronic tension-type headache |
G44.221 | Chronic tension-type headache, intractable |
G44.229 | Chronic tension-type headache, not intractable |
G44.3 | Post-traumatic headache |
G44.30 | Post-traumatic headache, unspecified |
G44.301 | Post-traumatic headache, unspecified, intractable |
G44.309 | Post-traumatic headache, unspecified, not intractable |
G44.31 | Acute post-traumatic headache |
G44.311 | Acute post-traumatic headache, intractable |
G44.319 | Acute post-traumatic headache, not intractable |
G44.32 | Chronic post-traumatic headache |
G44.321 | Chronic post-traumatic headache, intractable |
G44.329 | Chronic post-traumatic headache, not intractable |
G44.4 | Drug-induced headache, not elsewhere classified |
G44.40 | Drug-induced headache, not elsewhere classified, not intractable |
G44.41 | Drug-induced headache, not elsewhere classified, intractable |
G44.5 | Complicated headache syndromes |
G44.51 | Hemicrania continua |
G44.52 | New daily persistent headache (NDPh) |
G44.53 | Primary thunderclap headache |
G44.59 | Other complicated headache syndrome |
G44.8 | Other specified headache syndromes |
G44.81 | Hypnic headache |
G44.82 | Headache associated with sexual activity |
G44.83 | Primary cough headache |
G44.84 | Primary exertional headache |
G44.85 | Primary stabbing headache |
G44.86 | Cervicogenic headache |
G44.89 | Other headache syndrome |
G50.1 | Atypical facial pain |
G89 | Pain, not elsewhere classified |
G89.0 | Central pain syndrome |
G89.1 | Acute pain, not elsewhere classified |
G89.11 | Acute pain due to trauma |
G89.12 | Acute post-thoracotomy pain |
G89.18 | Other acute postprocedural pain |
G89.2 | Chronic pain, not elsewhere classified |
G89.21 | Chronic pain due to trauma |
G89.22 | Chronic post-thoracotomy pain |
G89.28 | Other chronic postprocedural pain |
G89.29 | Other chronic pain |
G89.3 | Neoplasm related pain (acute) (chronic) |
G89.4 | Chronic pain syndrome |
G90.5 | Complex regional pain syndrome I (CRPS i) |
G90.50 | Complex regional pain syndrome i, unspecified |
G90.51 | Complex regional pain syndrome I of upper limb |
G90.511 | Complex regional pain syndrome I of right upper limb |
G90.512 | Complex regional pain syndrome I of left upper limb |
G90.513 | Complex regional pain syndrome I of upper limb, bilateral |
G90.519 | Complex regional pain syndrome I of unspecified upper limb |
G90.52 | Complex regional pain syndrome I of lower limb |
G90.521 | Complex regional pain syndrome I of right lower limb |
G90.522 | Complex regional pain syndrome I of left lower limb |
G90.523 | Complex regional pain syndrome I of lower limb, bilateral |
G90.529 | Complex regional pain syndrome I of unspecified lower limb |
G90.59 | Complex regional pain syndrome I of other specified site |
H57.1 | Ocular pain |
H57.10 | Ocular pain, unspecified eye |
H57.11 | Ocular pain, right eye |
H57.12 | Ocular pain, left eye |
H57.13 | Ocular pain, bilateral |
H92 | Otalgia and effusion of ear |
H92.0 | Otalgia |
H92.01 | Otalgia, right ear |
H92.02 | Otalgia, left ear |
H92.03 | Otalgia, bilateral |
H92.09 | Otalgia, unspecified ear |
K14.6 | Glossodynia |
M25.5 | Pain in joint |
M25.50 | Pain in unspecified joint |
M25.51 | Pain in shoulder |
M25.511 | Pain in right shoulder |
M25.512 | Pain in left shoulder |
M25.519 | Pain in unspecified shoulder |
M25.52 | Pain in elbow |
M25.521 | Pain in right elbow |
M25.522 | Pain in left elbow |
M25.529 | Pain in unspecified elbow |
M25.53 | Pain in wrist |
M25.531 | Pain in right wrist |
M25.532 | Pain in left wrist |
M25.539 | Pain in unspecified wrist |
M25.54 | Pain in joints of hand |
M25.541 | Pain in joints of right hand |
M25.542 | Pain in joints of left hand |
M25.549 | Pain in joints of unspecified hand |
M25.55 | Pain in hip |
M25.551 | Pain in right hip |
M25.552 | Pain in left hip |
M25.559 | Pain in unspecified hip |
M25.56 | Pain in knee |
M25.561 | Pain in right knee |
M25.562 | Pain in left knee |
M25.569 | Pain in unspecified knee |
M25.57 | Pain in ankle and joints of foot |
M25.571 | Pain in right ankle and joints of right foot |
M25.572 | Pain in left ankle and joints of left foot |
M25.579 | Pain in unspecified ankle and joints of unspecified foot |
M25.59 | Pain in other specified joint |
M26.62 | Arthralgia of temporomandibular joint |
M26.621 | Arthralgia of right temporomandibular joint |
M26.622 | Arthralgia of left temporomandibular joint |
M26.623 | Arthralgia of bilateral temporomandibular joint |
M26.629 | Arthralgia of temporomandibular joint, unspecified side |
M54 | Dorsalgia |
M54.2 | Cervicalgia |
M54.4 | Lumbago with sciatica |
M54.40 | Lumbago with sciatica, unspecified side |
M54.41 | Lumbago with sciatica, right side |
M54.42 | Lumbago with sciatica, left side |
M54.5 | Low back pain |
M54.50 | Low back pain, unspecified |
M54.51 | Vertebrogenic low back pain |
M54.59 | Other low back pain |
M54.6 | Pain in thoracic spine |
M54.8 | Other dorsalgia |
M54.89 | Other dorsalgia |
M54.9 | Dorsalgia, unspecified |
M77.4 | Metatarsalgia |
M77.40 | Metatarsalgia, unspecified foot |
M77.41 | Metatarsalgia, right foot |
M77.42 | Metatarsalgia, left foot |
M79.1 | Myalgia |
M79.10 | Myalgia, unspecified site |
M79.11 | Myalgia of mastication muscle |
M79.12 | Myalgia of auxiliary muscles, head and neck |
M79.18 | Myalgia, other site |
M79.6 | Pain in limb, hand, foot, fingers and toes |
M79.60 | Pain in limb, unspecified |
M79.601 | Pain in right arm |
M79.602 | Pain in left arm |
M79.603 | Pain in arm, unspecified |
M79.604 | Pain in right leg |
M79.605 | Pain in left leg |
M79.606 | Pain in leg, unspecified |
M79.609 | Pain in unspecified limb |
M79.62 | Pain in upper arm |
M79.621 | Pain in right upper arm |
M79.622 | Pain in left upper arm |
M79.629 | Pain in unspecified upper arm |
M79.63 | Pain in forearm |
M79.631 | Pain in right forearm |
M79.632 | Pain in left forearm |
M79.639 | Pain in unspecified forearm |
M79.64 | Pain in hand and fingers |
M79.641 | Pain in right hand |
M79.642 | Pain in left hand |
M79.643 | Pain in unspecified hand |
M79.644 | Pain in right finger(s) |
M79.645 | Pain in left finger(s) |
M79.646 | Pain in unspecified finger(s) |
M79.65 | Pain in thigh |
M79.651 | Pain in right thigh |
M79.652 | Pain in left thigh |
M79.659 | Pain in unspecified thigh |
M79.66 | Pain in lower leg |
M79.661 | Pain in right lower leg |
M79.662 | Pain in left lower leg |
M79.669 | Pain in unspecified lower leg |
M79.67 | Pain in foot and toes |
M79.671 | Pain in right foot |
M79.672 | Pain in left foot |
M79.673 | Pain in unspecified foot |
M79.674 | Pain in right toe(s) |
M79.675 | Pain in left toe(s) |
M79.676 | Pain in unspecified toe(s) |
N23 | Unspecified renal colic |
N64.4 | Mastodynia |
N94 | Pain and other conditions associated with female genital organs and menstrual cycle |
N94.0 | Mittelschmerz |
N94.3 | Premenstrual tension syndrome |
N94.4 | Primary dysmenorrhea |
N94.5 | Secondary dysmenorrhea |
N94.6 | Dysmenorrhea, unspecified |
R07 | Pain in throat and chest |
R07.0 | Pain in throat |
R07.1 | Chest pain on breathing |
R07.2 | Precordial pain |
R07.81 | Pleurodynia |
R07.82 | Intercostal pain |
R07.89 | Other chest pain |
R07.9 | Chest pain, unspecified |
R10 | Abdominal and pelvic pain |
R10.0 | Acute abdomen |
R10.1 | Pain localized to upper abdomen |
R10.10 | Upper abdominal pain, unspecified |
R10.11 | Right upper quadrant pain |
R10.12 | Left upper quadrant pain |
R10.2 | Pelvic and perineal pain |
R10.3 | Pain localized to other parts of lower abdomen |
R10.30 | Lower abdominal pain, unspecified |
R10.31 | Right lower quadrant pain |
R10.32 | Left lower quadrant pain |
R10.33 | Periumbilical pain |
R10.8 | Other abdominal pain |
R10.83 | Colic |
R10.84 | Generalized abdominal pain |
R10.9 | Unspecified abdominal pain |
R51 | Headache |
R51.0 | Headache with orthostatic component, not elsewhere classified |
R51.9 | Headache, unspecified |
R52 | Pain, unspecified |
R68.84 | Jaw pain |
T82.84 | Pain due to cardiac and vascular prosthetic devices, implants and grafts |
T82.847 | Pain due to cardiac prosthetic devices, implants and grafts |
T82.847A | Pain due to cardiac prosthetic devices, implants and grafts, initial encounter |
T82.847D | Pain due to cardiac prosthetic devices, implants and grafts, subsequent encounter |
T82.848 | Pain due to vascular prosthetic devices, implants and grafts |
T82.848A | Pain due to vascular prosthetic devices, implants and grafts, initial encounter |
T82.848D | Pain due to vascular prosthetic devices, implants and grafts, subsequent encounter |
T83.84 | Pain due to genitourinary prosthetic devices, implants and grafts |
T83.84xA | Pain due to genitourinary prosthetic devices, implants and grafts, initial encounter |
T83.84xD | Pain due to genitourinary prosthetic devices, implants and grafts, subsequent encounter |
T84.84 | Pain due to internal orthopedic prosthetic devices, implants and grafts |
T84.84xA | Pain due to internal orthopedic prosthetic devices, implants and grafts, initial encounter |
T84.84xD | Pain due to internal orthopedic prosthetic devices, implants and grafts, subsequent encounter |
T85.84 | Pain due to internal prosthetic devices, implants and grafts, not elsewhere classified |
T85.840 | Pain due to nervous system prosthetic devices, implants and grafts |
T85.840A | Pain due to nervous system prosthetic devices, implants and grafts, initial encounter |
T85.840D | Pain due to nervous system prosthetic devices, implants and grafts, subsequent encounter |
T85.848 | Pain due to other internal prosthetic devices, implants and grafts |
T85.848A | Pain due to other internal prosthetic devices, implants and grafts, initial encounter |
T85.848D | Pain due to other internal prosthetic devices, implants and grafts, subsequent encounter |
Formulary Reference Tool