Please wait while the formulary information is being retrieved.
Drug overview for IMATINIB MESYLATE (imatinib mesylate):
Generic name: IMATINIB MESYLATE (im-A-ti-nib)
Drug class: Antineoplastic - Protein-Tyrosine Kinase Inhibitors
Therapeutic class: Antineoplastics
Imatinib mesylate, an inhibitor of Bcr-Abl tyrosine kinase, is an antineoplastic agent.
No enhanced Uses information available for this drug.
Generic name: IMATINIB MESYLATE (im-A-ti-nib)
Drug class: Antineoplastic - Protein-Tyrosine Kinase Inhibitors
Therapeutic class: Antineoplastics
Imatinib mesylate, an inhibitor of Bcr-Abl tyrosine kinase, is an antineoplastic agent.
No enhanced Uses information available for this drug.
DRUG IMAGES
- IMATINIB MESYLATE 400 MG TAB
- IMATINIB MESYLATE 100 MG TAB
The following indications for IMATINIB MESYLATE (imatinib mesylate) have been approved by the FDA:
Indications:
Accelerated phase Philadelphia chromosome positive chronic myelocytic leukemia
Adjuvant therapy following surgical resection of Kit (CD117) positive gastrointestinal stromal tumor
Aggressive systemic mastocytosis
Chronic eosinophilic leukemia
Chronic phase Philadelphia chromosome positive chronic myelocytic leukemia
Dermatofibrosarcoma protuberans
Hypereosinophilic syndrome
Lymphoid blast phase Philadelphia chromosome positive chronic myelocytic leukemia
Myelodysplastic, myeloproliferative diseases associated with platelet-derived growth factor receptor
Myeloid blast phase Philadelphia chromosome positive chronic myelocytic leukemia
Philadelphia chromosome positive acute lymphoblastic leukemia
Unresectable or metastatic Kit (CD117) positive gastrointestinal stromal tumor
Professional Synonyms:
Accelerated phase Ph(+) CML
Accelerated phase Ph1(+) CML
Accelerated phase Philadelphia chromosome positive chronic myeloid leukemia
Accelerated phase, BCR/ABL positive CML
Acute lymphoblastic leukemia, t(9;22)(q34;q11)
Adjuvant therapy following surgical resection of Kit (CD117) positive GIST
Adjuvant therapy of Kit+ gastrointest stromal tumor
BCR/ABL positive acute lymphoblastic leukemia
BCR/ABL positive CML in lymphoid blast crisis
BCR/ABL positive CML in myeloid blast crisis
Chronic phase Ph(+) CML
Chronic phase Ph1(+) CML
Chronic phase Philadelphia chromosome positive chronic myeloid leukemia
Chronic phase, BCR/ABL positive CML
Lymphoid blast phase Ph(+) CML
Lymphoid blast phase Ph1(+) CML
Lymphoid blast phase Philadelphia chromosome positive chronic myeloid leukemia
MDS and MPD associated with PDGFR genetic arrangements
Myeloid blast phase Ph(+) CML
Myeloid blast phase Ph1(+) CML
Myeloid blast phase philadelphia chromosome positive chronic myeloid leukemia
Ph(+) CML, accelerated phase
Ph(+) CML, chronic phase
Ph(+) CML, lymphoid blast phase
Ph(+) CML, myeloid blast phase
Ph1(+) CML, accelerated phase
Ph1(+) CML, chronic phase
Ph1(+) CML, lymphoid blast phase
Ph1(+) CML, myeloid blast phase
Philadelphia chromosome (+) CML in myeloid blast crisis
Philadelphia chromosome positive chronic myelocytic leukemia in lymphoid blast crisis
Unresectable or metastatic CD117+ GIST
Unresectable or metastatic Kit+ GIST
Indications:
Accelerated phase Philadelphia chromosome positive chronic myelocytic leukemia
Adjuvant therapy following surgical resection of Kit (CD117) positive gastrointestinal stromal tumor
Aggressive systemic mastocytosis
Chronic eosinophilic leukemia
Chronic phase Philadelphia chromosome positive chronic myelocytic leukemia
Dermatofibrosarcoma protuberans
Hypereosinophilic syndrome
Lymphoid blast phase Philadelphia chromosome positive chronic myelocytic leukemia
Myelodysplastic, myeloproliferative diseases associated with platelet-derived growth factor receptor
Myeloid blast phase Philadelphia chromosome positive chronic myelocytic leukemia
Philadelphia chromosome positive acute lymphoblastic leukemia
Unresectable or metastatic Kit (CD117) positive gastrointestinal stromal tumor
Professional Synonyms:
Accelerated phase Ph(+) CML
Accelerated phase Ph1(+) CML
Accelerated phase Philadelphia chromosome positive chronic myeloid leukemia
Accelerated phase, BCR/ABL positive CML
Acute lymphoblastic leukemia, t(9;22)(q34;q11)
Adjuvant therapy following surgical resection of Kit (CD117) positive GIST
Adjuvant therapy of Kit+ gastrointest stromal tumor
BCR/ABL positive acute lymphoblastic leukemia
BCR/ABL positive CML in lymphoid blast crisis
BCR/ABL positive CML in myeloid blast crisis
Chronic phase Ph(+) CML
Chronic phase Ph1(+) CML
Chronic phase Philadelphia chromosome positive chronic myeloid leukemia
Chronic phase, BCR/ABL positive CML
Lymphoid blast phase Ph(+) CML
Lymphoid blast phase Ph1(+) CML
Lymphoid blast phase Philadelphia chromosome positive chronic myeloid leukemia
MDS and MPD associated with PDGFR genetic arrangements
Myeloid blast phase Ph(+) CML
Myeloid blast phase Ph1(+) CML
Myeloid blast phase philadelphia chromosome positive chronic myeloid leukemia
Ph(+) CML, accelerated phase
Ph(+) CML, chronic phase
Ph(+) CML, lymphoid blast phase
Ph(+) CML, myeloid blast phase
Ph1(+) CML, accelerated phase
Ph1(+) CML, chronic phase
Ph1(+) CML, lymphoid blast phase
Ph1(+) CML, myeloid blast phase
Philadelphia chromosome (+) CML in myeloid blast crisis
Philadelphia chromosome positive chronic myelocytic leukemia in lymphoid blast crisis
Unresectable or metastatic CD117+ GIST
Unresectable or metastatic Kit+ GIST
The following dosing information is available for IMATINIB MESYLATE (imatinib mesylate):
Dosage of imatinib mesylate is expressed in terms of imatinib.
No enhanced Administration information available for this drug.
DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
---|---|---|
IMATINIB MESYLATE 100 MG TAB | Maintenance | Adults take 1 tablet (100 mg) by oral route once daily with a meal and a large glass of water |
IMATINIB MESYLATE 400 MG TAB | Maintenance | Adults take 1 tablet (400 mg) by oral route once daily with meal(s) and a large glass of water |
DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
---|---|---|
IMATINIB MESYLATE 100 MG TAB | Maintenance | Adults take 1 tablet (100 mg) by oral route once daily with a meal and a large glass of water |
IMATINIB MESYLATE 400 MG TAB | Maintenance | Adults take 1 tablet (400 mg) by oral route once daily with meal(s) and a large glass of water |
The following drug interaction information is available for IMATINIB MESYLATE (imatinib mesylate):
There are 15 contraindications.
These drug combinations generally should not be dispensed or administered to the same patient. A manufacturer label warning that indicates the contraindication warrants inclusion of a drug combination in this category, regardless of clinical evidence or lack of clinical evidence to support the contraindication.
Drug Interaction | Drug Names |
---|---|
Selected Anticoagulants (Vit K antagonists)/Imatinib SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Imatinib may inhibit the metabolism of warfarin by CYP2C9.(1) CLINICAL EFFECTS: The concurrent use of imatinib and warfarin may result in an increased risk for bleeding. PREDISPOSING FACTORS: Risk for bleeding episodes may be greater in patients with disease-associated bleeding risk (e.g. thrombocytopenia). Drug associated risk factors include concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism, and drugs which have an inherent risk for bleeding (e.g. NSAIDs). Pharmacogenomic risk variables: Patients with a CYP2C9 intermediate metabolizer genotype, and/or 1-2 copies of a reduced function VKORC1 gene are expected to be more susceptible to this interaction. Although patients with a pre-existing CYP2C9 poor metabolizer genotype are expected to be less susceptible to effects from this drug combination, their reduced function genotypes (e.g. CYP2C9 *1/*3, *2/*2, *2/*3, and *3/*3) result in an inherently higher warfarin half-life and risk for warfarin-associated bleeding. CYP2C9 poor metabolizers generally require lower anticoagulant doses and more time (>2 to 4 weeks) to achieve effective and safe anticoagulation than patients without these CYP2C9 variants. PATIENT MANAGEMENT: The manufacturer of imatinib states under the "Drug Interaction" section of the imatinib prescribing information that patients receiving imatinib who require anticoagulation should receive low-molecular weight or standard heparin instead of warfarin.(1) If imatinib and warfarin are used together, INR values should be closely monitored when imatinib is initiated and discontinued. Patients should be observed for signs of excessive anticoagulation during concurrent therapy. If concurrent therapy is deemed medically necessary, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. When applicable, perform agent-specific laboratory tests (e.g. INR, aPTT) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. The time of highest risk for a coumarin-type drug interaction is when the precipitant drug is initiated or discontinued. Contact the prescriber before initiating, altering the dose or discontinuing either drug. DISCUSSION: Because imatinib has been shown to inhibit CYP2C9 in vitro, the manufacturer states under the "Drug Interaction" section of the imatinib prescribing information that patients receiving imatinib who require anticoagulation should receive low-molecular weight or standard heparin instead of warfarin.(1) |
ANISINDIONE, JANTOVEN, WARFARIN SODIUM |
Efalizumab; Natalizumab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Natalizumab,(1-3) efalizumab,(4) immunosuppressives, and immunomodulators all suppress the immune system. CLINICAL EFFECTS: Concurrent use of natalizumab(1-3) or efalizumab(4) with immunosuppressives or immunomodulators may result in an increased risk of infections, including progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV). PREDISPOSING FACTORS: Previous JCV infection, longer duration of natalizumab treatment - especially if greater than 2 years, and prior or concomitant treatment with immunosuppressant medication are all independent risk factors which increase the risk for PML.(1,5) The FDA has estimated PML incidence stratified by risk factors: If anti-JCV antibody positive, no prior immunosuppressant use and natalizumab treatment less than 25 months, incidence <1/1,000. If anti-JCV antibody positive, history of prior immunosuppressant use and natalizumab treatment less than 25 months, incidence 2/1,000 If anti-JCV antibody positive, no prior immunosuppressant use and natalizumab treatment 25-48 months, incidence 4/1,000 If anti-JCV antibody positive, history of prior immunosuppressant use and natalizumab treatment 25-48 months, incidence 11/1,000. PATIENT MANAGEMENT: The US manufacturer of natalizumab states patients with Crohn's disease should not receive concurrent immunosuppressants, with the exception of limited overlap of corticosteroids, due to the increased risk for PML. For new natalizumab patients currently receiving chronic oral corticosteroids for Crohn's Disease, begin corticosteroid taper when therapeutic response to natalizumab has occurred. If corticosteroids cannot be discontinued within six months of starting natalizumab, discontinue natalizumab.(3) The US manufacturer of natalizumab states that natalizumab should not ordinarily be used in multiple sclerosis patients receiving immunosuppressants or immunomodulators due to the increased risk for PML. Immunosuppressives include, but are not limited to azathioprine, cyclophosphamide, cyclosporine, mercaptopurine, methotrexate, mitoxantrone, mycophenolate, and corticosteroids.(3,6) The UK manufacturer of natalizumab states that concurrent use with immunosuppressives or antineoplastic agents is contraindicated.(1) The Canadian manufacturer of natalizumab states that natalizumab should not be used with immunosuppressive or immunomodulatory agents.(2) The US manufacturer of certolizumab states that concurrent therapy with natalizumab is not recommended.(7) DISCUSSION: Progressive multifocal leukoencephalopathy has been reported in patients receiving concurrent natalizumab were recently or concomitantly taking immunomodulators or immunosuppressants.(1-5,8,9) In a retrospective cohort study of multiple sclerosis patients newly initiated on a disease-modifying therapy, use of high-efficacy agents (alemtuzumab, natalizumab, or ocrelizumab) resulted in the same risk of overall infections as moderate-efficacy agents, but there was an elevated risk of serious infections (adjusted hazard ratio [aHR] = 1.24, 95% confidence interval (CI) = 1.06-1.44) and UTIs (aHR = 1.21, 95% CI = 1.14-1.30).(10) |
TYSABRI |
Live Vaccines; Live BCG/Selected Immunosuppressive Agents SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: A variety of disease modifying agents suppress the immune system. Immunocompromised patients may be at increased risk for uninhibited replication after administration of live, attenuated vaccines or intravesicular BCG. Immune response to vaccines may be decreased during periods of immunocompromise.(1) CLINICAL EFFECTS: The expected serum antibody response may not be obtained and/or the vaccine may result in illness.(1) After instillation of intravesicular BCG, immunosuppression may interfere with local immune response, or increase the severity of mycobacterial infection following inadvertent systemic exposure.(2) PREDISPOSING FACTORS: Immunosuppressive diseases (e.g. hematologic malignancies, HIV disease), treatments (e.g. radiation) and drugs may all increase the magnitude of immunodeficiency. PATIENT MANAGEMENT: The Centers for Disease Control(CDC) Advisory Committee on Immunization Practices (ACIP) states that live-virus and live, attenuated vaccines should not be administered to patients who are immunocompromised. The magnitude of immunocompromise and associated risks should be determined by a physician.(1) For patients scheduled to receive chemotherapy, vaccination should ideally precede the initiation of chemotherapy by 14 days. Patients vaccinated while on immunosuppressive therapy or in the 2 weeks prior to starting therapy should be considered unimmunized and should be revaccinated at least 3 months after discontinuation of therapy.(1) Patients who receive anti-B cell therapies should not receive live vaccines for at least 6 months after such therapies due to a prolonged duration of immunosuppression. An exception is the Zoster vaccine, which can be given at least 1 month after receipt of anti-B cell therapies.(1) The US manufacturer of abatacept states live vaccines should not be given during or for up to 3 months after discontinuation of abatacept.(2) The US manufacturer of live BCG for intravesicular treatment of bladder cancer states use is contraindicated in immunosuppressed patients.(3) The US manufacturer of daclizumab states live vaccines are not recommended during and for up to 4 months after discontinuation of treatment.(4) The US manufacturer of guselkumab states that live vaccines should be avoided during treatment with guselkumab.(5) The US manufacturer of inebilizumab-cdon states that live vaccines are not recommended during treatment and after discontinuation until B-cell repletion. Administer all live vaccinations at least 4 weeks prior to initiation of inebilizumab-cdon.(6) The US manufacturer of ocrelizumab states that live vaccines are not recommended during treatment and until B-cell repletion occurs after discontinuation of therapy. Administer all live vaccines at least 4 weeks prior to initiation of ocrelizumab.(7) The US manufacturer of ozanimod states that live vaccines should be avoided during and for up to 3 months after discontinuation of ozanimod.(8) The US manufacturer of siponimod states that live vaccines are not recommended during treatment and for up to 4 weeks after discontinuation of treatment.(9) The US manufacturer of ustekinumab states BCG vaccines should not be given in the year prior to, during, or the year after ustekinumab therapy.(10) The US manufacturer of satralizumab-mwge states that live vaccines are not recommended during treatment and should be administered at least four weeks prior to initiation of satralizumab-mwge.(11) The US manufacturer of ublituximab-xiiy states that live vaccines are not recommended during treatment and until B-cell recovery. Live vaccines should be administered at least 4 weeks prior to initiation of ublituximab-xiiy.(12) The US manufacturer of etrasimod states that live vaccines should be avoided during and for 5 weeks after treatment. Live vaccines should be administered at least 4 weeks prior to initiation of etrasimod.(13) The US manufacturer of emapalumab-lzsg states that live vaccines should not be administered to patients receiving emapalumab-lzsg and for at least 4 weeks after the last dose of emapalumab-lzsg. The safety of immunization with live vaccines during or following emapalumab-lzsg therapy has not been studied.(14) DISCUSSION: Killed or inactivated vaccines do not pose a danger to immunocompromised patients.(1) Patients with a history of leukemia who are in remission and have not received chemotherapy for at least 3 months are not considered to be immunocompromised.(1) |
ACAM2000 (NATIONAL STOCKPILE), ADENOVIRUS TYPE 4, ADENOVIRUS TYPE 4 AND TYPE 7, ADENOVIRUS TYPE 7, BCG (TICE STRAIN), BCG VACCINE (TICE STRAIN), DENGVAXIA, ERVEBO (NATIONAL STOCKPILE), FLUMIST TRIVALENT 2024-2025, IXCHIQ, M-M-R II VACCINE, PRIORIX, PROQUAD, ROTARIX, ROTATEQ, STAMARIL, VARIVAX VACCINE, VAXCHORA ACTIVE COMPONENT, VAXCHORA VACCINE, VIVOTIF, YF-VAX |
Flibanserin/Strong or Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Flibanserin is primarily metabolized by CYP3A4, though CYP2C19 also plays a role in metabolism.(1) CLINICAL EFFECTS: Concurrent use of a strong or moderate inhibitor of CYP3A4 may result in high to very high levels of and toxicity from flibanserin, including severe hypotension or syncope.(1) PREDISPOSING FACTORS: Patients with any degree of hepatic impairment, who are poor CYP2C19 metabolizers, or who also receive concomitant therapy with strong CYP2C19 inhibitors are expected to have increased systemic concentrations of flibanserin, adding to the risk for hypotension or syncopal episodes.(1) Hypotensive or syncopal episodes are more common when flibanserin is taken during waking hours.(1) PATIENT MANAGEMENT: The concomitant use of flibanserin with moderate or strong CYP3A4 inhibitors significantly increases flibanserin concentrations which may lead to hypotension and syncope. The manufacturer of flibanserin states moderate or strong CYP3A4 inhibitors are contraindicated.(1) If the benefit of initiating a CYP3A4 inhibitor within 2 days of stopping flibanserin clearly outweighs the risk flibanserin-associated hypotension or syncope, monitor and counsel the patient regarding symptoms of hypotension or syncope. Discontinue moderate or strong CYP3A4 inhibitors for 2 weeks before initiating or restarting flibanserin therapy.(1) DISCUSSION: In a drug interaction study with 15 healthy subjects, the combination of flibanserin (100 mg on day 6) and fluconazole (a moderate CYP3A4 and strong CYP2C19 inhibitor, 400 mg once then 200 mg daily for 5 days) resulted in an increased flibanserin exposure of 7-fold. Hypotension or syncope requiring supine placement with leg elevation occurred in 3 subjects (20%). One patient became unresponsive with a blood pressure of 64/41 mm Hg and required emergency room treatment where she required intravenous saline.(1) Though the combination has not been studied, a similar result is plausible with voriconazole, a strong CYP3A4 inhibitor and moderate CYP2C19 inhibitor.(1) In a drug interaction study with flibanserin 50 mg (one-half of the recommended dose) and ketoconazole 400 mg, flibanserin exposure increased 4.5-fold. One of 24 patients(4%) developed syncope.(1) A study of 12 healthy men and women on itraconazole (400 mg once then 200 mg daily for 4 days) with flibanserin 50 mg given 2 hours after itraconazole found that flibanserin exposure was increased 2.6-fold.(1) Strong inhibitors of CYP3A4 include: adagrasib, boceprevir, ceritinib, clarithromycin, cobicistat, idelalisib, indinavir, itraconazole, josamycin, ketoconazole, lonafarnib, lopinavir/ritonavir, mibefradil, mifepristone, nefazodone, nelfinavir, nirmatrelvir/ritonavir, paritaprevir, posaconazole, ribociclib, saquinavir, telaprevir, telithromycin, tipranavir, troleandomycin, tucatinib, and voriconazole.(1-3) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir/ritonavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole (also a CYP2C19 inhibitor), fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, ledipasvir, netupitant, schisandra, nilotinib, treosulfan and verapamil.(1-3) |
ADDYI, FLIBANSERIN |
Avanafil (Greater Than 50 mg)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of avanafil.(1) CLINICAL EFFECTS: The concurrent administration of a moderate CYP3A4 inhibitor may result in elevated levels of avanafil, which may result in increased adverse effects such as hypotension, visual changes, and priapism. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of avanafil states that in patients receiving moderate inhibitors of CYP3A4, the dose of avanafil should be limited to 50 mg in 24 hours.(1) DISCUSSION: Ketoconazole (400 mg daily), a strong inhibitor of CYP3A4, increased the maximum concentration (Cmax) and area-under-curve (AUC) of a single dose of avanafil (50 mg) by 3-fold and 13-fold, respectively. The half-life of avanafil increased from 5 hours to 9 hours.(1) Ritonavir (600 mg BID), a strong inhibitor of CYP3A4 and an inhibitor of 2C19, increased the Cmax and AUC of a single dose of avanafil (50 mg) by 2-fold and 13-fold, respectively. The half-life of avanafil increased from 5 hours to 9 hours.(1) Erythromycin (500 mg BID), a moderate inhibitor of CYP3A4, increased the Cmax and AUC of a single dose of avanafil (200 mg) by 2-fold and 3-fold, respectively. The half-life of avanafil increased from 5 hours to 8 hours.(1) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, grapefruit juice, imatinib, isavuconazonium, lefamulin, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan, and verapamil.(1-3) |
AVANAFIL, STENDRA |
Ranolazine (Greater Than 500 mg BID)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of ranolazine. Verapamil may also increase the absorption of ranolazine by inhibiting P-glycoprotein.(1) CLINICAL EFFECTS: Concurrent use of moderate inhibitors of CYP3A4 may result in elevated levels of and clinical effects from ranolazine. Elevated ranolazine levels may result in QTc prolongation, which may result in life-threatening cardiac arrhythmia, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of ranolazine states that the dosage of ranolazine should be limited to 500 mg twice daily in patients receiving moderate inhibitors of CYP3A4.(1) If concurrent therapy is deemed medically necessary, obtain serum calcium, magnesium, and potassium levels and monitor ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Concurrent use of diltiazem, a moderate inhibitor of CYP3A4, at daily doses of 180 mg to 360 mg increased plasma levels of ranolazine (1000 mg twice daily) by 50% and 130%, respectively.(1,4) In healthy subjects, concurrent ranolazine (1000 mg twice daily) had no effects on the pharmacokinetics of diltiazem (60 mg three times daily).(1) Concurrent use of verapamil (120 mg three times daily) increased plasma levels of ranolazine (750 mg twice daily) by 100%.(1) In a study in 12 healthy males, ranolazine immediate release (IR, 240 mg three times daily) had no effect on diltiazem (60 mg three times daily) pharmacokinetics. However, at ranolazine IR steady state, diltiazem increased ranolazine IR area under the curve (AUC) by 85%, on average, and increased maximum concentration (Cmax) by 1.9-fold and minimum concentration (Cmin) by 2.1-fold.(4) In a study in 12 subjects, ranolazine sustained release (SR, 500 mg twice daily) had no effect on diltiazem (60 mg three times daily) pharmacokinetics. However, at ranolazine steady state, diltiazem increased ranolazine SR Cmax, concentration minimum (Cmin), AUC by 80%, 216%, and 90%, on average, respectively.(4) In a study in 8 healthy males, diltiazem modified release (MR, 180 mg, or 240 mg, or 360 mg, once daily) increased ranolazine sustained release (SR, 1000 mg twice daily) AUC by 52%, 93%, and 139%, respectively. Ranolazine half-lives did not show any consistent trend of changes with increasing doses of diltiazem.(4) In a study of patients with severe chronic angina, the addition of ranolazine 750 mg twice daily or 1,000 mg twice daily along with their standard dose of diltiazem (180 mg once daily) provided additional antianginal relief, without evident adverse, long-term survival consequences over 1 to 2 years of therapy.(5) Ranolazine-induced QTc prolongation is dose and concentration-related.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, ledipasvir, lenacapavir, letermovir, netupitant, nilotinib, schisandra, treosulfan and verapamil.(1,3,6,7) |
ASPRUZYO SPRINKLE, RANOLAZINE ER |
Naloxegol (Greater Than 12.5 mg)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Inhibitors of CYP3A4 may inhibit the metabolism of naloxegol.(1) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 without a dosage adjustment of naloxegol may result in increased levels of naloxegol, which may precipitate opioid withdrawal symptoms.(1) PREDISPOSING FACTORS: Patients taking methadone may be more likely to experience gastrointestinal side effects such as abdominal pain and diarrhea as a result of opioid withdrawal.(1) PATIENT MANAGEMENT: The daily dose of naloxegol should be limited to 12.5 mg daily in patients taking moderate inhibitors of CYP3A4.(1) If concurrent use is deemed medically necessary, monitor patients for signs of opioid withdrawal such as sweating, chills, diarrhea, stomach pain, anxiety, irritability, yawning, restlessness, muscle/joint aches, increased lacrimation, running nose, and piloerection. Monitor patients taking methadone for abdominal pain and diarrhea as well.(1) DISCUSSION: Ketoconazole (400 mg daily for 5 days), a strong inhibitor of CYP3A4, increased the maximum concentration (Cmax) and area-under-curve (AUC) of a single dose of naloxegol by 9.58-fold and 12.85-fold, respectively.(2) Diltiazem (240 mg XR daily), a moderate inhibitor of CYP3A4, increased the Cmax and AUC of a single dose of naloxegol by 2.85 and 3.41, respectively.(2) According to Physiologically-based-Pharmacokinetic (PBPK) models, erythromycin, a moderate inhibitor of CYP3A4, at a dose of 250 mg QID is expected to increase the Cmax and AUC of naloxegol by 2.77-fold and 3.47-fold, respectively.(2) According to PBPK models, erythromycin at a dose of 400 mg QID is expected to increase the Cmax and AUC of naloxegol by 3.42-fold and 4.63-fold, respectively.(2) According to PBPK models, fluconazole, a moderate inhibitor of CYP3A4, at a dose of 200 mg daily is expected to increase the Cmax and AUC of naloxegol by 2.4-fold and 2.81-fold, respectively.(2) According to PBPK models, verapamil moderate inhibitor of CYP3A4, at a dose of 120 mg daily is expected to increase the Cmax and AUC of naloxegol by 1.97-fold and 2.21-fold, respectively.(2) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lefamulin, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan and verapamil.(1,3,4) |
MOVANTIK |
Talimogene laherparepvec/Selected Immunosuppressants SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Talimogene laherparepvec is a live, attenuated herpes simplex virus.(1) CLINICAL EFFECTS: Concurrent use of talimogene laherparepvec in patients receiving immunosuppressive therapy may cause a life-threatening disseminated herpetic infection.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Talimogene laherparepvec is contraindicated in immunosuppressed patients.(1) The magnitude of immunocompromise and associated risks due to immunosuppressant drugs should be determined by a physician. DISCUSSION: Concurrent use of talimogene laherparepvec in patients receiving immunosuppressive therapy may cause a life-threatening disseminated herpetic infection.(1) |
IMLYGIC |
Lomitapide/Strong or Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Lomitapide is primarily metabolized via CYP3A4.(1) CLINICAL EFFECTS: Concurrent use of a strong or moderate inhibitor of CYP3A4 may result in high to very high levels of and toxicity from lomitapide.(1) PREDISPOSING FACTORS: The interaction may be more severe in patients with hepatic impairment or with end-stage renal disease.(1) PATIENT MANAGEMENT: Given the magnitude of this interaction and the potential toxicity of lomitapide, moderate and strong CYP3A4 inhibitors are contraindicated.(1) When possible use an alternative to the CYP3A4 inhibitor. If a moderate or strong CYP3A4 inhibitor is required, discontinue lomitapide. Due to its long half-life, it will take 1 to 2 weeks for remaining lomitapide to be eliminated; thus lomitapide adverse effects could occur after discontinuation. The US manufacturer of itraconazole states that concurrent use with lomitapide is contraindicated during and two weeks after itraconazole treatment.(4) DISCUSSION: Concurrent administration with ketoconazole (a strong inhibitor of CYP3A4) increased lomitapide area-under-curve (AUC) by 27-fold.(1) Strong inhibitors of CYP3A4 include: adagrasib, boceprevir, ceritinib, clarithromycin, cobicistat, idelalisib, indinavir, itraconazole, josamycin, ketoconazole, lonafarnib, lopinavir/ritonavir, mibefradil, nefazodone, nelfinavir, nirmatrelvir/ritonavir, paritaprevir, posaconazole, ribociclib, saquinavir, telaprevir, telithromycin, tipranavir, tucatinib, and voriconazole.(1-3,5) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir/ritonavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole (also a CYP2C19 inhibitor), fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, lefamulin, letermovir, netupitant, nilotinib, nirogacestat, schisandra, treosulfan and verapamil.(1-3) |
JUXTAPID |
Lurasidone (Greater Than 80 mg)/Selected CYP3A4 Moderate Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may inhibit the metabolism of lurasidone.(1) CLINICAL EFFECTS: Concomitant use of lurasidone with inhibitors of CYP3A4 may lead to orthostatic hypotension, akathisia, acute dystonia, Parkinsonism or other lurasidone toxicities.(1) PREDISPOSING FACTORS: Elderly patients, particularly those with a history of falls or swallowing disorders, and patients with Parkinson Disease, Lewy Body Disease, or other dementias are more sensitive to antipsychotics and have a greater risk for adverse effects.(1) PATIENT MANAGEMENT: The US manufacturer of lurasidone states that the dose of lurasidone should not exceed 80 mg daily if coadministered with moderate CYP3A4 inhibitors.(1) If a patient is currently on lurasidone and a moderate CYP3A4 inhibitor is added to therapy, the dose of lurasidone should be decreased by 50% of the original dose.(1) If a patient is currently on a moderate CYP3A4 inhibitor and lurasidone is added to therapy, the recommended starting dose of lurasidone is 20 mg per day.(1) DISCUSSION: Pretreatment with diltiazem (240 mg daily for 5 days), another moderate inhibitor of CYP3A4, increased the maximum concentration (Cmax) and area-under-curve (AUC) of a single dose of lurasidone (20 mg) by 2.1-fold, and 2.2-fold, respectively.(1) Agents linked to this monograph include berotralstat, clofazimine, conivaptan, crizotinib, dronedarone, duvelisib, fedratinib, fluvoxamine, imatinib, isavuconazole, letermovir, nilotinib, nirogacestat, and tofisopam.(2,3) |
LATUDA, LURASIDONE HCL |
Cilostazol (Greater than 50 mg BID)/Selected Strong & Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Strong and moderate inhibitors of CYP3A4 may inhibit the metabolism of cilostazol.(1) CLINICAL EFFECTS: The concurrent use of cilostazol and strong and moderate inhibitors of CYP3A4 may result in elevated levels of cilostazol, which may produce increased effects of cilostazol and adverse effects.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The dose of cilostazol should be limited to 50 mg twice daily in patients receiving concurrent therapy with strong and moderate inhibitors of CYP3A4.(1) DISCUSSION: In a study in 16 healthy males, the administration of a single dose of cilostazol (10 mg) with erythromycin (500 mg every eight hours) increased the maximum concentration (Cmax) and area-under-curve (AUC) of cilostazol by 47% and 73%, respectively. The Cmax and AUC of 4'-trans-hydroxy-cilostazol were increased by 29% and 141%, respectively.(2) Analysis of population pharmacokinetics indicated that the concurrent administration of diltiazem with cilostazol increased cilostazol concentrations by 53%. Concurrent administration of diltiazem and cilostazol decreased cilostazol clearance by 30%, increased the Cmax by 30%, and increased AUC by 40%.(1) In a study, the administration of a single dose of cilostazol (10 mg) with erythromycin (500 mg every eight hours) increased the Cmax and AUC of cilostazol by 47% and 73%, respectively. The AUC of 4'-trans-hydroxy-cilostazol was increased by 141%.(1) In an vitro study in human liver microsomes, ketoconazole inhibited the metabolism of cilostazol.(3) |
CILOSTAZOL |
Mitapivat (Greater Than 20 mg)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of mitapivat.(1) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 may result in increased levels of and effects from mitapivat including decreased estrone and estradiol levels in males, increased urate, back pain, and arthralgias.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The concurrent use of moderate CYP3A4 inhibitors with mitapivat should be monitored closely for increased risk of adverse reactions. Mitapivat dose should not exceed 20 mg twice daily with concurrent moderate CYP3A4 inhibitors.(1) DISCUSSION: Mitapivat is a CYP3A4 substrate. In a pharmacokinetic study with mitapivat 5, 20, or 50 mg twice daily dosing, fluconazole increased mitapivat area-under-curve (AUC) and concentration maximum (Cmax) by 2.6-fold and 1.6-fold, respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, berotralstat, clofazimine, conivaptan, darunavir, diltiazem, dronedarone, erythromycin, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, letermovir, netupitant, nilotinib, schisandra, treosulfan and verapamil.(2)(2) |
PYRUKYND |
Lumateperone (Greater Than 21 mg)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of lumateperone.(1) CLINICAL EFFECTS: Concurrent use of lumateperone with moderate CYP3A4 inhibitors increases lumateperone exposure, which may increase the risk of adverse reactions.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of lumateperone recommends decreasing the dosage of lumateperone to 21 mg once daily in patients receiving moderate CYP3A4 inhibitors.(1) DISCUSSION: Coadministration of lumateperone with itraconazole, a strong CYP3A4 inhibitor, resulted in a 4-fold and 3.5-fold increase in area-under-curve (AUC) and concentration maximum (Cmax), respectively.(1) Coadministration of lumateperone with diltiazem, a moderate CYP3A4 inhibitor, resulted in a 2.5-fold and 2-fold increase AUC and Cmax, respectively.(1) Moderate inhibitors of CYP3A4 include: aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosnetupitant, imatinib, isavuconazonium, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, verapamil, treosulfan and voxelotor.(2,3) |
CAPLYTA |
Daridorexant (Greater Than 25 mg)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of daridorexant.(1) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 may result in increased levels of and effects from daridorexant including somnolence, fatigue, CNS depressant effects, daytime impairment, or headache.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The dose of daridorexant should be limited to 25 mg daily when used with a moderate CYP3A4 inhibitor.(1) DISCUSSION: Daridorexant is a CYP3A4 substrate. In a PKPB model, concurrent use of daridorexant with diltiazem, a moderate CYP3A4 inhibitor, increased daridorexant area-under-curve (AUC) and maximum concentration (Cmax) by 2.4-fold and 1.4-fold, respectively.(1) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, treosulfan and verapamil.(2) |
QUVIVIQ |
Nadofaragene Firadenovec/Selected Immunosuppressants SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Nadofaragene firadenovec may contain low levels of replication-competent adenovirus.(1) CLINICAL EFFECTS: Concurrent use of nadofaragene firadenovec in patients receiving immunosuppressive therapy may cause disseminated adenovirus infection.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Individuals who are immunosuppressed or immune-deficient should not receive nadofaragene firadenovec.(1) DISCUSSION: Nadofaragene firadenovec is a non-replicating adenoviral vector-based gene therapy but may contain low levels of replication-competent adenovirus. Immunocompromised persons, including those receiving immunosuppressant therapy, may be at risk for disseminated adenovirus infection.(1) |
ADSTILADRIN |
There are 66 severe interactions.
These drug interactions can produce serious consequences in most patients. Actions required for severe interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration scheduling, and providing additional patient monitoring. Review the full interaction monograph for more information.
Drug Interaction | Drug Names |
---|---|
Eplerenone/Selected Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of eplerenone.(1) CLINICAL EFFECTS: Concurrent use of moderate inhibitors of CYP3A4 may result in a 2-fold increase in eplerenone concentration and toxicity (e.g. hyperkalemia, hypotension).(1) PREDISPOSING FACTORS: Severe renal disease increases the risk for hyperkalemia. PATIENT MANAGEMENT: The starting dose of eplerenone for hypertension should be reduced to 25 mg in patients receiving moderate CYP3A4 inhibitors. For inadequate blood pressure response, dosing may be increased to a maximum of 25 mg twice daily. Do not exceed 25 mg once daily in post-MI CHF patients receiving a moderate CYP3A4 inhibitor.(1) In all patients taking eplerenone who start taking a moderate CYP3A4 inhibitor, check serum potassium and creatinine levels after 3-7 days of concurrent therapy.(1) DISCUSSION: Ketoconazole (200 mg BID) increased the maximum concentration (Cmax) and area-under-curve (AUC) of a single dose of eplerenone (100 mg) by 1.7-fold and 5.4-fold, respectively.(1) The concurrent use of eplerenone with less potent CYP3A4 inhibitors (erythromycin 500 mg BID, fluconazole 200 mg daily, saquinavir 1200 mg TID, and verapamil 240 mg daily) increased the Cmax of eplerenone by 1.4-fold to 1.6-fold and the AUC of eplerenone by 2.0-fold and 2.9-fold.(1) Moderate inhibitors of CYP3A4 include: aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosnetupitant, imatinib, isavuconazonium, lefamulin, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, treosulfan and verapamil.(1-3) |
EPLERENONE, INSPRA |
Ivabradine/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of ivabradine. Increased levels of ivabradine may cause ivabradine-induced reduction in heart rate which can contribute to increased QT prolongation risk.(1-3) CLINICAL EFFECTS: Concurrent use of moderate inhibitors may result in elevated levels of and toxicity from ivabradine including a reduction in heart rate which can contribute to QT prolongation or torsades de pointes.(1-3) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: The US manufacturer of ivabradine states that concurrent use of moderate inhibitors of CYP3A4, including diltiazem and verapamil, should be avoided.(1) The Australian and UK manufacturers of ivabradine state that concurrent use of diltiazem or verapamil is contraindicated but that other moderate inhibitors of CYP3A4 may be considered with monitoring of heart rate and with a starting dose of 2.5 mg ivabradine twice daily if resting heart rate is above 70 bpm.(2-3) Monitor patients receiving concurrent therapy for bradycardia (heart rate less than 50 bpm), dizziness, fatigue, hypotension, and/or symptoms of atrial fibrillation (heart palpitations, chest pressure, shortness of breath). DISCUSSION: Concurrent use of potent CYP3A4 inhibitors ketoconazole (200 mg daily) and josamycin (1000 mg twice daily) increased mean ivabradine plasma exposure by 7- to 8-fold. Concurrent use of moderate CYP3A4 inhibitors diltiazem and verapamil increased ivabradine area-under-curve (AUC) by 2- to 3-fold and reduced heart rate by an additional 5 bpm.(2) Moderate CYP3A4 inhibitors linked to this monograph include: amprenavir, aprepitant, avacopan, berotralstat, clofazimine, conivaptan, diltiazem, duvelisib, fedratinib, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nirogacestat, schisandra, tofisopam, treosulfan and verapamil.(5) |
CORLANOR, IVABRADINE HCL |
Tolvaptan/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of tolvaptan.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may result in elevated levels of and toxicity from tolvaptan.(1) Elevated levels of tolvaptan may lead to increased clinical effects such as hypotension, hypovolemia, and thirst, as well as toxicity in the form of neurologic sequelae such as osmotic demyelination syndrome (ODS). ODS can lead to coma and death. Symptoms of ODS include dysarthria, mutism, dysphagia, lethargy, affective changes, spastic quadriparesis, seizures, and coma.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of Samsca for the treatment of clinically significant hypervolemic and euvolemic hyponatremia states that concurrent administration with moderate CYP3A4 inhibitors should be avoided.(1) The US manufacturer of Jynarque for the management to slow kidney function decline in adults at risk of rapidly progressing autosomal dominant polycystic kidney disease states concurrent administration with moderate CYP3A4 inhibitors warrants a dose reduction of Jynarque as follows: - Standard morning and evening dose: 90 mg and 30 mg should be dose adjusted to 45 mg and 15 mg, respectively - Standard morning and evening dose: 60 mg and 30 mg should be dose adjusted to 30 mg and 15 mg, respectively - Standard morning and evening dose: 45 mg and 15 mg should be dose adjusted to 15 mg and 15 mg, respectively Interrupt Jynarque temporarily for short term therapy with moderate CYP3A4 inhibitors if the recommended reduced doses are not available.(2) DISCUSSION: Fluconazole 400 mg (moderate inhibitor of CYP3A4) given one day prior and 200 mg given concomitantly produced an 80% and 200% increase in tolvaptan maximum concentration (Cmax) and area-under-curve (AUC), respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, crizotinib, darunavir, diltiazem, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lefamulin, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, treosulfan and verapamil.(1-4) |
JYNARQUE, SAMSCA, TOLVAPTAN |
Colchicine (for Gout & FMF)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may inhibit the metabolism of colchicine(1-3) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may result in elevated levels of and toxicity from colchicine. Symptoms of colchicine toxicity include muscle weakness or pain; numbness or tingling in the fingers or toes; myelosuppression; abdominal pain; nausea; severe diarrhea or vomiting; feeling weak or tired; increased infections; and pale or gray color of the lips, tongue, or palms of hands.(1-3) PREDISPOSING FACTORS: This interaction is expected to be more severe in patients with renal and/or hepatic impairment.(1-3) PATIENT MANAGEMENT: Avoid use of colchicine concurrently with or within 14 days of taking moderate CYP3A4 inhibitors (without ritonavir). If concurrent use is unavoidable, the dosage of colchicine should be reduced.(1-3) For gout flares, the recommended dosage is 1.2 mg (2 tablets) for one dose. This dose should be repeated no earlier than in 3 days.(1-4) For gout prophylaxis, if the original dosage was 0.6 mg twice daily, use 0.3 mg twice daily or 0.6 mg daily. If the original dosage was 0.6 mg daily, use 0.3 mg daily.(1-4) For Familial Mediterranean fever (FMF), the recommended maximum daily dose is 1.2 mg (may be given as 0.6 mg twice a day).(1-4) Patients should be instructed to immediately report any signs of colchicine toxicity, such as muscle weakness/pain, numbness/tingling in fingers/toes, unusual bleeding or bruising, infections, weakness/tiredness, pale/gray color of the lips/tongue/palms of hands, and/or severe diarrhea/vomiting. DISCUSSION: Fluconazole (400 mg loading dose followed by 200 mg daily for 4 days) increased the area-under-curve (AUC) of colchicine by 40%.(2) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, avacopan, clofazimine, conivaptan, crizotinib, duvelisib, fedratinib, fluconazole, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, ledipasvir, lenacapavir, letermovir, netupitant, nilotinib, and treosulfan.(1,5,6) |
COLCHICINE, COLCRYS, GLOPERBA, MITIGARE, PROBENECID-COLCHICINE |
Deferiprone/Selected Myelosuppressive Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of deferiprone with other drugs known to be associated with neutropenia or agranulocytosis may increase the frequency or risk for severe toxicity.(1) CLINICAL EFFECTS: Concurrent use of deferiprone and myelosuppressive agents may result in severe neutropenia or agranulocytosis, which may be fatal. PREDISPOSING FACTORS: Agranulocytosis may be less common in patients receiving deferiprone for thalassemia, and more common in patients treated for other systemic iron overload conditions (e.g. myelodysplastic syndromes, sickle cell disease).(2,3) Inadequate monitoring appears to increase the risk for severe outcomes. Manufacturer post market surveillance found that in all fatal cases of agranulocytosis reported between 1999 and 2005, data on weekly white blood count (WBC) monitoring was missing. In three fatal cases, deferiprone was continued for two to seven days after the detection of neutropenia or agranulocytosis.(2) PATIENT MANAGEMENT: If possible, discontinue one of the drugs associated with risk for neutropenia or agranulocytosis. If alternative therapy is not available, documentation and adherence to the deferiprone monitoring protocol is essential. Baseline absolute neutrophil count (ANC) must be at least 1,500/uL prior to starting deferiprone. Monitor ANC weekly during therapy. If infection develops, interrupt deferiprone therapy and monitor ANC more frequently. If ANC is less than 1,500/uL but greater than 500/uL, discontinue deferiprone and any other drugs possibly associated with neutropenia. Initiate ANC and platelet counts daily until recovery (i.e. ANC at least 1,500/uL). If ANC is less than 500/uL, discontinue deferiprone, evaluate patient and hospitalize if appropriate. Do not resume deferiprone unless potential benefits outweigh potential risks.(1) DISCUSSION: Drugs linked to this monograph have an FDA Boxed Warning for risk of neutropenia, agranulocytosis, or pancytopenia, or have > 5% risk for neutropenia and/or warnings describing risk for myelosuppression in manufacturer prescribing information.(1-25) In pooled clinical studies submitted to the FDA, 6.1% of deferiprone patients met criteria for neutropenia and 1.7% of patients developed agranulocytosis.(1) The time to onset of agranulocytosis was highly variable with a range of 65 days to 9.2 years (median, 161 days).(3) |
DEFERIPRONE, DEFERIPRONE (3 TIMES A DAY), FERRIPROX, FERRIPROX (2 TIMES A DAY), FERRIPROX (3 TIMES A DAY) |
Ivacaftor/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Strong and moderate inhibitors of CYP3A4 may inhibit the metabolism of ivacaftor.(1) CLINICAL EFFECTS: Concurrent use of a strong or moderate inhibitor of CYP3A4 may result in elevated levels of and toxicity from ivacaftor.(1) PREDISPOSING FACTORS: This interaction may be more severe in patients with hepatic impairment.(1) PATIENT MANAGEMENT: In patients receiving concurrent strong CYP3A4 inhibitors such as boceprevir, ceritinib, clarithromycin, cobicistat, conivaptan, idelalisib, indinavir, itraconazole, ketoconazole, lopinavir/ritonavir, mibefradil, nefazodone, nelfinavir, nirmatrelvir/ritonavir, posaconazole, ritonavir, saquinavir, telaprevir, telithromycin, troleandomycin, tucatinib, or voriconazole, the dose of ivacaftor should be reduced to one 150 mg tablet or one packet (25 mg if body weight 5 kg to < 7 kg, 50 mg if body weight < 14 kg, 75 mg if weight equal or > 14 kg) two times a week.(1) In patients receiving concurrent moderate CYP3A4 inhibitors such as amprenavir, aprepitant, atazanavir, berotralstat, crizotinib, cyclosporine, darunavir/ritonavir, diltiazem, dronedarone, erythromycin, fluconazole, fosamprenavir, fosaprepitant, imatinib, isavuconazonium, ledipasvir, netupitant, schisandra or verapamil, the dose of ivacaftor should be reduced to one 150 mg tablet or one packet (25 mg if body weight 5 kg to < 7 kg, 50 mg if body weight < 14 kg, 75 mg if weight equal or > 14 kg) daily.(1) In patients who are less than 6 months of age, concurrent use of ivacaftor with strong or moderate CYP3A4 inhibitors is not recommended.(1) DISCUSSION: Concurrent administration with ketoconazole (a strong inhibitor of CYP3A4) increased ivacaftor area-under-curve (AUC) by 8.5-fold.(1) Concurrent administration with fluconazole (a moderate inhibitor of CYP3A4) increased ivacaftor area-under-curve (AUC) by 3-fold.(1) A study in 12 subjects compared ivacaftor alone (study A), ivacaftor with ritonavir (a strong inhibitor of CYP3A4) 50 mg daily on days 1-4 (study B), and ivacaftor with ritonavir 50 mg daily for two weeks prior and on days 1-4 of ivacaftor administration (study C). In study A, B, and C, ivacaftor AUC increased from 10.94 mcg/hr to 215.6 mcg/hr and 216 mcg/hr, respectively, with the addition of ritonavir. Ivacaftor concentration maximum (Cmax) was 0.9944 mcg, 1.812 mcg, and 2.267 mcg in study A, B, and C, respectively.(2) Strong inhibitors of CYP3A4 include: adagrasib, boceprevir, ceritinib, clarithromycin, cobicistat, idelalisib, indinavir, itraconazole, josamycin, ketoconazole, lonafarnib, lopinavir/ritonavir, mibefradil, nefazodone, nelfinavir, nirmatrelvir/ritonavir, posaconazole, ribociclib, ritonavir, saquinavir, telaprevir, telithromycin, troleandomycin, tucatinib, and voriconazole.(3-5) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir/ritonavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, ledipasvir, netupitant, nilotinib, nirogacestat, schisandra, treosulfan and verapamil.(3-5) |
KALYDECO |
Bosutinib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Agents that inhibit CYP3A4 may inhibit the metabolism of bosutinib.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may increase levels of and effects from bosutinib.(1) Elevated levels of bosutinib may result in QTc prolongation, which may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes (TdP). Other toxicities include nausea, vomiting, diarrhea, abdominal pain, myelosuppression, transaminitis, renal toxicity, and cardiac failure.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid the use of moderate CYP3A4 inhibitors in patients undergoing therapy with bosutinib.(1) DISCUSSION: In a study in 24 healthy subjects, ketoconazole (400 mg daily for 5 days) increased the maximum concentration (Cmax) and area-under-curve (AUC) of bosutinib (100 mg) by 5.2-fold and 8.6-fold, respectively.(1) In a cross-over study in 18 healthy subjects, aprepitant (125 mg) increased the Cmax and AUC of bosutinib (single dose 500 mg) by 1.5-fold and 2.0-fold, respectively.(1) A study using PKPB modeling found concurrent use of bosutinib and schisandra would result in an increase in bosutinib exposure with an increased AUC by 3.0-fold.(2) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, boceprevir, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, ledipasvir, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, treosulfan and verapamil.(3-4) |
BOSULIF |
Tofacitinib/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of tofacitinib and azathioprine, other biologic disease-modifying antirheumatic drugs (DMARDs), or potent immunosuppressants may result in additive or synergistic effects on the immune system.(1) CLINICAL EFFECTS: Concurrent use of tofacitinib and azathioprine, other biologic DMARDs, or potent immunosuppressants use may increase the risk of serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Tofacitinib should not be used concurrently with azathioprine, other biologic DMARDs, or cyclosporine.(1) Patient should be monitored for decreases in lymphocytes and neutrophils. Therapy should be adjusted based on the indication. - For all indications: If absolute neutrophil count (ANC) or lymphocyte count is less than 500 cells/mm3, discontinue tofacitinib. - For rheumatoid arthritis or psoriatic arthritis and absolute neutrophil count (ANC) 500 to 1000 cells/mm3: interrupt dosing. When ANC is greater than 1000 cells/mm3, resume Xeljanz 5 mg twice daily or Xeljanz XR 11 mg once daily. - For ulcerative colitis and ANC 500 to 1000 cells/mm3: -If taking Xeljanz 10 mg twice daily, decrease to 5 mg twice daily. When ANC is greater than 1000 cells/mm3, increase to 10 mg twice daily based on clinical response. -If taking Xeljanz 5 mg twice daily, interrupt dosing. When ANC is greater than 1000 cells/mm3, resume 5 mg twice daily. -If taking Xeljanz XR 22 mg once daily, decrease to 11 mg once daily. When ANC is greater than 1000 cells/mm3, increase to 22 mg once daily based on clinical response. -If taking Xeljanz XR 11 mg once daily, interrupt dosing. When ANC is greater than 1000 cells/mm3, resume 11 mg once daily. - For polyarticular course juvenile idiopathic arthritis (pcJIA) and ANC 500 to 1000 cells/mm3: interrupt dosing until ANC is greater than 1000 cells/mm3.(1) DISCUSSION: Concurrent use of tofacitinib and azathioprine, other biologic DMARDs, or potent immunosuppressants may increase the risk of infection.(1) |
TOFACITINIB CITRATE, XELJANZ, XELJANZ XR |
Clozapine/Selected Myelosuppressive Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Clozapine and other myelosuppressive agents may be associated with neutropenia or agranulocytosis.(2) CLINICAL EFFECTS: Moderate neutropenia, even if due to combination therapy, may require abrupt discontinuation of clozapine resulting in decompensation of the patient's psychiatric disorder (e.g. schizophrenia). The disease treated by the myelosuppressive agent may be compromised if myelosuppression requires dose reduction, delay, or discontinuation of the myelosuppressive agent. Undetected severe neutropenia or agranulocytosis may be fatal. PREDISPOSING FACTORS: Low white blood counts prior to initiation of the myelosuppressive agent may increase risk for clinically significant neutropenia. PATIENT MANAGEMENT: If a patient stabilized on clozapine therapy requires treatment with a myelosuppressive agent, the clozapine prescriber should consult with prescriber of the myelosuppressive agent (e.g. oncologist) to discuss treatment and monitoring options.(2) More frequent ANC monitoring or treatment alternatives secondary to neutropenic episodes may need to be considered. Clozapine is only available through a restricted distribution system which requires documentation of the absolute neutrophil count (ANC) prior to dispensing.(1-2) For most clozapine patients, clozapine treatment must be interrupted for a suspected clozapine-induced ANC < 1000 cells/microliter. For patients with benign ethnic neutropenia (BEN), treatment must be interrupted for suspected clozapine-induced neutropenia < 500 cells/microliter.(2) DISCUSSION: Clozapine is only available through a restricted distribution system which requires documentation of the ANC prior to dispensing.(1) Agents linked to this interaction generally have > 5% risk for neutropenia and/or warnings describing risk for myelosuppression in manufacturer prescribing information.(3-26) |
CLOZAPINE, CLOZAPINE ODT, CLOZARIL, VERSACLOZ |
Bosentan/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Bosentan is metabolized by CYP2C9 and CYP3A4. It is also an inducer of these enzymes. With regular dosing bosentan auto-induces its own metabolism.(1) Strong and moderate CYP3A4 inhibitors may inhibit the CYP3A4 mediated metabolism of bosentan.(1,2) CLINICAL EFFECTS: Concurrent use of bosentan with an inhibitor of CYP3A4 may result in elevated levels of and toxicity from bosentan.(1) PREDISPOSING FACTORS: Concurrent use of bosentan, a CYP3A4 inhibitor and a CYP2C9 inhibitor (e.g. amiodarone, fluconazole, miconazole, oxandrolone, sulfinpyrazone, or phenylbutazone)(3) could lead to blockade of both major metabolic pathways for bosentan, resulting in large increases in bosentan plasma concentrations.(1,3) PATIENT MANAGEMENT: Review medication list to see if patient is also receiving a CYP2C9 inhibitor (e.g. amiodarone, fluconazole, miconazole, oxandrolone, sulfinpyrazone, or phenylbutazone). Concomitant use of both a CYP2C9 and CYP3A4 inhibitor is not recommended by the manufacturer as the combination may lead to large increases in bosentan plasma concentrations.(1) For patients stabilized on bosentan when a CYP3A4 inhibitor is initiated, monitor tolerance to concomitant therapy and adjust bosentan dose if needed. In patients who have been receiving a strong CYP3A4 inhibitor for at least 10 days, start bosentan at 62.5 mg once daily or every other day based upon individual tolerability. Discontinue use of bosentan at least 36 hours prior to initiation of a strong CYP3A4 inhibitor. After at least 10 days following the initiation of a strong CYP3A4 inhibitor, resume bosentan at 62.5 mg once daily or every other day based upon individual tolerability. DISCUSSION: In a study in healthy subjects, concurrent bosentan and ketoconazole (a strong CYP3A4 inhibitor) administration increased bosentan steady-state maximum concentrations (Cmax) and area-under-curve (AUC) by 2.1-fold and 2.3-fold, respectively.(2) Strong CYP3A4 inhibitors linked to this monograph include: adagrasib, boceprevir, ceritinib, clarithromycin, itraconazole, josamycin, ketoconazole, levoketoconazole, mibefradil, mifepristone, nefazodone, posaconazole, ribociclib, telaprevir, telithromycin, troleandomycin, tucatinib, and voriconazole.(3) Moderate CYP3A4 inhibitors linked to this monograph include: aprepitant, berotralstat, clofazimine, conivaptan, diltiazem, dronedarone, erythromycin, fluvoxamine, fosnetupitant, imatinib, isavuconazonium, letermovir, netupitant, nilotinib, schisandra, treosulfan and verapamil.(3) |
BOSENTAN, TRACLEER |
Guanfacine/Strong & Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Strong or moderate inhibitors of CYP3A4 may inhibit the metabolism of guanfacine.(1) CLINICAL EFFECTS: The concurrent administration of a strong or moderate CYP3A4 inhibitor may result in elevated levels of guanfacine, which may result in increased adverse effects such as hypotension, bradycardia, loss of consciousness, and drowsiness.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Patients maintained on guanfacine may need dosage adjustments if strong or moderate inhibitors of CYP3A4 are initiated or discontinued. The manufacturer of extended-release guanfacine recommends a starting dose of extended-release guanfacine initiated at half the recommended level of the weight based dosing in patients receiving strong or moderate inhibitors of CYP3A4. If a patient has been maintained on extended-release guanfacine and is started on a strong or moderate CYP3A4 inhibitor, the dose of extended-release guanfacine should be decreased to half the recommended weight based dose. If a patient has been maintained on extended-release guanfacine and a strong or moderate CYP3A4 inhibitor and the strong or moderate CYP3A4 inhibitor is discontinued, the dose of extended-release guanfacine may need to be increased to the recommended weight based dose based upon patient response. Extended-release guanfacine target dose range for attention deficit hyperactivity disorder is 0.05-0.12 mg/kg/day. Doses above 4 mg/day have not been evaluated in children ages 6-12 years and doses above 7 mg/day have not been evaluated in adolescents ages 13-17 years.(1) DISCUSSION: Ketoconazole (dosage not stated), a strong inhibitor of CYP3A4, increased the maximum concentration (Cmax) and area-under-curve (AUC) of guanfacine (dosage not stated) by approximately 1.75-fold and 3-fold, respectively.(1) Strong inhibitors of CYP3A4 include: adagrasib, boceprevir, ceritinib, clarithromycin, cobicistat, idelalisib, indinavir, itraconazole, josamycin, ketoconazole, levoketoconazole, lonafarnib, lopinavir/ritonavir, mibefradil, mifepristone, nefazodone, nelfinavir, nirmatrelvir/ritonavir, posaconazole, ribociclib, ritonavir, saquinavir, telaprevir, telithromycin, tipranavir, troleandomycin, tucatinib, and voriconazole.(1-3) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan and verapamil.(1-3) |
GUANFACINE HCL, GUANFACINE HCL ER, INTUNIV |
Pimozide/Selected Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of pimozide.(1) CLINICAL EFFECTS: Concurrent administration of a moderate inhibitor of CYP3A4 may result in elevated levels of pimozide, which may result in prolongation of the QTc interval and potentially life-threatening ventricular arrhythmias.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) The risk of anticholinergic toxicities including cognitive decline, delirium, falls and fractures is increased in geriatric patients using more than one medicine with anticholinergic properties.(3) PATIENT MANAGEMENT: Avoid concurrent use, especially when other risk factors for QT prolongation are present. The manufacturer of pimozide states that concomitant treatment with strong CYP3A4 inhibitors is contraindicated and treatment with less potent inhibitors of CYP3A4 should also be avoided.(1) If concurrent use cannot be avoided, then correct or minimize QT prolonging risk factors, e.g. correct electrolyte disturbances, use the lowest effective dose of pimozide, and discontinue other concurrent QT prolonging agents or CYP3A4 inhibitors if possible. Consider ECG to evaluate baseline and/or concurrent QT prolongation risk. Monitor patients on the combination and counsel patients accordingly. DISCUSSION: Pimozide is metabolized at CYP3A.(1,4) Elevated levels of pimozide may prolong the QTc interval resulting in life-threatening ventricular arrhythmias.(1) Moderate inhibitors of CYP3A4 include: avacopan, berotralstat, clofazimine, conivaptan, diltiazem, duvelisib, fedratinib, fosnetupitant, imatinib, isavuconazonium, lenacapavir, netupitant, schisandra, tofisopam, treosulfan and verapamil.(5,6) |
PIMOZIDE |
Ergot Alkaloids/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may inhibit the metabolism of ergot alkaloids. CLINICAL EFFECTS: Concurrent use of a moderate CYP3A4 inhibitor may result in increased levels of the ergot alkaloid, which may result in clinical signs of ergotism, including vasospasm, dysesthesia, renal ischemia, and peripheral ischemia. PREDISPOSING FACTORS: Patients receiving the maximum recommended (or higher than recommended) dosages of ergot alkaloids may be at a higher risk of adverse effects from this combination. PATIENT MANAGEMENT: When possible, avoid the concurrent use of moderate CYP3A4 inhibitors in patients taking ergot alkaloids. If concurrent use is warranted, consider reducing the dose of the ergot alkaloid during concurrent therapy. Patients receiving concurrent therapy should be monitored for and instructed to report any signs of ergotism. DISCUSSION: Coadministration of dihydroergotamine and ergotamine with potent inhibitors of CYP3A4 such as clarithromycin, erythromycin, indinavir, nelfinavir, ritonavir, and troleandomycin has resulted in ergotism, characterized by vasospasm and ischemia of the extremities. Inhibition of ergot alkaloid metabolism by moderate inhibitors would also be expected, but to a lesser degree. Moderate CYP3A4 inhibitors linked to this monograph are aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, dronedarone, duvelisib, fedratinib, fluconazole, fluvoxamine, fosnetupitant, imatinib, isavuconazonium, lenacapavir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan and verapamil. |
DIHYDROERGOTAMINE MESYLATE, ERGOLOID MESYLATES, ERGOMAR, ERGOTAMINE TARTRATE, ERGOTAMINE-CAFFEINE, METHYLERGONOVINE MALEATE, METHYSERGIDE MALEATE, MIGERGOT, MIGRANAL, TRUDHESA |
Suvorexant (Greater Than 10 mg)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate and strong inhibitors of CYP3A4 may inhibit the metabolism of suvorexant.(1) CLINICAL EFFECTS: Concurrent use of an agent that is a moderate or strong inhibitor of CYP3A4 may result in elevated levels of and clinical effects of suvorexant.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of suvorexant recommends a starting dose of 5 mg daily and a maximum dose of 10 mg daily in patients receiving concomitant therapy with a moderate inhibitor of CYP3A4.(1) Concurrent use with strong inhibitors of CYP3A4 is not recommended.(1) DISCUSSION: Diltiazem, a moderate inhibitor of CYP3A4, increased suvorexant AUC and Cmax by approximately 2-fold and 1.25-fold, respectively.(1) Ketoconazole, a strong inhibitor of CYP3A4, increased suvorexant area-under-curve (AUC) and maximum concentration (Cmax) by approximately 2.75-fold and 1.25-fold, respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan and verapamil.(1-3) |
BELSOMRA |
Cobimetinib; Olaparib; Sonidegib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Agents which inhibit the CYP3A4 enzyme may inhibit the metabolism of cobimetinib, olaparib, and sonidegib.(1-4) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may increase systemic exposure and the risk for adverse effects from cobimetinib, olaparib, or sonidegib.(1-4) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: When possible, avoid the use of moderate CYP3A4 inhibitors in patients receiving cobimetinib, olaparib, or sonidegib.(1-4) For patients taking cobimetinib 60 mg daily, if concurrent short term use (14 days or less) of a moderate CYP3A4 inhibitor cannot be avoided, reduce cobimetinib dose to 20 mg daily. After discontinuation of the moderate CYP3A4 inhibitor resume the previous 60 mg dose. Patients who are taking cobimetinib 40 mg or 20 mg daily should not receive a moderate or strong CYP3A4 inhibitor.(1) If concomitant use with olaparib cannot be avoided, reduce the olaparib dose. Dosage adjustments are specific to the formulation of olaparib.(2,3) Reduce the dosage of the CAPsule formulation to 200 mg (four 50 mg CAPsules) taken twice daily.(2) Reduce the dosage of the TABlet formulation to 150 mg (one 150 mg TABlet) twice daily). If the CYP3A4 inhibitor is discontinued, resume the dose of olaparib taken prior to initiation of the CYP3A4 inhibitor after 3 to 5 half-lives.(3) If sonidegib and a moderate CYP3A4 inhibitor must be used, administer the moderate CYP3A4 inhibitor for less than 14 days and monitor closely for adverse effects, particularly musculoskeletal adverse reactions.(4) DISCUSSION: In an interaction study, itraconazole (a strong CYP3A4 inhibitor) given 200 mg once daily for 14 days followed by a single dose of cobimetinib 10 mg increased mean cobimetinib AUC 6.7-fold (90% CI 5.6, 8.0). Subsequent simulations showed that predicted steady-state concentrations of cobimetinib at a reduced daily dose of 20 mg given with short term use of a moderate CYP3A4 inhibitor were similar to observed steady-state concentrations at the 60 mg dose without an inhibitor.(1) In simulations using physiologically-based pharmacokinetic (PBPK) models, concurrent use of fluconazole, a moderate CYP3A4 inhibitor, may increase the area-under-curve (AUC) of olaparib by 2.2-fold.(2,3) Based upon PBPK simulations, sonidegib mean steady-state AUC would increase 1.8-fold if administered with a moderate CYP3A4 inhibitor for 14 days and would further increase to 2.8-fold if the moderate CYP3A4 inhibitor is coadministered with sonidegib for 4 months.(4) Moderate CYP3A4 inhibitors linked to this monograph include: aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosnetupitant, imatinib, isavuconazonium, ledipasvir, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan and verapamil.(5) |
COTELLIC, LYNPARZA, ODOMZO |
Naloxegol (Less Than or Equal To 12.5 mg)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of CYP3A4 may inhibit the metabolism of naloxegol.(1) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 without a dosage adjustment of naloxegol may result in increased levels of naloxegol, which may precipitate opioid withdrawal symptoms.(1) PREDISPOSING FACTORS: Patients taking methadone may be more likely to experience gastrointestinal side effects such as abdominal pain and diarrhea as a result of opioid withdrawal.(1) PATIENT MANAGEMENT: Avoid the use of moderate inhibitors of CYP3A4 in patients who require therapy with naloxegol. If concurrent use cannot be avoided, the daily dose of naloxegol should be limited to 12.5 mg daily in patients taking moderate inhibitors of CYP3A4.(1) Monitor patients for signs of opioid withdrawal such as sweating, chills, diarrhea, stomach pain, anxiety, irritability, yawning, restlessness, muscle/joint aches, increased lacrimation, running nose, and piloerection. Monitor patients taking methadone for abdominal pain and diarrhea as well.(1) DISCUSSION: Ketoconazole (400 mg daily for 5 days), a strong inhibitor of CYP3A4, increased the maximum concentration (Cmax) and area-under-curve (AUC) of a single dose of naloxegol by 9.58-fold and 12.85-fold, respectively.(2) Diltiazem (240 mg XR daily), a moderate inhibitor of CYP3A4, increased the Cmax and AUC of a single dose of naloxegol by 2.85 and 3.41, respectively.(2) According to Physiologically-based-Pharmacokinetic (PBPK) models, erythromycin, a moderate inhibitor of CYP3A4, at a dose of 250 mg QID is expected to increase the Cmax and AUC of naloxegol by 2.77-fold and 3.47-fold, respectively.(2) According to PBPK models, erythromycin at a dose of 400 mg QID is expected to increase the Cmax and AUC of naloxegol by 3.42-fold and 4.63-fold, respectively.(2) According to PBPK models, fluconazole, a moderate inhibitor of CYP3A4, at a dose of 200 mg daily is expected to increase the Cmax and AUC of naloxegol by 2.4-fold and 2.81-fold, respectively.(2) According to PBPK models, verapamil moderate inhibitor of CYP3A4, at a dose of 120 mg daily is expected to increase the Cmax and AUC of naloxegol by 1.97-fold and 2.21-fold, respectively.(2) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lefamulin, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan and verapamil.(1,3,4) |
MOVANTIK |
Selected Multiple Sclerosis Agents/Immunosuppressants; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ocrelizumab or ofatumumab in combination with immunosuppressives and immune-modulators all suppress the immune system.(1,2) CLINICAL EFFECTS: Concurrent use of ocrelizumab or ofatumumab with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1,2) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: The ocrelizumab US prescribing information states: - Ocrelizumab and other immune-modulating or immunosuppressive therapies, (including immunosuppressant doses of corticosteroids) are expected to increase the risk of immunosuppression, and the risk of additive immune system effects must be considered if these therapies are coadministered with ocrelizumab. When switching from drugs with prolonged immune effects, such as daclizumab, fingolimod, natalizumab, teriflunomide, or mitoxantrone, the duration and mode of action of these drugs must be considered to avoid unintended additive immunosuppressive effects when initiating ocrelizumab.(1) The ofatumumab US prescribing information states: - Ofatumumab and other immunosuppressive therapies (including systemic corticosteroids) may have the potential for increased immunosuppressive effects and increase the risk of infection. When switching between therapies, the duration and mechanism of action of each therapy should be considered due to the potential for additive immunosuppressive effects. Ofatumumab for MS therapy has not been studied in combination with other MS agents that suppress the immune system.(2) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1,2) In a retrospective cohort study of multiple sclerosis patients newly initiated on a disease-modifying therapy, use of high-efficacy agents (alemtuzumab, natalizumab, or ocrelizumab) resulted in the same risk of overall infections as moderate-efficacy agents, but there was an elevated risk of serious infections (adjusted hazard ratio [aHR] = 1.24, 95% confidence interval (CI) = 1.06-1.44) and UTIs (aHR = 1.21, 95% CI = 1.14-1.30).(3) |
KESIMPTA PEN, OCREVUS, OCREVUS ZUNOVO |
Venetoclax/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors inhibit the metabolism of venetoclax.(1) CLINICAL EFFECTS: Concurrent use of moderate inhibitors of CYP3A4 may result in elevated levels of venetoclax, increasing the risk for tumor lysis syndrome and other toxicities.(1) PREDISPOSING FACTORS: Risk factors for tumor lysis syndrome include (1): - the ramp-up phase of venetoclax therapy when tumor burden is highest - initial magnitude of tumor burden - renal impairment The risk of venetoclax toxicities may be increased in patients with severe hepatic impairment.(1) PATIENT MANAGEMENT: Avoid moderate CYP3A4 inhibitors and consider alternative treatments when possible. If a moderate CYP3A4 inhibitor must be used, reduce venetoclax dose by at least 50%. Monitor more closely for signs of toxicity such as tumor lysis syndrome, hematologic and non-hematologic toxicities.(1) Canadian labeling for atazanavir contraindicates concurrent use of atazanavir/ritonavir with venetoclax at venetoclax dose initiation and during the ramp-up phase.(2) If the moderate CYP3A4 inhibitor is discontinued, the manufacturer of venetoclax recommends resuming the prior (i.e. pre-inhibitor) dose of venetoclax 2 to 3 days after discontinuation of the moderate CYP3A4 inhibitor. DISCUSSION: In 11 previously treated NHL subjects, ketoconazole (a strong CYP3A4 inhibitor which also inhibits P-gp and BCRP) 400 mg daily for 7 days increased the maximum concentration (Cmax) and area-under-curve (AUC) of venetoclax 2.3-fold and 6.4-fold respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lefamulin, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan and verapamil.(3-4) |
VENCLEXTA, VENCLEXTA STARTING PACK |
Selected Oral BCRP Substrates/Oral Tedizolid SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Oral tedizolid may may inhibit Breast Cancer Resistance Protein (BCRP) in the intestine, which may result in increased absorption of orally administered BCRP substrates.(1-3) CLINICAL EFFECTS: Concurrent use of oral tedizolid may result in elevated levels of and toxicity from orally administered BCRP substrates.(1-3) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: If possible, consider interrupting therapy with orally administered BCRP substrates during therapy with oral tedizolid. If concurrent therapy is warranted, monitor patients for toxicity.(1-3) DISCUSSION: Orally administered tedizolid (200 mg) increased the area-under-curve (AUC) and maximum concentration (Cmax) of rosuvastatin (10 mg) by 70% and 55%, respectively.(1-3) BCRP substrates include: imatinib, lapatinib, methotrexate, rosuvastatin, sulfasalazine, and topotecan.(1-3) |
SIVEXTRO |
Deflazacort/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Deflazacort is a prodrug and is rapidly metabolized to the active metabolite, 21-desDFZ, by esterases. The metabolite 21-desDFZ is metabolized by CYP3A4 to inactive metabolites.(1) Inhibitors of CYP3A4 may inhibit the metabolism of the active metabolite of deflazacort metabolized by CYP3A4.(1) CLINICAL EFFECTS: Concurrent use of strong or moderate CYP3A4 inhibitors may result in increased systemic exposure to and effects from deflazacort.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer recommends decreasing the dose to one-third of the recommended dose of deflazacort when used concurrently with strong or moderate CYP3A4 inhibitors. For example, if the recommended dose of deflazacort is 36 mg per day, the reduced dose would be 12 mg per day when administered with strong or moderate CYP3A4 inhibitors.(1) DISCUSSION: Deflazacort is a prodrug and is rapidly metabolized to the active metabolite, 21-desDFZ. The metabolite 21-desDFZ is metabolized by CYP3A4.(1) Coadministration of deflazacort with clarithromycin, a strong CYP3A4 inhibitor, increased total geometric mean exposure (maximum concentration (Cmax) and area-under-curve (AUC)) to the active metabolite 21-desDFZ by 2.3- to 3.4-fold.(1) |
DEFLAZACORT, EMFLAZA |
Tezacaftor-Ivacaftor/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Strong and moderate inhibitors of CYP3A4 may inhibit the metabolism of tezacaftor-ivacaftor.(1,2) CLINICAL EFFECTS: Concurrent use of a strong or moderate inhibitor of CYP3A4 may result in elevated levels of and toxicity from tezacaftor-ivacaftor.(1,2) PREDISPOSING FACTORS: This interaction may be more severe in patients with hepatic impairment.(1,2) PATIENT MANAGEMENT: Refer to current prescribing information for tezacaftor-ivacaftor for dose adjustment recommendations with strong and moderate CYP3A4 inhibitors.(2) Dose modifications for concurrent use of strong CYP3A4 inhibitors: - In adults, patients 12 years and older, and patients 6 to 12 years old weighing at least 30 kg who are receiving concurrent strong CYP3A4 inhibitors, the morning dose of tezacaftor 100 mg/ivacaftor 150 mg should be given twice a week, approximately 3 to 4 days apart. The evening dose of ivacaftor 150 mg should not be taken. - In patients 6 to 12 years old weighing less than 30 kg who are receiving concurrent strong CYP3A4 inhibitors, the morning dose of tezacaftor 50 mg/ivacaftor 75 mg should be given twice a week, approximately 3 to 4 days apart. The evening dose of ivacaftor 75 mg should not be taken.(2) Dose modifications for concurrent use of moderate CYP3A4 inhibitors: - In adults, patients 12 years and older, and patients 6 to 12 years old weighing at least 30 kg who are receiving concurrent moderate CYP3A4 inhibitors, the morning dose of tezacaftor 100 mg/ivacaftor 150 mg should be given every other day alternating with ivacaftor 150 mg. The evening dose of ivacaftor 150 mg should not be taken. - In patients 6 to 12 years old weighing less than 30 kg who are receiving concurrent moderate CYP3A4 inhibitors, the morning dose of tezacaftor 50 mg/ivacaftor 75 mg should be given every other day alternating with ivacaftor 75 mg. The evening dose of ivacaftor 75 mg should not be taken.(2) DISCUSSION: Concurrent administration with ketoconazole (a strong inhibitor of CYP3A4) increased ivacaftor area-under-curve (AUC) by 8.5-fold.(1) Concurrent administration with fluconazole (a moderate inhibitor of CYP3A4) increased ivacaftor AUC by 3-fold.(1) Concurrent administration with itraconazole (a strong inhibitor of CYP3A4) increased tezacaftor AUC by 4-fold and ivacaftor by 15.6-fold.(2) Concurrent administration with fluconazole (a moderate inhibitor of CYP3A4) increased tezacaftor AUC by 2-fold.(2) A study in 12 subjects compared ivacaftor alone (study A), ivacaftor with ritonavir (a strong inhibitor of CYP3A4) 50 mg daily on days 1-4 (study B), and ivacaftor with ritonavir 50 mg daily for two weeks prior and on days 1-4 of ivacaftor administration (study C). In study A, B, and C, ivacaftor AUC increased from 10.94 mcg/hr to 215.6 mcg/hr and 216 mcg/hr, respectively, with the addition of ritonavir. Ivacaftor concentration maximum (Cmax) was 0.9944 mcg, 1.812 mcg, and 2.267 mcg in study A, B, and C, respectively.(3) Strong inhibitors of CYP3A4 include: adagrasib, boceprevir, ceritinib, clarithromycin, cobicistat, idelalisib, indinavir, itraconazole, josamycin, ketoconazole, levoketoconazole, lonafarnib, lopinavir/ritonavir, mibefradil, nefazodone, nelfinavir, nirmatrelvir/ritonavir, posaconazole, ribociclib, ritonavir, saquinavir, telaprevir, telithromycin, troleandomycin, tucatinib, and voriconazole.(4-6) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir/ritonavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, schisandra, treosulfan and verapamil.(4-6) |
SYMDEKO |
Brigatinib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Brigatinib is a substrate of CYP3A4. Moderate inhibitors of CYP3A4 may inhibit the metabolism of brigatinib.(1) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 may result in increased levels and toxicity from brigatinib.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of brigatinib states to avoid concurrent administration with moderate CYP3A4 inhibitors. If concurrent therapy cannot be avoided, reduce the once daily dose of brigatinib by approximately 40% (i.e. from 180 mg to 120 mg, 120 mg to 90 mg). Upon discontinuation of a moderate CYP3A4 inhibitor, resume the brigatinib dose that was tolerated prior to initiating the moderate CYP3A4 inhibitor.(1) Monitor patient for signs of brigatinib toxicity with concurrent use. DISCUSSION: Brigatinib is a substrate of CYP3A4.(1) Concurrent administration of itraconazole (200 mg twice daily, a strong CYP3A4 inhibitor) with a single 90 mg dose of brigatinib increased the brigatinib maximum concentration (Cmax) by 21% and area-under-curve (AUC) by 101% compared to brigatinib alone. Moderate CYP3A4 inhibitors are expected to increase the AUC of brigatinib by approximately 40%.(1) Moderate CYP3A4 inhibitors linked to this monograph include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, ledipasvir, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan and verapamil.(2,3) |
ALUNBRIG |
Selected BCRP Substrates/Darolutamide SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Darolutamide inhibits BCRP, which may result in increased absorption of BCRP substrates.(1) CLINICAL EFFECTS: Administration of darolutamide with BCRP substrates may result in elevated levels of and toxicity from these agents.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer recommends avoiding concurrent use of darolutamide with BCRP substrates when possible. DISCUSSION: Concurrent administration of darolutamide with rosuvastatin increased the mean area-under-the-curve (AUC) and maximum concentration (Cmax) of rosuvastatin approximately 5-fold.(1) BCRP substrates linked to this monograph include: ciprofloxacin, diclofenac, glyburide, imatinib, irinotecan, lapatinib, methotrexate, mitoxantrone, sulfasalazine, and topotecan.(1-3) |
NUBEQA |
Entrectinib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of entrectinib.(1,2) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 may result in elevated levels and increased effects of entrectinib, such as QT prolongation, hepatotoxicity, CNS effects, hyperuricemia, anemia, or neutropenia.(1,2) Symptoms of hepatotoxicity can include nausea, vomiting, jaundice, dark urine, abdominal pain, and unexplained fatigue. PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: The US manufacturer of entrectinib states that entrectinib coadministration with moderate inhibitors of CYP3A4 should be avoided.(1) If concurrent therapy cannot be avoided, reduce the entrectinib dose as follows for adult and pediatric patients 2 years and older: -If the starting dose is 600 mg, reduce the entrectinib dose to 200 mg daily. -If the starting dose is 400 mg, reduce the entrectinib dose to 200 mg daily. -If the starting dose is 300 mg, reduce the entrectinib dose to 100 mg daily. -If the starting dose is 200 mg, reduce the entrectinib dose to 50 mg daily.(1) For pediatric patients less than 2 years old, avoid coadministration with moderate CYP3A4 inhibitors.(1) If concomitant use of a moderate CYP3A4 inhibitor is discontinued, increase the entrectinib dose to the dose that was used before starting the inhibitor after three to five plasma half-lives of the moderate CYP3A4 inhibitor. Monitor liver tests, including AST and ALT. Advise patients to immediately report any symptoms of hepatotoxicity. During concomitant therapy with a moderate CYP3A4 inhibitor, monitor patients closely for prolongation of the QT interval. Obtain serum calcium, magnesium, and potassium levels and monitor ECG at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Coadministration of itraconazole (strong CYP3A4 inhibitor) with a single 100 mg entrectinib dose increased entrectinib maximum concentration (Cmax) and area-under-the-curve (AUC) by 1.7-fold and 6-fold.(1) Coadministration of a moderate CYP3A4 inhibitor with entrectinib is predicted to increase entrectinib Cmax and AUC by 2.9-fold and 3-fold.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, ciprofloxacin, clofazimine, conivaptan, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan and verapamil.(1,3) |
ROZLYTREK |
Upadacitinib/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Upadacitinib, immunosuppressives, and immunomodulators all suppress the immune system. CLINICAL EFFECTS: Concurrent use of upadacitinib with immunosuppressives or immunomodulators may result in an increased risk of serious infections. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of upadacitinib states that concurrent use of upadacitinib with immunosuppressives or immunomodulators is not recommended. DISCUSSION: Serious infections have been reported in patients receiving upadacitinib. Reported infections included pneumonia, cellulitis, tuberculosis, multidermatomal herpes zoster, oral/esophageal candidiasis, cryptococcosis. Reports of viral reactivation, including herpes virus reactivation and hepatitis B reactivation, were reported in clinical studies with upadacitinib.(1) |
RINVOQ, RINVOQ LQ |
Elexacaftor-Tezacaftor-Ivacaftor/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the CYP3A4-mediated metabolism of elexacaftor, tezacaftor, and ivacaftor.(1) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 may result in elevated levels of and toxicity from elexacaftor, tezacaftor, and ivacaftor.(1) PREDISPOSING FACTORS: This interaction may be more severe in patients with hepatic impairment.(1) PATIENT MANAGEMENT: The dosage of elexacaftor-tezacaftor-ivacaftor should be reduced when co-administered with moderate CYP3A4 inhibitors as follows: - In patients 12 years and older and patients 6 to 12 years old weighing at least 30 kg who are receiving concurrent moderate CYP3A4 inhibitors, the evening dose of ivacaftor should not be taken. The morning dose of therapy should be modified to the following alternate daily dosing schedule: Day 1 - two tablets of elexacaftor 100 mg-tezacaftor 50 mg-ivacaftor 75 mg (total dose of elexacaftor 200 mg-tezacaftor 100 mg-ivacaftor 150 mg); Day 2 - one tablet of ivacaftor 150 mg. - In patients 6 to 12 years old weighing less than 30 kg who are receiving concurrent moderate CYP3A4 inhibitors, the evening dose of ivacaftor should not be taken. The morning dose of therapy should be modified to the following alternate daily dosing schedule: Day 1 - two tablets of elexacaftor 50 mg-tezacaftor 25 mg-ivacaftor 37.5 mg (total daily dose of elexacaftor 100 mg-tezacaftor 50 mg-ivacaftor 75 mg); Day 2 - one tablet of ivacaftor 75 mg. - In patients 2 to less than 6 years old weighing at least 14 kg who are receiving concurrent moderate CYP3A4 inhibitors, the evening dose of ivacaftor should not be taken. The morning dose of therapy should be modified to the following alternate daily dosing schedule: Day 1 - one packet of oral granules containing elexacaftor 100 mg-tezacaftor 50 mg-ivacaftor 75 mg; Day 2 - one packet of oral granules containing ivacaftor 75 mg.(1) - In patients 2 to less than 6 years old weighing less than 14 kg who are receiving concurrent moderate CYP3A4 inhibitors, the evening dose of ivacaftor should not be taken. The morning dose of therapy should be modified to the following alternate daily dosing schedule: Day 1 - one packet of oral granules containing elexacaftor 80 mg-tezacaftor 40 mg-ivacaftor 60 mg; Day 2 - one packet of oral granules containing ivacaftor 59.5 mg.(1) DISCUSSION: In a study, fluconazole (400 mg on day 1 then 200 mg daily) increased the area-under-curve (AUC) and maximum concentration (Cmax) of ivacaftor (150 mg every 12 hours) by 2.95-fold and 2.45-fold, respectively.(1) Simulations suggest that moderate CYP3A inhibitors may increase the AUC of elexacaftor and tezacaftor by approximately 1.9 to 2.3-fold and 2.1-fold, respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan and verapamil.(2-4) |
TRIKAFTA |
Lemborexant/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of CYP3A4 may inhibit the metabolism of lemborexant.(1) CLINICAL EFFECTS: Concurrent use of a strong or moderate inhibitor of CYP3A4 may result in increased levels of and effects from lemborexant, including somnolence, fatigue, CNS depressant effects, daytime impairment, headache, and nightmare or abnormal dreams.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The concurrent use of strong or moderate CYP3A4 inhibitors with lemborexant should be avoided.(1) DISCUSSION: Lemborexant is a CYP3A4 substrate. In a PKPB model, concurrent use of lemborexant with itraconazole increased area-under-curve (AUC) and concentration maximum (Cmax) by 3.75-fold and 1.5-fold, respectively. Concurrent use of lemborexant with fluconazole increased AUC and Cmax by 4.25-fold and 1.75-fold, respectively.(1) Strong inhibitors of CYP3A4 include: adagrasib, boceprevir, ceritinib, clarithromycin, cobicistat, idelalisib, indinavir, itraconazole, josamycin, ketoconazole, lonafarnib, lopinavir, mibefradil, mifepristone, nefazodone, nelfinavir, nirmatrelvir, paritaprevir, posaconazole, ribociclib, saquinavir, telaprevir, telithromycin, troleandomycin, tucatinib, and voriconazole.(2) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, schisandra, treosulfan and verapamil.(2) |
DAYVIGO |
Selected Antineoplastic Systemic Enzyme Inhibitors/Rifabutin SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Rifabutin is a moderate inducer of the CYP3A4 isoenzyme and may increase the metabolism of some antineoplastic systemic enzyme inhibitors, including cabozantinib,(1,2) ceritinib,(3) erlotinib,(4) imatinib,(5) lapatinib,(6) and sorafenib.(7) CLINICAL EFFECTS: Concurrent use of rifabutin may decrease the levels and effectiveness of some antineoplastic systemic enzyme inhibitors, including cabozantinib,(1,2) ceritinib,(3) erlotinib,(4) imatinib,(5) lapatinib,(6) and sorafenib.(7) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid the concurrent use of rifabutin in patients receiving therapy with cabozantinib,(1,2) ceritinib,(3) erlotinib,(4) imatinib,(5) lapatinib,(6) and sorafenib.(7) Consider the use of alternative agents with less enzyme induction potential.(1-7) If concurrent use of rifabutin cannot be avoided: Increase the daily dose of cabozantinib TABlets by 20 mg (e.g. from 60 mg to 80 mg daily) as tolerated. The daily dose should not exceed 80 mg. Resume the dose that was used prior to initiating rifabutin 2 to 3 days after discontinuation of rifabutin.(1) Increase the daily dose of cabozantinib CAPsules by 40 mg (from 140 mg to 180 mg daily or from 100 mg to 140 mg daily) as tolerated. The daily dose of cabozantinib should not exceed 180 mg. If rifabutin is discontinued, reduce the dosage of cabozantinib to the dose used prior to initiation of rifabutin 2 to 3 days after discontinuation of rifabutin.(2) Consider increasing the dosage of erlotinib by 50 mg increments as tolerated at two week intervals (to a maximum of 450 mg) while closely monitoring the patient. The highest dosage studied with concurrent rifampin is 450 mg. If the dosage of erlotinib is increased, it will need to be decreased when rifabutin is discontinued.(4) The dose of imatinib should be increased by at least 50% and clinical response should be carefully monitored. Dosages up to 1,200 mg/day (600 mg twice daily) have been used in patients receiving concurrent therapy with strong CYP3A4 inducers.(5) The dose of lapatinib should be gradually titrated from 1,250 mg/day up to 4,500 mg/day (HER2 positive metastatic breast cancer indication) or from 1,500 mg/day up to 5,500 mg/day (hormone receptor positive, HER2 positive breast cancer indication) based on patient tolerability. If rifabutin is discontinued, the dose of lapatinib should be adjusted to the normal dose.(6) DISCUSSION: The US manufacturers of cabozantinib,(2) erlotinib,(4) imatinib,(5) lapatinib,(6) and sorafenib,(7) and the UK manufacturer of ceritinib(3) include rifabutin in their list of strong CYP3A4 inducers to be avoided. Although the combinations of these agents with rifabutin have not been studied, they have been studied with other strong CYP3A4 inducers. In a study in healthy subjects, rifampin (600 mg daily for 31 days) decreased the area-under-curve (AUC) of a single dose of cabozantinib by 77%.(1) In a study in 19 healthy subjects, rifampin (600 mg daily for 14 days) decreased the maximum concentration (Cmax) and AUC of a single dose of ceritinib by 44% and 70%, respectively.(3) Pretreatment and concurrent therapy with rifampin increased erlotinib clearance by 3-fold and decreased the erlotinib AUC by 66% to 80%. This is equivalent to a dose of about 30 mg to 50 mg in NSCLC.(4) In a study, pretreatment with rifampin for 11 days decreased the AUC of a single 450 mg dose of erlotinib to 57.6% of the AUC observed with a single 150 mg dose of erlotinib.(4) In a case report, coadministration of phenytoin (180mg daily) and erlotinib (150mg daily) increased the phenytoin concentration from 8.2mcg/ml to 24.2mcg/ml and decreased the erlotinib concentration 12-fold (from 1.77mcg/ml to 0.15mcg/ml) and increased the erlotinib clearance by 10-fold (from 3.53 L/h to 41.7 L/h).(8) Pretreatment of 14 healthy subjects with rifampin (600 mg daily for 10 days) increased the clearance of a single dose of imatinib (400 mg) by 3.8-fold. The AUC and Cmax decreased by 74% and 54%, respectively.(5,9) The Cmax of the CGP74588 metabolite increased by 88.6%, but the AUC of CGP74588 decreased by 11%.(9) In healthy subjects, carbamazepine (100 mg twice daily for 3 days and 200 mg twice daily for 17 days), another CYP3A4 inducer, decreased the AUC of lapatinib by 72%. The dose adjustment recommendations are based on pharmacokinetic studies and are predicted to adjust lapatinib AUC to the range observed without concurrent CYP3A4 inducers; however, there are no clinical data with these doses in patients receiving strong CYP3A4 inducers.(6) Concurrent rifampin (600 mg daily for 5 days) decreased the AUC of a single dose of sorafenib (400 mg) by 37%.(7) |
RIFABUTIN, TALICIA |
Tazemetostat/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of tazemetostat.(1) CLINICAL EFFECTS: Coadministration of tazemetostat with a moderate CYP3A4 inhibitor may increase tazemetostat plasma concentrations and increase the frequency or severity of adverse reactions.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of tazemetostat states to avoid coadministration of moderate CYP3A4 inhibitors with tazemetostat.(1) If coadministration of moderate CYP3A4 inhibitors cannot be avoided, reduce the tazemetostat dose as follows: If the current tazemetostat dose is 800 mg twice daily, reduce the dose to 400 mg twice daily. If the current tazemetostat dose is 600 mg twice daily, reduce the dose to 400 mg for the first dose and 200 mg for the second dose. If the current tazemetostat dose is 400 mg twice daily, reduce the dose to 200 mg twice daily.(1) After discontinuation of the moderate CYP3A4 inhibitor for 3 elimination half-lives, resume the prior tazemetostat dose.(1) DISCUSSION: Coadministration of fluconazole, a moderate CYP3A4 inhibitor, with tazemetostat 400 mg twice daily in patients increased tazemetostat area-under-curve (AUC) by 3.1-fold and maximum concentration (Cmax) by 2.3-fold.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan and verapamil.(2-4) |
TAZVERIK |
Selumetinib/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of CYP3A4 may inhibit the metabolism of selumetinib.(1) CLINICAL EFFECTS: Concurrent use of a strong or moderate inhibitor of CYP3A4 may result in increased levels of and effects from selumetinib, including vomiting, diarrhea, skin rashes, ocular toxicity (e.g., blurred vision, visual loss), cardiomyopathy, and rhabdomyolysis.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of selumetinib states that the coadministration of selumetinib with strong or moderate CYP3A4 inhibitors should be avoided. If coadministration cannot be avoided, the dosage of selumetinib should be reduced as follows: -If the current dose is 25 mg/m2 twice daily, reduce to 20 mg/m2 twice daily. -If the current dosage is 20 mg/m2 twice daily, reduce to 15 mg/m2 twice daily. If the strong or moderate CYP3A4 inhibitor is discontinued, resume the selumetinib dose that was taken prior to the initiation of the inhibitor after 3 half-lives of the CYP3A4 inhibitor have elapsed.(1) DISCUSSION: In a study of 26 healthy subjects, itraconazole 200 mg twice daily (a strong CYP3A4 inhibitor) increased the area-under-curve (AUC) and maximum concentration (Cmax) of selumetinib 25 mg by 49% and 19%, respectively. Fluconazole 400 mg loading dose then 200 mg daily (a moderate CYP3A4 inhibitor and strong CYP2C19 inhibitor) increased AUC and Cmax of selumetinib (25 mg) by 53% and 26%.(1,2) In a pharmacokinetic model, erythromycin (a moderate CYP3A4 inhibitor) was predicted to increase selumetinib AUC and Cmax by 41% and 23%, respectively.(1) Strong inhibitors of CYP3A4 include: adagrasib, boceprevir, ceritinib, clarithromycin, cobicistat, idelalisib, indinavir, itraconazole, josamycin, ketoconazole, levoketoconazole, lonafarnib, lopinavir/ritonavir, mibefradil, mifepristone, nefazodone, nelfinavir, nirmatrelvir/ritonavir, paritaprevir, posaconazole, ribociclib, saquinavir, telaprevir, telithromycin, tipranavir, troleandomycin, tucatinib and voriconazole.(3) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan and verapamil.(3) |
KOSELUGO |
Pemigatinib/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of CYP3A4 may inhibit the metabolism of pemigatinib.(1) CLINICAL EFFECTS: Concomitant use of a strong or moderate CYP3A4 inhibitor increases pemigatinib plasma concentrations, which may increase the incidence and severity of adverse reactions.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of pemigatinib states that coadministration with strong or moderate CYP3A4 inhibitors should be avoided. If coadministration cannot be avoided, the dosage of pemigatinib should be reduced as follows: -Reduce dose from 13.5 mg to 9 mg. -Reduce dose from 9 mg to 4.5 mg. If the strong or moderate CYP3A4 inhibitor is discontinued, resume the pemigatinib dose that was taken prior to the initiation of the inhibitor after 3 half-lives of the CYP3A4 inhibitor have elapsed.(1) DISCUSSION: Itraconazole, a strong CYP3A4 inhibitor, increased the maximum concentration (Cmax) by 17% and area-under-curve (AUC) by 88% following a single oral pemigatinib dose of 4.5 mg. Concomitant use of moderate CYP3A4 inhibitors is predicted to increase pemigatinib exposure by approximately 50-80%.(1) Strong inhibitors of CYP3A4 include: adagrasib, boceprevir, ceritinib, clarithromycin, cobicistat, grapefruit, idelalisib, indinavir, itraconazole, josamycin, ketoconazole, levoketoconazole, lonafarnib, lopinavir/ritonavir, mibefradil, mifepristone, nefazodone, nelfinavir, nirmatrelvir/ritonavir, paritaprevir, posaconazole, ribociclib, saquinavir, telaprevir, telithromycin, tipranavir, troleandomycin, tucatinib, and voriconazole.(2) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan and verapamil.(2) |
PEMAZYRE |
Selected BCRP Substrates/Capmatinib SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Capmatinib inhibits BCRP, which may result in increased absorption of BCRP substrates.(1) CLINICAL EFFECTS: Administration of capmatinib with BCRP substrates may result in elevated levels of and toxicity from these agents.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of capmatinib states that the concurrent use of narrow therapeutic index BCRP substrates should be avoided. If concurrent therapy cannot be avoided, the dosage of the narrow therapeutic index BCRP substrate should be decreased according to the substrate prescribing information.(1) DISCUSSION: In a study, capmatinib increased rosuvastatin (a BCRP substrate) area-under-curve (AUC) by 108% and maximum concentration (Cmax) by 204%.(1) BCRP substrates linked to this monograph include: ciprofloxacin, glyburide, imatinib, irinotecan, lapatinib, methotrexate, and mitoxantrone.(1-2) |
TABRECTA |
Selpercatinib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may inhibit the metabolism of selpercatinib.(1) Cimetidine increases gastric pH and may decrease pH-dependent solubility and absorption of selpercatinib.(1) CLINICAL EFFECTS: Concurrent administration of a moderate CYP3A4 inhibitor may result in elevated levels of and toxicity from selpercatinib.(1) Elevated levels of selpercatinib may increase the risk of QTc prolongation and potentially life-threatening arrhythmias, including torsades de pointes, hepatotoxicity, hypertension, and severe or life-threatening hemorrhagic events.(1) Conversely, concurrent use of cimetidine may result in decreased levels and effectiveness of selpercatinib. The overall effect of cimetidine on selpercatinib pharmacokinetics is unknown.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of selpercatinib recommends avoiding concomitant use of moderate CYP3A4 inhibitors with selpercatinib. If concomitant use cannot be avoided, reduce the dose of selpercatinib as follows: - If the current dose of selpercatinib is 160 mg twice daily, decrease the dose to 120 mg twice daily. - If the current dose of selpercatinib is 120 mg twice daily, decrease the dose to 80 mg twice daily. - If the current dose of selpercatinib is 80 mg twice daily, decrease the dose to 40 mg twice daily. - If the current dose of selpercatinib is 40 mg three times daily, decrease the dose to 40 mg once daily. If concomitant use of cimetidine is unavoidable, take selpercatinib at least 2 hours before or 10 hours after cimetidine. When concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. If grade 3 QT interval prolongation occurs, withhold selpercatinib until recovery to baseline or Grades 0 or 1, then resume selpercatinib at a reduced dose. If grade 4 QT interval prolongation occurs, discontinue selpercatinib.(1) After the inhibitor has been discontinued for 3 to 5 elimination half-lives, resume selpercatinib at the dose taken prior to initiating the CYP3A inhibitor.(1) DISCUSSION: Coadministration of diltiazem, fluconazole, or verapamil (moderate CYP3A inhibitors) is predicted to increase the area-under-curve (AUC) and maximum concentration (Cmax) of selpercatinib by 60-99% and 46-76%, respectively.(1) In a thorough QT study, selpercatinib 160 mg twice daily increased QTc by a mean of 10.6 msec (upper 90% confidence interval: 12.1 msec). An increase in QTcF interval to greater than 500 msec was measured in 6% of patients and an increase in the QTcF interval of at least 60 msec over baseline was measured in 15% of patients.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, conivaptan, darunavir, diltiazem, fedratinib, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(3) |
RETEVMO |
Inebilizumab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inebilizumab, immunosuppressives, and immunomodulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of inebilizumab with immunosuppressive or immunomodulating agents may result in myelosuppression including neutropenia resulting in an increased risk for serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of inebilizumab states that the concurrent use of inebilizumab with immunosuppressive agents, including systemic corticosteroids, may increase the risk of infection. If concurrent therapy is warranted, consider the risk of additive immune suppression and monitor based on prescribing information for both agents.(1) DISCUSSION: Inebilizumab has not been studied in combination with other immunosuppressants. If concurrent therapy is warranted, consider the potential for increased immunosuppressive risks from both agents. The most common infections reported by inebilizumab treated patients in the randomized and open-label clinical trial periods included urinary tract infections (20%), nasopharyngitis (13%), upper respiratory tract infections (8%), and influenza (7%). Although there been no cases of Hepatitis B virus reactivation or progressive multifocal leukoencephalopathy reported in patients taking inebilizumab, these infections have been observed in patients taking other B-cell-depleting antibodies.(1) |
UPLIZNA |
Baricitinib/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of baricitinib with other biologic disease-modifying antirheumatic drugs (DMARDs) or potent immunosuppressants such as azathioprine or cyclosporine may result in additive or synergistic effects on the immune system. CLINICAL EFFECTS: Concurrent use of baricitinib with other biologic DMARDs or potent immunosuppressants such as azathioprine or cyclosporine may increase the risk of serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of baricitinib states that concurrent use of baricitinib with biologic DMARDs or potent immunosuppressants is not recommended.(1) DISCUSSION: Most patients who developed serious infections while being treated with baricitinib were on concomitant immunosuppressants like methotrexate and corticosteroids. The combination of baricitinib with other biologic DMARDs has not been studied.(1) |
OLUMIANT |
Pralsetinib/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Strong and moderate CYP3A4 inhibitors (including combined moderate CYP3A4 and P-glycoprotein (P-gp) inhibitors) may inhibit the metabolism of pralsetinib.(1) CLINICAL EFFECTS: Concurrent administration of a strong or moderate CYP3A4 inhibitor (including combined moderate CYP3A4 and P-gp inhibitors) may result in elevated levels of and toxicity from pralsetinib, including QTc prolongation which may lead to potentially life-threatening cardiac arrhythmias like torsades de pointes (TdP). Other toxicities include hemorrhagic events, pneumonitis, hepatotoxicity, and hypertension.(1-3) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: Coadministration of pralsetinib with strong or moderate CYP3A4 inhibitors (including combined moderate CYP3A4 and P-gp inhibitors) should be avoided.(1) If coadministration with a strong or moderate CYP3A4 inhibitor cannot be avoided, use with caution and reduce the dose of pralsetinib as follows: -If the current dose is 400 mg once daily, decrease the dose to 300 mg daily. -If the current dose is 300 mg once daily, decrease the dose to 200 mg daily. -If the current dose is 200 mg once daily, decrease the dose to 100 mg daily. After the inhibitor is discontinued for three to five half-lives, resume the dose of pralsetinib at the dose taken prior to initiation of the inhibitor.(1) When concurrent therapy is warranted: consider obtaining serum calcium, magnesium, and potassium levels and monitoring EKG at baseline and regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. If the QTc interval exceeds 500 ms, interrupt pralsetinib therapy until QTc is <470 ms. Resume pralsetinib at the same dose if risk factors that cause QT prolongation an are identified and corrected. If risk factors that cause QT prolongation are not identified, resume pralsetinib at a reduced dose. Permanently discontinue pralsetinib if the patient develops life-threatening arrhythmia.(3) DISCUSSION: Coadministration of voriconazole 400 mg twice daily for 1 day then 200 mg twice daily (a strong CYP3A inhibitor) resulted in 122% and 20% increase in pralsetinib area-under-curve (AUC) and maximum concentration (Cmax), respectively.(1) Fluconazole 400 mg daily (a moderate CYP3A4 inhibitor) increased pralsetinib AUC and Cmax by 71% and 15%, respectively.(1) Verapamil 80 mg three times daily (a moderate CYP3A4 and P-glycoprotein inhibitor) increased pralsetinib AUC and Cmax by 108% and 60%, respectively.(1) Strong CYP3A4 inhibitors linked to this monograph include: boceprevir, idelalisib, nelfinavir, and troleandomycin.(5,6) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, avacopan, clofazimine, conivaptan, darunavir, duvelisib, fedratinib, fosamprenavir, fosnetupitant, imatinib, letermovir, netupitant, nilotinib, tofisopam, treosulfan, and voxelotor.(5,6) Dual moderate CYP3A4 and P-gp inhibitors include: berotralstat, diltiazem, fluvoxamine, isavuconazonium, lenacapavir, schisandra, and verapamil.(5,6) |
GAVRETO |
Voclosporin/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Agents that inhibit the CYP3A4 isoenzyme may inhibit the metabolism of voclosporin.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may increase levels of and effects from voclosporin, including infection, neurotoxicity, nephrotoxicity, hypertension, or hyperkalemia.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The prescribing information for voclosporin states the use of moderate CYP3A4 inhibitors in patients undergoing therapy with voclosporin requires a dose adjustment. Voclosporin dose should be reduced to 15.8 mg in the morning and 7.9 mg in the evening.(1) Consider alternatives with no or minimal enzyme inhibition. DISCUSSION: Concurrent use of voclosporin and ketoconazole 400 mg daily (strong CYP3A4 inhibitor) for 9 days increased the concentration maximum (Cmax) and area-under-curve (AUC) by 6.45-fold and 18.55-fold, respectively.(1) Concurrent use of voclosporin and verapamil 80 mg three times a day for 10 days (moderate CYP3A4 inhibitor and P-gp inhibitor) increased Cmax and AUC by 2.08-fold and 2.71-fold, respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, oral lefamulin, lenacapavir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(2,3) |
LUPKYNIS |
Leflunomide; Teriflunomide/Selected Immunosuppressants SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of leflunomide or teriflunomide and potent immunosuppressants may result in additive or synergistic effects on the immune system.(1,2) Leflunomide is a prodrug and is converted to its active metabolite teriflunomide.(1) CLINICAL EFFECTS: Concurrent use of leflunomide or teriflunomide with immunosuppressants may result in an increased risk of serious infections, including opportunistic infections, especially Pneumocystis jiroveci pneumonia, tuberculosis (including extra-pulmonary tuberculosis), and aspergillosis. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: If leflunomide or teriflunomide is used concurrently with immunosuppressive agents, chronic CBC monitoring should be performed more frequently, every month instead of every 6 to 8 weeks. If bone marrow suppression or a serious infection occurs, leflunomide or teriflunomide should be stopped and rapid drug elimination procedure should be performed.(1,2) DISCUSSION: Pancytopenia, agranulocytosis and thrombocytopenia have been reported in patients receiving leflunomide or teriflunomide alone, but most frequently in patients taking concurrent immunosuppressants.(1,2) Severe and potentially fatal infections, including sepsis, have been reported in patients receiving leflunomide or teriflunomide, especially Pneumocystis jiroveci pneumonia and aspergillosis. Tuberculosis has also been reported.(1,2) |
ARAVA, AUBAGIO, LEFLUNICLO, LEFLUNOMIDE, TERIFLUNOMIDE |
Antineoplastic Syst Enzyme Inh that Inhibit 3A4/Carbamazepine SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ceritinib,(1) crizotinib,(2) duvelisib,(3) fedratinib,(4) idelalisib,(5) imatinib,(6) nilotinib,(7) ribociclib,(8) and tucatinib(9) are substrates and inhibitors of CYP3A4. Carbamazepine, a strong CYP3A4 inducer, may increase the metabolism of these agents, and they may inhibit the hepatic metabolism of carbamazepine. CLINICAL EFFECTS: Concurrent use of strong CYP3A4 inducers may decrease the levels and effectiveness of antineoplastic systemic enzyme inhibitors, including ceritinib,(1) crizotinib,(2) duvelisib,(3) fedratinib,(4) idelalisib,(5) imatinib,(6) nilotinib,(7) ribociclib,(8) and tucatinib.(9) In addition, serum carbamazepine levels may increase with subsequent increases in the pharmacological and toxic effects of carbamazepine, including dizziness, ataxia, blurred vision, or SIADH.(10) PREDISPOSING FACTORS: Simultaneous use of other drugs, i.e. other anticonvulsants, or carbamazepine blood levels already near the toxic range before initiation of a CYP3A4 inhibitor may increase the risk of a severe interactions.(10) PATIENT MANAGEMENT: Avoid the concurrent use of carbamazepine in patients receiving therapy with antineoplastic enzyme inhibitors. Consider the use of alternative agents with less enzyme induction potential.(1-9) Because of the nonlinear pharmacokinetic profile of nilotinib, increasing its dose is unlikely to compensate for enzyme induction.(7) If concurrent use of a CYP3A4 inducer cannot be avoided with imatinib, the dose of imatinib should be increased by at least 50% and clinical response should be carefully monitored. Dosages up to 1,200 mg/day (600 mg twice daily) have been used in patients receiving concurrent therapy with strong CYP3A4 inducers.(6) The manufacturer of carbamazepine states CYP3A4 inhibitors may increase plasma carbamazepine levels. If concurrent use is warranted, close monitoring of carbamazepine levels is indicated and dosage adjustment may be required.(10) In patients receiving concurrent therapy with carbamazepine and a CYP3A4 inhibitor, carbamazepine levels should be monitored closely and the patient observed for signs of toxicity (dizziness, ataxia, blurred vision, or SIADH). The dosage of carbamazepine may need to be adjusted or carbamazepine may need to be discontinued.(10) DISCUSSION: In a study in 19 healthy subjects, rifampin (600 mg daily for 14 days) decreased the Cmax and AUC of a single dose of ceritinib by 44% and 70%, respectively.(1) In a study in healthy subjects, rifampin (600 mg daily for 8 days) decreased the Cmax and AUC of idelalisib (150 mg single dose) by 58% and 75%, respectively.(5) Pretreatment of 14 healthy subjects with rifampin (600 mg daily for 10 days) increased the clearance of a single dose of imatinib (400 mg) by 3.8-fold. The area-under-curve (AUC) and maximum concentration (Cmax) decreased by 74% and 54%, respectively.(6,12) The Cmax of the CGP74588 metabolite increased by 88.6%, but the AUC of CGP74588 decreased by 11%.(12) In a study in healthy subjects, concurrent rifampin (600 mg daily for 12 days) decreased nilotinib AUC by 80%.(7) Carbamazepine is almost completely metabolized to carbamazepine-10,11-epoxide, with only 5% of the drug excreted unchanged. Pharmacokinetic studies have indicated the major pathway for carbamazepine metabolism is catalyzed by CYP3A4, with minor contributions from CYP2C8 and CYP3A5.(10,11) |
CARBAMAZEPINE, CARBAMAZEPINE ER, CARBATROL, EPITOL, EQUETRO, TEGRETOL, TEGRETOL XR |
Antineoplastic Systemic Enzyme Inhibitors/Apalutamide SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Apalutamide(1) may induce the metabolism of antineoplastic systemic enzyme inhibitors, including bosutinib,(2) cabozantinib,(3) erlotinib,(4) gefitinib,(5) ibrutinib,(6) idelalisib,(7) and imatinib.(8) CLINICAL EFFECTS: Concurrent use of apalutamide may decrease the levels and effectiveness of antineoplastic systemic enzyme inhibitors, including bosutinib,(2) cabozantinib,(3) erlotinib,(4) gefitinib,(5) ibrutinib,(6) idelalisib,(7) and imatinib.(8) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid the concurrent use of apalutamide in patients receiving therapy with antineoplastic enzyme inhibitors. Consider the use of alternative agents with less enzyme induction potential.(1-8) If concurrent use of apalutamide cannot be avoided with antineoplastic enzyme inhibitors: Increase the daily dose of cabozantinib TABlets by 20 mg (e.g. from 60 mg to 80 mg daily) as tolerated. The daily dose should not exceed 80 mg. Resume the dose that was used prior to initiating the CYP3A4 inducer 2 to 3 days after discontinuation of the strong inducer.(9) Increase the daily dose of cabozantinib CAPsules by 40 mg (from 140 mg to 180 mg daily or from 100 mg to 140 mg daily) as tolerated. The daily dose of cabozantinib should not exceed 180 mg. If the CYP3A4 inducer is discontinued, reduce the dosage of cabozantinib to the dose used prior to initiation of the inducer 2 to 3 days after discontinuation of the strong inducer.(3) Consider increasing the dosage of erlotinib by 50 mg increments as tolerated at two week intervals (to a maximum of 450 mg) while closely monitoring the patient. The highest dosage studied with concurrent rifampin is 450 mg. If the dosage of erlotinib is increased, it will need to be decreased when the inducer is discontinued.(4) Consider a dose increase to 500 mg daily of gefitinib in the absence of severe adverse drug reaction. Clinical response and adverse events should be closely monitored.(5) The dose of imatinib should be increased by at least 50% and clinical response should be carefully monitored. Dosages up to 1200 mg/day (600 mg twice daily) have been used in patients receiving concurrent therapy with strong CYP3A4 inducers.(8) DISCUSSION: In a study in 24 healthy subjects, rifampin (a strong CYP3A4 inducer) decreased bosutinib area-under-curve (AUC) and maximum concentration (Cmax) by 94% and 86%. Bosutinib clearance increased by 13-fold.(2,11) In a study in healthy subjects, rifampin (600 mg daily for 31 days) decreased the AUC of a single dose of cabozantinib by 77%.(3) Pretreatment and concurrent therapy with rifampin increased erlotinib clearance by 3-fold and decreased the erlotinib area-under-curve (AUC) by 66% to 80%. This is equivalent to a dose of about 30 mg to 50 mg in NSCLC.(4) In a study, pretreatment with rifampin for 11 days decreased the AUC of a single 450 mg dose of erlotinib to 57.6% of the AUC observed with a single 150 mg dose of erlotinib.(4) In a case report, coadministration of phenytoin (180mg daily) and erlotinib (150mg daily) increased the phenytoin concentration from 8.2mcg/ml to 24.2mcg/ml and decreased the erlotinib concentration 12-fold (from 1.77mcg/ml to 0.15mcg/ml) and increased the erlotinib clearance by 10-fold (from 3.53 L/h to 41.7 L/h).(10) In a study in healthy male volunteers, rifampicin decreased AUC of gefitinib by 85%.(5) The coadministration of rifampin decreased the Cmax and AUC of ibrutinib by more than 13-fold and 10-fold.(6) In a study in healthy subjects, rifampin (600 mg daily for 8 days) decreased the Cmax and AUC of idelalisib (150 mg single dose) by 58% and 75%, respectively.(7) Pretreatment of 14 healthy subjects with rifampin (600 mg daily for 10 days) increased the clearance of a single dose of imatinib (400 mg) by 3.8-fold. The area-under-curve (AUC) and maximum concentration (Cmax) decreased by 74% and 54%, respectively.(8,12) The Cmax of the CGP74588 metabolite increased by 88.6%, but the AUC of CGP74588 decreased by 11%.(12) |
ERLEADA |
Slt Antineoplastic Systemic Enzyme Inh/Lumacaftor-Ivacaftor SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Lumacaftor-ivacaftor(1) may induce the metabolism of antineoplastic systemic enzyme inhibitors, including bosutinib,(2) cabozantinib,(3) crizotinib,(4) dasatinib,(5) erlotinib,(6) gefitinib,(7) ibrutinib,(8) imatinib,(9) lapatinib,(10) nilotinib,(11) pazopanib,(12) sorafenib,(13) sunitinib,(14) and vandetanib.(15) CLINICAL EFFECTS: Concurrent use of lumacaftor-ivacaftor may decrease the levels and effectiveness of antineoplastic systemic enzyme inhibitors, including bosutinib,(2) cabozantinib,(3) crizotinib,(4) dasatinib,(5) erlotinib,(6) gefitinib,(7) ibrutinib,(8) imatinib,(9) lapatinib,(10) nilotinib,(11) pazopanib,(12) sorafenib,(13) sunitinib,(14) and vandetanib.(15) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid the concurrent use of lumacaftor-ivacaftor in patients receiving therapy with antineoplastic enzyme inhibitors. Consider the use of alternative agents with less enzyme induction potential.(2-15) Because of the nonlinear pharmacokinetic profile of nilotinib, increasing its dose is unlikely to compensate for enzyme induction.(11) Pazopanib should not be administered to patients who cannot avoid chronic use of strong CYP3A4 inducers.(12) If concurrent use of a CYP3A4 inducer cannot be avoided with other antineoplastic enzyme inhibitors: Increase the daily dose of cabozantinib TABlets by 20 mg (e.g. from 60 mg to 80 mg daily) as tolerated. The daily dose should not exceed 80 mg. Resume the dose that was used prior to initiating the CYP3A4 inducer 2 to 3 days after discontinuation of the strong inducer.(16) Increase the daily dose of cabozantinib CAPsules by 40 mg (from 140 mg to 180 mg daily or from 100 mg to 140 mg daily) as tolerated. The daily dose of cabozantinib should not exceed 180 mg. If the CYP3A4 inducer is discontinued, reduce the dosage of cabozantinib to the dose used prior to initiation of the inducer 2 to 3 days after discontinuation of the strong inducer.(2) Consider increasing the dose of dasatinib.(5) Consider increasing the dosage of erlotinib by 50 mg increments as tolerated at two week intervals (to a maximum of 450 mg) while closely monitoring the patient. The highest dosage studied with concurrent rifampin is 450 mg. If the dosage of erlotinib is increased, it will need to be decreased when the inducer is discontinued. If the inducer is dexamethasone, monitor the patient for sign of gastrointestinal perforation. Discontinue erlotinib in patients who develop gastrointestinal perforation.(6) Consider a dose increase to 500 mg daily of gefitinib in the absence of severe adverse drug reaction. Clinical response and adverse events should be closely monitored.(7) The dose of imatinib should be increased by at least 50% and clinical response should be carefully monitored. Dosages up to 1200 mg/day (600 mg twice daily) have been used in patients receiving concurrent therapy with strong CYP3A4 inducers.(9) The dose of lapatinib should be gradually titrated from 1,250 mg/day up to 4,500 mg/day (HER2 positive metastatic breast cancer indication) or from 1,500 mg/day up to 5,500 mg/day (hormone receptor positive, HER2 positive breast cancer indication) based on patient tolerability. If the inducer is discontinued, the dose of lapatinib should be adjusted to the normal dose.(10) A dosage increase of sunitinib to a maximum of 87.5 mg daily in patients with gastrointestinal stromal tumors (GIST) or advanced renal cell carcinoma (RCC) or to a maximum of 62.5 mg in patients with pancreatic neuroendocrine tumors (pNET) should be considered.(14) DISCUSSION: In a study, 24 healthy subjects received a single dose of bosutinib 500 mg (days 1 and 14) and rifampin 600 mg (days 8-17). Bosutinib Cmax and AUC decreased by 86% and 92%, respectively. Bosutinib clearance increased by 13-fold.(2,17) In a study in healthy subjects, rifampin (600 mg daily for 31 days) decreased the AUC of a single dose of cabozantinib by 77%.(3) Rifampin (600 mg daily) decreased the Cmax and AUC of a single dose of crizotinib (250 mg) by 69% and 82%, respectively.(4) In a study in healthy subjects, concurrent rifampin (600 mg daily) decreased the Cmax and AUC of a single dose of dasatinib by 81% and 82%, respectively.(5) Pretreatment and concurrent therapy with rifampin increased erlotinib clearance by 3-fold and decreased the erlotinib area-under-curve (AUC) by 66% to 80%. This is equivalent to a dose of about 30 mg to 50 mg in NSCLC.(6) In a study, pretreatment with rifampin for 11 days decreased the AUC of a single 450 mg dose of erlotinib to 57.6% of the AUC observed with a single 150 mg dose of erlotinib.(6) In a case report, coadministration of phenytoin (180mg daily) and erlotinib (150mg daily) increased the phenytoin concentration from 8.2mcg/ml to 24.2mcg/ml and decreased the erlotinib concentration 12-fold (from 1.77mcg/ml to 0.15mcg/ml) and increased the erlotinib clearance by 10-fold (from 3.53 L/h to 41.7 L/h).(18) In a study in healthy male volunteers, rifampicin decreased AUC of gefitinib by 85%.(7) The coadministration of rifampin decreased the Cmax and AUC of ibrutinib by more than 13-fold and 10-fold.(8) Pretreatment of 14 healthy subjects with rifampin (600 mg daily for 10 days) increased the clearance of a single dose of imatinib (400 mg) by 3.8-fold. The area-under-curve (AUC) and maximum concentration (Cmax) decreased by 74% and 54%, respectively.(9,19) The Cmax of the CGP74588 metabolite increased by 88.6%, but the AUC of CGP74588 decreased by 11%.(19) In healthy subjects, carbamazepine (100 mg twice daily for 3 days and 200 mg twice daily for 17 days), another CYP3A4 inducer, decreased the AUC of lapatinib by 72%. The dose adjustment recommendations are based on pharmacokinetic studies and are predicted to adjust lapatinib AUC to the range observed without concurrent CYP3A4 inducers; however, there are no clinical data with these doses in patients receiving strong CYP3A4 inducers.(10) In a study in healthy subjects, concurrent rifampin (600 mg daily for 12 days) decreased nilotinib AUC by 80%.(11) Pazopanib is primarily metabolized by CYP3A4.(12) Concurrent rifampin (600 mg daily for 5 days) decreased the AUC of a single dose of sorafenib (400 mg) by 37%.(13) In a study with healthy subjects, concurrent rifampin decreased the combined (sunitinib plus primary active metabolite) Cmax and AUC by 23% and 46%, respectively, of a single dose of sunitinib.(14) Strong CYP3A4 inducers are expected to alter vandetanib concentrations. The patient developed nystagmus, a sign of phenytoin toxicity.(15) |
ORKAMBI |
Ponesimod/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ponesimod in combination with immunosuppressives and immune-modulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of ponesimod with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection, cryptococcal infection, or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: The ponesimod US prescribing information states ponesimod has not been studied in combination with anti-neoplastic, immune-modulating, or immunosuppressive therapies. Caution should be used during concomitant administration because of the risk of additive immune effects during therapy and in the weeks following administration. When switching from drugs with prolonged immune effects, the half-life and mode of action of these drugs must be considered in order to avoid unintended additive immunosuppressive effects. Initiating treatment with ponesimod after alemtuzumab is not recommended. However, ponesimod can generally be started immediately after discontinuation of beta interferon or glatiramer acetate.(1) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections, cryptococcal meningitis, disseminated cryptococcal infections, and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1) |
PONVORY |
Alprazolam/Selected Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of alprazolam.(1) CLINICAL EFFECTS: Concurrent use may result in increased pharmacologic or toxic effects of alprazolam. Toxic effects include profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid concomitant use with moderate CYP3A4 inhibitors. Consider reducing the dose of alprazolam when coadministered with a moderate CYP3A4 inhibitor. If fluvoxamine is concurrently administered with alprazolam, the manufacturer of fluvoxamine recommends that the initial dose of alprazolam be reduced by 50%, followed by titration to the lowest effective dose.(2) If concurrent use is necessary, monitor patients for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness. DISCUSSION: Coadministration of cimetidine, a moderate CYP3A4 inhibitor, increased the maximum concentration (Cmax) of alprazolam by 82%.(1) Coadministration with erythromycin, a moderate CYP3A4 inhibitor, increased the area-under-curve (AUC) of alprazolam by 1.61-fold.(1) Coadministration of fluvoxamine 100 mg daily and alprazolam 1 mg given 4 times per day resulted in a 2-fold increase of AUC, Cmax, and half-life of alprazolam.(2) Selected moderate CYP3A4 inhibitors linked to this monograph include: aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan and verapamil.(3,4) |
ALPRAZOLAM, ALPRAZOLAM ER, ALPRAZOLAM INTENSOL, ALPRAZOLAM ODT, ALPRAZOLAM XR, XANAX, XANAX XR |
Sodium Iodide I 131/Myelosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Sodium iodide I 131 can cause depression of the hematopoetic system. Myelosuppressives and immunomodulators also suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of sodium iodide I 131 with agents that cause bone marrow depression, including myelosuppressives or immunomodulators, may result in an enhanced risk of hematologic disorders, including anemia, blood dyscrasias, bone marrow depression, leukopenia, and thrombocytopenia. Bone marrow depression may increase the risk of serious infections and bleeding.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of sodium iodide I 131 states that concurrent use with bone marrow depressants may enhance the depression of the hematopoetic system caused by large doses of sodium iodide I 131.(1) Sodium iodide I 131 causes a dose-dependent bone marrow suppression, including neutropenia or thrombocytopenia, in the 3 to 5 weeks following administration. Patients may be at increased risk of infections or bleeding during this time. Monitor complete blood counts within one month of therapy. If results indicate leukopenia or thrombocytopenia, dosimetry should be used to determine a safe sodium iodide I 131 activity.(1) DISCUSSION: Hematologic disorders including death have been reported with sodium iodide I 131. The most common hematologic disorders reported include anemia, blood dyscrasias, bone marrow depression, leukopenia, and thrombocytopenia.(1) |
HICON, SODIUM IODIDE I-131 |
Fingolimod/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Fingolimod in combination with immunosuppressives and immune-modulators all suppress the immune system.(1-3) CLINICAL EFFECTS: Concurrent use of fingolimod with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1-3) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: Recommendations for fingolimod regarding this interaction differ between regulatory approving agencies. The fingolimod US prescribing information states: - Antineoplastic, immune-modulating, or immunosuppressive therapies, (including corticosteroids) are expected to increase the risk of immunosuppression, and the risk of additive immune system effects must be considered if these therapies are coadministered with fingolimod. When switching from drugs with prolonged immune effects, such as natalizumab, teriflunomide or mitoxantrone, the duration and mode of action of these drugs must be considered to avoid unintended additive immunosuppressive effects when initiating fingolimod.(1) The fingolimod Canadian prescribing information states: - Concurrent use with immunosuppressive or immunomodulatory agents is contraindicated due to the risk of additive immune system effects. However, co-administration of a short course of corticosteroids (up to 5 days) did not increase the overall rate of infection in patients participating Phase III clinical trials.(2) The fingolimod UK specific product characteristics states: - Fingolimod is contraindicated in patients currently receiving immunosuppressive therapies or those immunocompromised by prior therapies. When switching patients from another disease modifying therapy to Gilenya, the half-life and mode of action of the other therapy must be considered in order to avoid an additive immune effect whilst at the same time minimizing the risk of disease activation.(3) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1-3) |
FINGOLIMOD, GILENYA, TASCENSO ODT |
Ozanimod/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ozanimod in combination with immunosuppressives and immune-modulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of ozanimod with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: The ozanimod US prescribing information state this information regarding this interaction: -Ozanimod has not been studied in combination with anti-neoplastic, immune-modulating, or immunosuppressive therapies. Caution should be used during concomitant administration because of the risk of additive immune effects during therapy and in the week following administration. When switching from drugs with prolonged immune effects, the half-life and mode of action of these drugs must be considered in order to avoid unintended additive immunosuppressive effects. Initiating treatment with ozanimod after alemtuzumab is not recommended. However, ozanimod can generally be started immediately after discontinuation of beta interferon or glatiramer acetate.(1) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1) |
ZEPOSIA |
Siponimod/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Siponimod in combination with immunosuppressives and immune-modulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of siponimod with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: The siponimod US prescribing information state this information regarding this interaction: -Siponimod has not been studied in combination with anti-neoplastic, immune-modulating, or immunosuppressive therapies. Caution should be used during concomitant administration because of the risk of additive immune effects during therapy and in the week following administration. When switching from drugs with prolonged immune effects, the half-life and mode of action of these drugs must be considered in order to avoid unintended additive immunosuppressive effects. Initiating treatment with siponimod after alemtuzumab is not recommended. However, siponimod can generally be started immediately after discontinuation of beta interferon or glatiramer acetate.(1) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1) |
MAYZENT |
Cladribine/Selected Inhibitors of BCRP with Myelosuppression SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of BCRP may increase the absorption of cladribine.(1-2) Also, cladribine in combination with immunosuppressives and immune-modulators all suppress the immune system.(1-2) CLINICAL EFFECTS: The concurrent administration of cladribine with an inhibitor of BCRP may result in elevated levels of cladribine and signs of toxicity.(1-2) Concurrent use of cladribine with immunosuppressive or immune-modulating agents may result in an increased risk of serious infections, such as disseminated herpetic infection or progressive multifocal leukoencephalopathy (PML), an opportunistic infection caused by the JC virus (JCV).(1-2) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: The manufacturer of cladribine states concurrent use of BCRP inhibitors should be avoided during the 4- to 5-day cladribine treatment.(1-2) Selection of an alternative concurrent medication with no or minimal transporter inhibiting proprieties should be considered. If this is not possible, dose reduction to the minimum mandatory dose of the BCRP inhibitor, separation in timing of administration, and careful patient monitoring is recommended.(1-2) Myelosuppression risk recommendations for cladribine regarding this interaction differ between regulatory approving agencies. The cladribine US prescribing information states: -Concomitant use with myelosuppressive or other immunosuppressive drugs is not recommended. Acute short-term therapy with corticosteroids can be administered. In patients who have previously been treated with immunomodulatory or immunosuppressive drugs, consider potential additive effect, the mode of action, and duration of effect of the other drugs prior to initiation of cladribine.(1) The cladribine Canadian prescribing information states: -Use of cladribine in immunocompromised patients is contraindicated because of a risk of additive effects on the immune system. Acute short-term therapy with corticosteroids can be administered during cladribine treatment.(2) Monitor for signs of hematologic toxicity. Lymphocyte counts should be monitored. DISCUSSION: Cladribine is a substrate of BCRP. Inhibitors of this transporter are expected to increase cladribine levels.(1-2) BCRP inhibitors linked to this monograph include: asciminib, belumosudil, cyclosporine, encorafenib, gefitinib, imatinib, leflunomide, momelotinib, and teriflunomide.(1,2) Fatal disseminated herpes zoster and herpes simplex infections and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients who previously received immunomodulators or immunosuppressants.(1-2) |
CLADRIBINE, MAVENCLAD |
Eliglustat/Dual CYP3A4 & Weak CYP2D6 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Dual strong or moderate CYP3A4 and weak CYP2D6 inhibitors may inhibit the metabolism of eliglustat.(1) CLINICAL EFFECTS: Concurrent use of an agent that is a dual strong or moderate CYP3A4 and weak CYP2D6 inhibitor may result in elevated levels of and clinical effects of eliglustat, including prolongation of the PR, QTc, and/or QRS intervals, which may result in life-threatening cardiac arrhythmias.(1) PREDISPOSING FACTORS: If the patient has liver disease, is also taking an inhibitor of CYP2D6 and/or is an intermediate or poor metabolizer of CYP2D6, eliglustat metabolism can be further inhibited.(1) The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Prescribing information has no specific recommendation on the use of eliglustat with drugs that are dual strong or moderate CYP3A4 and weak CYP2D6 inhibitors. The concurrent use of eliglustat with strong or moderate inhibitors of CYP3A4 concomitantly with strong or moderate inhibitors of CYP2D6 in both extensive and intermediate CYP2D6 metabolizers is contraindicated.(1) The concurrent use of eliglustat with strong inhibitors of CYP3A4 in intermediate and poor CYP2D6 metabolizers is contraindicated.(1) The concurrent use of eliglustat with moderate inhibitors of CYP3A4 in intermediate and poor CYP2D6 metabolizers should be avoided.(1) The dosage of eliglustat with strong or moderate inhibitors of CYP3A4 in extensive CYP2D6 metabolizers should be limited to 84 mg daily.(1) The concurrent use of eliglustat with strong inhibitors of CYP3A4 concomitantly with strong or moderate inhibitors of CYP2D6 is contraindicated.(1) The concurrent use of eliglustat with moderate inhibitors of CYP3A4 concomitantly with strong or moderate inhibitors of CYP2D6 in poor metabolizers of CYP2D6 should be avoided and is contraindicated in extensive and intermediate CYP2D6 metabolizers.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Ketoconazole (400 mg daily), a strong inhibitor of CYP3A4, increased eliglustat (84 mg BID) maximum concentration (Cmax) and area-under-curve (AUC) by 4-fold and 4.4-fold, respectively, in extensive metabolizers. Physiologically-based pharmacokinetic (PKPB) models suggested ketoconazole would increase eliglustat Cmax and AUC by 4.4-fold and 5.4-fold, respectively, in intermediate metabolizers. PKPB models suggested ketoconazole may increase the Cmax and AUC of eliglustat (84 mg daily) by 4.3-fold and 6.2-fold, respectively, in poor metabolizers.(1) PKPB models suggested fluconazole, a moderate inhibitor of CYP3A4, would increase eliglustat Cmax and AUC by 2.8-fold and 3.2-fold, respectively, in extensive metabolizers and by 2.5-fold and 2.9-fold, respectively in intermediate metabolizers. PKPB models suggest that concurrent eliglustat (84 mg BID), paroxetine (a strong inhibitor of CYP2D6), and ketoconazole would increase eliglustat Cmax and AUC by 16.7-fold and 24.2-fold, respectively, in extensive metabolizers. In intermediate metabolizers, eliglustat Cmax and AUC would be expected to increase 7.5-fold and 9.8-fold, respectively.(1) PKPB models suggest that concurrent eliglustat (84 mg BID), terbinafine (a moderate inhibitor of CYP2D6), and ketoconazole would increase eliglustat Cmax and AUC by 10.2-fold and 13.6-fold, respectively, in extensive metabolizers. In intermediate metabolizers, eliglustat Cmax and AUC would be expected to increase 4.2-fold and 5-fold, respectively.(1) Dual strong CYP3A4 and weak CYP2D6 inhibitors include: cobicistat.(1,3,4) Dual moderate CYP3A4 and weak CYP2D6 inhibitors include: diltiazem, fedratinib, fluvoxamine, imatinib, and verapamil.(1,3,4) |
CERDELGA |
Mavacamten/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may decrease the metabolism of mavacamten.(1-3) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may increase the plasma levels and the incidence and severity of adverse reactions of mavacamten.(1-3) PREDISPOSING FACTORS: CYP2C19 poor metabolizers may experience an increased incidence or severity of adverse effects.(1-3) PATIENT MANAGEMENT: The US manufacturer of mavacamten recommend initiating mavacamten at the recommended starting dosage of 5 mg orally once daily in patients who are on stable therapy with a moderate CYP3A4 inhibitor. Reduce dose by one level (i.e., 15 to 10 mg, 10 to 5 mg, or 5 to 2.5 mg) in patients who are on mavacamten treatment and intend to initiate a moderate CYP3A4 inhibitor. Schedule clinical and echocardiographic assessment 4 weeks after inhibitor initiation, and do not up-titrate mavacamten until 12 weeks after inhibitor initiation.(1) Avoid initiation of concomitant moderate CYP3A4 inhibitors in patients who are on stable treatment with 2.5 mg of mavacamten because a lower dose is not available.(1) For short-term use (e.g. 1 week), interrupt mavacamten therapy for the duration of the strong CYP3A4 inhibitor. After therapy with the strong CYP3A4 inhibitor is discontinued, mavacamten may be reinitiated at the previous dose immediately upon discontinuation.(1) The Canadian manufacturer of mavacamten recommends additional monitoring when concurrent use of moderate CYP3A4 inhibitors is warranted. Adjust the dose of mavacamten based on clinical assessment.(2) The UK manufacturer of mavacamten states no dose adjustment is necessary when starting mavacamten in patients on moderate CYP3A4 inhibitors or in intermediate, normal, rapid, or ultra-rapid CYP2C19 metabolizers already on mavacamten and starting a moderate CYP3A4 inhibitor. If starting a moderate CYP3A4 inhibitor in a patient who is a poor CYP2C19 metabolizer, reduce mavacamten 5 mg to 2.5 mg or if on 2.5 mg pause treatment for 4 weeks. Monitor left ventricular ejection fraction (LVEF) in 4 weeks then resume usual monitoring schedule.(3) DISCUSSION: Concomitant use of mavacamten (25 mg) with verapamil sustained release (240 mg), a moderate CYP3A4 inhibitor, increased mavacamten area-under-curve (AUC) by 15% and maximum concentration (Cmax) by 52% in intermediate metabolizers and normal metabolizers of CYP2C19.(1) Concomitant use of mavacamten with diltiazem, a moderate CYP3A4 inhibitor, in CYP2C19 poor metabolizers is predicted to increase mavacamten AUC and Cmax up to 55% and 42%, respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, clofazimine, conivaptan, darunavir, dronedarone, erythromycin, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, and treosulfan.(4,5) |
CAMZYOS |
Selected BCRP Substrates/Oteseconazole SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Oteseconazole is an inhibitor of the BCRP transporter, which may result in increased absorption of BCRP substrates.(1) CLINICAL EFFECTS: Administration of oteseconazole with BCRP substrates may result in elevated levels of and toxicity of the BCRP substrates.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of oteseconazole states that the lowest possible starting dose of the BCRP substrate should be used and to consider reducing the dose of the substrate drug according to the product labeling and monitor for adverse reactions.(1) DISCUSSION: Oteseconazole increased the area-under-curve (AUC) and maximum concentration (Cmax) of rosuvastatin, a BCRP substrate, by 118% and 114%, respectively.(1) BCRP substrates linked to this monograph include: ciprofloxacin, diclofenac, glyburide, imatinib, irinotecan, lapatinib, methotrexate, mitoxantrone, rosuvastatin, and sulfasalazine.(1-2) |
VIVJOA |
Pexidartinib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of pexidartinib.(1,2) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 may result in elevated levels and increased effects of pexidartinib, such as hepatotoxicity.(1,2) Symptoms can include nausea, vomiting, jaundice, dark urine, abdominal pain, and unexplained fatigue. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of pexidartinib states that pexidartinib coadministration with moderate inhibitors of CYP3A4 should be avoided.(1) If coadministration with a moderate CYP3A4 inhibitor cannot be avoided, reduce the pexidartinib dose according to the following recommendations. If the planned total daily dose is currently 500 mg, modify the total daily dose to 250 mg by administering 125 mg twice daily. If the planned total daily dose is currently 375 mg, modify the total daily dose to 250 mg by administering 125 mg twice daily. If the planned total daily dose is currently 250 mg, modify the total daily dose to 125 mg by administering 125 mg once daily. If concomitant use of a moderate CYP3A4 inhibitor is discontinued, increase the pexidartinib dose to the dose that was used before starting the inhibitor after three plasma half-lives of the moderate CYP3A4 inhibitor. Monitor liver tests, including AST, ALT, total bilirubin, direct bilirubin, ALP and gamma-glutamyltransferase (GGT) according to the recommendations in the Turalio package insert. Advise patients to immediately report any symptoms of hepatotoxicity. DISCUSSION: Coadministration of fluconazole (a moderate CYP3A4 inhibitor) increased pexidartinib maximum concentration (Cmax) and area-under-the-curve (AUC) by 41% and 67%.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, berotralstat, clofazimine, conivaptan, darunavir, diltiazem, erythromycin, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan, and verapamil.(1,3) |
TURALIO |
Elacestrant/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of CYP3A4 may inhibit the metabolism of elacestrant.(1) CLINICAL EFFECTS: Concomitant use of a strong or moderate CYP3A4 inhibitor increases elacestrant plasma concentrations, which may increase the incidence and severity of adverse reactions.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid concomitant use of strong or moderate CYP3A4 inhibitors with elacestrant.(1) DISCUSSION: Coadministration of itraconazole (a strong CYP3A4 inhibitor) increased elacestrant area-under-curve (AUC) and maximum concentration (Cmax) by 5.3-fold and 4.4-fold, respectively.(1) Coadministration of fluconazole (a moderate CYP3A4 inhibitor) is predicted to increase elacestrant AUC and Cmax by 2.3-fold and 1.6-fold, respectively.(1) Strong inhibitors of CYP3A4 include: adagrasib, boceprevir, ceritinib, clarithromycin, cobicistat, idelalisib, indinavir, itraconazole, josamycin, ketoconazole, levoketoconazole, lonafarnib, lopinavir, mibefradil, mifepristone, nefazodone, nelfinavir, nirmatrelvir, paritaprevir, posaconazole, ribociclib, saquinavir, telaprevir, telithromycin, tipranavir, troleandomycin, tucatinib, and voriconazole.(2) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(2) |
ORSERDU |
Omaveloxolone/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Agents which inhibit the CYP3A4 enzyme may inhibit the metabolism of omaveloxolone.(1) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 may result in increased levels of and effects from omaveloxolone including hepatotoxicity and hyperlipidemia.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The concurrent use of moderate CYP3A4 inhibitors with omaveloxolone should be avoided. If concurrent use cannot be avoided, reduce the omaveloxolone dosage to 100 mg daily and monitor closely. If adverse reactions emerge, reduce the dose to 50 mg once daily.(1) DISCUSSION: Coadministration of omaveloxolone with verapamil (a moderate CYP3A4 inhibitor) increased both the concentration maximum (Cmax) and area-under-curve (AUC) of omaveloxolone by 1.25-fold.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(2,3) |
SKYCLARYS |
Imatinib/Strong CYP3A4 Inducers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Agents that induce the CYP3A4 isoenzyme may induce the metabolism of imatinib.(1) CLINICAL EFFECTS: Concurrent use of strong CYP3A4 inducers may decrease the levels and effectiveness of imatinib.(1) PREDISPOSING FACTORS: Induction effects may be more likely with regular use of the inducer for longer than 1-2 weeks. PATIENT MANAGEMENT: Avoid the concurrent use of strong CYP3A4 inducers in patients receiving therapy with antineoplastic enzyme inhibitors. Consider the use of alternative agents with less enzyme induction potential.(1) The dose of imatinib should be increased by at least 50% and clinical response should be carefully monitored. Dosages up to 1,200 mg daily (600 mg twice daily) have been used in patients receiving concurrent therapy with strong CYP3A4 inducers.(1) DISCUSSION: Pretreatment of 14 healthy subjects with rifampin (600 mg daily for 10 days) increased the clearance of a single dose of imatinib (400 mg) by 3.8-fold. The area-under-curve (AUC) and maximum concentration (Cmax) decreased by 74% and 54%, respectively.(1,2) The Cmax of the CGP74588 metabolite increased by 88.6%, but the AUC of CGP74588 decreased by 11%.(2) Strong inducers of CYP3A4 include: barbiturates, dexamethasone, enzalutamide, fosphenytoin, mitotane, phenobarbital, phenytoin, primidone, rifampin, and rifapentine.(3,4) |
ASA-BUTALB-CAFFEINE-CODEINE, ASCOMP WITH CODEINE, BUPIVACAINE-DEXAMETH-EPINEPHRN, BUTALB-ACETAMINOPH-CAFF-CODEIN, BUTALBITAL, BUTALBITAL-ACETAMINOPHEN, BUTALBITAL-ACETAMINOPHEN-CAFFE, BUTALBITAL-ASPIRIN-CAFFEINE, CEREBYX, DEXABLISS, DEXAMETHASONE, DEXAMETHASONE ACETATE, DEXAMETHASONE ACETATE MICRO, DEXAMETHASONE INTENSOL, DEXAMETHASONE ISONICOTINATE, DEXAMETHASONE MICRONIZED, DEXAMETHASONE SOD PHOS-WATER, DEXAMETHASONE SODIUM PHOSPHATE, DEXAMETHASONE-0.9% NACL, DILANTIN, DILANTIN-125, DMT SUIK, DONNATAL, DOUBLEDEX, FIORICET, FIORICET WITH CODEINE, FOSPHENYTOIN SODIUM, HEMADY, LIDOCIDEX-I, LYSODREN, MAS CARE-PAK, MITOTANE, MYSOLINE, PENTOBARBITAL SODIUM, PHENOBARBITAL, PHENOBARBITAL SODIUM, PHENOBARBITAL-BELLADONNA, PHENOBARBITAL-HYOSC-ATROP-SCOP, PHENOHYTRO, PHENYTEK, PHENYTOIN, PHENYTOIN SODIUM, PHENYTOIN SODIUM EXTENDED, PRIFTIN, PRIMIDONE, RIFADIN, RIFAMPIN, SEZABY, TAPERDEX, TENCON, XTANDI, ZCORT |
Ritlecitinib/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ritlecitinib, immunosuppressives, and immunomodulators all suppress the immune system. CLINICAL EFFECTS: Concurrent use of ritlecitinib with immunosuppressives or immunomodulators may result in an increased risk of serious infections. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of ritlecitinib states that concurrent use of ritlecitinib with other JAK inhibitors, biologic immunomodulators, cyclosporine or other potent immunosuppressants is not recommended.(1) DISCUSSION: Serious infections have been reported in patients receiving ritlecitinib. Reported infections included appendicitis, COVID-19 infection (including pneumonia), and sepsis. Reports of viral reactivation, including herpes virus reactivation was reported in clinical studies with ritlecitinib.(1) |
LITFULO |
Ivosidenib/Imatinib SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ivosidenib, a strong CYP3A4 inducer(1), may induce the CYP3A4 isoenzyme and increase the metabolism of imatinib.(2) Moderate inhibitors of the CYP3A4 enzyme may inhibit the metabolism of ivosidenib.(3) Imatinib is a moderate CYP3A4 inhibitor.(1) Concurrent use of imatinib and ivosidenib may also result in additive effects on the QTc interval. CLINICAL EFFECTS: Concurrent use of imatinib with ivosidenib, a strong CYP3A4 inducer, may decrease the levels and effectiveness of imatinib and may cause additive effects on the QTc interval, which may result in life-threatening cardiac arrhythmias including torsades de pointes.(2) Concurrent use of moderate CYP3A4 inhibitors may also increase systemic exposure and the risk for ivosidenib toxicities such as QT prolongation.(3) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: Avoid the concurrent use of strong CYP3A4 inducers like ivosidenib in patients receiving therapy with imatinib. Consider the use of alternative agents with less enzyme induction potential and less potential to affect the QTc interval.(2) Although the manufacturer of imatinib provides recommendations for dose modification of imatinib when used with strong CYP3A4 inducers, it has not been studied in dual-directional interactions such as with ivosidenib. Thus, this dose modification recommendation is for information only. If concurrent therapy with strong CYP3A4 inducers is required, the dose of imatinib should be increased by at least 50% and clinical response should be carefully monitored. Dosages up to 1,200 mg daily (600 mg twice daily) have been used in patients receiving concurrent therapy with strong CYP3A4 inducers.(2) The US manufacturer of ivosidenib recommends considering an alternative concomitant medication with less potential for CYP3A4 inhibition.(3) If concurrent therapy is warranted, monitor patients closely for prolongation of the QT interval. Obtain serum calcium, magnesium, and potassium levels and monitor ECG at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Pretreatment of 14 healthy subjects with rifampin (600 mg daily for 10 days) increased the clearance of a single dose of imatinib (400 mg) by 3.8-fold. The area-under-the-curve (AUC) and maximum concentration (Cmax) decreased by 74% and 54%, respectively.(2) The Cmax of the CGP74588 metabolite increased by 88.6%, but the AUC of CGP74588 decreased by 11%.(2) In a drug interaction study in healthy subjects, coadministration of itraconazole (200 mg once daily for 18 days) with a single dose of ivosidenib (250 mg) increased ivosidenib AUC by 269%. No change was seen in ivosidenib's Cmax.(3) Data from a pharmacokinetic simulation suggests that fluconazole, a moderate CYP3A4 inhibitor, may increase ivosidenib (500 mg) single-dose AUC by 173%. In regards to multiple-dosing, coadministration of ivosidenib with fluconazole is predicted to increase ivosidenib Cmax and AUC by 152% and 190%, respectively.(3) |
TIBSOVO |
Colchicine (for Cardioprotection)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may inhibit the metabolism of colchicine.(1,2) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may result in elevated levels of and toxicity from colchicine. Symptoms of colchicine toxicity include muscle weakness or pain; numbness or tingling in the fingers or toes; myelosuppression; abdominal pain; nausea; severe diarrhea or vomiting; feeling weak or tired; increased infections; and pale or gray color of the lips, tongue, or palms of hands.(1,2) PREDISPOSING FACTORS: This interaction is expected to be more severe in patients with renal and/or hepatic impairment.(1,2) PATIENT MANAGEMENT: Monitor patients receiving moderate CYP3A4 inhibitors for signs of colchicine toxicity. Avoid concurrent use in patients with existing renal or hepatic impairment.(1) Patients should be instructed to immediately report any signs of colchicine toxicity, such as muscle weakness/pain, numbness/tingling in fingers/toes, unusual bleeding or bruising, infections, weakness/tiredness, pale/gray color of the lips/tongue/palms of hands, and/or severe diarrhea/vomiting. DISCUSSION: There is one case report of colchicine toxicity with concurrent erythromycin.(4) In a study in 20 subjects, pretreatment with diltiazem (240 mg daily for 7 days) increased the maximum concentration (Cmax) and area-under-curve (AUC) of a single dose of colchicine (0.6 mg) by 44.2% (range -46.6% to 318.3%) and by 93.4% (range -30.2% to 338.6%), respectively.(1) In a study in 18 subjects, pretreatment with ritonavir (100 mg twice daily for 5 days) increased the Cmax and AUC of a single dose of colchicine (0.6 mg) by 184.4% (range 79.2% to 447.4%) and by 296% (range 53.8% to 924.4%), respectively.(1) In a study in 24 subjects, pretreatment with verapamil (240 mg twice daily for 7 days) increased the Cmax and AUC of a single dose of colchicine (0.6 mg) by 40.1% (range -47.1% to 149.5%) and by 103.3% (range -9.8% to 217.2%), respectively.(1) Colchicine toxicity has been reported with concurrent use of CYP3A4 inhibitors such as clarithromycin, cyclosporine, diltiazem, erythromycin, and verapamil.(1,2) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, avacopan, clofazimine, conivaptan, crizotinib, duvelisib, fedratinib, fluconazole, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, and treosulfan.(1,5,6) |
LODOCO |
Lurbinectedin/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may inhibit the metabolism of lurbinectedin.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors with lurbinectedin may increase systemic exposure and the risk for toxicities such as myelosuppression, hepatotoxicity, neuropathy, fatigue, nausea, and musculoskeletal pain.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of lurbinectedin states that the concurrent use of lurbinectedin with moderate CYP3A4 inhibitors should be avoided. If the use of a moderate CYP3A4 inhibitor cannot be avoided, consider a dose reduction of lurbinectedin if clinically indicated based on adverse events as recommended in the lurbinectedin prescribing information.(1) DISCUSSION: Itraconazole (a strong CYP3A4 inhibitor) increased the area-under-curve (AUC) of total lurbinectedin by 2.7-fold and unbound lurbinectedin by 2.4-fold.(1) In a study including data from 443 patients with solid and hematologic malignancies treated in six phase I and three phase II trials with lurbinectedin as a single agent or combined with other agents, lurbinectedin clearance decreased by 30%, area-under-curve (AUC) increased by 42%, and concentration maximum (Cmax) increased by 7% when coadministered with a CYP3A inhibitor.(2) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(3,4) |
ZEPZELCA |
Etrasimod/Immunosuppressive CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Strong and moderate inhibitors of CYP3A4 may impair the CYP3A4-mediated metabolism of etrasimod. Etrasimod is metabolized by CYP2C8, CYP2C9, and CYP3A4.(1) Etrasimod causes reversible sequestration of lymphocytes in lymphoid tissues, resulting in a mean 55% decrease in peripheral blood lymphocyte count at 52 weeks.(1) Other immunosuppressives and immune-modulators also suppress the immune system. CLINICAL EFFECTS: In patients who are poor metabolizers of CYP2C9, concurrent use of a strong or moderate inhibitor of CYP3A4 may result in elevated levels of and clinical effects from etrasimod including immunosuppression, decreased lung function, bradycardia, and AV conduction delays. Concurrent use of etrasimod with immunosuppressive or immune-modulating agents may result in an increased risk of serious and fatal infections, such as disseminated herpetic infection, cryptococcal infection, or progressive multifocal leukoencephalopathy (PML).(1) PREDISPOSING FACTORS: CYP2C9 poor metabolizers (e.g., *2/*3, *3/*3) may have decreased clearance of etrasimod when etrasimod is used concomitantly with strong or moderate inhibitors of CYP3A4.(1) Additionally, incomplete washout of previously prescribed immunosuppressive or immune-modulating medications increases the risk of adverse events. PATIENT MANAGEMENT: The etrasimod US prescribing information states etrasimod has not been studied in combination with anti-neoplastic, immune-modulating, or immunosuppressive therapies. Concomitant administration of these therapies with etrasimod should be avoided because of the risk of additive immune effects during therapy and in the weeks following administration. Etrasimod's effect on peripheral lymphocytes may persist for up to 5 weeks after discontinuation.(1) When switching from drugs with prolonged immune effects, the half-life and mode of action of these drugs must be considered in order to avoid unintended additive immunosuppressive effects.(1) In addition, concomitant use with strong or moderate CYP3A4 inhibitors in patients who are CYP2C9 poor metabolizers is not recommended.(1) DISCUSSION: Fatal disseminated herpes zoster and herpes simplex infections, cryptococcal meningitis, disseminated cryptococcal infections, and cases of progressive multifocal leukoencephalopathy (PML) have been reported in patients treated with other sphingosine-1 phosphate receptor modulators.(1) CYP2C9 activity is decreased in individuals with genetic variants such as CYP2C9*2 and CYP2C9*3 alleles. The impact of CYP2C9 genetic variants on the pharmacokinetics of etrasimod has not been directly evaluated. Increased exposure of etrasimod in patients who are CYP2C9 poor metabolizers is expected with concomitant use of strong or moderate inhibitors of CYP3A4.(1) Concomitant use of etrasimod with steady-state fluconazole (a moderate CYP2C9 and CYP3A4 inhibitor) increased etrasimod area-under-curve (AUC) by 84%.(1) CYP3A4 inhibitors linked to this monograph include: duvelisib, fedratinib, idelalisib, imatinib, and treosulfan.(3) |
VELSIPITY |
Repotrectinib/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of CYP3A4 may inhibit the metabolism of repotrectinib.(1) CLINICAL EFFECTS: Concomitant use of a strong or moderate CYP3A4 inhibitor increases repotrectinib plasma concentrations, which may increase the incidence and severity of adverse reactions, including CNS effects (dizziness, ataxia, cognitive disorders), interstitial lung disease/pneumonitis, hepatotoxicity, and myalgia.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid concomitant use of strong or moderate CYP3A4 inhibitors with repotrectinib. Discontinue CYP3A4 inhibitors for 3 to 5 half lives of the inhibitor prior to initiating repotrectinib.(1) DISCUSSION: In a study, itraconazole (a strong CYP3A4 and P-gp inhibitor) increased the area-under-curve (AUC) and maximum concentration (Cmax) of repotrectinib by 5.9-fold and 1.7-fold, respectively.(1) Strong inhibitors of CYP3A4 include: adagrasib, boceprevir, ceritinib, clarithromycin, cobicistat, grapefruit, indinavir, itraconazole, josamycin, ketoconazole, levoketoconazole, lopinavir, mibefradil, mifepristone, nefazodone, nelfinavir, nirmatrelvir, posaconazole, ribociclib, saquinavir, telaprevir, telithromycin, tipranavir, troleandomycin, tucatinib, and voriconazole.(2) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, berotralstat, clofazimine, conivaptan, darunavir, diltiazem, dronedarone, erythromycin, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan, and verapamil.(2) |
AUGTYRO |
Nirogacestat/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of CYP3A4 may inhibit the metabolism of nirogacestat.(1) CLINICAL EFFECTS: Concomitant use of a strong or moderate CYP3A4 inhibitor increases nirogacestat plasma concentrations, which may increase the incidence and severity of adverse reactions, including hepatotoxicity, diarrhea, hypokalemia, and hypophosphatemia.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid concomitant use of strong or moderate CYP3A4 inhibitors with nirogacestat.(1) DISCUSSION: In a study, itraconazole (a strong CYP3A4 inhibitor) increased the area-under-curve (AUC) and maximum concentration (Cmax) of nirogacestat by 8.2-fold and 2.5-fold, respectively, following a single 100 mg dose of nirogacestat. In a PKPB model, nirogacestat AUC was predicted to increase by 6.33-, 5.19-, and 3.46-fold following coadministration of multiple doses of nirogacestat (150 mg BID) with itraconazole, ketoconazole and clarithromycin (strong CYP3A inhibitors), respectively.(1) In a PKPB model, nirogacestat AUC was predicted to increase 2.73-and 3.18-fold following coadministration of multiple doses of nirogacestat (150 mg BID) with erythromycin (moderate CYP3A inhibitor) and fluconazole (moderate CYP3A inhibitor), respectively.(1) Strong inhibitors of CYP3A4 include: adagrasib, boceprevir, ceritinib, clarithromycin, cobicistat, grapefruit, idelalisib, indinavir, itraconazole, josamycin, ketoconazole, levoketoconazole, lopinavir, mibefradil, mifepristone, nefazodone, nelfinavir, nirmatrelvir, paritaprevir, posaconazole, ribociclib, saquinavir, telaprevir, telithromycin, tipranavir, troleandomycin, tucatinib, and voriconazole.(2) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(2) |
OGSIVEO |
Sirolimus Protein-Bound/Myelosuppressive Mod-Weak 3A4 Inh SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Moderate and weak immunosuppressive CYP3A4 inhibitors may inhibit the metabolism of sirolimus by CYP3A4 and increase the risk of additive immunosuppression.(1) CLINICAL EFFECTS: Concurrent use of moderate or weak CYP3A4 inhibitors may result in elevated levels of and side effects from sirolimus including immunosuppression.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of sirolimus protein-bound injection (Fyarro) states a dose reduction to 56 mg/m2 is recommended when used concurrently with moderate or weak CYP3A4 inhibitors. Concurrent use with strong CYP3A4 inhibitors should be avoided.(1) DISCUSSION: In an open, randomized, cross-over trial in 18 healthy subjects, concurrent single doses of diltiazem (120 mg) and sirolimus (10 mg) increased sirolimus area-under-curve (AUC) and maximum concentration (Cmax) by 60% and by 43%, respectively. Sirolimus apparent oral clearance and volume of distribution decreased by 38% and 45%, respectively. There were no effects on diltiazem pharmacokinetics or pharmacodynamics.(2) In a study in 26 healthy subjects, concurrent sirolimus (2 mg daily) with verapamil (180 mg twice daily) increased sirolimus AUC and Cmax by 2.2-fold and 2.3-fold, respectively. The AUC and Cmax of the active S-enantiomer of verapamil each increased by 1.5-fold. Verapamil time to Cmax (Tmax) was increased by 1.2 hours.(2) Moderate CYP3A4 inhibitors linked to this monograph include: duvelisib, fedratinib, imatinib, and treosulfan.(3,4) Weak CYP3A4 inhibitors linked to this monograph include: asciminib, belumosudil, capivasertib, everolimus, lapatinib, larotrectinib, leflunomide, olaparib, palbociclib, and teriflunomide.(3,4) |
FYARRO |
Encorafenib/CYP3A4 Inhibitors and Substrates SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Encorafenib is a CYP3A4 substrate and a strong CYP3A4 inducer. Strong and moderate inhibitors of CYP3A4 may inhibit the metabolism of encorafenib. Also, the metabolism of sensitive substrates of CYP3A4 may be induced by encorafenib.(1) CLINICAL EFFECTS: Concomitant use of encorafenib with agents that are both strong or moderate CYP3A4 inhibitors and CYP3A4 substrates may result in increased levels and effects from encorafenib including QT prolongation. Concomitant use may also result in decreased levels and effectiveness of the CYP3A4 substrate.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) Induction effects may be more likely with regular use of the inducer for longer than 1-2 weeks. PATIENT MANAGEMENT: Avoid concomitant use of encorafenib with strong or moderate CYP3A4 inhibitors that are also CYP3A4 substrates.(1) The US manufacturer of encorafenib states that it should be avoided with CYP3A4 substrates for which decreased plasma concentrations may result in decreased therapeutic efficacy. If coadministration cannot be avoided, refer to the CYP3A4 substrate prescribing information for recommendations.(1) In addition, concurrent use of strong or moderate CYP3A4 inhibitors with encorafenib should be avoided.(1) The net effect of this two-way interaction is unknown and optimal doses of the drugs when used concurrently have not been determined. The manufacturer provides recommendations for dose modification when encorafenib is used with a CYP3A4 inhibitor, but the recommendations may not apply when there is a two-way interaction. Dose modifications mentioned below are informational only. If concurrent use of strong or moderate CYP3A4 inhibitors with encorafenib is unavoidable, reduce the encorafenib dose as follows: - If the current daily dose of encorafenib is 450 mg, reduce encorafenib to 150 mg with strong CYP3A4 inhibitors, and 225 mg with moderate CYP3A4 inhibitors. - If the current daily dose of encorafenib is 300 mg, reduce encorafenib to 75 mg with strong CYP3A4 inhibitors, and 150 mg with moderate CYP3A4 inhibitors. - If the current daily dose of encorafenib is 225 mg or 150 mg, reduce encorafenib to 75 mg with both strong and moderate CYP3A4 inhibitors. - After the inhibitor has been discontinued for 3 to 5 half-lives, resume encorafenib dose that was taken prior to initiating the CYP3A4 inhibitor.(1) When concurrent therapy cannot be avoided, monitor patients closely for prolongation of the QT interval. Obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. Recommended dosage modifications for encorafenib and QTc prolongation adverse reactions include: - QTcF greater than 500 ms and less than or equal to 60 ms increase from baseline: Withhold encorafenib until QTcF less than or equal to 500 ms. Resume at reduced dose. If more than one recurrence, permanently discontinue encorafenib. - QTcF greater than 500 ms and greater than 60 ms increase from baseline: Permanently discontinue encorafenib.(1) See encorafenib prescribing information for additional information regarding dose reductions.(1) DISCUSSION: Coadministration of posaconazole (strong CYP3A4 inhibitor) or diltiazem (moderate CYP3A4 inhibitor) increased the area-under-curve (AUC) of encorafenib by 3-fold and 2-fold, respectively, and increased the maximum concentration (Cmax) by 68% and 45%, respectively, after a single dose of encorafenib 50 mg (0.1 times the recommended dose).(1) Encorafenib 450 mg daily with binimetinib 45 mg twice daily decreased the AUC and Cmax of single dose of midazolam 2 mg, a sensitive CYP3A4 substrate, by 82% and 74%, respectively, relative to midazolam 2 mg alone.(1) Encorafenib has been associated with a dose-dependent QTc interval prolongation. Following administration of encorafenib in combination with binimetinib, the largest mean (90% CI) QTcF change from baseline was 18 ms (14-22 ms), based on central tendency analysis.(1) Agents that are both strong CYP3A4 inhibitors and CYP3A4 substrates linked to this monograph include: idelalisib, itraconazole, mifepristone, and tucatinib.(3) Agents that are both moderate CYP3A4 inhibitors and CYP3A4 substrates linked to this monograph include: aprepitant, darunavir, diltiazem, duvelisib, fedratinib, fosnetupitant, imatinib, netupitant, verapamil and voxelotor.(3) |
BRAFTOVI |
Ropeginterferon alfa-2b/Slt Immunosuppress; Immunomodulator SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ropeginterferon alfa-2b and immunosuppressives both suppress the immune system. CLINICAL EFFECTS: Concurrent use of ropeginterferon alfa-2b with immunosuppressives may result in an increased risk of serious infections. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid concurrent use of myelosuppressive agents.(1-2) If concurrent use cannot be avoided, monitor for effects of excessive immunosuppression. DISCUSSION: In clinical trials, 20% of patients experienced leukopenia. Interferon alfa products may cause fatal or life-threatening infections.(1-2) |
BESREMI |
Cariprazine/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Cariprazine and its major active metabolite DDCAR are metabolized by CYP3A4.(1-4) CLINICAL EFFECTS: Concurrent use of a moderate CYP3A4 inhibitor may result in elevated levels of and toxicity from cariprazine.(1-4) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: When possible, avoid the use of moderate CYP3A4 inhibitors with cariprazine. The US manufacturer of cariprazine states that concurrent use of moderate CYP3A4 inhibitors requires a dose adjustment. If a moderate CYP3A4 inhibitor is initiated in a patient on a stable dose of cariprazine, the following dose adjustments are recommended: -If current cariprazine dose is 1.5 or 3 mg daily - Decrease cariprazine dose to 1.5 mg every other day. -If current cariprazine dose is 4.5 or 6 mg daily - Decrease cariprazine dose to 1.5 mg daily. Cariprazine has two active metabolites, DCAR and DDCAR which have similar in vitro activity and potency. However, DDCAR has a longer half-life (1-3 weeks) than cariprazine (2-4 days), resulting in systemic DDCAR concentrations that are about 4-fold higher than cariprazine. Thus although interaction onset may begin within a few days, the full effect of inhibition may not be seen for 4 or more weeks. If a patient is already on a moderate CYP3A4 inhibitor when cariprazine is started, the following dose adjustments are recommended: -For schizophrenia or bipolar mania - Start cariprazine dose at 1.5 mg every other day; Increase to 1.5 mg daily, if needed. -For bipolar depression or adjunctive therapy for treatment of Major Depressive Disorder (MDD) - Start cariprazine dose at 1.5 mg every other day.(1) When the inhibitor is discontinued, cariprazine, DCAR and DDCAR will begin to fall and the dosage may need be increased. Monitor for decreased effectiveness for 4 or more weeks. The Australian, Canadian, and UK manufacturers of cariprazine state that concurrent use of moderate CYP3A4 inhibitors is contraindicated.(2-4) The Canadian manufacturer of cariprazine states that concurrent use of moderate CYP3A4 inhibitors is also contraindicated for at least 2 weeks after cariprazine discontinuation.(3) DISCUSSION: In an interaction study, coadministration of ketoconazole 400 mg/day with cariprazine 0.5 mg/day increased cariprazine exposure (AUC, area-under-curve) 4-fold and increased DDCAR AUC about 1.5-fold.(1) In a PKPB model, coadministration of ketoconazole 400 mg/day with cariprazine 0.5 mg/day is predicted to increase cariprazine concentration maximum (Cmax) and AUC by 5.5-fold and 6-fold, respectively. Coadministration of fluconazole 200 mg/day with cariprazine 0.5 mg/day is predicted to increased cariprazine Cmax and AUC by up to 3-fold.(1) Moderate CYP3A4 inhibitors linked to this monograph include: amprenavir, aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazole, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(5,6) |
VRAYLAR |
There are 51 moderate interactions.
The clinician should assess the patient’s characteristics and take action as needed. Actions required for moderate interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration.
Drug Interaction | Drug Names |
---|---|
Cilostazol (Less Than or Equal To 50 mg BID)/Selected Strong & Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Strong and moderate inhibitors of CYP3A4 may inhibit the metabolism of cilostazol.(1) CLINICAL EFFECTS: The concurrent use of cilostazol and strong and moderate inhibitors of CYP3A4 may result in elevated levels of cilostazol, which may produce increased effects of cilostazol and adverse effects.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The dose of cilostazol should be limited to 50 mg twice daily in patients receiving concurrent therapy with strong and moderate inhibitors of CYP3A4.(1) DISCUSSION: In a study in 16 healthy males, the administration of a single dose of cilostazol (10 mg) with erythromycin (500 mg every eight hours) increased the maximum concentration (Cmax) and area-under-curve (AUC) of cilostazol by 47% and 73%, respectively. The Cmax and AUC of 4'-trans-hydroxy-cilostazol were increased by 29% and 141%, respectively.(2) Analysis of population pharmacokinetics indicated that the concurrent administration of diltiazem with cilostazol increased cilostazol concentrations by 53%. Concurrent administration of diltiazem and cilostazol decreased cilostazol clearance by 30%, increased the Cmax by 30%, and increased AUC by 40%.(1) In a study, the administration of a single dose of cilostazol (10 mg) with erythromycin (500 mg every eight hours) increased the Cmax and AUC of cilostazol by 47% and 73%, respectively. The AUC of 4'-trans-hydroxy-cilostazol was increased by 141%.(1) In an vitro study in human liver microsomes, ketoconazole inhibited the metabolism of cilostazol.(3) |
CILOSTAZOL |
Lovastatin; Simvastatin/Imatinib SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Imatinib may inhibit the metabolism of lovastatin and simvastatin by CYP3A4.(1) CLINICAL EFFECTS: Concurrent use of imatinib may result in elevated levels and side effects of lovastatin or simvastatin, including rhabdomyolysis.(1,2) PREDISPOSING FACTORS: The risk for myopathy or rhabdomyolysis may be greater in patients 65 years and older, inadequately treated hypothyroidism, renal impairment, carnitine deficiency, malignant hyperthermia, or in patients with a history of myopathy or rhabdomyolysis. Patients with a SLCO1B1 polymorphism that leads to decreased function of the hepatic uptake transporter OATP1B1 may have increased statin concentrations and be predisposed to myopathy or rhabdomyolysis. PATIENT MANAGEMENT: Patients receiving concurrent therapy with imatinib and lovastatin or simvastatin should be carefully monitored for adverse effects, including rhabdomyolysis. Consider reducing the dosage of the HMG Co-A reductase inhibitor or using an alternative agent such as fluvastatin or pravastatin in patients receiving concurrent imatinib therapy. Instruct patients to report any signs of myopathy. DISCUSSION: In a study in 20 patients with chronic myeloid leukemia, subjects received a single dose of simvastatin (40 mg) alone and after 7 days of imatinib (400 mg daily). Imatinib increased the area-under-curve (AUC) and maximum concentration (Cmax) of simvastatin by 3.5-fold and by 2-fold, respectively. Simvastatin total body clearance decreased by 70%.(2) |
ALTOPREV, EZETIMIBE-SIMVASTATIN, FLOLIPID, LOVASTATIN, SIMVASTATIN, VYTORIN, ZOCOR |
Ranolazine (Less than or Equal To 500 mg BID)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of ranolazine. Verapamil may also increase the absorption of ranolazine by inhibiting P-glycoprotein.(1) CLINICAL EFFECTS: Concurrent use of moderate inhibitors of CYP3A4 may result in elevated levels of and clinical effects from ranolazine. Elevated ranolazine levels may result in QTc prolongation, which may result in life-threatening cardiac arrhythmia, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(5) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of ranolazine states that the dosage of ranolazine should be limited to 500 mg twice daily in patients receiving moderate inhibitors of CYP3A4.(1) Consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Concurrent use of diltiazem, a moderate inhibitor of CYP3A4, at daily doses of 180 mg to 360 mg increased plasma levels of ranolazine (1000 mg twice daily) by 50% and 130%, respectively.(1,3) In healthy subjects, concurrent ranolazine (1000 mg twice daily) had no effects on the pharmacokinetics of diltiazem (60 mg three times daily).(1) Concurrent use of verapamil (120 mg three times daily) increased plasma levels of ranolazine (750 mg twice daily) by 100%.(1) In a study in 12 healthy males, ranolazine immediate release (IR, 240 mg three times daily) had no effect on diltiazem (60 mg three times daily) pharmacokinetics. However, at ranolazine IR steady state, diltiazem increased ranolazine IR area under the curve (AUC) by 85%, on average, and increased maximum concentration (Cmax) by 1.9-fold and minimum concentration (Cmin) by 2.1-fold.(4) In a study in 12 subjects, ranolazine sustained release (SR, 500 mg twice daily) had no effect on diltiazem (60 mg three times daily) pharmacokinetics. However, at ranolazine steady state, diltiazem increased ranolazine SR Cmax, concentration minimum (Cmin), AUC by 80%, 216%, and 90%, on average, respectively.(4) In a study in 8 healthy males, diltiazem modified release (MR, 180 mg, or 240 mg, or 360 mg, once daily) increased ranolazine sustained release (SR, 1000 mg twice daily) AUC by 52%, 93%, and 139%, respectively. Ranolazine half-lives did not show any consistent trend of changes with increasing doses of diltiazem.(4) In a study of patients with severe chronic angina, the addition of ranolazine 750 mg twice daily or 1,000 mg twice daily along with their standard dose of diltiazem (180 mg once daily) provided additional antianginal relief, without evident adverse, long-term survival consequences over 1 to 2 years of therapy.(5) Ranolazine-induced QTc prolongation is dose and concentration-related.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, erythromycin, dronedarone, duvelisib, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, ledipasvir, lenacapavir, letermovir, netupitant, nilotinib, schisandra, treosulfan and verapamil.(1,3,6,7) |
ASPRUZYO SPRINKLE, RANOLAZINE ER |
Tamoxifen/Selected Weak CYP2D6 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Inhibitors of CYP2D6 may inhibit the conversion of tamoxifen to endoxifen (an active metabolite of tamoxifen).(1-2) The role of endoxifen in tamoxifen's efficacy has been debated and may involve a minimum concentration level.(3-5) CLINICAL EFFECTS: Concurrent use of inhibitors of CYP2D6 may decrease the effectiveness of tamoxifen in preventing breast cancer recurrence. PREDISPOSING FACTORS: Concurrent use of weak CYP2D6 inhibitors in patients who are CYP2D6 intermediate metabolizers should be avoided. Patients who are CYP2D6 poor metabolizers lack CYP2D6 function and are not affected by CYP2D6 inhibition. PATIENT MANAGEMENT: Although data on this interaction are conflicting, it may be prudent to use alternatives to CYP2D6 inhibitors when possible in patients taking tamoxifen. The US manufacturer of tamoxifen states that the impact on the efficacy of tamoxifen by strong CYP2D6 inhibitors is uncertain and makes no recommendation regarding coadministration with inhibitors of CYP2D6.(12) The manufacturer of paroxetine (a strong CYP2D6 inhibitor) states that alternative agents with little or no CYP2D6 inhibition should be considered.(13) The National Comprehensive Cancer Network's breast cancer guidelines advises caution when coadministering strong CYP2D6 inhibitors with tamoxifen.(14) If concurrent therapy is warranted, the risks versus benefits should be discussed with the patient. DISCUSSION: Some studies have suggested that administration of fluoxetine, paroxetine, and quinidine with tamoxifen or a CYP2D6 poor metabolizer phenotype may result in a decrease in the formation of endoxifen (an active metabolite of tamoxifen) and a shorter time to breast cancer recurrence.(1-2,9) A retrospective study of 630 breast cancer patients found an increasing risk of breast cancer mortality with increasing durations of coadministration of tamoxifen and paroxetine. In the adjusted analysis, absolute increases of 25%, 50%, and 75% in the proportion of time of overlapping use of tamoxifen with paroxetine was associated with 24%, 54%, and 91% increase in the risk of death from breast cancer, respectively.(16) The CYP2D6 genotype of the patient may have a role in the effects of this interaction. Patients with wild-type CYP2D6 genotype may be affected to a greater extent by this interaction. Patients with a variant CYP2D6 genotype may have lower baseline levels of endoxifen and may be affected to a lesser extent by this interaction.(6-10) In a retrospective review, 1,325 patients treated with tamoxifen for breast cancer were classified as being poor 2D6 metabolizers (lacking functional CYP2D6 enzymes), intermediate metabolizers (heterozygous alleles), or extensive metabolizers (possessing 2 functional alleles). After a mean follow-up period of 6.3 years, the recurrence rates were 14.9%, 20.9%, and 29.0%, in extensive metabolizers, intermediate metabolizers, and poor metabolizers, respectively.(11) In October of 2006, the Advisory Committee Pharmaceutical Science, Clinical Pharmacology Subcommittee of the US Food and Drug Administration recommended that the US tamoxifen labeling be updated to include information about the increased risk of breast cancer recurrence in poor CYP2D6 metabolizers (either by genotype or drug interaction).(17-18) The labeling changes were never made due to ongoing uncertainty about the effects of CYP2D6 genotypes on tamoxifen efficacy. In contrast to the above information, two studies have shown no relationship between CYP2D6 genotype and breast cancer outcome.(19-21) As well, a number of studies found no association between use of CYP2D6 inhibitors and/or antidepressants in patients on tamoxifen and breast cancer recurrence,(22-26) though the studies were limited by problematic selection of CYP2D6 inhibitors and short follow-up. Weak inhibitors of CYP2D6 include: alogliptin, artesunate, celecoxib, cimetidine, clobazam, cobicistat, delavirdine, diltiazem, dimenhydrinate, diphenhydramine, dronabinol, dupilumab, echinacea, enasidenib, fedratinib, felodipine, fluvoxamine, gefitinib, hydralazine, imatinib, labetalol, lorcaserin, nicardipine, osilodrostat, ranitidine, ritonavir, sertraline, verapamil and viloxazine.(27) |
SOLTAMOX, TAMOXIFEN CITRATE |
Gefitinib; Imatinib/Slt Azole Antifungals; Levoketoconazole SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Azole antifungals such as itraconazole,(1-3) ketoconazole,(1-2,4,5) and voriconazole(1,3,7) may inhibit the metabolism of gefitinib and imatinib by CYP3A4. Levoketoconazole may inhibit the metabolism of gefitinib and imatinib by CYP3A4.(7) CLINICAL EFFECTS: Concurrent use of itraconazole,(1-3) ketoconazole,(1-2,4,5) voriconazole(2,6), or levoketoconazole(7) may result in elevated levels of and toxicity from gefitinib or imatinib. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Concurrent use of gefitinib(1) or imatinib(2) with itraconazole, ketoconazole, or voriconazole should be approached with caution. Patients receiving concurrent therapy with gefitinib or imatinib should be monitored closely for increased levels of and toxicity from these agents if one of these azole antifungals is initiated. The dosage of gefitinib or imatinib may need to be adjusted if one of these azole antifungals is initiated or discontinued. The US manufacturer of levoketoconazole states that concurrent administration with sensitive CYP3A4 substrates is not recommended.(7) DISCUSSION: In a study in healthy subjects, itraconazole (200 mg daily for 12 days) increased the area-under-curve (AUC) of a single dose of gefitinib (250 mg) by 88%.(1) In a study in healthy male subjects, itraconazole increased the AUC of 250 mg of gefitinib by 78% and the AUC of 500 mg of gefitinib by 61%.(3) An in vitro study in human liver microsomes found that ketoconazole was a potent inhibitor of gefitinib metabolism.(4) In a study in 14 healthy subjects, a single oral dose of ketoconazole (400 mg) increased the AUC and maximum concentration (Cmax) of a single oral dose of imatinib (200 mg) by 40% and 26%, respectively.(2,5) In a case report, a patient developed elevated imatinib levels and a pustular eruption following the addition of voriconazole.(6) |
ITRACONAZOLE, ITRACONAZOLE MICRONIZED, KETOCONAZOLE, NOXAFIL, POSACONAZOLE, SPORANOX, TOLSURA, VFEND, VFEND IV, VORICONAZOLE |
Everolimus/Moderate CYP3A4; P-gp Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 and/or p-glycoprotein (P-gp) may inhibit the metabolism of everolimus.(1) CLINICAL EFFECTS: Concurrent use of moderate inhibitors of CYP3A4 and/or P-gp may result in elevated levels of and toxicity from everolimus.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: If concurrent therapy with everolimus and moderate inhibitors of CYP3A4 and/or P-gp is warranted, reduce the dosage of everolimus.(1) In patients with advanced hormone receptor-positive, HER2-negative breast cancer (HR+BC); advanced pancreatic neuroendocrine tumors (PNET); or advanced renal cell carcinoma; or renal angiomyolipoma with TSC, decrease the dose of everolimus to 2.5 mg daily. An increase to 5 mg daily may be considered based on patient tolerance. If the inhibitor is discontinued, allow an elimination period of 2-3 days before increasing the dose to that used prior to the inhibitor.(1) In patients with subependymal giant cell astrocytoma with TSC, reduce the dosage of everolimus by 50% to maintain trough concentrations of 5 ng/ml to 15 ng/ml. If the patient is already receiving 2.5 mg daily, consider a dose of 2.5 mg every other day. Assess everolimus levels 2 weeks after the addition of the inhibitor. Resume the everolimus dose used prior to initiation of the inhibitor after the inhibitor has been discontinued for 3 days, and assess everolimus trough levels 2 weeks later.(1) Guidelines from the American Society of Transplantation state that protease inhibitors are contraindicated, and recommend avoiding the use of erythromycin with everolimus. If the combination must be used, lower the dose of everolimus by up to 50% upon initiation of the antibiotic and monitor levels daily.(3) DISCUSSION: In a study in healthy subjects, concurrent use of erythromycin, a moderate CYP3A4 inhibitor and a P-gp inhibitor, increased everolimus AUC and Cmax by 2.0-fold and 4.4-fold, respectively.(1) In a study in healthy subjects, concurrent use of ketoconazole, a strong CYP3A4 inhibitor and a P-gp inhibitor, increased everolimus area-under-curve (AUC) and maximum concentration (Cmax) by 3.9-fold and 15.0-fold, respectively.(1) In a study in healthy subjects, concurrent use of verapamil, a moderate CYP3A4 inhibitor and a P-gp inhibitor, increased everolimus AUC and Cmax by 2.3-fold and 3.5-fold, respectively.(1) In a study in 16 healthy subjects, concurrent use of verapamil increased everolimus Cmax and AUC by 130% and 250%, respectively.(4) Moderate CYP3A4 and/or P-gp inhibitors include: abrocitinib, amiodarone, amprenavir, aprepitant, asciminib, asunaprevir, atazanavir, avacopan, azithromycin, belumosudil, cimetidine, clofazimine, conivaptan, crizotinib, danicopan, daridorexant, delavirdine, diltiazem, diosmin, dronedarone, duvelisib, erythromycin, fedratinib, flibanserin, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, fostamatinib, imatinib, isavuconazonium, ivacaftor, ledipasvir, lenacapavir, letermovir, mavorixafor, netupitant, nilotinib, nirogacestat, pirtobrutinib, propafenone, schisandra, tepotinib, tezacaftor, tofisopam, treosulfan, vemurafenib, verapamil, vimseltinib, and voclosporin.(5-7) |
AFINITOR, AFINITOR DISPERZ, EVEROLIMUS, TORPENZ, ZORTRESS |
Selected Opioids/Selected Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Inhibitors of CYP3A4 may inhibit the metabolism of alfentanil, benzhydrocodone, fentanyl,(1) hydrocodone, meperidine,(2) oxycodone,(3) and sufentanil.(4) CLINICAL EFFECTS: The concurrent administration of a CYP3A4 inhibitor may result in elevated levels of and toxicity from alfentanil, benzhydrocodone, fentanyl,(1,5) hydrocodone, meperidine,(2) oxycodone(3) and sufentanil(4), including somnolence and potentially fatal respiratory depression. PREDISPOSING FACTORS: Heat. PATIENT MANAGEMENT: Monitor patients receiving moderate CYP3A4 inhibitors for an extended period of time. Dosage adjustments should be made if warranted. The manufacturer of sufentanil sublingual tablets states that if concomitant use with CYP3A4 inhibitors is necessary, consider use of an alternate agent that allows dose adjustment.(4) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with agents that may increase opioid drug levels.(6) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(7) Avoid exposing the fentanyl patch application site and surrounding area to direct external heat sources as there have been reports of overdose and death as a result of exposure to heat.(1) DISCUSSION: Fentanyl(1) and oxycodone(3) are metabolized by the CYP3A4 isoenzyme. Moderate and strong inhibitors of this isoenzyme are expected to increase fentanyl(1) and oxycodone(3) levels. In a single dose study of sufentanil sublingual tablet 15 mcg with a strong CYP3A4 inhibitor, ketoconazole, resulted in 77% and 19% greater AUC and Cmax values of sufentanil, respectively, compared to its administration alone.(4) In a randomized study in 30 patients, continuous diltiazem (1 mcg/kg/min) infusion had no effect on epidural fentanyl consumption when compared to placebo. There were no significant differences in Visual Analogue Scores (VAS), Verbal Rating Scores (VRS), or incidence of side effects, although there was a trend towards increased nausea with concurrent diltiazem.(5) In a randomized study of coronary artery bypass patients, concurrent diltiazem (60 mg orally 2 hours before induction of anesthesia then 0.1 mg/kg/hr infusion) increased the area-under-curve (AUC) and half-life of alfentanil by 40% and 50%, respectively, when compared to placebo. Patients who received diltiazem were extubated an average of 2.5 hours later than in patients who received placebo.(8) In a study in 13 patients, administration of a single dose of verapamil (75mcg/kg to 150mcg/kg) had no significant effects on the pharmacodynamic effects of a single dose of fentanyl; however, individual patients had modest decreases in blood pressure.(9) In a case report, concurrent diltiazem and fentanyl produced delirium.(10) A study in healthy subjects shown that the application of heat over the fentanyl patch system increased mean overall fentanyl exposure by 120% and average maximum fentanyl level by 61%.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, darunavir, diltiazem, dronedarone, duvelisib, fedratinib, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, schisandra, treosulfan and verapamil.(11,12) |
APADAZ, BENZHYDROCODONE-ACETAMINOPHEN, DEMEROL, DSUVIA, ENDOCET, FENTANYL, FENTANYL CITRATE, FENTANYL CITRATE-0.9% NACL, FENTANYL CITRATE-D5W, FENTANYL CITRATE-STERILE WATER, FENTANYL CITRATE-WATER, FENTANYL-BUPIVACAINE-0.9% NACL, FENTANYL-BUPIVACAINE-NACL, FENTANYL-ROPIVACAINE-0.9% NACL, FENTANYL-ROPIVACAINE-NACL, HYCODAN, HYDROCODONE BITARTRATE, HYDROCODONE BITARTRATE ER, HYDROCODONE-ACETAMINOPHEN, HYDROCODONE-CHLORPHENIRAMNE ER, HYDROCODONE-HOMATROPINE MBR, HYDROCODONE-IBUPROFEN, HYDROMET, HYSINGLA ER, MEPERIDINE HCL, MEPERIDINE HCL-0.9% NACL, NALOCET, OXYCODONE HCL, OXYCODONE HCL ER, OXYCODONE HYDROCHLORIDE, OXYCODONE-ACETAMINOPHEN, OXYCONTIN, PERCOCET, PRIMLEV, PROLATE, ROXICODONE, ROXYBOND, SUFENTANIL CITRATE, XTAMPZA ER |
Metoprolol/Selected CYP2D6 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: CYP2D6 inhibitors may inhibit the metabolism of metoprolol.(1,2) CLINICAL EFFECTS: Concurrent use of CYP2D6 inhibitors may result in elevated levels of and toxicity from metoprolol.(1,2) PREDISPOSING FACTORS: The interaction may be more severe in patients who are ultrarapid metabolizers of CYP2D6.(1,2) PATIENT MANAGEMENT: Monitor patients receiving concurrent therapy with metoprolol and inhibitors of CYP2D6. The dosage of metoprolol may need to be adjusted.(1,2) DISCUSSION: In an open-label, randomized, cross-over study in 12 healthy males, celecoxib (200 mg BID) increased the AUC of metoprolol (50 mg) by 64%. One subject experienced a 200% increase.(3) In a randomized, double-blind, cross-over study in 7 healthy subjects, hydroxychloroquine (400 mg) increased the AUC of a single dose of metoprolol by 65%.(4) In a study in 20 Chinese patients with chronic myelogenous leukemia, imatinib (400 mg BID) increased the AUC of metoprolol (100 mg single dose) by 23%. (5) In healthy subjects, ranolazine (750 mg twice daily) increased plasma levels of a single dose of metoprolol (100 mg) by 1.8-fold.(6) CYP2D6 inhibitors include: abiraterone, asunaprevir, berotralstat, bupropion, capivasertib, celecoxib, cinacalcet, citalopram, dacomitinib, diphenhydramine, dronabinol, duloxetine, eliglustat, escitalopram, fedratinib, fluoxetine, hydroxychloroquine, imatinib, lorcaserin, moclobemide, osilodrostat, paroxetine, quinine, ranitidine, ranolazine, rolapitant, and sertraline. |
KAPSPARGO SPRINKLE, LOPRESSOR, METOPROLOL SUCCINATE, METOPROLOL TARTRATE, METOPROLOL-HYDROCHLOROTHIAZIDE, TOPROL XL |
Ibrutinib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Agents that inhibit the CYP3A4 isoenzyme may inhibit the metabolism of ibrutinib.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may increase levels of and effects from ibrutinib.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Concurrent use of moderate CYP3A4 inhibitors in patients undergoing therapy with ibrutinib requires a dose adjustment.(1) If a moderate CYP3A4 inhibitor is required for B-cell malignancies treatment, reduce the dose of ibrutinib to 280 mg daily.(1) If a moderate CYP3A4 inhibitor is required for chronic graft versus host disease treatment, reduce the dose of ibrutinib in patients 12 years and older to 420 mg once daily, and in patients 1 year to 12 years old to 240 mg/m2 once daily.(1) After discontinuation of a CYP3A4 inhibitor, resume previous dose of ibrutinib.(1) DISCUSSION: The coadministration of multiple doses of erythromycin (moderate CYP3A inhibitor) increased ibrutinib's concentration maximum (Cmax) and area-under-curve (AUC) by 3.4-fold and 3-fold.(1) In a case report, concomitant administration of ibrutinib and verapamil/trandolapril resulted in ibrutinib toxicity consisting of nausea, dizziness, malaise, and severe diarrhea.(2) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, casopitant, clofazimine, clotrimazole, conivaptan, crizotinib, darunavir, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, grapefruit juice, imatinib, isavuconazonium, ledipasvir, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan and verapamil.(1,3,4) |
IMBRUVICA |
Avanafil (Less Than or Equal To 50 mg)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of avanafil.(1) CLINICAL EFFECTS: The concurrent administration of a moderate CYP3A4 inhibitor may result in elevated levels of avanafil, which may result in increased adverse effects such as hypotension, visual changes, and priapism. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of avanafil states that in patients receiving moderate inhibitors of CYP3A4, the dose of avanafil should be limited to 50 mg in 24 hours.(1) DISCUSSION: Ketoconazole (400 mg daily), a strong inhibitor of CYP3A4, increased the maximum concentration (Cmax) and area-under-curve (AUC) of a single dose of avanafil (50 mg) by 3-fold and 13-fold, respectively. The half-life of avanafil increased from 5 hours to 9 hours.(1) Ritonavir (600 mg BID), a strong inhibitor of CYP3A4 and an inhibitor of 2C19, increased the Cmax and AUC of a single dose of avanafil (50 mg) by 2-fold and 13-fold, respectively. The half-life of avanafil increased from 5 hours to 9 hours.(1) Erythromycin (500 mg BID), a moderate inhibitor of CYP3A4, increased the Cmax and AUC of a single dose of avanafil (200 mg) by 2-fold and 3-fold, respectively. The half-life of avanafil increased from 5 hours to 8 hours.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, grapefruit juice, imatinib, isavuconazonium, lefamulin, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan and verapamil.(1-3) |
AVANAFIL, STENDRA |
Thyroid Preparations/Imatinib;Sunitinib SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The suspected mechanism responsible for this phenomenon is an induction of non-deiodination clearance. The induction of uridine diphosphate-glucuronyl transferases (UGTs) by imatinib and sunitinib decreases levels of the thyroid preparations.(1) CLINICAL EFFECTS: The coadministration of thyroid preparations and imatinib and sunitinib may result in decreased levels and clinical effects of thyroid hormones.(1-3) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Patients taking thyroid preparations and imatinib or sunitinib should be monitored for changes in thyroid function. The dosage of the thyroid preparation may need to be increased.(1-3) DISCUSSION: In a case report, 8 patients had undergone thyroidectomy and used levothyroxine and imatinib. These patients had an increase need for levothyroxine levels and were monitored for elevations in thyrotropin indicating worsening hypothyroidism.(2) A case report of a 73 year old man who was treated with imatinib and levothyroxine developed worsening hypothyroidism. An increase in levothyroxine dosage was needed.(3) In a case report, a 59 year old woman was taking levothyroxine therapy for hypothyroidism secondary to subtotal thyroidectomy and was recently started on imatinib for chronic myeloid leukemia. The patient developed clinical signs of hypothyroidism and required an increased dose of levothyroxine.(4) In a case report, a 73 year old woman was taking levothyroxine and developed fatigue, nausea, cold-intolerance, hair-loss, brittle nails, progressive weakness, and impressive facial oedema 6 months after starting imatinib. The patient levothyroxine was increased and she remained euthyroid, but the imatinib was discontinued due to extreme fatigue and periorbital oedema. Five months later the patient was stared on sunitinib and her levothyroxine dose was increased. The patient developed similar symptoms to imatinib reaction.(5) In a case report, a patient receiving sunitinib for metastatic papillary renal cell cancer developed high thyroid stimulating hormone levels and severe symptoms despite receiving L-thyroxine.(6) |
ADTHYZA, ARMOUR THYROID, CYTOMEL, ERMEZA, EUTHYROX, LEVO-T, LEVOTHYROXINE SODIUM, LEVOTHYROXINE SODIUM DILUTION, LEVOXYL, LIOTHYRONINE SODIUM, NIVA THYROID, NP THYROID, PCCA T3 SODIUM DILUTION, PCCA T4 SODIUM DILUTION, RENTHYROID, SYNTHROID, THYQUIDITY, THYROID, TIROSINT, TIROSINT-SOL, UNITHROID |
Suvorexant (Less Than or Equal To 10 mg)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of suvorexant.(1) CLINICAL EFFECTS: Concurrent use of an agent that is a moderate inhibitor of CYP3A4 may result in elevated levels of and clinical effects of suvorexant.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of suvorexant recommends a starting dose of 5 mg daily and a maximum dose of 10 mg daily in patients receiving concurrent therapy with a moderate CYP3A4 inhibitor.(1) DISCUSSION: Diltiazem, a moderate inhibitor of CYP3A4, increased suvorexant AUC and Cmax by approximately 2-fold and 1.25-fold, respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, dronedarone, erythromycin, duvelisib, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, ledipasvir, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan and verapamil.(1-3) |
BELSOMRA |
Brexpiprazole/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Strong CYP3A4 inhibitors may inhibit the metabolism of brexpiprazole.(1) CLINICAL EFFECTS: Concurrent administration of a strong CYP3A4 inhibitor may result in elevated levels of and toxicity from brexpiprazole.(1) PREDISPOSING FACTORS: This interaction is expected to be more severe in patients who are CYP2D6 poor metabolizers, or who receive concomitant treatment with a strong or moderate CYP2D6 inhibitor (e.g. bupropion, fluoxetine, paroxetine, quinidine) in addition to treatment with a moderate CYP3A4 inhibitor. PATIENT MANAGEMENT: The US manufacturer of brexpiprazole recommends the following dose adjustments for patients who are receiving a moderate CYP3A4 inhibitor: - in patients taking a moderate CYP3A4 inhibitor who are poor CYP2D6 metabolizers or are receiving a strong or moderate inhibitor of CYP2D6, decrease the dose to one-fourth the usual dose. The dose of brexpiprazole should be adjusted to its original level if the CYP3A4 inhibitor is discontinued.(1) No empiric dosage adjustment is recommended in other patients. DISCUSSION: Coadministration of ketoconazole, a strong inhibitor of CYP3A4, increased the area-under-curve (AUC) of brexpiprazole approximately 2-fold.(1) Moderate CYP3A4 inhibitors linked to this monograph include aprepitant, avacopan, clofazimine, conivaptan, crizotinib, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosnetupitant, imatinib, isavuconazonium, ledipasvir, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan and verapamil. |
REXULTI |
Selected BCRP Substrates/Safinamide SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Safinamide transiently inhibits BCRP in the small intestine, which may result in increased absorption of BCRP substrates.(1) CLINICAL EFFECTS: Administration of safinamide with BCRP substrates may result in elevated levels of and toxicity from these agents.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The EMA and UK manufacturer of safinamide recommend monitoring patients who are on concomitant drugs that are substrates of BCRP, including ciprofloxacin, diclofenac, methotrexate, rosuvastatin, and topotecan. Dose adjustment of the BCRP substrate should be performed according to the prescribing information for the BCRP substrate.(1) On the other hand, the US manufacturer of safinamide states that rosuvastatin did not have a clinically significant effect on the pharmacokinetics of safinamide.(2) DISCUSSION: Safinamide transiently inhibits BCRP in the small intestine, which may result in increased absorption of BCRP substrates.(1) In a clinical study, safinamide increased the AUC of rosuvastatin by 1.25- to 2-fold.(1,3) BCRP substrates linked to this monograph include: ciprofloxacin, diclofenac, imatinib, irinotecan, lapatinib, methotrexate, mitoxantrone, rosuvastatin, sulfasalazine, and topotecan.(1,3) |
XADAGO |
Bromocriptine/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may inhibit the metabolism of bromocriptine. CLINICAL EFFECTS: Concurrent use of a moderate CYP3A4 inhibitor may result in increased levels of bromocriptine, which may result in increased side effects of these agents. PREDISPOSING FACTORS: Patients receiving the maximum recommended (or higher than recommended) dosages of ergotamine derivatives may be at a higher risk of adverse effects from this combination. PATIENT MANAGEMENT: Use caution with concurrent therapy with bromocriptine with azole antifungals. The US manufacturer of bromocriptine states use caution when co-administering drugs that are inhibitors of CYP3A4. Bromocriptine dose should not exceed 1.6 mg per day when used with a moderate CYP3A4 inhibitor. Concomitant use of strong CYP3A4 inhibitors should be avoided. Ensure adequate washout of strong CYP3A4 inhibitor drug before initiating bromocriptine.(1) DISCUSSION: A study in five healthy subjects found that concurrent administration of erythromycin and bromocriptine resulted in a 268% increase in area-under-curve (AUC) for bromocriptine and a 4.6-fold increase in bromocriptine maximum concentration (Cmax).(2) Inhibition of ergotamine derivative metabolism by moderate inhibitors would also be expected, but to a lesser degree. Moderate CYP3A4 inhibitors linked to this monograph are aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, dronedarone, duvelisib, fedratinib, fluconazole, fluvoxamine, fosnetupitant, imatinib, isavuconazonium, ledipasvir, lenacapavir, letermovir, netupitant, nilotinib, schisandra, stiripentol, tofisopam, treosulfan and verapamil.(3,4) |
BROMOCRIPTINE MESYLATE, CYCLOSET |
Quetiapine/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may inhibit the metabolism of quetiapine. Quetiapine is a sensitive substrate for CYP3A4 and so an approximately 2-fold or higher increase in exposure (AUC, area-under-curve) is possible when quetiapine is given with a moderate CYP3A4 inhibitor.(1-4) CLINICAL EFFECTS: Concurrent use of a strong or moderate CYP3A4 inhibitor may result in elevated levels of and toxicity from quetiapine, including potentially life-threatening cardiac arrhythmias such as torsades de pointes.(2,3) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: Monitor patients when moderate inhibitors of CYP3A4 are co-prescribed with quetiapine as the magnitude of the interaction is highly variable between patients.(6) Use of higher doses of either the CYP3A4 inhibitor or quetiapine are other factors which may affect the magnitude of this interaction. Decrease the quetiapine dose if needed. If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, fainting, excessive drowsiness, rapid pulse/hypotension, weakness, fatigue, dizziness, or muscle stiffness/tremors (EPS). DISCUSSION: In a study in 19 Chinese patients with schizophrenia, patients received quetiapine (200 mg twice daily) alone and with erythromycin (500 mg 3 times daily, a moderate inhibitor of CYP3A4). Erythromycin increased the quetiapine maximum concentration (Cmax)by 68%(range approximately 20-130%), area-under-curve (AUC) 129% (range approximately 20-300%), and half-life by 92% (range approximately 0-250%). Quetiapine clearance decreased 52% (range approximately -15 to -80%).(6) Moderate inhibitors of CYP3A4 include: aprepitant, avacopan, berotralstat, clofazimine, conivaptan, diltiazem, duvelisib, fedratinib, fluvoxamine, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nirogacestat, schisandra, schisandra sphenanthera, tofisopam, treosulfan and verapamil.(4) |
QUETIAPINE FUMARATE, QUETIAPINE FUMARATE ER, SEROQUEL, SEROQUEL XR |
Acalabrutinib/Selected Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Agents that inhibit the CYP3A4 isoenzyme may inhibit the metabolism of acalabrutinib.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may increase levels of and effects from acalabrutinib.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Recommendations for management of this interaction vary in different regions. The US and Australian manufacturers of acalabrutinib state that the concurrent chronic use of strong CYP3A4 inhibitors with acalabrutinib is not recommended. For short-term use of strong CYP3A4 inhibitors, such as 7 days or less of antibiotics/antifungals, consider interruption of acalabrutinib therapy. If a moderate CYP3A4 inhibitor is required, reduce the dose of acalabrutinib to 100 mg once daily.(1,2) The UK manufacturer of acalabrutinib makes the same recommendation regarding strong CYP3A4 inhibitors, but states that no dose adjustment is needed for concurrent use of acalabrutinib with moderate CYP3A4 inhibitors. Patients should be monitored closely for adverse effects.(3) DISCUSSION: In a study with healthy volunteers, single-dose fluconazole 400 mg and isavuconazole 200 mg daily for 5 days (both moderate CYP3A4 inhibitors) increased the maximum concentration (Cmax) and area-under-curve (AUC) of acalabrutinib by 1.4- to 2-fold. The Cmax and AUC of the active metabolite ACP-5862 was decreased by 0.65- to 0.88-fold.(2) A physiologically based pharmacokinetic simulation with acalabrutinib and moderate CYP3A inhibitors (erythromycin, fluconazole, diltiazem) predicted that coadministration increases acalabrutinib Cmax and AUC by 2- to almost 3-fold.(1) In a study in healthy subjects, itraconazole (200mg once daily for 5 days, a strong inhibitor) increased the Cmax and AUC of acalabrutinib by 3.9-fold and 5.1-fold, respectively.(1) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, grapefruit juice, imatinib, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan and verapamil.(4,5) |
CALQUENCE |
Abemaciclib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Abemaciclib is a substrate of CYP3A4. Moderate inhibitors of CYP3A4 may inhibit the metabolism of abemaciclib.(1) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 may result in increased levels and toxicity from abemaciclib.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of abemaciclib recommends monitoring for adverse reactions and consider a dose reduction of abemaciclib dose in 50 mg decrements as detailed in prescribing information (based on starting dose, previous dose reductions, and combination or monotherapy use) with concurrent use of moderate CYP3A4 inhibitors.(1) Monitor patient for signs and symptoms of abemaciclib toxicity with concurrent use. DISCUSSION: Abemaciclib is a substrate of CYP3A4.(1) Concurrent administration of verapamil and diltiazem (moderate CYP3A4 inhibitors) are predicted to increase the relative adjusted unbound area-under-curve (AUC) of abemaciclib and its active metabolites (M2, M18, and M20) by approximately 1.6-fold and 2.4-fold, respectively.(1) Concurrent administration of ketoconazole (a strong CYP3A4 inhibitor) is predicted to increase the AUC of abemaciclib up to 16-fold.(1) Concurrent administration of itraconazole (a strong CYP3A4 inhibitor) is predicted to increase the relative potency adjusted unbound AUC of abemaciclib and its active metabolites (M2, M18, and M20) by 2.2-fold.(1) Concurrent administration of clarithromycin (500 mg twice daily, a strong CYP3A4 inhibitor) with a single dose of 50 mg of abemaciclib increased the relative potency adjusted unbound AUC of abemaciclib and its active metabolites (M2, M18, and M20) by 2.5-fold.(1) Moderate CYP3A4 inhibitors linked to this monograph include: amprenavir, aprepitant, avacopan, berotralstat, clofazimine, conivaptan, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan and verapamil.(2,3) |
VERZENIO |
Lurasidone (Less Than or Equal To 80 mg)/Selected CYP3A4 Moderate Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may inhibit the metabolism of lurasidone.(1) CLINICAL EFFECTS: Concomitant use of lurasidone with inhibitors of CYP3A4 may lead to orthostatic hypotension, akathisia, acute dystonia, Parkinsonism or other lurasidone toxicities.(1) PREDISPOSING FACTORS: Elderly patients, particularly those with a history of falls or swallowing disorders, and patients with Parkinson Disease, Lewy Body Disease, or other dementias are more sensitive to antipsychotics and have a greater risk for adverse effects.(1) PATIENT MANAGEMENT: The US manufacturer of lurasidone states that the dose of lurasidone should not exceed 80 mg daily if coadministered with moderate CYP3A4 inhibitors.(1) If a patient is currently on lurasidone and a moderate CYP3A4 inhibitor is added to therapy, the dose of lurasidone should be decreased by 50% of the original dose.(1) If a patient is currently on a moderate CYP3A4 inhibitor and lurasidone is added to therapy, the recommended starting dose of lurasidone is 20 mg per day.(1) DISCUSSION: Pretreatment with diltiazem (240 mg daily for 5 days), another moderate inhibitor of CYP3A4, increased the maximum concentration (Cmax) and area-under-curve (AUC) of a single dose of lurasidone (20 mg) by 2.1-fold, and 2.2-fold, respectively.(1) Agents linked to this monograph include berotralstat, clofazimine, conivaptan, crizotinib, dronedarone, duvelisib, fedratinib, fluvoxamine, imatinib, isavuconazonium, letermovir, nilotinib, nirogacestat, and tofisopam.(2,3) |
LATUDA, LURASIDONE HCL |
Oral Lefamulin/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of oral lefamulin.(1,2) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 may result in elevated levels and increased effects of lefamulin, such as QT prolongation. PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: The US manufacturer of lefamulin states that oral lefamulin coadministration with moderate inhibitors of CYP3A4 should be monitored for adverse effects.(1) During concomitant therapy with a moderate CYP3A4 inhibitor, monitor patients closely for prolongation of the QT interval. Obtain serum calcium, magnesium, and potassium levels and monitor ECG at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Coadministration of ketoconazole (strong CYP3A4 inhibitor) with lefamulin tablets increased lefamulin area-under-the-curve (AUC) and maximum concentration (Cmax) by 165% and 58%.(1) Moderate inhibitors of CYP3A4 include: amprenavir, avacopan, clofazimine, conivaptan, duvelisib, fedratinib, fosamprenavir, fosnetupitant, imatinib, lenacapavir, letermovir, netupitant, schisandra, tofisopam and treosulfan.(1,3) |
XENLETA |
Zanubrutinib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of zanubrutinib.(1) CLINICAL EFFECTS: Concurrent use of a moderate CYP3A4 inhibitor may result in elevated levels of and toxicity from zanubrutinib.(1) PREDISPOSING FACTORS: Patients with severe hepatic impairment (Child-Pugh class C) have elevated zanubrutinib plasma concentrations and may be more susceptible to the effects of this interaction.(1) PATIENT MANAGEMENT: The dosage of zanubrutinib should be reduced to 80 mg twice daily when co-administered with moderate CYP3A4 inhibitors. Modify the dose as recommended by prescribing information for adverse reactions.(1) DISCUSSION: Co-administration with itraconazole 200 mg once daily, a strong CYP3A4 inhibitor, increased zanubrutinib concentration maximum (Cmax) and area-under-curve (AUC) by 157% and 278%, respectively. It is predicted co-administration with fluconazole 200 mg daily, a moderate CYP3A4 inhibitor, would increase zanubrutinib Cmax and AUC by 179% and 177%, respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan and verapamil.(2-4) |
BRUKINSA |
Ubrogepant/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of ubrogepant.(1) CLINICAL EFFECTS: Concurrent use of a moderate CYP3A4 inhibitor may result in elevated levels of ubrogepant.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer recommends a dosage adjustment of ubrogepant when used concomitantly with moderate CYP3A4 inhibitors. Initial dose of ubrogepant should not exceed 50 mg. A second dose should be avoided within 24 hours of the first dose when used concurrently with moderate CYP3A4 inhibitors.(1) DISCUSSION: Co-administration with verapamil, a moderate CYP3A4 inhibitor, resulted in a 3.5-fold and 2.8-fold increase in area-under-curve (AUC) and concentration maximum (Cmax), respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan and verapamil.(2-4) |
UBRELVY |
Avapritinib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of avapritinib.(1) CLINICAL EFFECTS: Concurrent use of avapritinib with a moderate CYP3A4 inhibitor increases avapritinib plasma concentrations, which may increase the incidence and severity of adverse reactions of avapritinib.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid concomitant use of avapritinib with strong or moderate CYP3A4 inhibitors. If coadministration of avapritinib with a moderate CYP3A4 inhibitor cannot be avoided, reduce the dose of avapritinib to 100 mg once daily for treatment of gastrointestinal stromal tumors or 50 mg once daily for treatment of advanced systemic mastocytosis.(1) DISCUSSION: Coadministration of avapritinib 300 mg once daily with fluconazole 200 mg once daily, a moderate CYP3A4 inhibitor, is predicted to increase avapritinib AUC by 210% at steady state.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan and verapamil.(2,3) |
AYVAKIT |
Rimegepant/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Rimegepant is primarily metabolized by CYP3A4. Moderate inhibitors of CYP3A4 may decrease the metabolism of rimegepant.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may result in increased levels of and toxicity from rimegepant.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of rimegepant recommends avoiding a second dose of rimegepant within 48 hours of a first dose when used concomitantly with moderate CYP3A4 inhibitors.(1) DISCUSSION: In a drug interaction study (n=23), fluconazole, a moderate CYP3A4 inhibitor, increased rimegepant mean area-under-curve from time 0 to infinity (AUC 0-inf) by 1.8-fold (90% confidence interval 1.68-1.93), with no impact on the maximum concentration (Cmax) (1.04-fold; 90% CI 0.94-1.15). (2) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam and treosulfan.(3-4) |
NURTEC ODT |
Ustekinumab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Ustekinumab, immunosuppressives, and immunomodulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of ustekinumab with immunosuppressive or immunomodulating agents may result in an increased risk for serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of ustekinumab recommends caution because the concurrent use of ustekinumab with immunosuppressive agents may increase the risk of infection. If concurrent therapy is warranted, consider the risk of additive immune suppression and monitor based on prescribing information for both agents.(1) DISCUSSION: Ustekinumab has not been studied in combination with other immunosuppressants in psoriasis studies. In psoriatic arthritis studies, concomitant methotrexate use did not appear to influence the safety or efficacy of ustekinumab. In Crohn's disease and ulcerative colitis studies, concomitant use of immunosuppressants or corticosteroids did not appear to influence the safety or efficacy of ustekinumab. If concurrent therapy is warranted, consider the potential for increased immunosuppressive risks from both agents.(1) The most common infections reported by ustekinumab treated patients in the clinical trial periods included nasopharyngitis(8%) and upper respiratory tract infection(5%). Serious bacterial, mycobacterial, fungal, and viral infections were observed in patients receiving ustekinumab. Cases of interstitial pneumonia, eosinophilic pneumonia, and cryptogenic organizing pneumonia resulting in respiratory failure or prolonged hospitalization have been reported in patients receiving ustekinumab.(1) |
OTULFI, PYZCHIVA, SELARSDI, STELARA, STEQEYMA, USTEKINUMAB, USTEKINUMAB-AEKN, USTEKINUMAB-TTWE, WEZLANA, YESINTEK |
BCRP or OATP1B1 Substrates/Eltrombopag SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Eltrombopag has been shown to inhibit BCRP and OATP1B1.(1-3) Inhibition of BCRP may increase absorption and/or decrease biliary excretion of substrates, while inhibition of OATP1B1 may decrease hepatic uptake of substrates. CLINICAL EFFECTS: Simultaneous use of eltrombopag with BCRP or OATP1B1 substrates may result in increased levels and side effects from the substrates.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of eltrombopag states that concomitant BCRP or OATP1B1 substrates should be used cautiously. Patients on concurrent therapy should be closely monitored for adverse effects, and dose reduction of the substrate should be considered.(1) DISCUSSION: In a clinical trial in 39 healthy subjects, administration of eltrombopag (75 mg daily) increased the area-under-curve (AUC) and maximum concentration (Cmax) of a single dose of rosuvastatin (10 mg, a BCRP and OATP1B1 substrate) by 55% and 103%, respectively.(1,4) In a physiologically-based pharmacokinetic (PBPK) model, eltrombopag 75 mg was predicted to increase the AUC and Cmax of pitavastatin 1 mg by approximately 2-fold.(5) BCRP substrates linked to this monograph include: ciprofloxacin, imatinib, irinotecan, lapatinib, methotrexate, mitoxantrone, and topotecan.(1) OATP1B1 substrates linked to this monograph include: atorvastatin, bosentan, fluvastatin, glyburide, irinotecan, letermovir, pitavastatin, pravastatin, repaglinide, and simvastatin.(1) |
ALVAIZ, PROMACTA |
COVID-19 Vaccines/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Immunosuppressants and immunomodulators may prevent the immune system from properly responding to the COVID-19 vaccine.(1,2) CLINICAL EFFECTS: Administration of a COVID-19 vaccine with immunosuppressants or immunomodulators may interfere with vaccine-induced immune response and impair the efficacy of the vaccine. However, patients should be offered and given a COVID-19 vaccine even if the use and timing of immunosuppressive agents cannot be adjusted.(1,2) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: In an effort to optimize COVID-19 vaccine response, the American College of Rheumatology (ACR) published conditional recommendations for administration of COVID-19 vaccines with immunosuppressants and immunomodulators.(1) The CDC also provides clinical considerations for COVID-19 vaccination in patients on immunosuppressants.(2) The CDC states that all immunocompromised patients over 6 months of age should receive at least 1 dose of COVID-19 vaccine if eligible. See the CDC's Interim Clinical Considerations for Use of COVID-19 Vaccines for specific recommendations based on age, vaccination history, and vaccine manufacturer.(2) The ACR states that in general, immunosuppressants and immunomodulators should be held for 1-2 weeks after each vaccine dose. See below for specific recommendations for certain agents.(1) The CDC advises planning for vaccination at least 2 weeks before starting or resuming immunosuppressive therapy.(2) Patients should be offered and given a COVID-19 vaccine even if the use and timing of immunosuppressive agents cannot be adjusted.(1,2) B-cell depleting agents, including rituximab: The ACR recommends consulting with the rheumatologist to determine optimal timing of COVID-19 vaccination. Measuring CD19 B cells may be considered to determine need for a booster vaccine dose. If B cell levels are not measured, a supplemental vaccine dose 2-4 weeks before the next scheduled dose of rituximab is recommended.(1) The CDC states that the utility of B-cell quantification to guide clinical care is not known and is not recommended. Patients who receive B-cell depleting therapy should receive COVID-19 vaccines about 4 weeks before the next scheduled dose. For patients who received 1 or more doses of COVID-19 vaccine during treatment with B-cell-depleting therapies that were administered over a limited period (e.g., as part of a treatment regimen for certain malignancies), revaccination may be considered. The suggested interval to start revaccination is about 6 months after completion of the B-cell-depleting therapy.(2) Abatacept: - Subcutaneous abatacept should be withheld for 1-2 weeks after each vaccine dose, as disease activity allows. - For intravenous abatacept, time administration so that vaccination will occur 1 week before the next abatacept infusion.(1) Cyclophosphamide: When feasible, administer cyclophosphamide one week after each COVID-19 vaccine dose.(1) Recipients of hematopoietic cell transplant or CAR-T-cell therapy who received one or more doses of COVID-19 vaccine prior to or during treatment should undergo revaccination following the current CDC recommendations for unvaccinated patients. Revaccination should start at least 3 months (12 weeks) after transplant or CAR-T-cell therapy.(2) TNF-alpha inhibitors and cytokine inhibitors: The ACR was not able to reach consensus on whether to modify dosing or timing of these agents with COVID-19 vaccination.(1) The CDC includes these agents in their general recommendation to hold therapy for at least 2 weeks following vaccination.(2) DISCUSSION: The ACR convened a COVID-19 Vaccine Guidance Task Force to provide guidance on optimal use of COVID-19 vaccines in rheumatology patients. These recommendations are based on limited clinical evidence of COVID-19 vaccines in patients without rheumatic and musculoskeletal disorders and evidence of other vaccines in this patient population.(1) The ACR recommendation for rituximab is based on studies of humoral immunity following receipt of other vaccines. These studies have uncertain generalizability to vaccination against COVID-19, as it is unknown if efficacy is attributable to induction of host T cells versus B cell (antibody-based) immunity.(1) The ACR recommendation for mycophenolate is based on preexisting data of mycophenolate on non-COVID-19 vaccine immunogenicity. Emerging data suggests that mycophenolate may impair SARS-CoV-2 vaccine response in rheumatic and musculoskeletal disease and transplant patients.(1) The ACR recommendation for methotrexate is based on data from influenza vaccines and pneumococcal vaccines with methotrexate.(1) The ACR recommendation for JAK inhibitors is based on concerns related to the effects of JAK inhibitors on interferon signaling that may result in a diminished vaccine response.(1) The ACR recommendation for subcutaneous abatacept is based on several studies suggesting a negative effect of abatacept on vaccine immunogenicity. The first vaccine dose primes naive T cells, naive T cell priming is inhibited by CTLA-4, and abatacept is a CTLA-4Ig construct. CTLA-4 should not inhibit boosts of already primed T cells at the time of the second vaccine dose.(1) |
COMIRNATY 2024-2025, MODERNA COVID 24-25(6M-11Y)EUA, NOVAVAX COVID 2024-2025 (EUA), PFIZER COVID 2024-25(5-11Y)EUA, PFIZER COVID 2024-25(6M-4Y)EUA, SPIKEVAX 2024-2025 |
Daridorexant (Less Than or Equal To 25 mg)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of daridorexant.(1) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 may result in increased levels of and effects from daridorexant including somnolence, fatigue, CNS depressant effects, daytime impairment, or headache.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The dose of daridorexant should be limited to 25 mg daily when used with a moderate CYP3A4 inhibitor.(1) DISCUSSION: Daridorexant is a CYP3A4 substrate. In a PKPB model, concurrent use of daridorexant with diltiazem, a moderate CYP3A4 inhibitor, increased daridorexant area-under-curve (AUC) and maximum concentration (Cmax) by 2.4-fold and 1.4-fold, respectively.(1) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, treosulfan and verapamil.(2) |
QUVIVIQ |
Mitapivat (Less Than or Equal To 20 mg)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of mitapivat.(1) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 may result in increased levels of and effects from mitapivat including decreased estrone and estradiol levels in males, increased urate, back pain, and arthralgias.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The concurrent use of moderate CYP3A4 inhibitors with mitapivat should be monitored closely for increased risk of adverse reactions. Mitapivat dose should not exceed 20 mg twice daily with concurrent moderate CYP3A4 inhibitors.(1) DISCUSSION: Mitapivat is a CYP3A4 substrate. In a pharmacokinetic study with mitapivat 5, 20, or 50 mg twice daily dosing, fluconazole increased mitapivat area-under-curve (AUC) and concentration maximum (Cmax) by 2.6-fold and 1.6-fold, respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, berotralstat, clofazimine, conivaptan, darunavir, diltiazem, dronedarone, erythromycin, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, letermovir, netupitant, nilotinib, schisandra, treosulfan and verapamil.(2)(2) |
PYRUKYND |
Pacritinib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Agents that inhibit the CYP3A4 isoenzyme may inhibit the metabolism of pacritinib.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may increase levels of and effects from pacritinib.(1) Elevated levels of pacritinib may result in QTc prolongation, which may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes (TdP). Other toxicities include bleeding, diarrhea, thrombocytopenia, major adverse cardiovascular events, thrombosis, and infection.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of pacritinib recommends monitoring patients concomitantly receiving moderate CYP3A4 inhibitors (e.g., fluconazole) for increased adverse reactions and considering pacritinib dose modifications based on safety.(1) When concurrent therapy is warranted monitor for prolongation of the QTc interval.(1) Consider obtaining serum calcium, magnesium, and potassium levels and monitoring EKG at baseline and regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. If patients develop QTc prolongation >500 msec or >60 msec from baseline, hold pacritinib. If QTc prolongation resolves to <=480 msec or to baseline within 1 week, resume pacritinib at the same dose. If time to resolution of the QTc interval takes greater than 1 week to resolve, reduce the pacritinib dose according to labeling.(1) DISCUSSION: Fluconazole (200 mg once daily for 7 days, a moderate CYP3A4 inhibitor) increased maximum concentration (Cmax) and area-under-curve (AUC) of pacritinib (200 mg twice daily at steady state) by 41% and 45%, respectively.(1) Concomitant use of pacritinib with doses of fluconazole greater than 200 mg once daily have not been studied.(1) Clarithromycin (500 mg twice daily for 5 days, a strong CYP3A4 inhibitor) increased maximum concentration (Cmax) and area-under-curve (AUC) of a single dose of pacritinib (400 mg) by 80% and 30%, respectively.(1) In a 24 week clinical study, patients treated with pacritinib 200 mg twice daily had a change in QTc from baseline of 11 msec (90% CI: 5-17).(1) Pacritinib has been associated with QTc interval prolongation. In clinical trials, patients with QTc prolongation >500 msec occurred in 1.4% of patients in the treatment arm compared to 1% in the control arm. The treatment arm had a greater incidence of an increase in QTc > 60 msec from baseline than the control arm (1.9% vs 1%, respectively). QTc prolongation adverse reactions were higher in the treatment arm than the control group (3.8% vs 2%, respectively).(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, berotralstat, clofazimine, conivaptan, darunavir, diltiazem, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, letermovir, netupitant, schisandra, tofisopam, treosulfan, verapamil and voxelotor.(3,4) |
VONJO |
Sarilumab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Sarilumab, immunosuppressives, and immunomodulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of sarilumab with immunosuppressive or immunomodulating agents may result in an increased risk for serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of sarilumab recommends caution because the concurrent use of sarilumab with immunosuppressive agents may increase the risk of infection. If concurrent therapy is warranted, consider the risk of additive immune suppression and monitor based on prescribing information for both agents.(1) DISCUSSION: Sarilumab was studied as monotherapy and in combination with methotrexate or conventional disease modifying antirheumatic drugs (DMARDs) in rheumatoid arthritis studies. Sarilumab has not been studied with biological DMARDs and concurrent use should be avoided. If concurrent therapy is warranted, consider the potential for increased immunosuppressive risks from both agents.(1) The most common infections reported by sarilumab treated patients in the clinical trial periods included pneumonia and cellulitis. Serious bacterial, mycobacterial, fungal, and viral infections were observed in patients receiving sarilumab. Cases of tuberculosis, candidiasis, and pneumocystis with sarilumab have been reported.(1) |
KEVZARA |
Lumateperone (Less Than or Equal To 21 mg)/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of lumateperone.(1) CLINICAL EFFECTS: Concurrent use of lumateperone with moderate CYP3A4 inhibitors increases lumateperone exposure, which may increase the risk of adverse reactions.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of lumateperone recommends decreasing the dosage of lumateperone to 21 mg once daily in patients receiving moderate CYP3A4 inhibitors.(1) DISCUSSION: Coadministration of lumateperone with itraconazole, a strong CYP3A4 inhibitor, resulted in a 4-fold and 3.5-fold increase in area-under-curve (AUC) and concentration maximum (Cmax), respectively.(1) Coadministration of lumateperone with diltiazem, a moderate CYP3A4 inhibitor, resulted in a 2.5-fold and 2-fold increase AUC and Cmax, respectively.(1) Moderate inhibitors of CYP3A4 include: aprepitant, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosnetupitant, imatinib, isavuconazonium, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(2,3) |
CAPLYTA |
Larotrectinib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Agents which inhibit the CYP3A4 enzyme may inhibit the metabolism of larotrectinib.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may increase systemic exposure and the risk for larotrectinib toxicities such as neurotoxicity or hepatotoxicity.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Patients receiving a moderate CYP3A4 inhibitor concurrently with larotrectinib should be monitored for adverse effects more frequently. A dose reduction may be needed based on the severity of adverse effects. Refer to prescribing information for dosage modifications. DISCUSSION: In a drug interaction study in healthy subjects, coadministration of itraconazole (a strong CYP3A4 inhibitor) with a single dose of larotrectinib (100 mg) increased larotrectinib maximum concentration (Cmax) and area-under-the-curve (AUC) by 2.8 and 4.3-fold, respectively.(1) Fluconazole (a moderate CYP3A4 inhibitor) is predicted to increase the AUC and Cmax of larotrectinib by 2.7-fold and 1.9-fold, respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(2,3) |
VITRAKVI |
Ublituximab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Ublituximab, immunosuppressives, and immunomodulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of ublituximab with immunosuppressive or immunomodulating agents may result in an increased risk for serious infections.(1) PREDISPOSING FACTORS: Incomplete washout of previously prescribed immunosuppressive or immune-modulating medications. PATIENT MANAGEMENT: The US manufacturer of ublituximab recommends caution because the concurrent use of ublituximab with immunomodulating or immunosuppressive agents, including immunosuppressant doses of corticosteroids, may increase the risk of infection.(1) If concurrent therapy is warranted, consider the risk of additive immune suppression and monitor based on prescribing information for both agents. When switching from agents with immune effects, the half-life and mechanism of action of these drugs must be taken into consideration in order to prevent additive immunosuppressive effects.(1) DISCUSSION: The most common infections reported by ublituximab-treated patients in the clinical trial periods included upper respiratory tract infections and urinary tract infections. Serious, including life-threatening or fatal, bacterial and viral infections were observed in patients receiving ublituximab.(1) Serious and/or fatal bacterial, fungal, and new or reactivated viral infections have been associated with other anti-CD20 B-cell depleting therapies. There were no cases of progressive multifocal leukoencephalopathy (PML) reported during the clinical trials; however, there have been reports of PML during or following completion of other anti-CD20 B-cell depleting therapies.(1) |
BRIUMVI |
Methotrexate (Oncology-Injection)/Dasatinib; Imatinib SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The exact mechanism of the interaction is unknown. Methotrexate is a substrate of the OAT3, BCRP, and OATP transporters.(1) In vitro, dasatinib inhibits OATP1B1/3 and imatinib inhibits BCRP.(2) In addition, dasatinib and imatinib can both cause peripheral edema and ascites, which may increase methotrexate volume of distribution and result in drug accumulation.(3,4) CLINICAL EFFECTS: The concurrent use of methotrexate with dasatinib or imatinib may result in decreased methotrexate elimination and elevated levels and toxicities of methotrexate, including an increased risk of severe neurotoxicity, stomatitis, and myelosuppression/neutropenia. PREDISPOSING FACTORS: Risk factors for methotrexate toxicity include: high-dose oncology regimens, impaired renal function, ascites, or pleural effusions. PATIENT MANAGEMENT: Patients receiving concurrent high-dose methotrexate and dasatinib or imatinib should be monitored closely for elevated methotrexate levels and methotrexate toxicity. Consideration may be given to holding therapy with dasatinib at least 24 hours before or holding imatinib at least 48 hours before starting methotrexate, and resuming dasatinib or imatinib after methotrexate has cleared.(3,5,6) DISCUSSION: In a case series, 4 pediatric patients with Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia (ALL) had delayed methotrexate clearance during their first cycle of high-dose methotrexate and imatinib, resulting in acute kidney injury, delays in subsequent methotrexate cycles, and prolonged hospitalization. Imatinib was withheld for subsequent methotrexate cycles, and patients had increased methotrexate clearance and decreased toxicities.(3) A 48-year-old female with ALL treated with imatinib 600 mg daily, intravenous cytarabine, etoposide, and high-dose methotrexate with folinic acid developed peripheral edema, ascites, and pleural effusions. She was found to have delayed methotrexate elimination. Imatinib was stopped on day 13 of her chemotherapy cycle and methotrexate disappeared from plasma at day 20.(4) Three pediatric ALL patients developed high methotrexate levels after receiving concurrent imatinib with high-dose methotrexate. One patient did not experience toxicities. One patient developed nausea, epigastric pain, and mucositis, which recurred when the patient was given concurrent therapy during the next treatment cycle. The last patient developed acute renal failure and cytolysis. She held imatinib for her subsequent cycle of methotrexate and did not experience elevated methotrexate levels or toxicities.(5) A retrospective study of 121 ALL patients treated with high-dose methotrexate found that 7 patients who received dasatinib and methotrexate had significantly slower methotrexate clearance than patients who did not receive a tyrosine kinase inhibitor (TKI) agent.(6) |
METHOTREXATE, METHOTREXATE SODIUM |
Palovarotene/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may inhibit the metabolism of palovarotene.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may result in elevated levels of and toxicity from palovarotene, including rash, alopecia, skin exfoliation, photosensitivity, reduction in bone mass, hyperostosis, and night blindness.(1,2) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The concurrent use of moderate CYP3A4 inhibitors with palovarotene should be avoided. If concurrent use cannot be avoided, reduce the dose of palovarotene by half, according to the US prescribing information.(1) DISCUSSION: In a clinical trial, erythromycin, a moderate CYP3A4 inhibitor, increased the maximum concentration (Cmax) and area-under-curve (AUC) of palovarotene by 1.6- and 2.5-fold, respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lefamulin, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan, verapamil, voxelotor.(3,4) |
SOHONOS |
Tocilizumab/Immunosuppressives; Immunomodulators SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Tocilizumab, immunosuppressives, and immunomodulators all suppress the immune system.(1) CLINICAL EFFECTS: Concurrent use of tocilizumab with immunosuppressive or immunomodulating agents may result in an increased risk for serious infections.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of tocilizumab recommends caution because the concurrent use of tocilizumab with immunosuppressive agents may increase the risk of infection. If concurrent therapy is warranted, consider the risk of additive immune suppression and monitor based on prescribing information for both agents.(1) DISCUSSION: Tocilizumab was studied as monotherapy and in combination with methotrexate, non-biologic DMARDs or corticosteroids, depending on the indication. Tocilizumab has not been studied with biological DMARDs and concurrent use should be avoided. If concurrent therapy is warranted, consider the potential for increased immunosuppressive risks from both agents.(1) The most common infections reported by tocilizumab treated patients in the clinical trial periods included pneumonia, urinary tract infection, cellulitis, herpes zoster, gastroenteritis, diverticulitis, sepsis and bacterial arthritis. Serious bacterial, mycobacterial, fungal, and viral infections were observed in patients receiving tocilizumab. Cases of tuberculosis, cryptococcus, aspergillosis, candidiasis, and pneumocystosis have been reported.(1) |
ACTEMRA, ACTEMRA ACTPEN, TOFIDENCE, TYENNE, TYENNE AUTOINJECTOR |
Selected BCRP Substrates/Momelotinib SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Momelotinib is an inhibitor of the BCRP transporter, which may result in increased absorption and decreased hepatic uptake of BCRP substrates.(1) CLINICAL EFFECTS: Administration of momelotinib with BCRP substrates may result in elevated levels of and toxicity of the BCRP substrates.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of momelotinib states concurrent use with BCRP substrates should be approached with caution. If concurrent use is warranted, consider reducing the dose of the substrate drug according to the product labeling and monitor for adverse reactions.(1) DISCUSSION: Momelotinib increased the area-under-curve (AUC) and maximum concentration (Cmax) of rosuvastatin, a BCRP substrate, by 220% and 170%, respectively.(1) BCRP substrates linked to this monograph include: ciprofloxacin, glyburide, imatinib, irinotecan, lapatinib, methotrexate, mitoxantrone, sulfasalazine, and topotecan.(1-2) |
OJJAARA |
Capivasertib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may inhibit the CYP3A4 metabolism of capivasertib.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may result in increased systemic exposure to and effects from capivasertib, hyperglycemia, severe diarrhea, and cutaneous adverse reactions.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Concomitant use of capivasertib with moderate CYP3A4 inhibitors requires a dose reduction of capivasertib. Reduce the capivasertib dose to 320 mg twice daily for 4 days followed by 3 days off.(1) After discontinuation of the strong CYP3A4 inhibitor for 3 to 5 half-lives of the inhibitor, resume the capivasertib dosage that was taken prior to initiating the strong CYP3A4 inhibitor.(1) DISCUSSION: Itraconazole (strong CYP3A4 inhibitor) is predicted to increase capivasertib area-under-curve (AUC) by up to 1.7-fold and maximum concentration (Cmax) by up to 1.4-fold.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan, verapamil, voxelotor.(2,3) |
TRUQAP |
Finerenone/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of finerenone.(1) CLINICAL EFFECTS: Concurrent use of finerenone with a moderate inhibitor of CYP3A4 increases finerenone concentrations and may increase the risk of toxicity (e.g., hyperkalemia, hypotension).(1) PREDISPOSING FACTORS: Severe renal disease and concurrent use of potassium supplements increase the risk for hyperkalemia. PATIENT MANAGEMENT: The manufacturer of finerenone states that use with moderate CYP3A4 inhibitors should be closely monitored. Check serum potassium during drug initiation or dosage adjustment of either finerenone or the moderate CYP3A4 inhibitor. Dose adjustment of finerenone may be necessary.(1) DISCUSSION: Concurrent use of finerenone with erythromycin, a moderate CYP3A4 inhibitor, increased finerenone area-under-curve (AUC) by 248% and maximum concentration (Cmax) by 88%.(1) Moderate CYP3A4 inhibitors linked to this monograph include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan, verapamil, voxelotor.(2,3) |
KERENDIA |
Macitentan/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Macitentan is primarily metabolized by CYP3A4, with minor contributions from CYP2C8, CYP2C9, and CYP2C19. Moderate inhibitors of CYP3A4 may inhibit the metabolism of macitentan.(1) CLINICAL EFFECTS: Concurrent use of a moderate inhibitor of CYP3A4 may result in elevated levels and increased effects of macitentan, including hepatotoxicity and fluid retention.(1) PREDISPOSING FACTORS: Concomitant use of a moderate CYP2C9 inhibitor increases the magnitude of this interaction and the risk of adverse events. PATIENT MANAGEMENT: The manufacturer of macitentan states that concurrent use of both a moderate CYP2C9 inhibitor and a moderate CYP3A4 inhibitor should be avoided.(1) While the manufacturer does not provide recommendations for concurrent use of a moderate CYP3A4 inhibitor alone, it would be prudent to use caution and monitor for adverse effects. DISCUSSION: Based on pharmacokinetic (PBPK) modeling, dual moderate inhibitors of CYP2C9 and CYP3A4 such as fluconazole are predicted to increase macitentan exposure by 4-fold.(1) Pretreatment with ketoconazole increased the area-under-curve (AUC) and maximum concentration (Cmax) of macitentan by approximately 2.3 and 1.3-fold, respectively.(1) Moderate CYP3A4 inhibitors linked to this monograph include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(2) |
OPSUMIT, OPSYNVI |
Tacrolimus/Myelosuppressive Mod-Weak CYP3A4 Inh SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate and weak immunosuppressive inhibitors of CYP3A4 may inhibit the metabolism of tacrolimus and increase the risk of additive immunosuppression.(1) CLINICAL EFFECTS: Concurrent use of an immunosuppressive CYP3A4 inhibitor may result in elevated levels of and toxicity from tacrolimus, including nephrotoxicity, neurotoxicity, immunosuppression, and prolongation of the QTc interval and life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of tacrolimus recommends monitoring tacrolimus whole blood trough concentrations and reducing tacrolimus dose if needed.(1) Consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a study of 26 renal transplant recipients, conjugated estrogens 3.75 mg daily increased the tacrolimus dose-corrected concentration of tacrolimus by 85.6%. Discontinuation of the conjugated estrogens led to a decrease in tacrolimus concentration of 46.6%.(3) A case report describes a 65-year-old kidney transplant recipient who was stable on tacrolimus 9 mg per day with trough levels of 5 to 7.5 ng/mL. Ten days after starting on estradiol gel 0.5 mg per day, her tacrolimus level rose to 18.3 ng/mL and serum creatinine (Scr) rose from 1.1 mg/dL at baseline to 2 mg/dL. Tacrolimus dose was reduced by 60%, and trough levels and Scr normalized after two weeks.(4) A study of 16 healthy volunteers found that elbasvir 50 mg/grazoprevir 200 mg daily increased the area-under-curve (AUC) of tacrolimus by 43%, while the maximum concentration (Cmax) of tacrolimus was decreased by 40%.(5) An analysis of FAERS data from 2004-2017, found a significant assoc ation between transplant rejection and concurrent use of tacrolimus and clotrimazole (reporting odds ration 1.92, 95% CI). A retrospective study of 7 heart transplant patients on concurrent tacrolimus and clotrimazole troche showed a significant correlation between tacrolimus trough concentration and AUC after clotrimazole discontinuation. Tacrolimus clearance and bioavailability after clotrimazole discontinuation was 2.2-fold greater (0.27 vs. 0.59 L/h/kg) and the trough concentration decreased from 6.5 ng/mL at 1 day to 5.3 ng/mL at 2 days after clotrimazole discontinuation.(7) A retrospective study of 26 heart transplant patients found that discontinuation of concurrent clotrimazole with tacrolimus in the CYP3A5 expresser group had a 3.3-fold increase in apparent oral clearance and AUC of tacrolimus (0.27 vs. 0.89 L/h/kg) compared to the CYP3A5 non expresser group with a 2.2-fold mean increase (0.18 vs. 0.39 L/h/kg).(8) A study of 6 adult kidney transplant recipients found that clotrimazole (5-day course) increased the tacrolimus AUC 250% and the blood trough concentrations doubled (27.7 ng/ml versus 27.4 ng/ml). Tacrolimus clearance decreased 60% with coadministration of clotrimazole.(9) A case report describes a 23-year-old kidney transplant recipient who was stable on tacrolimus 5 mg twice daily, mycophenolate mofetil 30 mg daily, prednisone (30 mg daily tapered over time to 5 mg), and clotrimazole troche 10 mg four times daily. Discontinuation of clotrimazole resulted in a decrease in tacrolimus trough levels from 13.7 ng/ml to 5.4 ng/ml over a period of 6 days. Clotrimazole was restarted with tacrolimus 6 mg resulting in an increased tacrolimus level of 19.2 ng/ml.(10) A retrospective study in 95 heart transplant recipients on concurrent clotrimazole and tacrolimus found a median tacrolimus dose increase of 66.7% was required after clotrimazole discontinuation. Tacrolimus trough concentration was found to have decreased 42.5% after clotrimazole discontinuation.(11) A retrospective study in 65 pancreas transplant patients on concurrent tacrolimus, clotrimazole, cyclosporine, and prednisone found that clotrimazole discontinuation at 3 months after transplantation may cause significant tacrolimus trough level reductions.(12) Moderate CYP3A4 inhibitors linked to this monograph include: duvelisib, fedratinib, imatinib, and treosulfan.(6) Weak CYP3A4 inhibitors linked to this monograph include: asciminib, belumosudil, capivasertib, everolimus, larotrectinib, leflunomide, olaparib, palbociclib, and teriflunomide.(6) |
ASTAGRAF XL, ENVARSUS XR, PROGRAF, TACROLIMUS, TACROLIMUS XL |
Lonafarnib/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may inhibit the metabolism of lonafarnib.(1) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors with lonafarnib may increase the risk of adverse reactions including QT prolongation and potentially life-threatening cardiac arrhythmias like torsades de pointes, nausea and vomiting, increased liver enzymes, myelosuppression, and hypertension.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The use of lonafarnib with moderate CYP3A4 inhibitors should be approached with caution. No dose adjustment of lonafarnib is recommended when moderate CYP3A4 inhibitors are added to steady-state lonafarnib. When initiating lonafarnib therapy in a patient already taking a moderate CYP3A4 inhibitor, monitor the patient closely for the first 7 days of therapy. If the patient does not tolerate lonafarnib, consider an alternative that is not a moderate CYP3A4 inhibitor.(1) Lonafarnib dose modification recommendation: if the QTc interval is greater than or equal to 500 msec, withhold lonafarnib until the QTc interval is less than 470 msec, then resume lonafarnib at the same dosage.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: With coadministration of a single oral dose of 50 mg lonafarnib following 200 mg ketoconazole (a strong CYP3A4 inhibitor) once daily for 5 days, the area-under-curve (AUC) and maximum concentration (Cmax) were increased by 425% and 270%, respectively.(1) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, berotralstat, clofazimine, darunavir, diltiazem, duvelisib, fedratinib, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nirogacestat, schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(2,3) |
ZOKINVY |
Mavorixafor/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate CYP3A4 inhibitors may inhibit the metabolism of mavorixafor.(1) Mavorixafor is also a substrate of P-glycoprotein (P-gp). P-gp inhibitors may increase mavorixafor exposure.(1) Many CYP3A4 inhibitors also inhibit P-glycoprotein (P-gp), including cimetidine, diltiazem, fluvoxamine, isavuconazonium, schisandra, and verapamil.(2) CLINICAL EFFECTS: Concurrent use of moderate CYP3A4 inhibitors may increase the levels and effects of mavorixafor, including thrombocytopenia and QTc prolongation, which may result in potentially life-threatening cardiac arrhythmias like torsades de pointes (TdP).(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: When used concomitantly with moderate CYP3A4 inhibitors, monitor more frequently for mavorixafor adverse effects and reduce the dose in 100 mg increments, if necessary, but not to a dose less than 200 mg.(1) When concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring EKG at baseline and regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: There are no clinical studies for the combination of mavorixafor and moderate CYP3A4 inhibitors. In a study with healthy subjects, itraconazole 200 mg daily (a strong CYP3A4 and P-gp inhibitor) increased the exposure to single-dose mavorixafor 200 mg similar to that from single-dose mavorixafor 400 mg alone. This suggests that itraconazole increased mavorixafor exposure by about 2-fold.(1) A study in healthy volunteers found that ritonavir 100 mg twice daily (a strong CYP3A4 inhibitor and P-gp inhibitor) increased the area-under-curve (AUC) and maximum concentration (Cmax) of single-dose mavorixafor 200 mg by 60% and 39%, respectively.(4) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, cimetidine, clofazimine, conivaptan, darunavir, diltiazem, duvelisib, fedratinib, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, schisandra, tofisopam, treosulfan, verapamil and voxelotor.(2,5) |
XOLREMDI |
Oliceridine/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Oliceridine is metabolized equally by CYP2D6 and CYP3A4. Oliceridine metabolism may be inhibited by inhibitors of CYP2D6 or CYP3A4.(1) CLINICAL EFFECTS: The concurrent administration of a strong or moderate CYP2D6 or strong or moderate CYP3A4 inhibitor may result in elevated levels of and toxicity from oliceridine including profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Patients with CYP2D6 poor metabolizer phenotype may be affected to a greater extent by CYP3A4 inhibitors. Inhibition of both CYP2D6 and CYP3A4 pathways may result in a greater increase in the levels of and toxcity of oliceridine.(1) PATIENT MANAGEMENT: Caution should be used when administering oliceridine to patients taking strong or moderate inhibitors of CYP2D6 or CYP3A4. Dosage adjustments should be made if warranted. Closely monitor these patients for respiratory depression and sedation at frequent intervals and evaluate subsequent doses based on response. If concomitant use of a strong or moderate CYP2D6 or CYP3A4 inhibitor is necessary, less frequent dosing of oliceridine may be required. If a strong or moderate CYP2D6 or CYP3A4 inhibitor is discontinued, increase of the oliceridine dosage may be necessary. Monitor for signs of opioid withdrawal. Patients receiving concurrent therapy with both a strong or moderate CYP3A4 inhibitor and CYP2D6 inhibitors may be at greater risk of adverse effects. Patient who are CYP2D6 normal metabolizers taking a CYP2D6 inhibitor and a strong CYP3A4 inhibitor may require less frequent dosing of oliceridine.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with agents that may increase opioid drug levels.(2) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: In a study of four healthy subjects who are CYP2D6 poor metabolizers, itraconazole (200 mg daily for 5 days) increased the area-under-curve (AUC) of single-dose oliceridine (0.25 mg) by 80%.(1) In a study of subjects who were not CYP2D6 poor metabolizers, ketoconazole (200 mg for 2 doses 10 hours apart) did not affect the pharmacokinetics of oliceridine.(1) Moderate CYP3A4 inhibitors include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lefamulin, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, Schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(4) |
OLINVYK |
Tretinoin/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of tretinoin.(1) CLINICAL EFFECTS: Concurrent use of a moderate CYP3A4 inhibitor may result in increased levels of and effects from tretinoin including hepatotoxicity and hyperlipidemia.(1) Retinoids, including tretinoin, have been associated with intracranial hypertension, especially in pediatric patients. Early signs and symptoms include papilledema, headache, nausea, vomiting, and visual disturbances.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of tretinoin recommends monitoring patients taking a moderate CYP3A4 inhibitor in combination with tretinoin more frequently for adverse reactions.(1) Evaluate patients with symptoms for intracranial hypertension (such as papilledema, headache, nausea, vomiting, and visual disturbances), and, if present, institute care in concert with neurological assessment. Consider interruption, dose reduction, or discontinuation of tretinoin as appropriate.(1) DISCUSSION: In 13 patients on tretinoin for 4 weeks, single-dose ketoconazole (400 to 1200 mg) (strong CYP3A4 inhibitor) increased tretinoin area-under-curve (AUC) by 72%.(1) There are no clinical pharmacokinetic studies on the combination of tretinoin with a moderate CYP3A4 inhibitor. The US manufacturer of tretinoin states increased tretinoin toxicity following concomitant use of tretinoin with certain antimycotics that are moderate CYP3A4 inhibitors has been reported post-marketing.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, schisandra, tofisopam, and treosulfan.(2-3) |
RETINOIC ACID, TRETINOIN, TRETINOIN ACID |
Vanzacaftor-Tezacaftor-Deutivacaftor/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Moderate inhibitors of CYP3A4 may inhibit the metabolism of vanzacaftor-tezacaftor-deutivacaftor. Vanzacaftor, tezacaftor, and deutivacaftor are CYP3A substrates.(1) CLINICAL EFFECTS: Concurrent use of a moderate CYP3A4 inhibitor may result in elevated levels of and toxicity from vanzacaftor-tezacaftor-deutivacaftor, such as hepatotoxicity.(1) PREDISPOSING FACTORS: This interaction may be more severe in patients with hepatic impairment.(1) PATIENT MANAGEMENT: The US manufacturer of vanzacaftor-tezacaftor-deutivacaftor states that concurrent use with moderate CYP3A4 inhibitors requires a dose adjustment. If concurrent use is warranted, the following dose adjustments are recommended: -For age 6 to less than 12 years old AND less than 40 kg - Two tablets of vanzacaftor 4 mg/tezacaftor 20 mg/deutivacaftor 50 mg every other day; -For age 6 to less than 12 years old AND greater than or equal to 40 kg - One tablet of vanzacaftor 10 mg/tezacaftor 50 mg/deutivacaftor 125 mg every other day; -For age 12 years and older AND any weight - One tablet of vanzacaftor 10 mg/tezacaftor 50 mg/deutivacaftor 125 mg every other day.(1) DISCUSSION: Concurrent administration with itraconazole (200 mg every 12 hours on Day 1, followed by 200 mg daily, a strong inhibitor of CYP3A4) with tezacaftor (25 mg daily)-ivacaftor (50 mg daily) increased tezacaftor area-under-curve (AUC) and concentration maximum (Cmax) by 4-fold and 2.83-fold, respectively.(1) Concurrent administration with itraconazole (200 mg daily, a strong inhibitor of CYP3A4) with single-dose elexacaftor 20 mg-tezacaftor 50 mg-deutivacaftor 50 mg increased tezacaftor AUC and Cmax by 4.51-fold and 1.48-fold and deutivacaftor AUC and Cmax by 11.1-fold and 1.96-fold.(1) Concurrent administration with itraconazole (200 mg daily, a strong inhibitor of CYP3A4) with vanzacaftor (5 mg single dose) increased vanzacaftor AUC and Cmax by 6.37-fold and 1.55-fold, respectively.(1) Concurrent administration with fluconazole (200 mg daily, a moderate inhibitor of CYP3A4) with vanzacaftor (20 mg daily)-tezacaftor (100 mg daily)-deutivacaftor (250 mg daily) is predicted to increase vanzacaftor AUC and Cmax by 2.55-fold and 2.48-fold and deutivacaftor by 3.13-fold and 2.27-fold, respectively.(1) Concurrent administration with erythromycin (500 mg four times daily, a moderate inhibitor of CYP3A4) with vanzacaftor (20 mg daily)-tezacaftor (100 mg daily)-deutivacaftor (250 mg daily) is predicted to increase vanzacaftor AUC and Cmax by 3.29-fold and 3.19-fold and deutivacaftor by 4.13-fold and 2.89-fold, respectively.(1) Concurrent administration with verapamil (80 mg three times daily, a moderate inhibitor of CYP3A4) with vanzacaftor (20 mg daily)-tezacaftor (100 mg daily)-deutivacaftor (250 mg daily) is predicted to increase vanzacaftor AUC and Cmax by 3.93-fold and 3.8-fold and deutivacaftor by 5.11-fold and 3.43-fold, respectively.(1) Moderate inhibitors of CYP3A4 include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazonium, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, Schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(2-4) |
ALYFTREK |
Apixaban/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Apixaban is a substrate of CYP3A4 and P-glycoprotein (P-gp). It is about 20% metabolized, mainly by CYP3A4.(1-4) Strong and moderate CYP3A4 inhibitors may inhibit the metabolism of apixaban by CYP3A4. CLINICAL EFFECTS: Concurrent use of a CYP3A4 inhibitor may result in elevated levels of and clinical effects of apixaban, including an increased risk of bleeding, especially in the setting of concurrent therapy with an agent that inhibits P-gp.(1-4) PREDISPOSING FACTORS: The risk for bleeding episodes may be greater in patients with disease-associated factors (e.g. thrombocytopenia). Drug-associated risk factors include concurrent use of P-gp inhibitors and concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism or have an inherent risk for bleeding (e.g. NSAIDs). PATIENT MANAGEMENT: The US manufacturer of apixaban provides recommendations regarding concurrent use with strong inhibitors of both CYP3A4 and P-gp, but does not provide guidance for concurrent use with agents that inhibit CYP3A4 alone.(1) The Australian, Canadian, and UK labels for apixaban state that no dose adjustment for apixaban is required when co-administered with agents that are not strong inhibitors of both CYP3A4 and P-gp.(2-4) Expert opinion on the clinical significance of this interaction is varied and depends on the inhibitor. Some experts state that specific agents (i.e., voriconazole, imatinib, and crizotinib) should be contraindicated.(5) Others state that concurrent use is acceptable if there are no other pharmacokinetic interactions; otherwise, a 50% dose reduction of apixaban is suggested.(6) In patients who are also on concurrent P-gp inhibitors, consider the manufacturer recommendations for use with dual CYP3A4 and P-gp inhibitors. The US manufacturer of apixaban states that if concurrent use of strong CYP3A4 and P-gp inhibitors cannot be avoided, the dosage of apixaban should be reduced by 50%. In patients already receiving apixaban 2.5 mg twice daily, avoid the concurrent use of strong inhibitors of both P-gp and CYP3A4.(1) The Australian(2) and Canadian(3) manufacturers of apixaban states that the concurrent use of agents that are strong inhibitors of both P-gp and CYP3A4 with apixaban is contraindicated. The UK manufacturer of apixaban states that concurrent use of these agents is not recommended.(4) Concurrent use of agents that are dual P-gp and moderate CYP3A4 inhibitors are expected to increase apixaban levels to a lesser extent than agents that are P-gp and strong CYP3A4 inhibitors. No dose adjustment of apixaban is necessary. Use caution when administering apixaban with moderate inhibitors of CYP3A4. If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. When applicable, perform agent-specific laboratory test (e.g. INR, aPTT) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. DISCUSSION: The US manufacturer of apixaban states that apixaban dose reduction is recommended when apixaban exposure increases by more than 50%, while efficacy is maintained when exposure is 25% lower. Therefore, no dose adjustment of apixaban is recommended for drug interactions that affect apixaban exposure by 75% to 150%.(7) In a microdose cocktail study using apixaban 25 mcg, voriconazole 400 mg every 12 hours for 2 doses then 200 mg every 12 hours (strong CYP3A4 inhibitor) had "only a minor interaction," increasing the AUC of apixaban by 1.33-fold (95% CI 1.01-1.75) while the Cmax and half-life remained unchanged.(8) Another microdose cocktail study with apixaban 25 mcg and voriconazole 400 mg twice daily found that apixaban AUC increased by 1.24-fold with a non-significant change in Cmax.(9) A retrospective cohort study of 50 oncology patients on apixaban identified 14 patients on concurrent voriconazole, with 3 of those patients receiving reduced-dose apixaban. No bleeding or thrombosis occurred in any of the patients on concurrent voriconazole.(10) An article evaluating the clinical significance of efflux transporters like P-gp and BCRP in apixaban exposure analyzed pharmacokinetic data from drug-drug interaction studies and concluded that all apixaban interactions can be explained by inhibition of intestinal CYP3A4. The authors explain that apixaban is a highly permeable and soluble compound, so its ability to undergo passive diffusion renders the role of membrane transporters irrelevant, as evidenced by a lack of change in apixaban absorption rate in the presence of drugs known to inhibit P-gp and BCRP.(11) A review article on DOAC drug-drug interactions suggests that the combination of voriconazole, crizotinib or imatinib with apixaban or rivaroxaban is contraindicated due to the potential for significant increases in DOAC AUC. The authors state that data with voriconazole is missing and thus the interactions are unpredictable.(5) Another review article states that apixaban may be used with voriconazole if no other pharmacokinetic inhibitor is present; otherwise, concurrent use requires a 50% apixaban dose reduction. No dose adjustment is recommended with moderate CYP3A4 inhibitors.(6) Strong CYP3A4 inhibitors linked to this monograph include: boceprevir, ceritinib, ensartinib, idelalisib, mibefradil, nefazodone, ribociclib, troleandomycin, and voriconazole.(12,13) Moderate CYP3A4 inhibitors linked to this monograph include: aprepitant, avacopan, berotralstat, clofazimine, crizotinib, duvelisib, fedratinib, fosnetupitant, imatinib, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, ritlecitinib, schisandra, tofisopam, treosulfan, and voxelotor.(12,13) |
ELIQUIS |
Rivaroxaban/Strong and Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Rivaroxaban is a substrate of CYP3A4 and P-glycoprotein (P-gp). It is about 18% metabolized, mainly by CYP3A4.(1-4) Strong and moderate CYP3A4 inhibitors may inhibit the metabolism of rivaroxaban by CYP3A4. CLINICAL EFFECTS: Concurrent use of a CYP3A4 inhibitor may result in elevated levels of and clinical effects of rivaroxaban, including an increased risk of bleeding, especially in the setting of concurrent therapy with an agent that inhibits P-gp.(1-4) PREDISPOSING FACTORS: The risk for bleeding episodes may be greater in patients with disease-associated factors (e.g. thrombocytopenia). Patients with renal impairment may be at higher risk of elevated rivaroxaban levels. Drug-associated risk factors include concurrent use of P-gp inhibitors and concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism or have an inherent risk for bleeding (e.g. NSAIDs). PATIENT MANAGEMENT: The US manufacturer of rivaroxaban provides recommendations regarding concurrent use with strong and moderate inhibitors of both CYP3A4 and P-gp, but does not provide guidance for concurrent use with agents that inhibit CYP3A4 alone.(1) The Canadian manufacturer of rivaroxaban states that increases in rivaroxaban levels by drugs inhibiting only CYP3A4 are expected to be less clinically relevant compared to drugs inhibiting both CYP3A4 and P-gp.(2) The UK manufacturer of rivaroxaban states that drug interactions with agents that inhibit only CYP3A4 are likely not clinically relevant in most patients but may be significant in high-risk patients (e.g., renal impairment).(3) The Australian manufacturer of rivaroxaban states that drug interactions with drugs that inhibit only CYP3A4 are not clinically relevant.(4) Expert opinion on the clinical significance of this interaction is varied and depends on the inhibitor. Some experts state that specific agents (i.e., voriconazole, imatinib, and crizotinib) should be contraindicated.(5) Others state that concurrent use is acceptable if there are no other pharmacokinetic interactions; otherwise, the combination should be avoided.(6) In patients who are also on concurrent P-gp inhibitors, consider the manufacturer recommendations for use with dual CYP3A4 and P-gp inhibitors. The Australian and Canadian manufacturers of rivaroxaban state that the concurrent use of agents that are both an inhibitor of P-gp and a strong inhibitor of CYP3A4 with rivaroxaban is contraindicated.(2,4) The US manufacturer states that concurrent use of strong CYP3A4 and P-gp inhibitors should be avoided(1) while the UK manufacturer states that concurrent use is not recommended.(3) Agents that are not strong inhibitors of both CYP3A4 and P-gp, including fluconazole, are expected to increase rivaroxaban levels to a lesser extent and can be used with rivaroxaban with caution in patients with normal renal function; however, in patients with decreased renal function (CrCL of 15 ml/min to 80 ml/min) these agents should only be used if the benefits of concurrent therapy outweigh the increased risk of bleeding.(1-4) If concurrent therapy is warranted, monitor patients receiving concurrent therapy for signs of blood loss, including decreased hemoglobin, hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. When applicable, perform agent-specific laboratory test (e.g. INR, aPTT) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. DISCUSSION: In a microdose cocktail study using rivaroxaban 25 mcg, voriconazole 400 mg every 12 hours for 2 doses then 200 mg every 12 hours (strong CYP3A4 inhibitor) had "only a minor interaction," increasing the AUC of rivaroxaban by 1.33-fold (p<0.05) while the Cmax and half-life remained unchanged.(7) Another microdose cocktail study with rivaroxaban 25 mcg and voriconazole 400 mg twice daily found that rivaroxaban AUC increased by 1.16-fold with a non-significant change in Cmax.(8) A review article on DOAC drug-drug interactions suggests that the combination of voriconazole, crizotinib or imatinib with apixaban or rivaroxaban is contraindicated due to the potential for significant increases in DOAC AUC. The authors state that data with voriconazole is missing and thus the interactions are unpredictable.(5) Another review article states that rivaroxaban may be used with voriconazole if no other pharmacokinetic inhibitor is present; otherwise, concurrent use should be avoided. No dose adjustment is recommended with moderate CYP3A4 inhibitors.(6) Strong CYP3A4 inhibitors linked to this monograph include: boceprevir, ceritinib, ensartinib, idelalisib, mibefradil, nefazodone, ribociclib, troleandomycin, and voriconazole.(9,10) Moderate CYP3A4 inhibitors linked to this monograph include: aprepitant, avacopan, berotralstat, clofazimine, crizotinib, duvelisib, fedratinib, fosnetupitant, imatinib, oral lefamulin, lenacapavir, letermovir, netupitant, nirogacestat, ritlecitinib, schisandra, tofisopam, treosulfan, and voxelotor.(9,10) |
RIVAROXABAN, XARELTO |
Propranolol/Selected CYP2D6 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: CYP2D6 inhibitors may inhibit the metabolism of propranolol.(1) CLINICAL EFFECTS: Concurrent use of CYP2D6 inhibitors may result in elevated levels of and toxicity from propranolol, including hypotension and bradycardia.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Monitor patients receiving concurrent therapy with propranolol and CYP2D6 inhibitors. The dosage of propranolol may need to be adjusted.(1) DISCUSSION: In a pharmacokinetic study in 16 healthy volunteers, concurrent use of quinidine 200 mg (a CYP2D6 inhibitor) increased the area-under-curve (AUC) of propranolol by 2.29-fold.(2) In a pharmacokinetic study in 6 healthy subjects, concurrent use of quinidine increased propranolol AUC 2-fold.(3) A retrospective review of concurrent use of propranolol and antidepressants evaluated the risk of hospitalization or emergency room visit within 30 days of concurrent prescription. In patients receiving antidepressants with moderate to strong CYP2D6 inhibitory effects, patient were an increased risk compared to patients receiving no antidepressants (Hazard Ratio (HR) = 1.53; 95% CI 1.03-2.81 vs. HR = 1.24; 95% CI 0.82-1.88).(4) Case reports of bradycardia and cardiac adverse effects have been reported with concurrent use of propranolol and the antidepressants fluoxetine and paroxetine (strong CYP2D6 inhibitors).(5) Strong CYP2D6 inhibitors include: bupropion, dacomitinib, fluoxetine, mavorixafor, and paroxetine. Moderate CYP2D6 inhibitors include: abiraterone, asunaprevir, berotralstat, capivasertib, cinacalcet, duloxetine, eliglustat, escitalopram, lorcaserin, mirabegron, moclobemide, quinine, ranolazine, and rolapitant. Weak CYP2D6 inhibitors include: celecoxib, desvenlafaxine, diphenhydramine, dimenhydrinate, dronabinol, fedratinib, hydroxychloroquine, imatinib, osilodrostat, ranitidine, and sertraline.(6) |
HEMANGEOL, INDERAL LA, INDERAL XL, INNOPRAN XL, PROPRANOLOL HCL, PROPRANOLOL HCL ER, PROPRANOLOL-HYDROCHLOROTHIAZID |
Suzetrigine/Moderate CYP3A4 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Suzetrigine and M6-SUZ (active metabolite of suzetrigine) are CYP3A4 substrates. Moderate CYP3A4 inhibitors increase suzetrigine and M6-SUZ exposures, which may cause suzetrigine adverse reactions.(1) CLINICAL EFFECTS: The concurrent administration of a moderate CYP3A4 inhibitor may result in elevated levels of and toxicity from suzetrigine including pruritis, muscle spasms, increased blood creatine phosphokinase, and rash.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: When possible, avoid the use of moderate CYP3A4 inhibitors with suzetrigine. The US manufacturer of suzetrigine states when suzetrigine is administered to patients taking moderate CYP3A4 inhibitors reduce the suzetrigine dose as follows: -Dose 1: The recommended starting dose of suzetrigine is 100 mg orally. -Dose 2, 3, and 4: Starting 12 hours after the initial dose, take 50 mg of suzetrigine orally every 12 hours. -Dose 5 and Subsequent Doses: Starting 12 hours after Dose 4, take 50 mg of suzetrigine orally every 24 hours.(1) DISCUSSION: In a PKPB model, concomitant administration of fluconazole (a moderate CYP3A4 inhibitor) with suzetrigine with the recommended dosage modification is predicted to increase the area-under-curve (AUC) of suzetrigine and active metabolite M6-SUZ by 1.5-fold and 1.2-fold, respectively, while the maximum concentration (Cmax) of suzetrigine and M6-SUZ by 1.4-fold and 1.1-fold, respectively, when compared to the regular recommended dosage in the absence of fluconazole.(1) Moderate CYP3A4 inhibitors linked to this monograph include: amprenavir, aprepitant, atazanavir, avacopan, berotralstat, clofazimine, conivaptan, crizotinib, darunavir, diltiazem, dronedarone, duvelisib, erythromycin, fedratinib, fluconazole, fluvoxamine, fosamprenavir, fosnetupitant, imatinib, isavuconazole, oral lefamulin, lenacapavir, letermovir, netupitant, nilotinib, nirogacestat, schisandra, tofisopam, treosulfan, verapamil, and voxelotor.(2-3) |
JOURNAVX |
The following contraindication information is available for IMATINIB MESYLATE (imatinib mesylate):
Drug contraindication overview.
*None.
*None.
There are 1 contraindications.
Absolute contraindication.
Contraindication List |
---|
Lactation |
There are 5 severe contraindications.
Adequate patient monitoring is recommended for safer drug use.
Severe List |
---|
Anemia |
Neutropenic disorder |
Pregnancy |
Severe hepatic disease |
Thrombocytopenic disorder |
There are 12 moderate contraindications.
Clinically significant contraindication, where the condition can be managed or treated before the drug may be given safely.
Moderate List |
---|
Chronic heart failure |
Congenital heart disease |
Coronary artery disease |
Diabetes mellitus |
Disease of liver |
Hypertension |
Kidney disease with likely reduction in glomerular filtration rate (GFr) |
Kidney disease with reduction in glomerular filtration rate (GFr) |
Left ventricular failure |
Myocarditis |
Valvular heart disease |
Viral hepatitis B |
The following adverse reaction information is available for IMATINIB MESYLATE (imatinib mesylate):
Adverse reaction overview.
Adverse effects reported in at least 30% of patients were edema, nausea, vomiting, muscle cramps, musculoskeletal pain, diarrhea, rash, fatigue, and abdominal pain.
Adverse effects reported in at least 30% of patients were edema, nausea, vomiting, muscle cramps, musculoskeletal pain, diarrhea, rash, fatigue, and abdominal pain.
There are 96 severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Anemia Body fluid retention Edema Gastrointestinal hemorrhage Hemorrhage Neutropenic disorder Pericardial effusion Thrombocytopenic disorder Upper respiratory infection |
Aphthous stomatitis Chest pain Conjunctivitis Depression Dyspnea Hyperbilirubinemia Hypokalemia Hypotension Influenza Lymphopenia Pancytopenia Periorbital edema Pleural effusions Pneumonia Pulmonary edema Purpura Tumor lysis syndrome |
Rare/Very Rare |
---|
Abnormal hepatic function tests Acute cognitive impairment Acute myocardial infarction Acute pancreatitis Acute renal failure Acute respiratory failure Anaphylaxis Angina Angioedema Ascites Atrial fibrillation Avascular necrosis of bone Bullous dermatitis Cardiac arrhythmia Cardiogenic shock Cerebral edema Chronic heart failure Colitis Cystoid macular edema Diverticulitis of gastrointestinal tract DRESS syndrome Dyschromia Eosinophilia Erythema multiforme Erythema nodosum Exfoliative dermatitis Gastric ulcer Gastritis Gastroenteritis Gastrointestinal obstruction Gastrointestinal perforation Glaucoma Hematoma Hemorrhagic cyst of ovary Hepatic failure Hepatitis Hypersensitivity drug reaction Hypertension Hyperthyroidism Hypothyroidism Ileus Interstitial lung disease Intracranial hypertension Kidney disease with reduction in glomerular filtration rate (GFr) Left ventricular failure Lichenoid dermatitis drug eruption Lymphadenopathy Myopathy Nail disorders Ovarian cyst Palmar-plantar erythrodysesthesia Panniculitis Papilledema Pericardial tamponade Pericarditis Psoriasis Reactivation of hepatitis B Retinal hemorrhage Rhabdomyolysis Seizure disorder Stevens-johnson syndrome Subdural intracranial hemorrhage Sweet's syndrome Tachycardia Thrombocytosis Thrombotic thrombocytopenic purpura Toxic epidermal necrolysis Tumor hemorrhage Vascular ectasia of gastric antrum Vitreous hemorrhage |
There are 62 less severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Acute abdominal pain Arthralgia Back pain Cramps Diarrhea Dizziness Eye tearing Fatigue Fever Musculoskeletal pain Myalgia Nausea Pain Skin rash Vomiting |
Abdominal distension Alopecia Anorexia Bone pain Chills Conjunctival hemorrhage Constipation Cough Dry skin Dyspepsia Epistaxis Flatulence Flushing Gastroesophageal reflux disease General weakness Headache disorder Hyperhidrosis Hypoesthesia Insomnia Night sweats Paresthesia Peripheral neuropathy Pharyngitis Sinusitis Stomatitis Weight gain |
Rare/Very Rare |
---|
Blurred vision Drowsy Dry eye Dysgeusia Erectile dysfunction Gynecomastia Joint stiffness Lichen planus Malaise Memory impairment Menorrhagia Migraine Palpitations Pruritus of skin Raynaud's phenomenon Skin photosensitivity Symptoms of anxiety Syncope Thromboembolic disorder Tinnitus Vertigo |
The following precautions are available for IMATINIB MESYLATE (imatinib mesylate):
Safety and efficacy of imatinib in children younger than 1 years of age have not been established. Safety and efficacy in pediatric patients with newly diagnosed Ph+ chronic phase CML and Ph+ ALL have been demonstrated. Imatinib may be associated with adverse reactions related to growth in children or pre-adolescents receiving the drug.
The long-term effects of imatinib treatment on growth in children is unknown. Growth should be monitored during imatinib therapy in pediatric patients.
Contraindicated
Severe Precaution
Management or Monitoring Precaution
The long-term effects of imatinib treatment on growth in children is unknown. Growth should be monitored during imatinib therapy in pediatric patients.
Contraindicated
None |
Severe Precaution
None |
Management or Monitoring Precaution
None |
Can cause fetal harm based on human postmarketing reports and animal studies.
Imatinib and its metabolites are distributed into human milk; discontinue breast-feeding during therapy and for 1 month after the last dose.
In clinical trials in patients with CML, approximately 20% of patients were over 65 years of age. With the exception of a higher incidence of edema, no substantial differences in safety and efficacy relative to younger adults were observed. In the trial in patients with unresectable or metastatic GIST, 16% of patients were over 65 years of age.
No substantial differences in safety and efficacy relative to younger adults were observed, but data are limited. In the adjuvant GIST study, 31% were over 65 years of age. With the exception of a higher incidence of edema, no substantial differences in safety and efficacy relative to younger adults were observed.
No substantial differences in safety and efficacy relative to younger adults were observed, but data are limited. In the adjuvant GIST study, 31% were over 65 years of age. With the exception of a higher incidence of edema, no substantial differences in safety and efficacy relative to younger adults were observed.
The following prioritized warning is available for IMATINIB MESYLATE (imatinib mesylate):
No warning message for this drug.
No warning message for this drug.
The following icd codes are available for IMATINIB MESYLATE (imatinib mesylate)'s list of indications:
Accelerated phase philadelphia chromosome (+) CML | |
C92.1 | Chronic myeloid leukemia, BCr/ABl-positive |
C92.10 | Chronic myeloid leukemia, BCr/ABl-positive, not having achieved remission |
C92.12 | Chronic myeloid leukemia, BCr/ABl-positive, in relapse |
Adjuvant therapy of Cd117+ gastrointest stromal tumor | |
C49.A | Gastrointestinal stromal tumor |
C49.A0 | Gastrointestinal stromal tumor, unspecified site |
C49.A1 | Gastrointestinal stromal tumor of esophagus |
C49.A2 | Gastrointestinal stromal tumor of stomach |
C49.A3 | Gastrointestinal stromal tumor of small intestine |
C49.A4 | Gastrointestinal stromal tumor of large intestine |
C49.A5 | Gastrointestinal stromal tumor of rectum |
C49.A9 | Gastrointestinal stromal tumor of other sites |
Aggressive systemic mastocytosis | |
C96.21 | Aggressive systemic mastocytosis |
Chronic eosinophilic leukemia | |
C94.8 | Other specified leukemias |
C94.80 | Other specified leukemias not having achieved remission |
C94.82 | Other specified leukemias, in relapse |
Chronic phase philadelphia chromosome (+) CML | |
C92.1 | Chronic myeloid leukemia, BCr/ABl-positive |
C92.10 | Chronic myeloid leukemia, BCr/ABl-positive, not having achieved remission |
C92.12 | Chronic myeloid leukemia, BCr/ABl-positive, in relapse |
Dermatofibrosarcoma protuberans | |
C44.40 | Unspecified malignant neoplasm of skin of scalp and neck |
C44.49 | Other specified malignant neoplasm of skin of scalp and neck |
C44.50 | Unspecified malignant neoplasm of skin of trunk |
C44.501 | Unspecified malignant neoplasm of skin of breast |
C44.509 | Unspecified malignant neoplasm of skin of other part of trunk |
C44.59 | Other specified malignant neoplasm of skin of trunk |
C44.591 | Other specified malignant neoplasm of skin of breast |
C44.599 | Other specified malignant neoplasm of skin of other part of trunk |
C44.60 | Unspecified malignant neoplasm of skin of upper limb, including shoulder |
C44.601 | Unspecified malignant neoplasm of skin of unspecified upper limb, including shoulder |
C44.602 | Unspecified malignant neoplasm of skin of right upper limb, including shoulder |
C44.609 | Unspecified malignant neoplasm of skin of left upper limb, including shoulder |
C44.69 | Other specified malignant neoplasm of skin of upper limb, including shoulder |
C44.691 | Other specified malignant neoplasm of skin of unspecified upper limb, including shoulder |
C44.692 | Other specified malignant neoplasm of skin of right upper limb, including shoulder |
C44.699 | Other specified malignant neoplasm of skin of left upper limb, including shoulder |
C44.70 | Unspecified malignant neoplasm of skin of lower limb, including hip |
C44.701 | Unspecified malignant neoplasm of skin of unspecified lower limb, including hip |
C44.702 | Unspecified malignant neoplasm of skin of right lower limb, including hip |
C44.709 | Unspecified malignant neoplasm of skin of left lower limb, including hip |
C44.79 | Other specified malignant neoplasm of skin of lower limb, including hip |
C44.791 | Other specified malignant neoplasm of skin of unspecified lower limb, including hip |
C44.792 | Other specified malignant neoplasm of skin of right lower limb, including hip |
C44.799 | Other specified malignant neoplasm of skin of left lower limb, including hip |
C44.80 | Unspecified malignant neoplasm of overlapping sites of skin |
C44.89 | Other specified malignant neoplasm of overlapping sites of skin |
C44.90 | Unspecified malignant neoplasm of skin, unspecified |
C44.99 | Other specified malignant neoplasm of skin, unspecified |
Hypereosinophilic syndrome | |
D72.11 | Hypereosinophilic syndrome [HEs] |
D72.110 | Idiopathic hypereosinophilic syndrome [IHEs] |
D72.111 | Lymphocytic variant hypereosinophilic syndrome [LHEs] |
D72.118 | Other hypereosinophilic syndrome |
D72.119 | Hypereosinophilic syndrome [HEs], unspecified |
Lymphoid blast phase philadelphia chromosome (+) CML | |
C92.1 | Chronic myeloid leukemia, BCr/ABl-positive |
C92.10 | Chronic myeloid leukemia, BCr/ABl-positive, not having achieved remission |
C92.12 | Chronic myeloid leukemia, BCr/ABl-positive, in relapse |
Myelodysplastic, myeloproliferative diseases with PDGFR | |
C94.6 | Myelodysplastic disease, not elsewhere classified |
D46.9 | Myelodysplastic syndrome, unspecified |
D46.Z | Other myelodysplastic syndromes |
D47.1 | Chronic myeloproliferative disease |
Myeloid blast phase philadelphia chromosome (+) CML | |
C92.1 | Chronic myeloid leukemia, BCr/ABl-positive |
C92.10 | Chronic myeloid leukemia, BCr/ABl-positive, not having achieved remission |
C92.12 | Chronic myeloid leukemia, BCr/ABl-positive, in relapse |
Philadelphia chromosome positive ALL | |
C91.0 | Acute lymphoblastic leukemia [ALl] |
C91.00 | Acute lymphoblastic leukemia not having achieved remission |
C91.02 | Acute lymphoblastic leukemia, in relapse |
Unresect or metastatic Cd117+ gastrointest stromal tumor | |
C49.A | Gastrointestinal stromal tumor |
C49.A0 | Gastrointestinal stromal tumor, unspecified site |
C49.A1 | Gastrointestinal stromal tumor of esophagus |
C49.A2 | Gastrointestinal stromal tumor of stomach |
C49.A3 | Gastrointestinal stromal tumor of small intestine |
C49.A4 | Gastrointestinal stromal tumor of large intestine |
C49.A5 | Gastrointestinal stromal tumor of rectum |
C49.A9 | Gastrointestinal stromal tumor of other sites |
Formulary Reference Tool