Please wait while the formulary information is being retrieved.
Drug overview for SOVUNA (hydroxychloroquine sulfate):
Generic name: hydroxychloroquine sulfate (hi-DROX-ee-KLOR-oh-kwin)
Drug class: Antirheumatic Agents (DMARDS, non-Biologic)
Therapeutic class: Anti-Infective Agents
Hydroxychloroquine, a 4-aminoquinoline derivative, is an antimalarial agent.
No enhanced Uses information available for this drug.
Generic name: hydroxychloroquine sulfate (hi-DROX-ee-KLOR-oh-kwin)
Drug class: Antirheumatic Agents (DMARDS, non-Biologic)
Therapeutic class: Anti-Infective Agents
Hydroxychloroquine, a 4-aminoquinoline derivative, is an antimalarial agent.
No enhanced Uses information available for this drug.
DRUG IMAGES
- SOVUNA 200 MG TABLET
- SOVUNA 300 MG TABLET
The following indications for SOVUNA (hydroxychloroquine sulfate) have been approved by the FDA:
Indications:
Discoid lupus erythematosus
Malaria prevention
Plasmodium falciparum malaria prevention
Plasmodium falciparum malaria
Plasmodium malariae malaria prevention
Plasmodium malariae malaria
Plasmodium ovale malaria prevention
Plasmodium ovale malaria
Plasmodium vivax malaria prevention
Plasmodium vivax malaria
Rheumatoid arthritis
Systemic lupus erythematosus
Professional Synonyms:
Aestivoautumnal fever
Arthritis deformans
Arthrosis deformans
Benign tertian malaria prophylaxis
Benign tertian malaria
Disseminated lupus erythematosus
Falciparum fever
Falciparum malaria prophylaxis
Falciparum malaria
Lupus erythematosus syndrome
Malaria chemoprophylaxis
Malaria due to Plasmodium falciparum
Malaria due to Plasmodium malariae prophylaxis
Malaria due to Plasmodium malariae
Malaria due to Plasmodium ovale prophylaxis
Malaria due to Plasmodium ovale
Malaria due to Plasmodium vivax prophylaxis
Malaria due to Plasmodium vivax
Malariae malaria prophylaxis
Malariae malaria
Malignant tertian fever
Malignant tertian malaria
Nodose rheumatism
Ovale malaria prophylaxis
Ovale malaria
Ovale tertian malaria prophylaxis
Ovale tertian malaria
Pernicious malaria
Prophylaxis for malaria-prone areas
Quartan fever prophylaxis
Quartan fever
Quartan malaria prophylaxis
Quartan malaria
Rheumatic arthritis
Rheumatic gout
Subtertian malaria
Tertian fever prophylaxis
Tertian fever
Tertian malaria prophylaxis
Tertian malaria
Vivax fever prophylaxis
Vivax fever
Vivax malaria prophylaxis
Vivax malaria
Indications:
Discoid lupus erythematosus
Malaria prevention
Plasmodium falciparum malaria prevention
Plasmodium falciparum malaria
Plasmodium malariae malaria prevention
Plasmodium malariae malaria
Plasmodium ovale malaria prevention
Plasmodium ovale malaria
Plasmodium vivax malaria prevention
Plasmodium vivax malaria
Rheumatoid arthritis
Systemic lupus erythematosus
Professional Synonyms:
Aestivoautumnal fever
Arthritis deformans
Arthrosis deformans
Benign tertian malaria prophylaxis
Benign tertian malaria
Disseminated lupus erythematosus
Falciparum fever
Falciparum malaria prophylaxis
Falciparum malaria
Lupus erythematosus syndrome
Malaria chemoprophylaxis
Malaria due to Plasmodium falciparum
Malaria due to Plasmodium malariae prophylaxis
Malaria due to Plasmodium malariae
Malaria due to Plasmodium ovale prophylaxis
Malaria due to Plasmodium ovale
Malaria due to Plasmodium vivax prophylaxis
Malaria due to Plasmodium vivax
Malariae malaria prophylaxis
Malariae malaria
Malignant tertian fever
Malignant tertian malaria
Nodose rheumatism
Ovale malaria prophylaxis
Ovale malaria
Ovale tertian malaria prophylaxis
Ovale tertian malaria
Pernicious malaria
Prophylaxis for malaria-prone areas
Quartan fever prophylaxis
Quartan fever
Quartan malaria prophylaxis
Quartan malaria
Rheumatic arthritis
Rheumatic gout
Subtertian malaria
Tertian fever prophylaxis
Tertian fever
Tertian malaria prophylaxis
Tertian malaria
Vivax fever prophylaxis
Vivax fever
Vivax malaria prophylaxis
Vivax malaria
The following dosing information is available for SOVUNA (hydroxychloroquine sulfate):
Dosage of hydroxychloroquine sulfate is expressed in terms of hydroxychloroquine sulfate or in terms of the base (hydroxychloroquine).
Each 200-mg tablet of hydroxychloroquine sulfate contains 155 mg of the base.
Hydroxychloroquine dosage may need to be reduced in patients with renal or hepatic impairment; the manufacturer makes no specific recommendations for such individuals.
Each 200-mg tablet of hydroxychloroquine sulfate contains 155 mg of the base.
Hydroxychloroquine dosage may need to be reduced in patients with renal or hepatic impairment; the manufacturer makes no specific recommendations for such individuals.
Hydroxychloroquine sulfate is administered orally. The drug should be administered with food or milk. The film-coated tablets of hydroxychloroquine should not be crushed or divided.
DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
---|---|---|
SOVUNA 200 MG TABLET | Maintenance | Adults take 1 tablet (200 mg) by oral route once daily |
SOVUNA 300 MG TABLET | Maintenance | Adults take 1 tablet (300 mg) by oral route once daily |
DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
---|---|---|
HYDROXYCHLOROQUINE 200 MG TAB | Maintenance | Adults take 1 tablet (200 mg) by oral route once daily |
HYDROXYCHLOROQUINE 300 MG TAB | Maintenance | Adults take 1 tablet (300 mg) by oral route once daily |
The following drug interaction information is available for SOVUNA (hydroxychloroquine sulfate):
There are 9 contraindications.
These drug combinations generally should not be dispensed or administered to the same patient. A manufacturer label warning that indicates the contraindication warrants inclusion of a drug combination in this category, regardless of clinical evidence or lack of clinical evidence to support the contraindication.
Drug Interaction | Drug Names |
---|---|
Mefloquine/Chloroquine; Hydroxychloroquine; Quinidine; Quinine SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: The exact mechanism is unknown, but may involve additive effects between mefloquine and antimalarials including chloroquine, hydroxychloroquine, quinidine or quinine. CLINICAL EFFECTS: Concurrent administration of mefloquine with chloroquine, hydroxychloroquine, quinidine or quinine may result in electrocardiographic abnormalities, cardiac arrest, and/or an increased risk of convulsions.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Concurrent use of mefloquine with chloroquine, hydroxychloroquine, quinidine, or quinine is contraindicated. If these agents are used in the initial treatment of malaria, the administration of mefloquine should be delayed until 12 hours after the last dose of chloroquine, hydroxychloroquine, quinidine, or quinine.(1) DISCUSSION: There is little clinical information to support this interaction. An in vitro study in human liver microsomes showed that quinine inhibits the metabolism of mefloquine.(2) The manufacturer of mefloquine states that concurrent administration of mefloquine with quinine or quinidine may produce electrocardiographic abnormalities or cardiac arrest and that the concurrent administration of mefloquine and quinine or chloroquine may increase the risk of convulsions.(1) The manufacturer of mefloquine states that if quinine or quinidine are used in the treatment of malaria, 12 hours should elapse between the their last dose and the first dose of mefloquine.(1) |
MEFLOQUINE HCL |
Pimozide/QT Prolonging Agents SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Pimozide has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of pimozide with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug know to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction.(3) PATIENT MANAGEMENT: The manufacturer of pimozide states under contraindications that the use of pimozide is contraindicated in patients taking other drugs which prolong the QT interval.(1) If concurrent therapy is deemed medically necessary, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) One or more of the drug pairs linked to this monograph have been included in a list of interactions that should be considered "high-priority" for inclusion and should not be inactivated in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
PIMOZIDE |
Droperidol/QT Prolonging Agents SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Droperidol has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of droperidol with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: Congestive heart failure, bradycardia, use of a diuretic, cardiac hypertrophy, hypokalemia, hypomagnesemia, age over 65 years, alcohol abuse, and the use of agents such as benzodiazepines, volatile anesthetics, and intravenous opiate may predispose patients to the development of prolonged QT syndrome.(1) Risk may also be increased in patients with other cardiovascular diseases (e.g. myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypocalcemia, or female gender.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The manufacturer of droperidol states under precautions drug interactions that drugs known to have the potential to prolong the QT interval should not be used together with droperidol.(1) DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) One or more of the drug pairs linked to this monograph have been included in a list of interactions that should be considered "high-priority" for inclusion and should not be inactivated in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
DROPERIDOL |
Artemether; Lumefantrine/Antimalarials SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Halofantrine and quinine may inhibit the metabolism of lumefantrine by CYP2D6.(1) The combination of artemether-lumefantrine and antimalarials may result in additive effects on the QT interval.(1) CLINICAL EFFECTS: Concurrent use may result in toxicity and/or prolongation of the QT interval, which may result in life-threatening arrhythmias.(1,2) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The UK manufacturer of artemether-lumefantrine states that the concurrent use of artemether-lumefantrine with other antimalarials is contraindicated.(1) The US manufacturer of artemether-lumefantrine states that artemether-lumefantrine should not be given concurrently with antimalarials.(2) If a patient deteriorates during artemether-lumefantrine therapy and requires another antimalarial agent, it may be started immediately, but the UK manufacturer of artemether-lumefantrine recommends ECG and potassium monitoring.(1) In patients who have previously received halofantrine, both the UK and US manufacturers of artemether-lumefantrine recommends that one month elapse between the last dose of halofantrine and the initiation of artemether-lumefantrine.(1) If concurrent therapy is deemed medically necessary, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a study in 14 healthy subjects, administration of a single intravenous dose of quinine (10 mg/kg) 2 hours after the sixth dose of artemether-lumefantrine had no effect on lumefantrine or dihydroartemisinin levels. Artemether levels were decreased; however, this was not believed to be clinically significant.(1,2) Concurrent quinine and artemether-lumefantrine produced a slight, but significant increase on the QTc interval.(1) |
COARTEM |
Penicillamine/Antimalarial Agents SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Concurrent use may result in additive or synergistic effects on the blood and kidneys(1) or increased penicillamine levels.(2) CLINICAL EFFECTS: Concurrent use of penicillamine with antimalarials may result in serious hematologic or renal toxicity(1,2) or elevated levels of penicillamine.(2) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer of penicillamine states that penicillamine should not be used in patients receiving concurrent therapy with antimalarial agents.(1) DISCUSSION: In patients with rheumatoid arthritis, concurrent chloroquine increased penicillamine plasma concentrations by 34% when compared to penicillamine alone.(2) In a 2-year controlled, double-blind trial of penicillamine, hydroxychloroquine, or combination therapy, patients on combination therapy did not do as well as patients receiving penicillamine alone.(3) Because antimalarial agents are associated with hematologic and renal toxicity, the manufacturer of penicillamine states that penicillamine should not be used in patients receiving concurrent antimalarials.(1) |
CUPRIMINE, D-PENAMINE, DEPEN, PENICILLAMINE, PENICILLAMINE(D-) |
Disopyramide/QT Prolonging Agents SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Concurrent use of disopyramide and agents known to prolong the QT interval may result in additive or synergistic effects on the QTc interval.(1) CLINICAL EFFECTS: Concurrent administration may result in prolongation of the QTc interval and life-threatening cardiac arrhythmias, including torsades de pointes. PREDISPOSING FACTORS: The risk of torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The Australian manufacturer of disopyramide states that concurrent use with agents liable to produce torsades de pointes, including tricyclic or tetracyclic antidepressants, erythromycin, vincamine, and sultopride, is contraindicated.(1) If alternatives are not available and concurrent therapy is deemed medically necessary, obtain serum calcium, magnesium, and potassium levels and monitor ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) One or more of the drug pairs linked to this monograph have been included in a list of interactions that should be considered "high-priority" for inclusion and should not be inactivated in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
DISOPYRAMIDE PHOSPHATE, NORPACE, NORPACE CR |
Dronedarone/QT Prolonging Agents SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Concurrent use of dronedarone and agents known to prolong the QT interval may result in additive or synergistic effects on the QTc interval.(1) CLINICAL EFFECTS: Concurrent administration may result in prolongation of the QTc interval and life-threatening cardiac arrhythmias, including torsades de pointes. PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The US manufacturer of dronedarone states that the use of drugs or herbal products that are known to prolong the QTc interval is contraindicated. These agents include phenothiazine anti-psychotics, tricyclic antidepressants, certain oral macrolide antibiotics, and Class IA and III antiarrhythmics.(1) If concurrent therapy is deemed medically necessary, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) One or more of the drug pairs linked to this monograph have been included in a list of interactions that should be considered "high-priority" for inclusion and should not be inactivated in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
MULTAQ |
Anagrelide/QT Prolonging Agents SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Concurrent use of anagrelide with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of anagrelide with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of anagrelide states that anagrelide should not be used in patients taking medications known to prolong the QT interval.(1) If concurrent therapy is deemed medically necessary, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a thorough QT study, dose-related QT changes were observed with anagrelide. The maximum mean change in QTcI (95% CI) in comparison to placebo was 7.0 (9.8) ms and 13.0 (15.7) msec following doses of 0.5 mg and 2.5mg, respectively.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) One or more of the drug pairs linked to this monograph have been included in a list of interactions that should be considered "high-priority" for inclusion and should not be inactivated in EHR systems. This DDI subset was vetted by an expert panel commissioned by the U.S. Office of the National Coordinator (ONC) for Health Information Technology. |
AGRYLIN, ANAGRELIDE HCL |
Levoketoconazole/QT Prolonging Agents SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Levoketoconazole has been observed to prolong the QTc interval in a dose-dependent manner. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of levoketoconazole with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of levoketoconazole states that levoketoconazole is contraindicated with other agents that prolong the QT interval.(1) Levoketoconazole is also contraindicated in patients with a prolonged QTcF interval of greater than 470 msec at baseline, history of torsades de pointes, ventricular tachycardia, ventricular fibrillation, or long QT syndrome (including first-degree family history). Use caution in patients with other risk factors for QT prolongation including congestive heart failure, bradyarrhythmias, and uncorrected electrolyte abnormalities. Consider more frequent ECG monitoring. Prior to starting levoketoconazole, obtain a baseline ECG and correct hypokalemia or hypomagnesemia. If a patient develops QT prolongation with a QTc interval greater than 500 msec, temporarily discontinue levoketoconazole. After resolution of prolonged QTc interval, levoketoconazole may be resumed at a lower dose. If QTc interval prolongation recurs, permanently discontinue levoketoconazole.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: During phase 1 and 2 studies, which excluded patients with baseline QTcF interval greater than 470 msec, 4 (2.4%) patients experienced QTcF > 500 msec, and 23 (14.7%) patients experienced change-from-baseline QTcF > 60 msec.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
RECORLEV |
There are 43 severe interactions.
These drug interactions can produce serious consequences in most patients. Actions required for severe interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration scheduling, and providing additional patient monitoring. Review the full interaction monograph for more information.
Drug Interaction | Drug Names |
---|---|
Digoxin/Hydroxychloroquine SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Unknown. However, hydroxychloroquine may reduce the renal and non-renal clearance of digoxin. CLINICAL EFFECTS: Plasma digoxin concentrations may be elevated, increasing the toxic effects of digoxin. Symptoms of digoxin toxicity can include anorexia, nausea, vomiting, headache, fatigue, malaise, drowsiness, generalized muscle weakness, disorientation, hallucinations, visual disturbances, and arrhythmias. PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Monitor serum digoxin concentrations and observe the patient for signs of toxicity when starting or stopping hydroxychloroquine. Adjust the dose of digoxin as needed. DISCUSSION: Two patients stabilized on digoxin therapy experienced an increase in serum digoxin levels when hydroxychloroquine was added to their treatment. Plasma digoxin levels decreased when hydroxychloroquine was discontinued. |
DIGITEK, DIGOXIN, DIGOXIN MICRONIZED, LANOXIN, LANOXIN PEDIATRIC |
Ziprasidone/Selected QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ziprasidone has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of ziprasidone with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(1,3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The manufacturer of ziprasidone states under contraindications that ziprasidone should not be used with other drugs that prolong the QT interval such as dofetilide, sotalol, quinidine, other Class Ia and III anti-arrhythmics, mesoridazine, thioridazine, chlorpromazine, droperidol, pimozide, sparfloxacin, gatifloxacin, moxifloxacin, halofantrine, mefloquine, pentamidine, arsenic trioxide, levomethadyl acetate, dolasetron mesylate, probucol or tacrolimus.(1) It would be prudent to avoid the use of ziprasidone with medicines suspected of prolonging the QT interval. If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
GEODON, ZIPRASIDONE HCL, ZIPRASIDONE MESYLATE |
Ivabradine/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: QT prolongation may be exacerbated by ivabradine-induced reduction in heart rate.(1) CLINICAL EFFECTS: Concurrent use of ivabradine and agents known to prolong the QT interval may exacerbate QT prolongation.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The UK, AU, and Canadian manufacturer of ivabradine states that concurrent use with cardiovascular and non-cardiovascular QT prolonging agents should be avoided.(1,4,5) The Canadian manufacturer states that if concurrent therapy is deemed necessary, close cardiac monitoring (12-lead ECG) is required. Depending on the ECG results, ivabradine dosing may need to be decreased or stopped.(4) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
CORLANOR, IVABRADINE HCL |
Paliperidone/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Paliperidone has been shown to cause a modest increase in the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1,2) CLINICAL EFFECTS: The concurrent use of paliperidone with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1,2) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: The US manufacturer of paliperidone states that the use of paliperidone should be avoided with other drugs that are known to prolong the QTc interval, including Class IA and Class III antiarrhythmics, antipsychotics, antibiotics such as gatifloxacin and moxifloxacin, or any other class of medications known to prolong the QTc interval.(1,2) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
ERZOFRI, INVEGA, INVEGA HAFYERA, INVEGA SUSTENNA, INVEGA TRINZA, PALIPERIDONE ER |
Nilotinib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Nilotinib prolongs the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1,3) CLINICAL EFFECTS: The concurrent use of nilotinib with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1,3) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: The US manufacturer of nilotinib states that the use of nilotinib should be avoided with other drugs that are known to prolong the QTc interval. Should treatment with a QT prolonging agent be required, interruption of nilotinib therapy should be considered. If concurrent therapy cannot be avoided, monitor patients closely for prolongation of the QT interval and follow recommended nilotinib dosage adjustments for QT prolongation.(1) Consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. The UK manufacturer of nilotinib states that the use of nilotinib should be used with caution with other drugs that are known to prolong the QTc interval.(3) DISCUSSION: A retrospective review of 618 cancer patients treated with 902 administrations of tyrosine kinase inhibitors were evaluated for rate and incidence of QTc prolongation. In patients who received nilotinib, QTc prolongation was identified in 29 (38.7%) with 1 (3.5%) having Grade 1 (QTc 450-480 ms) and 2 (7%) having Grade 2 (QTc 480-500 ms). Grade 3 events occurred in 9 (31%) having QTc greater than or equal to 500 ms and 17 (58.6%) having QTc change greater than or equal to 60 ms. No patients developed ventricular tachycardia, sudden cardiac death, or TdP.(5) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
DANZITEN, NILOTINIB HCL, TASIGNA |
Toremifene/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Toremifene has been shown to prolong the QTc interval in a dose-related and concentration-related manner.(1) Concurrent use of toremifene and agents known to prolong the QT interval may result in additive or synergistic effects on the QTc interval.(1,2) CLINICAL EFFECTS: Concurrent administration may result in prolongation of the QTc interval and life-threatening cardiac arrhythmias, including torsades de pointes.(1,2) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: The US manufacturer of toremifene states that concurrent use should be avoided. If treatment with an agent known to prolong the QT interval is required, toremifene therapy should be interrupted. If it is not possible to interrupt toremifene therapy, patients should be closely monitored. Electrocardiograms (ECGs) should be obtained.(1) Consider obtaining serum calcium, magnesium, and potassium levels and correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. The UK manufacturer of toremifene states that the use of other drugs that are known to prolong the QTc interval is contraindicated. These agents include class IA and III antiarrhythmics, astemizole, bepridil, cisapride, diphemanil, erythromycin IV, halofantrine, haloperidol, mizolastine, moxifloxacin, pentamidine, phenothiazines, pimozide, sertindole, terfenadine, and vincamine IV.(2) DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
FARESTON, TOREMIFENE CITRATE |
Lopinavir/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Lopinavir has been shown to prolong the QTc interval by 5 msec. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of lopinavir with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The US manufacturer of lopinavir states that the concurrent administration of other drugs that are known to prolong the QTc interval should be avoided.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a randomized, placebo and active controlled crossover study in 39 healthy subjects designed to evaluated QTc intervals, lopinavir/ritonavir increased QTc by 5.3 msec and 15.2 msec for 400/100 mg twice daily and 800/200 mg twice daily, respectively.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
KALETRA, LOPINAVIR-RITONAVIR |
Iloperidone/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Iloperidone has been shown to prolong the QTc interval by 9 msec at dosages of 12 mg twice daily. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of iloperidone with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, congenital prolongation of the QT interval, female gender, advanced age and with concurrent use of inhibitors of CYP3A4 or CYP2D6, which metabolize iloperidone. Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The US manufacturer of iloperidone states that the concurrent administration of other drugs that are known to prolong the QTc interval should be avoided. Disopyramide and procainamide should not be used to treat iloperidone-overdose-induced arrhythmias.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) Coadministration of ketoconazole (200 mg twice daily, an inhibitor of CYP3A4) and iloperidone (12 mg twice daily) was associated with a mean QTcF increase of 19 msec from baseline, compared with an increase of 9 msec with iloperidone alone.(1) Coadministration of paroxetine (20 mg daily, an inhibitor of CYP2D6) and iloperidone (12 mg twice daily) was associated with a mean QTcF increase of 19 msec from baseline, compared with an increase of 9 msec with iloperidone alone.(1) |
FANAPT |
Quinine/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Quinine has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of quinine with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The US manufacturer of quinine states that concurrent use with agents known to prolong the QT interval should be avoided.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports. |
QUALAQUIN, QUININE HCL, QUININE SULFATE |
Propafenone/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Propafenone has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of propafenone with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The manufacturer of propafenone states that the use of propafenone with other agents known to prolong the QT interval should be avoided.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
PROPAFENONE HCL, PROPAFENONE HCL ER |
Quetiapine/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The use of quetiapine in patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The US manufacturer of quetiapine states that concurrent use with agents known to prolong the QT interval should be avoided.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Although quetiapine was not associated with QT or QTc changes in clinical trials, QT prolongation has been reported in post-marketing reports in conjunction with the use of other agents known to prolong the QT interval.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(2) |
QUETIAPINE FUMARATE, QUETIAPINE FUMARATE ER, SEROQUEL, SEROQUEL XR |
Trazodone (Greater Than or Equal To 100 mg)/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of trazodone with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1,2) CLINICAL EFFECTS: The use of trazodone in patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1,2) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of trazodone states that concurrent use with agents known to prolong the QT interval should be avoided.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Trazodone has been reported to prolong the QT interval.(1) A thorough QT study in 20 subjects evaluated the effects of trazodone at doses of 20 mg, 60 mg and 140 mg. There was no evidence of QTc prolongation at the lowest trazodone dose of 20mg (mean effect on QTc of 4.5 ms 95% CI 3.7-5.3 ms), but at 60 mg and 140 mg, there was a significant effect that exceeds the E14 FDA Guidelines threshold of prolonging the QT/QTc interval by more than 5 ms. The study found a dose-dependent effect on QTc prolongation starting at 60 mg with a mean effect on QTc of 12.3 ms (95% CI 11-13.6 ms) and increasing with a 140 mg dose to a mean effect on QTc of 19.8 ms (95% CI 17.6-22.1).(3) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(4) |
RALDESY, TRAZODONE HCL |
Osimertinib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Osimertinib prolongs the QTc interval.(1) Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(2,3) CLINICAL EFFECTS: The concurrent use of osimertinib with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(2,3) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: Osimertinib prolongs the QT interval. Premarket clinical trials excluded patients with a baseline QTc > or = 470 msec. In these trials 11 patients (2.7%) had increase in QTc greater than 60 msec.(1) Manufacturer recommendations: when feasible, avoid concurrent administrations of osimertinib with drugs known to prolong the QTc interval. Conduct baseline and periodic monitoring with ECGs in patients with congenital long QTc syndrome, congestive heart failure, electrolyte abnormalities (e.g. serum calcium, magnesium, and potassium), or those taking medications known to prolong the QT interval.(1) Dose adjustments (1): - If QTc is greater than 500 msec on at least 2 separate ECGs, withhold osimertinib until QTc is < 481 msec or recovery to baseline (if baseline QTc was greater than or equal to 481 msec), then resume osimertinib at 40 mg per day. - For QTc prolongation with signs or symptoms of life threatening arrhythmia, permanently discontinue osimertinib. During concomitant therapy with another QT prolonging agent, monitor patients closely for prolongation of the QT interval.(1) Obtain serum calcium, magnesium, and potassium levels and monitoring ECG at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: A retrospective review of 618 cancer patients treated with 902 administrations of tyrosine kinase inhibitors were evaluated for rate and incidence of QTc prolongation. In patients who received osimertinib, QTc prolongation was identified in 4 (25%) with 1 (25%) having Grade 1 (QTc 450-480 ms) and 1 (25%) having Grade 2 (QTc 480-500 ms). Grade 3 events occurred in 1 (25%) having QTc greater than or equal to 500 ms and 1 (25%) having QTc change greater than or equal to 60 ms. No patients had ventricular tachycardia, sudden cardiac death, or TdP.(4) In clinical studies of 1813 patients treated with osimertinib monotherapy, 1.1% of patients were found to have a QTc interval greater than 500 ms and 4.3% of patients had an increase from baseline QTc > 60 ms.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
TAGRISSO |
Bedaquiline/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of bedaquiline with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The use of bedaquiline patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Bedaquiline should be used with caution in patients receiving therapy with agents that prolong the QT interval. Patients should receive a baseline electrocardiogram (ECG) before initiation, 2 weeks after initiation, during treatment as clinically indicated, and at the expected time of maximum increase of the QT interval when receiving concurrent agents that prolong the QT interval. Bedaquiline and other QT prolonging agents should be discontinued if the patient develops a clinically significant ventricular arrhythmia or a QTcF of greater than 500 msec confirmed by repeat ECGs. If a patient develops syncope, perform an ECG.(1) Also consider obtaining serum calcium, magnesium, and potassium levels at baseline and regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a clinical trial, mean increases in QTc were greater in patients treated with bedaquiline than with placebo. At Week 1, bedaquiline increased QTc by an average of 9.9 msec, compared with 2.5 msec for placebo. At Week 24, bedaquiline increased QTc by an average of 15.7 msec, compared with 6.2 msec for placebo. In another clinical trial in which patients received bedaquiline with other QT prolonging agents, QT prolongation was additive and proportional to the number of QT prolonging drugs used. Patients receiving bedaquiline alone averaged a QTc increase of 23.7 msec over baseline, while patients receiving bedaquiline with at least one other QT prolonging agent averaged a QTc increase of 30.7 msec.(1) In a study, bedaquiline was coadministered with QTc prolonging agents clofazimine and levofloxacin. In the study, 5% of patients had a QTc >= 500 ms and 43% of patients had an increase in QTc >= 60 ms from baseline.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
SIRTURO |
Ceritinib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The use of ceritinib in patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) Patients with severe hepatic impairment (Child-Pugh C) may be at increased risk of this interaction. Ceritinib dose reduction may be warranted in severe hepatic impairment. See prescribing information for recommendations.(1) PATIENT MANAGEMENT: When possible, avoid coadministration of ceritinib with other QT prolonging agents. Obtain an electrocardiogram (ECG) and monitor serum calcium, magnesium, and potassium levels at baseline and regular intervals in patients receiving concurrent therapy with ceritinib and another agent that prolongs the QTc interval.(1) In patients who develop a QTC interval greater than 500 msec on at least 2 occasions, withhold ceritinib until the QTc interval is less than 481 msec or recovery to baseline if baseline QTc was greater than or equal to 481 msec, then resume ceritinib with a 150 mg dose reduction. If the patient develops QTc interval prolongation in combination with torsades de pointes or polymorphic ventricular tachycardia or signs/symptoms of serious arrhythmia, permanently discontinue ceritinib.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a clinical trial 3% of patients experienced a QTc interval increase over baseline greater than 60 msec. Less than 1% of patients (1 of 304) treated with ceritinib was found to have a QTc greater than 500 msec. The upper limit of the 90% confidence interval for mean QTC increase was 16 msec at ceritinib 750 mg. Data suggested that ceritinib produces concentration-dependent QTc interval prolongation.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
ZYKADIA |
Crizotinib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The use of crizotinib in patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Consider periodic electrocardiogram (ECG) and electrolyte monitoring (calcium, magnesium, and potassium levels at baseline and regular intervals) in patients receiving concurrent therapy with crizotinib and another agent that prolongs the QTc interval.(1) In patients who develop a QTc greater than 500 ms on at least 2 separate ECGs, withhold crizotinib until recovery to baseline or to a QTc less than 481 ms, then resume crizotinib at reduced dose.(1) In patients who develop a QTc greater than 500 ms or greater than or equal to 60 ms change from baseline with Torsade de pointes or polymorphic ventricular tachycardia or signs/symptoms of serious arrhythmia, permanently discontinue crizotinib.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Crizotinib is associated with concentration-dependent QTc interval prolongation. In a clinical trial 2.1% of patients were found to have a QTcF greater than or equal to 500 msec and 5% of patients had an increase in QTcF by greater than or equal to 60 msec.(1) A retrospective review of 618 cancer patients treated with 902 administrations of tyrosine kinase inhibitors were evaluated for rate and incidence of QTc prolongation. In patients who received crizotinib, QTc prolongation was identified in 1 (50%) with 1 (100%) having Grade 1 (QTc 450-480 ms). No patients had a QTc change greater than or equal to 60 ms, ventricular tachycardia, sudden cardiac death, or TdP.(3) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(4) |
XALKORI |
Lenvatinib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: Concurrent use of lenvatinib in patients taking other medications that prolong the QT interval may result in additive QT prolongation. QT prolongation may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, hypoalbuminemia, bradycardia, female gender, or advanced age.(1,2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Monitor electrocardiograms during concurrent therapy with lenvatinib and agents that prolong the QT interval. In a clinical trial of patients with refractory, progressive thyroid cancer, QT prolongation was reported in 9% of lenvatinib patients. Monitor and correct electrolyte abnormalities in all patients.(1) This is particularly important in lenvatinib patients as diarrhea, nausea, vomiting, and decreased appetite are common side effects which may increase the risk for electrolyte disturbances. Monitor ECG at baseline and at regular intervals. Lenvatinib dose must be withheld if the QTc exceeds 500 msec until QTc resolves to less than 480 msec or baseline. Lenvatinib must be resumed at reduced dose when QTc prolongation resolves to less than 480 ms or to baseline. Dose adjustments below are indication specific and are for patients with normal hepatic and renal function:(1) Dose Modifications in Differentiated Thyroid Cancer(DTC): - First occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose to 20 mg once daily - Second occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose to 14 mg once daily - Third occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose 10 mg once daily Dose Modifications in Renal Cell Cancer (RCC): - First occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose to 14 mg once daily - Second occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose to 10 mg once daily - Third occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose 8 mg once daily Dose Modifications in Hepatocellular Carcinoma (HCC) for Actual weight 60 kg or greater: - First occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose to 8 mg once daily - Second occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose to 4 mg once daily - Third occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose 4 mg every other day Dose Modifications in Hepatocellular Carcinoma (HCC) for Actual weight less than 60 kg: - First occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose to 4 mg once daily - Second occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline then decrease dose to 4 mg every other day - Third occurrence of QTc > 500 msec or onset of another Grade 2 or Grade 3 Adverse Reaction or Grade 4 Laboratory Abnormality: Interrupt therapy until resolved to Grade 0-1 or baseline and discontinue lenvatinib (1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a clinical trial of patients with refractory, progressive thyroid cancer, QT prolongation was reported in 9% of lenvatinib patients and 2% of placebo patients. The incidence of Grade 3 QT prolongation of > 500 msec was reported in 2% of lenvatinib patients compared with no reports in placebo patients.(1) In contrast, a single lenvatinib dose of 32 mg (1.3 times the recommended daily dose) did not prolong the QT/QTc interval in a thorough QT study performed in healthy subjects.(1) A retrospective review of 618 cancer patients treated with 902 administrations of tyrosine kinase inhibitors were evaluated for rate and incidence of QTc prolongation. In patients who received lenvatinib, QTc prolongation was identified in 9 (42.9%) with 4 (44.4%) having Grade 1 (QTc 450-480 ms) and 3 (33.3%) having Grade 2 (QTc 480-500 ms). Grade 3 events occurred in 0 (0%) having QTc greater than or equal to 500 ms and 1 (11.1%) having QTc change greater than or equal to 60 ms. Ventricular tachycardia was seen in 1 (11.1%) patient.(3) |
LENVIMA |
Romidepsin/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Romidepsin has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of romidepsin with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of romidepsin states that appropriate cardiovascular monitoring, such as baseline and regular monitoring of ECG and obtaining serum calcium, magnesium, and potassium levels, should be performed if concurrent therapy with agents known to prolong the QT interval is warranted.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In two clinical trials, discontinuation of romidepsin secondary to QT prolongation occurred in at least 2% of patients.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
ISTODAX, ROMIDEPSIN |
Sorafenib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of sorafenib with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The use of sorafenib patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Patients receiving concurrent therapy with agents known to prolong the QTc interval should be monitored with electrocardiograms during treatment with sorafenib. Electrolytes (calcium, magnesium, and potassium) should also be monitored.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a non-randomized trial in 53 patients, sorafenib resulted in a mean change in QTc of 8.5 msec (upper bound of 90% CI: 13.3 msec).(1) A retrospective review of 618 cancer patients treated with 902 administrations of tyrosine kinase inhibitors were evaluated for rate and incidence of QTc prolongation. In patients who received sorafenib, QTc prolongation was identified in 13 (31.7%) with 5 (38.5%) having Grade 1 (QTc 450-480 ms) and 4 (30.7%) having Grade 2 (QTc 480-500 ms). Grade 3 events occurred in 2 (15.4%) having QTc greater than or equal to 500 ms and 2 (15.4%) having QTc change greater than or equal to 60 ms. No patients developed ventricular tachycardia, sudden cardiac death, or TdP.(3) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(4) |
NEXAVAR, SORAFENIB |
Telavancin/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Telavancin has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of telavancin with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of telavancin recommends against the use of telavancin with other drugs known to cause QT prolongation.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a randomized, double-blind, multiple-dose, positive-controlled, placebo-controlled, parallel study in healthy subjects, the mean maximum baseline-corrected, placebo-corrected QTc prolongation was 11.6 msec and 15.1 msec for telavancin at dosages of 7.5 mg/kg and 15 mg/kg, respectively. The estimated mean maximum baseline-corrected, placebo-corrected QTc prolongation for a telavancin dosage of 10 mg/kg is 12-15 msec.(1) In studies in patients, 21% of patients receiving telavancin (214 of 1029, 10 mg/kg) and 16% of patients receiving vancomycin (164 of 1033) received concurrent QT prolonging agents. The rate of QTc prolongation greater than 60 msec was 1.5% (15 patients) in the telavancin group and 0.6% (6 patients) in the vancomycin group. Nine of the 15 telavancin subjects with QTc prolongation received concurrent QT prolongers, compared with 1 of the vancomycin patients.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
VIBATIV |
Vemurafenib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The use of vemurafenib in patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Vemurafenib should not be initiated in patients taking medications known to prolong the QT interval, patients having a baseline QTc greater than 500 msec, uncorrectable electrolyte abnormalities, or known long QT syndrome is not recommended.(1) All patients receiving vemurafenib should undergo ECG testing at baseline, after 15 days of treatment, monthly during the first 3 months of treatment, and then every 3 months. If a patient's QTc exceeds 500 msec during treatment, vemurafenib should be discontinued and cardiac risk factors for QT prolongation should be controlled. Consider discontinuing other medications known to prolong the QT interval at this time. If the patient's QTc decreases below 500 msec, vemurafenib may be introduced at a lower dosage according to the current labeling recommendations. If the patient's QTc remains greater than 500 msec and increased >60 msec from pre-treatment values after controlling cardiac risk factors for prolongation, permanently discontinue vemurafenib.(1) Consider obtaining serum calcium, magnesium, and potassium levels at baseline and regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Vemurafenib is associated with concentration-dependent QTc interval prolongation. In the first month of treatment, the largest mean QTc change was 12.8 msec (upper boundary of 90% CI: 14.9 msec). In the first 6 months of treatment, the largest mean QTc change was 15.1 msec (upper boundary of 90% CI: 17.7 msec).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
ZELBORAF |
Pimavanserin/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Pimavanserin prolongs the QTc interval.(1) Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(2,3) CLINICAL EFFECTS: The concurrent use of pimavanserin with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(2,3) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: Avoid the use of pimavanserin in patients receiving QT prolonging agents.(1) During concomitant therapy with another QT prolonging agent, monitor patients closely for prolongation of the QT interval.(1) Obtain serum calcium, magnesium, and potassium levels and monitoring ECG at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In thorough-QT study, pimavanserin (at twice the therapeutic dose) found that the maximum mean change was 13.5 (16.6) msec. In placebo-controlled effectiveness studies, mean increases of 5-8 msec were observed with normal dosages of 37 mg daily. Sporadic QTcF values of equal to or greater than 500 msec and change from baseline values equal to or greater than 60 msec were observed at this dose as well.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
NUPLAZID |
Hydroxyzine/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of hydroxyzine with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1-4) CLINICAL EFFECTS: The concurrent use of hydroxyzine with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1-4) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(5) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(5) Doses of hydroxyzine greater than 100 mg/day may also increase the risk.(1,2) PATIENT MANAGEMENT: Concurrent use of hydroxyzine with agents known to prolong the QT interval is contraindicated in Canada(1,2) and the UK.(3) The US manufacturer states that concurrent use should be approached with caution.(4) If concurrent therapy is deemed medically necessary, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In vitro data indicates that hydroxyzine blocks the hERG channel, which results in the potential risk of QT interval prolongation.(6) In a placebo controlled, non-thorough QT study, 10 patients in the placebo group (n=152) had a change in QT interval from baseline between 30 ms and 60 ms and one patient presented a change from baseline higher than 60 ms. In the hydroxyzine group (n=148), 14 subjects had a change in QT interval from baseline between 30 and 60 ms and were considered to have a potential risk factor for risk of QT interval prolongation and TdP due to relevant medical history, concomitant medication potentially associated with the induction of prolongation of QT interval, and/or polymedication.(6) Health Canada reviewed 61 cases of QT interval prolongation or torsades de pointes with hydroxyzine. In a majority of cases, patients had additional risk factors for QT prolongation. Three reports provided enough data for a more detailed review. Hydroxyzine was found to be either "possible" or "probably" contribution to QT prolongation/torsades in these reports.(1) The European Medicines Agency's Pharmacovigilance Risk Assessment Committee (PRAC) reviewed 190 case reports found in a search of "torsade de pointes/QT prolongation with hydroxyzine". Forty-two non-fatality cases were subdivided into torsades (n=16), QT prolongation (n=21), and ventricular tachycardia (n=5). All included risk factors for QT interval prolongation and TdP (cardiac disorders, hypokalemia, long QT syndrome, bradycardia, concomitant drugs which are known to prolong the QT interval). Dosages ranged from <= 100 mg/day (n=10), > 100 mg/day to <=300 mg/day (n=4), > 300 mg/day (n=8), overdosages (n=11), and premedication (n=9). Twenty-one cases involving fatalities had at least one risk factor for QT prolongation. The PRAC concluded that post-marketing cases of QT interval prolongation, TdP and ventricular tachycardia confirm the findings of the hERG studies suggesting that hydroxyzine blocks hERG channels. No difference in the risk of QT interval prolongation could be observed based on the indication, age of the subject, or dose.(6) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(7) |
HYDROXYZINE HCL, HYDROXYZINE PAMOATE |
Ribociclib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of ribociclib with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of ribociclib with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Avoid concurrent use of ribociclib with agents known to prolong the QT interval.(1) If concurrent therapy is deemed medically necessary, monitor patients closely. Obtain serum calcium, magnesium, and potassium levels and correct any electrolyte abnormalities at the beginning of each ribociclib cycle. Monitor ECG at baseline, Day 14 of the first cycle, at the beginning of the second cycle, and as necessary. If a prolonged QTc is noted, refer to ribociclib prescribing information for current dose modification and management instructions. Ribociclib may need to be interrupted, reduced, or discontinued.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Ribociclib has been shown to prolong the QTc interval in a concentration-dependent manner. At steady state, the mean increase in QTc interval exceeded 20 msec.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
KISQALI |
Hydroxychloroquine/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Hydroxychloroquine has been observed to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of hydroxychloroquine with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of hydroxychloroquine states that hydroxychloroquine should not be administered with other agents that prolong the QT interval.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: The manufacturer states that hydroxychloroquine has been shown to prolong the QT interval;(1) however, conditions that hydroxychloroquine treats have also been associated with QT prolongation. Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
ADLARITY, AMIODARONE HCL, AMIODARONE HCL-D5W, ARICEPT, ARSENIC TRIOXIDE, AVELOX IV, AZITHROMYCIN, BETAPACE, BETAPACE AF, CELEXA, CESIUM CHLORIDE, CHLOROQUINE PHOSPHATE, CHLORPROMAZINE HCL, CILOSTAZOL, CIPRO, CIPROFLOXACIN, CIPROFLOXACIN HCL, CIPROFLOXACIN-D5W, CITALOPRAM HBR, CLARITHROMYCIN, CLARITHROMYCIN ER, CORVERT, DIFLUCAN, DIPRIVAN, DISKETS, DOFETILIDE, DONEPEZIL HCL, DONEPEZIL HCL ODT, E.E.S. 200, E.E.S. 400, ERY-TAB, ERYPED 200, ERYPED 400, ERYTHROCIN LACTOBIONATE, ERYTHROCIN STEARATE, ERYTHROMYCIN, ERYTHROMYCIN ESTOLATE, ERYTHROMYCIN ETHYLSUCCINATE, ERYTHROMYCIN LACTOBIONATE, ESCITALOPRAM OXALATE, FLECAINIDE ACETATE, FLUCONAZOLE, FLUCONAZOLE-NACL, GATIFLOXACIN SESQUIHYDRATE, HALDOL DECANOATE 100, HALDOL DECANOATE 50, HALOPERIDOL, HALOPERIDOL DECANOATE, HALOPERIDOL DECANOATE 100, HALOPERIDOL LACTATE, IBUTILIDE FUMARATE, KRAZATI, LANSOPRAZOL-AMOXICIL-CLARITHRO, LEVOFLOXACIN, LEVOFLOXACIN HEMIHYDRATE, LEVOFLOXACIN-D5W, LEXAPRO, MEMANTINE HCL-DONEPEZIL HCL ER, METHADONE HCL, METHADONE HCL-0.9% NACL, METHADONE HCL-NACL, METHADONE INTENSOL, METHADOSE, MOXIFLOXACIN, MOXIFLOXACIN HCL, NAMZARIC, NEXTERONE, NUEDEXTA, OMECLAMOX-PAK, OXALIPLATIN, PACERONE, PENTAM 300, PENTAMIDINE ISETHIONATE, PROCAINAMIDE HCL, PROPOFOL, QUINIDINE GLUCONATE, QUINIDINE SULFATE, SEVOFLURANE, SOTALOL, SOTALOL AF, SOTALOL HCL, SOTYLIZE, THIORIDAZINE HCL, THIORIDAZINE HYDROCHLORIDE, TIKOSYN, TRISENOX, ULTANE, VANFLYTA, VOQUEZNA TRIPLE PAK, ZITHROMAX, ZITHROMAX TRI-PAK |
Inotuzumab Ozogamicin/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of inotuzumab ozogamicin with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of inotuzumab ozogamicin with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: When possible, discontinue QT prolonging agents prior to therapy with inotuzumab ozogamicin or use alternative agents during inotuzumab ozogamicin therapy.(1) When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy.(1) Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting.(1) DISCUSSION: Inotuzumab ozogamicin was shown to prolong the QT interval in clinical trials. In the INO-VATE trial, 3% (4/162) of patients experienced an increase in QTc equal to or greater than 60 msec. No patients has QTc values greater than 500 msec. Grade 2 QT prolongation was reported in 1% (2/164) patients. There were no reports of Grade 3 QT prolongation or Torsade de Pointes.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
BESPONSA |
Lofexidine/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Lofexidine has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1,2) CLINICAL EFFECTS: Concurrent use of lofexidine and agents known to prolong the QT interval may exacerbate QT prolongation.(1,2) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, advanced age,(3) renal impairment, and/or hepatic impairment.(1,2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The UK manufacturer of lofexidine states that concurrent use of lofexidine and QT prolonging agents should be avoided.(1) The US manufacturer states that ECGs should be monitored in patients receiving concurrent therapy with lofexidine and agents that are known to prolong the QT interval.(2) Consider obtaining serum calcium, magnesium, and potassium levels at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a study of healthy volunteers, lofexidine 1.44 mg to 1.8 mg had a change from baseline in QTc of 14.4 msec and 13.6 msec, respectively.(2) In a dose response study, lofexidine had a mean QTc prolongation of 7.3 msec and 9.3 msec at doses of 2.16 mg/day and 2.88 mg/day, respectively.(2) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(4) |
LOFEXIDINE HCL, LUCEMYRA |
Encorafenib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of encorafenib with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of encorafenib with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Avoid the concurrent use of encorafenib with medications that prolong the QT interval.(1) Recommended dosage modifications for encorafenib and QTc prolongation adverse reactions include: - QTcF greater than 500 ms and less than or equal to 60 ms increase from baseline: Withhold encorafenib until QTcF less than or equal to 500 ms. Resume at reduced dose. If more than one recurrence, permanently discontinue encorafenib. - QTcF greater than 500 ms and greater than 60 ms increase from baseline: Permanently discontinue encorafenib.(1) See prescribing information for additional information regarding dose reductions.(1) When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Encorafenib has been associated with a dose-dependent QTc interval prolongation. Following administration of encorafenib in combination with binimetinib, the largest mean (90% CI) QTcF change from baseline was 18 ms (14-22 ms), based on central tendency analysis.(1) Following administration of encorafenib in combination with cetuximab and mFOLFOX6, an increase of QTcF >500 ms was measured in 3.6% (8/222) of patients.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
BRAFTOVI |
Ivosidenib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of ivosidenib with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of ivosidenib with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Avoid the concurrent use of ivosidenib with medications that prolong the QT interval.(1) When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. If QTc prolongation develops: ---Monitor and supplement electrolytes as clinically indicated ---Review and adjust concomitant QT prolonging medications ---Interrupt ivosidenib therapy ---Monitor ECGs at least weekly for 2 weeks following resolution of QTc prolongation ---Follow labeling recommendations regarding restarting ivosidenib.(1) DISCUSSION: In clinical trials of ivosidenib, 9% of patients experienced a QTc interval greater than 500 msec and 14% of patients had an increased from baseline QTc interval of greater than 60 msec. Patients with a baseline QTc of equal to or greater than 450 msec without pre-existing bundle branch block, or with a history of long QT syndrome were excluded from this trial.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
TIBSOVO |
Glasdegib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of glasdegib with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of glasdegib with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Avoid the concurrent use of glasdegib with medications that prolong the QT interval.(1) When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. If QTc prolongation develops: ---Monitor and supplement electrolytes as clinically indicated ---Review and adjust concomitant QT prolonging medications ---Interrupt glasdegib therapy for QTc interval greater than 500 ms. ---Monitor ECGs at least weekly for 2 weeks following resolution of QTc prolongation ---Follow labeling recommendations regarding restarting glasdegib.(1) DISCUSSION: In a randomized, single-dose, double-blind, 4-way cross-over, placebo- and open-label moxifloxacin-controlled study in 36 healthy subjects, the largest placebo and baseline-adjusted QTc interval change was 8 msec (90% CI: 6-10 msec) with a single 150 mg dose of glasdegib (The 150 mg single dose was used to achieve therapeutic plasma concentrations). With two-fold therapeutic plasma concentrations (achieved with a 300 mg single dose), the QTc change was 13 msec (90% CI: 11-16 msec).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
DAURISMO |
Entrectinib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of entrectinib with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of entrectinib with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Avoid the concurrent use of entrectinib with medications that prolong the QT interval.(1) When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. If QTc prolongation develops: ---Monitor and supplement electrolytes as clinically indicated ---Review and adjust concomitant QT prolonging medications ---Interrupt entrectinib therapy for QTc interval greater than 500 ms. ---Follow labeling recommendations regarding restarting entrectinib.(1) If torsade de pointes, polymorphic ventricular tachycardia, and/or signs/symptoms of serious arrhythmia occur, permanently discontinue entrectinib.(1) DISCUSSION: In clinical trials, 3.1% of patients with at least one post-baseline ECG experienced QTcF prolongation of greater than 60 msec after starting entrectinib..(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
ROZLYTREK |
Lefamulin/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of lefamulin with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of lefamulin with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Avoid the concurrent use of lefamulin with medications that prolong the QT interval.(1) When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy. Correct any electrolyte abnormalities.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a thorough QT study, intravenous lefamulin increased the QTcF 13.6 msec (90% CI = 15.5 msec) and oral lefamulin increased the QTcF by 9.3 msec (90% CI = 10.9 msec).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
XENLETA |
Selpercatinib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Selpercatinib prolongs the QTc interval.(1) Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(2,3) CLINICAL EFFECTS: The concurrent use of selpercatinib with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(2,3) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: Selpercatinib prolongs the QT interval. An increase in QT interval to > 500 ms was measured in 6% of patients and increase in the QT interval of at least 60 ms over baseline was measured in 15% of patients. Monitor patients at significant risk of developing QT prolongation, including patients with known long QT syndromes, clinically significant bradyarrhythmias, and severe or uncontrolled heart failure. Assess QT interval, electrolytes, and TSH at baseline and periodically during treatment. Correct hypokalemia, hypomagnesemia, and hypocalcemia prior to initiation and during treatment. Dose adjustments (1): For grade 3 QT interval prolongation, withhold selpercatinib until recovery to baseline or grade 0 or 1. Resume at a reduced dose. -1st dose reduction: For patients weighing less than 50 kg: 80 mg twice daily. For patients weighing 50 kg or greater: 120 mg twice daily. -2nd dose reduction: For patients weighing less than 50 kg: 40 mg twice daily. For patients weighing 50 kg or greater: 80 mg twice daily. -3rd dose reduction: For patients weighing less than 50 kg: 40 mg once daily. For patients weighing 50 kg or greater: 40 mg twice daily. -For grade 4 QT prolongation, discontinue selpercatinib. DISCUSSION: The effect of selpercatinib on the QT interval was evaluated in a thorough QT study in healthy subjects. The largest mean increase in QT is predicted to be 10.6 ms (upper 90% confidence interval: 12.1 ms) at the mean steady state maximum concentration (Cmax) observed in patients after administration of 160 mg twice daily. The increase in QT was concentration-dependent. Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
RETEVMO |
Remdesivir/Chloroquine; Hydroxychloroquine SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Chloroquine may inhibit the intracellular metabolic activation and antiviral activity of remdesivir.(1,2) CLINICAL EFFECTS: Concurrent use of chloroquine or hydroxychloroquine may result in decreased effectiveness of remdesivir.(1,2) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The concurrent use of chloroquine or hydroxychloroquine with remdesivir is not recommended.(1,2) Monitor patients receiving concurrent therapy for decreased remdesivir effects. DISCUSSION: In vitro tests in HEp-2 cells infected with respiratory syncytial virus (RSV) found that the antiviral activity of remdesivir was antagonized by chloroquine phosphate in a dose-dependent manner at clinically relevant concentrations.(1,2) Higher remdesivir EC50 values were seen with increasing concentrations of chloroquine phosphate. Reduced formation of remdesivir triphosphate (the pharmacologically active metabolite) in normal human bronchial epithelial cells was also seen with increasing concentration of chloroquine phosphate.(1,2) |
VEKLURY |
Pazopanib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Pazopanib has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of pazopanib with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The US manufacturer of pazopanib states that pazopanib should be avoided in patients receiving other drugs known to cause QT prolongation.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In clinical studies, 2% (11/558) of patients receiving pazopanib experienced QT prolongation. Torsades de pointes occurred in less than 1% (2/977) of patients who received pazopanib in monotherapy studies. In a randomized clinical trial, 3 of 290 patients who received pazopanib had post-baseline QTc values between 500 and 549 msec. None of the patients receiving placebo had post-baseline QTc values greater than or equal to 500 msec.(1) A retrospective review of 618 cancer patients treated with 902 administrations of tyrosine kinase inhibitors were evaluated for rate and incidence of QTc prolongation. In patients who received pazopanib, QTc prolongation was identified in 32 (19.4%) with 18 (56.3%) having Grade 1 (QTc 450-480 ms) and 4 (12.5%) having Grade 2 (QTc 480-500 ms). Grade 3 events occurred in 3 (9.3%) having QTc greater than or equal to 500 ms and 4 (12.5%) having QTc change greater than or equal to 60 ms. Ventricular tachycardia was seen in 2 (6.3%) of patients and 1 (3.1%) patient experienced sudden cardiac death.(4) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(2) |
PAZOPANIB HCL, VOTRIENT |
Chloroquine; Hydroxychloroquine/MATE Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of the Multidrug and Toxin Extrusion (MATE) protein transporters in the kidneys may inhibit the renal tubular secretion of chloroquine or hydroxychloroquine via the MATE1 transporter.(1,2) CLINICAL EFFECTS: Concurrent use of MATE inhibitors may result in increased levels of and toxicity from chloroquine or hydroxychloroquine, including irreversible retinopathy, potentially life-threatening cardiac arrhythmias like torsades de pointes (TdP), hypoglycemia, or myopathy.(1,2) PREDISPOSING FACTORS: In general, the risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The manufacturers of chloroquine and hydroxychloroquine state that concomitant use of MATE inhibitors should be avoided.(1,2) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a study of healthy volunteers, cimetidine (400 mg daily for 4 days) decreased the clearance of single-dose chloroquine (300 mg) by 53% and half-life by 49%, compared to subjects not on cimetidine.(4) MATE inhibitors linked to this monograph include: bictegravir, cimetidine, isavuconazole, pyrimethamine, risdiplam, trimethoprim, and tucatinib.(5) |
BACTRIM, BACTRIM DS, BIKTARVY, CIMETIDINE, CRESEMBA, DARAPRIM, EVRYSDI, PRIMSOL, PYRIMETHAMINE, SULFAMETHOXAZOLE-TRIMETHOPRIM, SULFATRIM, TRIMETHOPRIM, TRIMETHOPRIM MICRONIZED, TUKYSA |
Panobinostat/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Panobinostat has been observed to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of panobinostat with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of panobinostat states concurrent use agents known to prolong the QT interval are not recommended. Panobinostat should not be started in patients with a QTcF > 450 msec or clinically significant baseline ST-segment or T-wave abnormalities. If during panobinostat therapy the QTcF increases to > 480 msec, interrupt treatment and correct any electrolyte abnormalities. If QT prolongation does not resolve, permanently discontinue treatment with panobinostat.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In the randomized multiple myeloma trial, QTc prolongation with values between 451 msec to 480 msec occurred in 10.8% of panobinostat treated patients and patients with values of 481 msec to 500 msec occurred in 1.3% of patients. A maximum QTcF increase from baseline of between 31 msec and 60 msec was reported in 14.5% of patients and a maximum QTcF increase from baseline of >60 msec was reported in 0.8% of patients.(1) Pooled clinical data from over 500 patients treated with single agent panobinostat in multiple indications and at different dose levels has shown that the incidence of CTC Grade 3 QTc prolongation (QTcF >500 msec) was approximately 1% overall and 5% or more at a dose of 60 mg or higher.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
FARYDAK |
Pacritinib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Pacritinib has been observed to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of pacritinib with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of pacritinib states concurrent use with agents known to prolong the QT interval should be avoided. Avoid the use of pacritinib in patients with a baseline QTc > 480 msec. Correct hypokalemia prior to initiation and during therapy with pacritinib.(1) If patients develop QTc prolongation >500 msec or >60 msec from baseline, hold pacritinib. If QTc prolongation resolves to <=480 msec or to baseline within 1 week, resume pacritinib at the same dose. If time to resolution of the QTc interval takes greater than 1 week to resolve, reduce the pacritinib dose.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a 24 week clinical study, patients treatment with pacritinib 200 mg twice daily had a change in QTc from baseline of 11 msec (90% CI: 5-17).(1) Pacritinib has been associated with QTc interval prolongation. In clinical trials, patients with QTc prolongation >500 msec occurred in 1.4% of patients in the treatment arm compared to 1% in the control arm. The treatment arm had a greater incidence of an increase in QTc > 60 msec from baseline than the control arm (1.9% vs 1%, respectively). QTc prolongation adverse reactions were higher in the treatment arm than the control group (3.8% vs 2%, respectively).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
VONJO |
Dexmedetomidine Sublingual/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Dexmedetomidine sublingual has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of dexmedetomidine sublingual with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of dexmedetomidine sublingual states that concurrent use should be avoided with other agents known to prolong the QTc interval.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a QT study, dexmedetomidine sublingual had a concentration dependent effect on the QT interval. The mean QTc (95% confidence interval) increased from baseline by 6 (7) msec with a 120 mcg single dose, 8 (9) msec with 120 mcg followed by 2 additional doses of 60 mcg (total 3 doses), 8 (11) msec with a single 180 mcg dose, and 11 (14) msec with 180 mcg followed by 2 additional doses of 90 mcg (total 3 doses), respectively.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
IGALMI |
Lonafarnib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Lonafarnib has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of lonafarnib with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of lonafarnib states that the concurrent use of QT prolonging agents should be avoided. If concurrent use cannot be avoided, obtain ECGs when initiating, during concurrent use, and as clinically indicated.(1) Lonafarnib dose modification recommendation: if the QTc interval is greater than or equal to 500 msec, withhold lonafarnib until the QTc interval is less than 470 msec, then resume lonafarnib at the same dosage.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a thorough QT study, lonafarnib 200 mg twice daily for 9 consecutive days and a single 200 mg dose on day 10 increased the mean QTc interval by 19 msec (upper bound of 90% confidence interval = 27 msec) on day 10 at 48 hours after administration of the morning dose of lonafarnib 200 mg. The maximum concentration (Cmax) on Day 10 was 2233 ng/ml, which is similar to the mean Cmax of 2695 ng/ml observed in the Hutchinson-Gilford Progeria Syndrome patient population.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
ZOKINVY |
Chloroquine; Hydroxychloroquine/MATE Inhibit that Prolong QT SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of the Multidrug and Toxin Extrusion (MATE) protein transporters in the kidneys that prolong the QTc interval may interfere with the renal elimination of chloroquine or hydroxychloroquine via the MATE1 transporter and result in additive risk of QT prolongation.(1,2) CLINICAL EFFECTS: Concurrent use of MATE renal transporter inhibitors that prolong the QT interval may result in increased levels of and toxicity from chloroquine or hydroxychloroquine, including irreversible retinopathy, potentially life-threatening cardiac arrhythmias like torsades de pointes (TdP), hypoglycemia, or myopathy.(1,2) PREDISPOSING FACTORS: In general, the risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The manufacturers of chloroquine and hydroxychloroquine state that concomitant use of MATE renal transporter inhibitors should be avoided.(1,2) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a study of healthy volunteers, cimetidine (400 mg daily for 4 days) decreased the clearance of single-dose chloroquine (300 mg) by 53% and half-life by 49%, compared to subjects not on cimetidine.(4) MATE inhibitors that prolong the QT include: ranolazine and vandetanib.(5) |
ASPRUZYO SPRINKLE, CAPRELSA, RANOLAZINE ER |
Givinostat/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Givinostat may prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of givinostat with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of givinostat states that the concurrent use of QT prolonging agents should be avoided. If concurrent use cannot be avoided, obtain ECGs prior to initiating givinostat, during concomitant use, and as clinically indicated.(1) If the QTc interval is greater than 500 ms or the change from baseline is greater than 60 ms, withhold givinostat therapy.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a QT study, the largest mean increase in QTc interval of 13.6 ms (upper confidence interval of 17.1 ms) occurred 5 hours after administration of givinostat 265.8 mg (approximately 5 times the recommended 53.2 mg dose in patients weighing 60 kg or more).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
DUVYZAT |
Revumenib/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Revumenib may prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of revumenib with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of revumenib states that the concurrent use of QT prolonging agents should be avoided. If concurrent use cannot be avoided, obtain ECGs prior to initiating revumenib, during concomitant use, and as clinically indicated.(1) If the QTc interval is greater than 480 ms, withhold revumenib therapy. Resume revumenib after the QTc interval drops to 480 msec or less.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In clinical trials, QTc interval prolongation was reported as an adverse event in 29% of 135 patients treated with the recommended dosage of revumenib; 12% of patients had Grade 3 QTc prolongation. Revumenib increased the QTc interval in a concentration-dependent manner. At the mean steady-state Cmax using the highest approved recommended dosage of revumenib without CYP3A4 inhibitors, QTc increase was predicted to be 27 msec (upper bound of 90% confidence interval = 30 msec). At the steady-state Cmax using the highest approved recommended dosage of revumenib with CYP3A4 inhibitors, QTc increase was predicted to be 19 msec (upper bound of 90% confidence interval = 22 msec).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
REVUFORJ |
There are 14 moderate interactions.
The clinician should assess the patient’s characteristics and take action as needed. Actions required for moderate interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration.
Drug Interaction | Drug Names |
---|---|
Chloroquine; Hydroxychloroquine/Di-; Trivalent Cations SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Di- and trivalent cations such as aluminum, calcium, lanthanum, and magnesium may adsorb chloroquine and hydroxychloroquine; preventing their absorption.(1-5) The adsorption may also limit the effectiveness of the di- or trivalent cation.(1) CLINICAL EFFECTS: Simultaneous administration of di- or trivalent cations may result in decreased levels and effectiveness of chloroquine and hydroxychloroquine(2-5) and decreased effectiveness of the di- or trivalent cation.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Instruct patients to separate the administration times of these medicines by 2 to 4 hours.(2,3) DISCUSSION: Adsorption of chloroquine by magnesium trisilicate was found to decrease hydrochloric acid uptake and decrease the amount of magnesium released in an acidic environment.(1) In a study, calcium carbonate, kaolin, and magnesium trisilicate were found to decrease the absorption of chloroquine by 52.8%, 46.5%, and 31.3%, respectively.(3) Magnesium trisilicate and magnesium oxide have been shown to decrease the release of chloroquine from tablets and to adsorb chloroquine after its release.(4) In a study in 6 subjects, magnesium trisilicate and kaolin decreased the area-under-curve (AUC) of chloroquine by 18.2% and 28.6%, respectively.(5) |
ALUMINUM HYDROXIDE, ATTAPULGITE, AVIDOXY DK, BISMUTH CITRATE, BISMUTH SUBSALICYLATE, CALCIUM ACETATE, CALCIUM CHLORIDE, CALCIUM GLUCONATE, CALCIUM GLUCONATE MONOHYDRATE, CARAFATE, CLENPIQ, KAOLIN, MAGNESIUM CHLORIDE, MAGNESIUM CITRATE, MAGNESIUM OXIDE, MAGNESIUM SULFATE, SOD SULF-POTASS SULF-MAG SULF, SUCRALFATE, SUFLAVE, SUPREP, SUTAB, VELPHORO, ZINC CHLORIDE, ZINC OXIDE, ZINC SULFATE |
Metoprolol/Selected CYP2D6 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: CYP2D6 inhibitors may inhibit the metabolism of metoprolol.(1,2) CLINICAL EFFECTS: Concurrent use of CYP2D6 inhibitors may result in elevated levels of and toxicity from metoprolol.(1,2) PREDISPOSING FACTORS: The interaction may be more severe in patients who are ultrarapid metabolizers of CYP2D6.(1,2) PATIENT MANAGEMENT: Monitor patients receiving concurrent therapy with metoprolol and inhibitors of CYP2D6. The dosage of metoprolol may need to be adjusted.(1,2) DISCUSSION: In an open-label, randomized, cross-over study in 12 healthy males, celecoxib (200 mg BID) increased the AUC of metoprolol (50 mg) by 64%. One subject experienced a 200% increase.(3) In a randomized, double-blind, cross-over study in 7 healthy subjects, hydroxychloroquine (400 mg) increased the AUC of a single dose of metoprolol by 65%.(4) In a study in 20 Chinese patients with chronic myelogenous leukemia, imatinib (400 mg BID) increased the AUC of metoprolol (100 mg single dose) by 23%. (5) In healthy subjects, ranolazine (750 mg twice daily) increased plasma levels of a single dose of metoprolol (100 mg) by 1.8-fold.(6) CYP2D6 inhibitors include: abiraterone, asunaprevir, berotralstat, bupropion, capivasertib, celecoxib, cinacalcet, citalopram, dacomitinib, diphenhydramine, dronabinol, duloxetine, eliglustat, escitalopram, fedratinib, fluoxetine, hydroxychloroquine, imatinib, lorcaserin, moclobemide, osilodrostat, paroxetine, quinine, ranitidine, ranolazine, rolapitant, and sertraline. |
KAPSPARGO SPRINKLE, LOPRESSOR, METOPROLOL SUCCINATE, METOPROLOL TARTRATE, METOPROLOL-HYDROCHLOROTHIAZIDE, TOPROL XL |
Fingolimod/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Fingolimod is a sphingosine 1-phosphate (S1P) receptor modulator. Initiation of fingolimod has a negative chronotropic effect leading to a mean decrease in heart rate of 13 beats per minute (bpm) after the first dose. The first dose has also been associated with heart block.(1-3) Fingolimod blocks the capacity of lymphocytes to egress from lymph nodes, reducing the number of lymphocytes in peripheral blood. The mechanism by which fingolimod exerts therapeutic effects in multiple sclerosis is unknown but may involve the reduction of lymphocyte migration into the central nervous system.(1-3) CLINICAL EFFECTS: The heart rate lowering effect of fingolimod is biphasic with an initial decrease usually within 6 hours, followed by a second decrease 12 to 24 hours after the first dose. Symptomatic bradycardia and heart block, including third degree block, have been observed. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes. There is no consistent signal of increased incidence of QTc outliers, either absolute or change from baseline, associated with fingolimod treatment.(1-3) PREDISPOSING FACTORS: Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to fingolimod initiation, factors associated with QTc prolongation (e.g. hypokalemia, hypomagnesemia), or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to fingolimod. The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: Patients with a baseline QTc interval greater than or equal to 500 milliseconds should not be started on fingolimod. Patients with pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, or a prolonged QTc interval prior to fingolimod initiation should receive cardiologist consultation to evaluate the risks of fingolimod therapy. In all patients, first dose monitoring is recommended to monitor for bradycardia for the first 6 hours. Check blood pressure and pulse hourly. ECG monitoring is recommended prior to dosing and at the end of the observation period. US monitoring recommendations include additional monitoring for the following patients:(1) If heart rate (HR) is less than 45 beats per minute (bpm), the heart rate 6 hours postdose is at the lowest value postdose, or if the ECG shows new onset of second degree or higher AV block at the end of the monitoring period, then monitoring should continue until the finding has resolved. Continuous overnight ECG monitoring is recommended in patients requiring pharmacologic intervention for symptomatic bradycardia, some preexisting heart and cerebrovascular conditions, prolonged QTc before dosing or during 6 hours observation, concurrent therapy with QT prolonging drugs, or concurrent therapy with drugs that slow heart rate or AV conduction. Consult the prescribing information for full monitoring recommendations. United Kingdom recommendations:(3) Obtain a 12-lead ECG prior to initiating fingolimod therapy. Consult a cardiologist for pretreatment risk-benefit assessment if patient has a resting heart rate less than 55 bpm, history of syncope, second degree or greater AV block, sick-sinus syndrome, concurrent therapy with beta-blockers, Class Ia, or Class III antiarrhythmics, heart failure or other significant cardiovascular disease. Perform continuous ECG monitoring, measure blood pressure and heart rate every hour, and perform a 12-lead ECG 6 hours after the first dose. Monitoring should be extended beyond 6 hours if symptomatic bradycardia or new onset of second degree AV block, Mobitz Type II or third degree AV block has occurred at any time during the monitoring period. If heart rate 6 hours after the first dose is less than 40 bpm, has decreased more than 20 bpm compared with baseline, or if a new onset second degree AV block, Mobitz Type I (Wenckebach) persists, then monitoring should also be continued. If fingolimod treatment is discontinued for more than two weeks, the effects on heart rate and conduction could recur. Thus, first dose monitoring precautions should be followed upon reintroduction of fingolimod. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: After the first dose of fingolimod, heart rate decrease may begin within an hour. Decline is usually maximal at approximately 6 hours followed by a second decrease 12 to 24 hours after the first dose. The second dose may further decrease heart rate, but the magnitude of change is smaller than the first dose. With continued, chronic dosing, heart rate gradually returns to baseline in about one month.(1,2) In a thorough QT interval study of doses of 1.25 or 2.5 mg fingolimod at steady-state, when a negative chronotropic effect of fingolimod was still present, fingolimod treatment resulted in a prolongation of QTc, with the upper boundary of the 90% confidence interval (CI) of 14.0 msec. The cause of death in a patient who died within 24 hour after taking the first dose of fingolimod was not conclusive; however a link to fingolimod or a drug interaction with fingolimod could not be ruled out.(1) |
FINGOLIMOD, GILENYA, TASCENSO ODT |
Trazodone (Less Than 100 mg)/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of trazodone with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1,2) CLINICAL EFFECTS: The use of trazodone in patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1,2) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of trazodone states that concurrent use with agents known to prolong the QT interval should be avoided.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Trazodone has been reported to prolong the QT interval.(1) A thorough QT study in 20 subjects evaluated the effects of trazodone at doses of 20 mg, 60 mg and 140 mg. There was no evidence of QTc prolongation at the lowest trazodone dose of 20mg (mean effect on QTc of 4.5 ms 95% CI 3.7-5.3 ms), but at 60 mg and 140 mg, there was a significant effect that exceeds the E14 FDA Guidelines threshold of prolonging the QT/QTc interval by more than 5 ms. The study found a dose-dependent effect on QTc prolongation starting at 60 mg with a mean effect on QTc of 12.3 ms (95% CI 11-13.6 ms) and increasing with a 140 mg dose to a mean effect on QTc of 19.8 ms (95% CI 17.6-22.1).(3) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(4) |
TRAZODONE HCL |
Eliglustat/Weak CYP2D6 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Weak inhibitors of CYP2D6 may inhibit the metabolism of eliglustat. If the patient is also taking an inhibitor of CYP3A4, eliglustat metabolism can be further inhibited.(1) CLINICAL EFFECTS: Concurrent use of an agent that is a weak inhibitor of CYP2D6 may result in elevated levels of and clinical effects of eliglustat, including prolongation of the PR, QTc, and/or QRS intervals, which may result in life-threatening cardiac arrhythmias.(1) PREDISPOSING FACTORS: If the patient is also taking an inhibitor of CYP3A4 and/or has hepatic impairment, eliglustat metabolism can be further inhibited.(1) The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The dosage of eliglustat with weak inhibitors of CYP2D6 in poor CYP2D6 metabolizers should be limited to 84 mg daily.(1) The dosage of eliglustat with weak inhibitors of CYP2D6 in extensive CYP2D6 metabolizers with mild (Child-Pugh Class A) hepatic impairment should be limited to 84 mg daily.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Paroxetine (30 mg daily), a strong inhibitor of CYP2D6, increased eliglustat (84 mg BID) maximum concentration (Cmax) and area-under-curve (AUC) by 7-fold and 8.4-fold, respectively, in extensive metabolizers. Physiologically-based pharmacokinetic (PKPB) models suggested paroxetine would increase eliglustat Cmax and AUC by 2.1-fold and 2.3-fold, respectively, in intermediate metabolizers. PKPB models suggested ketoconazole may increase the Cmax and AUC of eliglustat (84 mg daily) by 4.3-fold and 6.2-fold, respectively, in poor metabolizers.(1) PKPB models suggested terbinafine, a moderate inhibitor of CYP2D6, would increase eliglustat Cmax and AUC by 3.8-fold and 4.5-fold, respectively, in extensive metabolizers and by 1.6-fold and 1.6-fold, respectively in intermediate metabolizers. PKPB models suggest that concurrent eliglustat (84 mg BID), paroxetine (a strong inhibitor of CYP2D6), and ketoconazole would increase eliglustat Cmax and AUC by 16.7-fold and 24.2-fold, respectively, in extensive metabolizers. In intermediate metabolizers, eliglustat Cmax and AUC would be expected to increase 7.5-fold and 9.8-fold, respectively.(1) PKPB models suggest that concurrent eliglustat (84 mg BID), terbinafine (a moderate inhibitor of CYP2D6), and ketoconazole would increase eliglustat Cmax and AUC by 10.2-fold and 13.6-fold, respectively, in extensive metabolizers. In intermediate metabolizers, eliglustat Cmax and AUC would be expected to increase 4.2-fold and 5-fold, respectively.(1) A single dose of rolapitant increased dextromethorphan, a CYP2D6 substrate, about 3-fold on days 8 and day 22 following administration. Dextromethorphan levels remained elevated by 2.3-fold on day 28 after single dose rolapitant. The inhibitory effects of rolapitant on CYP2D6 are expected to persist beyond 28 days.(5) Weak inhibitors of CYP2D6 include: alogliptin, artesunate, celecoxib, clobazam, desvenlafaxine, dimenhydrinate, diphenhydramine, dronabinol, dupilumab, echinacea, enasidenib, felodipine, gefitinib, hydralazine, hydroxychloroquine, lorcaserin, methadone, panobinostat, propafenone, sertraline, vemurafenib, and venlafaxine.(3,4) |
CERDELGA |
Hydroxychloroquine/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Hydroxychloroquine has been observed to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of hydroxychloroquine with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of hydroxychloroquine states that hydroxychloroquine should not be administered with other agents that prolong the QT interval.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: The manufacturer states that hydroxychloroquine has been shown to prolong the QT interval;(1) however, conditions that hydroxychloroquine treats have also been associated with QT prolongation. Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
ALFUZOSIN HCL ER, APOKYN, APOMORPHINE HCL, ASTAGRAF XL, ATOMOXETINE HCL, BARHEMSYS, CLOZAPINE, CLOZAPINE ODT, CLOZARIL, DASATINIB, EFAVIRENZ, EFAVIRENZ-EMTRIC-TENOFOV DISOP, EFAVIRENZ-LAMIVU-TENOFOV DISOP, EGATEN, ELLENCE, ENVARSUS XR, EPIRUBICIN HCL, ERIBULIN MESYLATE, GALANTAMINE ER, GALANTAMINE HBR, GALANTAMINE HYDROBROMIDE, GRANISETRON HCL, HALAVEN, ISRADIPINE, ISTURISA, LAPATINIB, NOXAFIL, OFLOXACIN, ONAPGO, ONDANSETRON HCL, ONDANSETRON HCL-0.9% NACL, POSACONAZOLE, PROGRAF, RUBRACA, RYDAPT, SANCUSO, SIGNIFOR, SIGNIFOR LAR, SPRYCEL, STRATTERA, SUNITINIB MALATE, SUSTOL, SUTENT, SYMFI, SYMFI LO, TACROLIMUS, TACROLIMUS XL, TOLTERODINE TARTRATE, TOLTERODINE TARTRATE ER, TYKERB, UROXATRAL, VERSACLOZ, VFEND, VFEND IV, VORICONAZOLE, WAKIX, XOSPATA, ZUNVEYL |
Selected Antidiabetic Agents/Chloroquine; Hydroxychloroquine SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: The exact mechanism is unknown. Chloroquine and hydroxychloroquine may increase insulin sensitivity by inhibiting insulin metabolism and inflammation and increasing cellular uptake of glucose and glycogen synthesis.(1,2) These effects may result in additive hypoglycemia with anti-diabetic agents. CLINICAL EFFECTS: Concurrent use of chloroquine or hydroxychloroquine and antidiabetic agents may result in severe hypoglycemia.(3) Hypoglycemia can lead to coma. PREDISPOSING FACTORS: Elderly patients, especially those with decreased renal function may be predisposed to this interaction. PATIENT MANAGEMENT: Patients maintained on antidiabetic agents who require concurrent therapy with chloroquine or hydroxychloroquine should be closely monitored for hypoglycemia. A decrease in the dose of insulin or other anti-diabetic medications may be required. Patients should be advised of the risk and symptoms of hypoglycemia and to contact their doctor if hypoglycemia occurs.(3) Signs of hypoglycemia may include confusion, dizziness, feeling shaky, unusual hunger, headaches, irritability, pounding heart or very fast pulse, pale skin, sweating, trembling, weakness, or unusual anxiety. DISCUSSION: Hydroxychloroquine has been shown to cause severe hypoglycemia including loss of consciousness that could be life threatening.(3) Concomitant hypoglycemic agents may increase the risk and/or severity of this effect. A 77 year old man who was stable on twice daily insulin suffered two episodes of hypoglycemic coma 2 weeks after starting prednisone 5 mg daily and hydroxychloroquine 400 mg daily for rheumatoid arthritis. His insulin dosage required a decrease of 37%.(4) Many studies have investigated the glucose-lowering effect of hydroxychloroquine. In a clinical trial of type II diabetics on maximal doses of sulfonylureas, addition of hydroxychloroquine lowered hemoglobin A1C (HbA1C) up to 1% more than placebo.(5) Another clinical trial of type II diabetics on metformin and glimepiride or gliclazide found that hydroxychloroquine 400 mg daily reduced fasting blood glucose (FBG), post-prandial glucose (PPG), and HbA1C to a similar degree as pioglitazone 15 mg daily at 24 weeks.(6) In a prospective observational study, 250 uncontrolled type II diabetics on metformin, glimepiride, pioglitazone, sitagliptin, and a SGLT-2 inhibitor received hydroxychloroquine 400 mg daily for 48 weeks. HbA1C decreased from 8.83% to 6.44%, FBG decreased by 40.78%, and PPG decreased by 58.95%. The doses of metformin were reduced by 50%, glimepiride and sitagliptin by 75%, and SGLT-2 inhibitors were discontinued in most patients.(7) |
ACARBOSE, ACTOPLUS MET, ACTOS, ADMELOG, ADMELOG SOLOSTAR, AFREZZA, ALOGLIPTIN-METFORMIN, ALOGLIPTIN-PIOGLITAZONE, APIDRA, APIDRA SOLOSTAR, BASAGLAR KWIKPEN U-100, BASAGLAR TEMPO PEN U-100, BYDUREON BCISE, DAPAGLIFLOZIN-METFORMIN ER, DUETACT, EXENATIDE, FIASP, FIASP FLEXTOUCH, FIASP PENFILL, FIASP PUMPCART, GLIMEPIRIDE, GLIPIZIDE, GLIPIZIDE ER, GLIPIZIDE XL, GLIPIZIDE-METFORMIN, GLUCOTROL XL, GLYBURIDE, GLYBURIDE MICRONIZED, GLYBURIDE-METFORMIN HCL, HUMALOG, HUMALOG JUNIOR KWIKPEN, HUMALOG KWIKPEN U-100, HUMALOG KWIKPEN U-200, HUMALOG MIX 50-50 KWIKPEN, HUMALOG MIX 75-25, HUMALOG MIX 75-25 KWIKPEN, HUMALOG TEMPO PEN U-100, HUMULIN R U-500, HUMULIN R U-500 KWIKPEN, INSULIN ASPART, INSULIN ASPART FLEXPEN, INSULIN ASPART PENFILL, INSULIN ASPART PROT MIX 70-30, INSULIN DEGLUDEC, INSULIN DEGLUDEC PEN (U-100), INSULIN DEGLUDEC PEN (U-200), INSULIN GLARGINE MAX SOLOSTAR, INSULIN GLARGINE SOLOSTAR, INSULIN GLARGINE-YFGN, INSULIN LISPRO, INSULIN LISPRO JUNIOR KWIKPEN, INSULIN LISPRO KWIKPEN U-100, INSULIN LISPRO PROTAMINE MIX, INVOKAMET, INVOKAMET XR, JANUMET, JANUMET XR, JENTADUETO, JENTADUETO XR, KAZANO, LANTUS, LANTUS SOLOSTAR, LIRAGLUTIDE, LYUMJEV, LYUMJEV KWIKPEN U-100, LYUMJEV KWIKPEN U-200, LYUMJEV TEMPO PEN U-100, METFORMIN ER GASTRIC, METFORMIN ER OSMOTIC, METFORMIN HCL, METFORMIN HCL ER, MIGLITOL, MOUNJARO, MYXREDLIN, NATEGLINIDE, NOVOLOG, NOVOLOG FLEXPEN, NOVOLOG MIX 70-30, NOVOLOG MIX 70-30 FLEXPEN, NOVOLOG PENFILL, OSENI, OZEMPIC, PIOGLITAZONE HCL, PIOGLITAZONE-GLIMEPIRIDE, PIOGLITAZONE-METFORMIN, PRECOSE, REPAGLINIDE, REZVOGLAR KWIKPEN, RIOMET, RYBELSUS, SAXAGLIPTIN-METFORMIN ER, SAXENDA, SEGLUROMET, SEMAGLUTIDE, SEMGLEE (YFGN), SEMGLEE (YFGN) PEN, SITAGLIPTIN-METFORMIN, SOLIQUA 100-33, SYMLINPEN 120, SYMLINPEN 60, SYNJARDY, SYNJARDY XR, TOUJEO MAX SOLOSTAR, TOUJEO SOLOSTAR, TRESIBA, TRESIBA FLEXTOUCH U-100, TRESIBA FLEXTOUCH U-200, TRIJARDY XR, TRULICITY, VICTOZA 2-PAK, VICTOZA 3-PAK, WEGOVY, XIGDUO XR, XULTOPHY 100-3.6, ZEPBOUND, ZITUVIMET, ZITUVIMET XR |
Tamoxifen/Hydroxychloroquine SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Hydroxychloroquine, a weak inhibitor of CYP2D6, may inhibit the conversion of tamoxifen to endoxifen (an active metabolite of tamoxifen).(1-2) The role of endoxifen in tamoxifen's efficacy has been debated and may involve a minimum concentration level.(3-5) CLINICAL EFFECTS: Concurrent use of hydroxychloroquine may decrease the effectiveness of tamoxifen in preventing breast cancer recurrence. PREDISPOSING FACTORS: Concurrent use of weak CYP2D6 inhibitors in patients who are CYP2D6 intermediate metabolizers should be avoided. Patients who are CYP2D6 poor metabolizers lack CYP2D6 function and are not affected by CYP2D6 inhibition. PATIENT MANAGEMENT: Although data on this interaction are conflicting, it may be prudent to use alternatives to CYP2D6 inhibitors when possible in patients taking tamoxifen. The US manufacturer of tamoxifen states that the impact on the efficacy of tamoxifen by strong CYP2D6 inhibitors is uncertain and makes no recommendation regarding coadministration with inhibitors of CYP2D6.(12) The manufacturer of paroxetine (a strong CYP2D6 inhibitor) states that alternative agents with little or no CYP2D6 inhibition should be considered.(13) The National Comprehensive Cancer Network's breast cancer guidelines advises caution when coadministering strong CYP2D6 inhibitors with tamoxifen.(14) If concurrent therapy is warranted, the risks versus benefits should be discussed with the patient. DISCUSSION: Some studies have suggested that administration of fluoxetine, paroxetine, and quinidine with tamoxifen or a CYP2D6 poor metabolizer phenotype may result in a decrease in the formation of endoxifen (an active metabolite of tamoxifen) and a shorter time to breast cancer recurrence.(1-2,9) A retrospective study of 630 breast cancer patients found an increasing risk of breast cancer mortality with increasing durations of coadministration of tamoxifen and paroxetine. In the adjusted analysis, absolute increases of 25%, 50%, and 75% in the proportion of time of overlapping use of tamoxifen with paroxetine was associated with 24%, 54%, and 91% increase in the risk of death from breast cancer, respectively.(15) The CYP2D6 genotype of the patient may have a role in the effects of this interaction. Patients with wild-type CYP2D6 genotype may be affected to a greater extent by this interaction. Patients with a variant CYP2D6 genotype may have lower baseline levels of endoxifen and may be affected to a lesser extent by this interaction.(6-10) In a retrospective review, 1,325 patients treated with tamoxifen for breast cancer were classified as being poor 2D6 metabolizers (lacking functional CYP2D6 enzymes), intermediate metabolizers (heterozygous alleles), or extensive metabolizers (possessing 2 functional alleles). After a mean follow-up period of 6.3 years, the recurrence rates were 14.9%, 20.9%, and 29.0%, in extensive metabolizers, intermediate metabolizers, and poor metabolizers, respectively.(11) In October of 2006, the Advisory Committee Pharmaceutical Science, Clinical Pharmacology Subcommittee of the US Food and Drug Administration recommended that the US tamoxifen labeling be updated to include information about the increased risk of breast cancer recurrence in poor CYP2D6 metabolizers (either by genotype or drug interaction).(16-17) The labeling changes were never made due to ongoing uncertainty about the effects of CYP2D6 genotypes on tamoxifen efficacy. In contrast to the above information, two studies have shown no relationship between CYP2D6 genotype and breast cancer outcome.(18-20) As well, a number of studies found no association between use of CYP2D6 inhibitors and/or antidepressants in patients on tamoxifen and breast cancer recurrence,(21-25) though the studies were limited by problematic selection of CYP2D6 inhibitors and short follow-up. |
SOLTAMOX, TAMOXIFEN CITRATE |
Siponimod/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Siponimod is a sphingosine-1-phosphate (S1P) receptor modulator. Initiation of siponimod has a negative chronotropic effect. Siponimod blocks the capacity of lymphocytes to egress from lymph nodes, reducing the number of lymphocytes in peripheral blood. The mechanism by which siponimod exerts therapeutic effects in multiple sclerosis is unknown, but may involve reduction of lymphocyte migration into the central nervous system.(1,2) CLINICAL EFFECTS: The heart rate lowering effect of siponimod starts within an hour, and the Day 1 decline is maximal at approximately 3-4 hours. This leads to a mean decrease in heart rate of 5-6 beats per minute after the first dose. The first dose has also been associated with heart block. With continued up-titration, further heart rate decreases are seen on subsequent days, with maximal decrease from Day 1-baseline reached on Day 5-6. Symptomatic bradycardia has been observed. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes.(1) PREDISPOSING FACTORS: Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to siponimod initiation, factors associated with QTc prolongation (e.g. hypokalemia, hypomagnesemia), or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to siponimod. The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: Prior to initiation of siponimod, obtain an ECG to determine if preexisting conduction abnormalities are present.(1) Advice from a cardiologist is recommended in patients with preexisting heart and cerebrovascular conditions, prolonged QTc interval before or during the 6 hour observation, risk factors for QT prolongation, concurrent therapy with QT prolonging drugs or drugs that slow the heart rate or AV conduction.(1) In patients with heart rate (HR) less than 55 beats per minute (bpm), first- or second-degree AV block, or history of myocardial infarction or heart failure, first dose monitoring is recommended with hourly pulse and blood pressure to monitor for bradycardia for the first 6 hours. ECG monitoring is recommended prior to dosing and at the end of the observation period.(1) Additional US monitoring recommendations include: If HR is less than 45 bpm, the heart rate 6 hours postdose is at the lowest value postdose or if the ECG shows new onset of second degree or higher AV block at the end of the monitoring period, then monitoring should continue until the finding has resolved. If patient requires treatment for symptomatic bradycardia, second-degree or higher AV block, or QTc interval greater than or equal to 500 msec, perform continuous overnight ECG monitoring. Repeat the first dose monitoring strategy for the second dose of siponimod. If a titration dose is missed or if 4 or more consecutive daily doses are missed during maintenance treatment, reinitiate Day 1 of the dose titration and follow titration monitoring recommendations. Patient will need to be observed in the doctor's office or other facility for at least 6 hours after the first dose and after reinitiation if treatment is interrupted or discontinued for certain periods. Consult the prescribing information for full monitoring recommendations. United Kingdom recommendations:(3) In certain patients, it is recommended that an electrocardiogram (ECG) is obtained prior to dosing and at the end of the observation period. If post-dose bradyarrhythmia or conduction-related symptoms occur or if ECG 6 hours post-dose shows new onset second-degree or higher AV block or QTc > 500 msec, appropriate management should be initiated and observation continued until the symptoms/findings have resolved. If pharmacological treatment is required, monitoring should be continued overnight and 6-hour monitoring should be repeated after the second dose. During the first 6 days of treatment, if a titration dose is missed on one day, treatment needs to be re-initiated with a new titration pack. If there is a missed dose after day 6 the prescribed dose should be taken at the next scheduled time; the next dose should not be doubled. If maintenance treatment is interrupted for 4 or more consecutive daily doses, siponimod needs to be re-initiated with a new titration pack.(1,2) DISCUSSION: After the first dose of siponimod, heart rate decrease may begin within an hour. Decline is usually maximal at approximately 3-4 hours. With continued, chronic dosing, heart rate gradually returns to baseline in about 10 days.(1,2) A transient, dose-dependent decrease in heart rate was observed during the initial dosing phase of siponimod, which plateaued at doses greater than or equal to 5 mg, and bradyarrhythmic events (AV blocks and sinus pauses) were detected at a higher incidence under siponimod treatment than placebo. AV blocks and sinus pauses occurred above the recommended dose of 2 mg, with notably higher incidence under non-titrated conditions compared to dose titration conditions.(1) |
MAYZENT |
Ponesimod/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Ponesimod is a sphingosine 1-phosphate (S1P) receptor 1 modulator. Initiation of ponesimod has a negative chronotropic effect leading to a mean decrease in heart rate of 6 beats per minute (bpm) after the first dose. The first dose has also been associated with heart block.(1) CLINICAL EFFECTS: After a dose of ponesimod, a decrease in heart rate typically begins within an hour and reaches its nadir within 2-4 hours. The heart rate typically recovers to baseline levels 4-5 hours after administration. All patients recovered from bradycardia. The conduction abnormalities typically were transient, asymptomatic, and resolved within 24 hours. Second- and third-degree AV blocks were not reported. With up-titration after Day 1, the post-dose decrease in heart rate is less pronounced. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes.(1,2) PREDISPOSING FACTORS: Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to ponesimod initiation, factors associated with QTc prolongation, or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to ponesimod.(1) The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Prior to initiation of ponesimod, obtain an ECG to determine if preexisting conduction abnormalities are present. Ponesimod is generally not recommended in patients who are receiving concurrent treatment with a QT prolonging agent, anti-arrhythmic drugs, or drugs that may decrease heart rate. Consultation with a cardiologist is recommended.(1) In patients with heart rate (HR) less than 55 beats per minute (bpm), first- or second-degree AV block, or history of myocardial infarction or heart failure, monitor patients for 4 hours after the first dose for signs and symptoms of bradycardia with a minimum of hourly pulse and blood pressure measurements. Obtain an ECG in these patients prior to dosing and at the end of the 4-hour observation period.(1) Additional US monitoring recommendations include: If HR is less than 45 bpm, the heart rate 4 hours post-dose is at the lowest value post-dose or if the ECG shows new onset of second degree or higher AV block at the end of the monitoring period, then monitoring should continue until the finding has resolved. If patient requires treatment for symptomatic bradycardia, second-degree or higher AV block, or QTc interval greater than or equal to 500 msec, perform continuous overnight ECG monitoring and repeat the first dose monitoring strategy for the second dose of ponesimod. Consult the prescribing information for full monitoring recommendations. If fewer than 4 consecutive doses are missed during titration: resume treatment with the first missed titration dose and resume the titration schedule at that dose and titration day. If fewer than 4 consecutive doses are missed during maintenance: resume treatment with the maintenance dosage. If 4 or more consecutive daily doses are missed during treatment initiation or maintenance treatment, reinitiate Day 1 of the dose titration (new starter pack) and follow first-dose monitoring recommendations. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: After the first dose of ponesimod, heart rate decrease may begin within the first hour. Decline is usually maximal at approximately 4 hours. With continued, chronic dosing, post-dose decrease in heart rate is less pronounced. Heart rate gradually returns to baseline in about 4-5 hours.(1) |
PONVORY |
Ozanimod/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Ozanimod is a sphingosine 1-phosphate (S1P) receptor modulator. Initiation of ozanimod has a negative chronotropic effect leading to a mean decrease in heart rate of 13 beats per minute (bpm) after the first dose. The first dose has also been associated with heart block.(1,2) Ozanimod blocks the capacity of lymphocytes to egress from lymph nodes, reducing the number of lymphocytes in peripheral blood. The mechanism by which ozanimod exerts therapeutic effects in multiple sclerosis is unknown but may involve the reduction of lymphocyte migration into the central nervous system. CLINICAL EFFECTS: The initial heart rate lowering effect of ozanimod usually occurs within 5 hours. With continued up-titration, the maximal heart rate effect of ozanimod occurred on Day 8. Symptomatic bradycardia and heart block, including third degree block, have been observed. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes.(1,2) PREDISPOSING FACTORS: Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to ozanimod initiation, factors associated with QTc prolongation (e.g. hypokalemia, hypomagnesemia), or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to ozanimod.(1,2) The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: Prior to initiation of ozanimod, obtain an ECG to determine if preexisting conduction abnormalities are present. Patients with preexisting cardiac conditions, significant QT prolongation (QTc >450 msec in males, >470 msec in females), concurrent Class Ia or Class III antiarrhythmics, or receiving concurrent treatment with a QT prolonging agent at the time ozanimod is initiated or resumed should be referred to a cardiologist.(1) The US recommendations state: Dose titration is recommended with initiation of ozanimod due to transient decrease in heart rate and AV conduction delays.(1) United Kingdom recommendations:(2) Due to the risk of transient decreases in HR with the initiation of ozanimod, first dose, 6-hour monitoring for signs and symptoms of symptomatic bradycardia is recommended in patients with resting HR <55 bpm, second-degree [Mobitz type I] AV block or a history of myocardial infarction or heart failure. Patients should be monitored with hourly pulse and blood pressure measurement during this 6-hour period. An ECG prior to and at the end of this 6-hour period is recommended. Additional monitoring after 6 hours is recommended in patients with: heart rate less than 45 bpm, heart rate at the lowest value post-dose (suggesting that the maximum decrease in HR may not have occurred yet), evidence of a new onset second-degree or higher AV block at the 6-hour post dose ECG, or QTc interval greater than 500 msec. In these cases, appropriate management should be initiated and observation continued until the symptoms/findings have resolved. Instruct patients to report any irregular heartbeat, dizziness, or fainting.(2,3) DISCUSSION: After the first dose of ozanimod heart rate decline is usually maximal at approximately 5 hours, returning to baseline at 6 hours. With continued, chronic dosing, maximum heart rate effect occurred on day 8.(1,2) |
ZEPOSIA |
Etrasimod/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Etrasimod is a sphingosine-1-phosphate (S1P) receptor modulator. Initiation of etrasimod has a negative chronotropic effect, which may increase the risk of developing QT prolongation. CLINICAL EFFECTS: Initiation of etrasimod may result in a transient decrease in heart rate. A mean decrease in heart rate of 7.2 (8.98) beats per minute was seen 2 to 3 hours after the first dose. The first dose has also been associated with heart block. Symptomatic bradycardia has been observed. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes.(1) PREDISPOSING FACTORS: Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to etrasimod initiation, factors associated with QTc prolongation (e.g. hypokalemia, hypomagnesemia), or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to etrasimod. The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Prior to initiation of etrasimod, obtain an ECG to determine if preexisting conduction abnormalities are present.(1) Advice from a cardiologist is recommended in patients with preexisting heart and cerebrovascular conditions, prolonged QTc interval, risk factors for QT prolongation, concurrent therapy with QT prolonging drugs or drugs that slow the heart rate or AV conduction.(1) Monitor blood pressure during treatment.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Initiation of etrasimod may result in a transient decrease in heart rate or transient AV conduction delays.(1) A transient decrease in heart rate was observed during the initial dosing phase of etrasimod and bradyarrhythmic events (AV blocks) were detected at a higher incidence under etrasimod treatment than placebo.(1) |
VELSIPITY |
Mavorixafor/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Mavorixafor has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of mavorixafor with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of mavorixafor states that concurrent use of mavorixafor with other agents known to prolong the QTc interval should be approached with caution. ECG monitoring is recommended prior to initiation, during concurrent therapy, and as clinically indicated with other agents known to prolong the QTc interval.(1) If QT prolongation occurs, a dose reduction or discontinuation of mavorixafor may be required.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a thorough QT study, a dose of mavorixafor 800 mg increased the mean QTc 15.6 msec (upper 90% CI = 19.9 msec). The dose of mavorixafor was 2 times the recommended maximum daily dose.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
XOLREMDI |
Propranolol/Selected CYP2D6 Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: CYP2D6 inhibitors may inhibit the metabolism of propranolol.(1) CLINICAL EFFECTS: Concurrent use of CYP2D6 inhibitors may result in elevated levels of and toxicity from propranolol, including hypotension and bradycardia.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Monitor patients receiving concurrent therapy with propranolol and CYP2D6 inhibitors. The dosage of propranolol may need to be adjusted.(1) DISCUSSION: In a pharmacokinetic study in 16 healthy volunteers, concurrent use of quinidine 200 mg (a CYP2D6 inhibitor) increased the area-under-curve (AUC) of propranolol by 2.29-fold.(2) In a pharmacokinetic study in 6 healthy subjects, concurrent use of quinidine increased propranolol AUC 2-fold.(3) A retrospective review of concurrent use of propranolol and antidepressants evaluated the risk of hospitalization or emergency room visit within 30 days of concurrent prescription. In patients receiving antidepressants with moderate to strong CYP2D6 inhibitory effects, patient were an increased risk compared to patients receiving no antidepressants (Hazard Ratio (HR) = 1.53; 95% CI 1.03-2.81 vs. HR = 1.24; 95% CI 0.82-1.88).(4) Case reports of bradycardia and cardiac adverse effects have been reported with concurrent use of propranolol and the antidepressants fluoxetine and paroxetine (strong CYP2D6 inhibitors).(5) Strong CYP2D6 inhibitors include: bupropion, dacomitinib, fluoxetine, mavorixafor, and paroxetine. Moderate CYP2D6 inhibitors include: abiraterone, asunaprevir, berotralstat, capivasertib, cinacalcet, duloxetine, eliglustat, escitalopram, lorcaserin, mirabegron, moclobemide, quinine, ranolazine, and rolapitant. Weak CYP2D6 inhibitors include: celecoxib, desvenlafaxine, diphenhydramine, dimenhydrinate, dronabinol, fedratinib, hydroxychloroquine, imatinib, osilodrostat, ranitidine, and sertraline.(6) |
HEMANGEOL, INDERAL LA, INDERAL XL, INNOPRAN XL, PROPRANOLOL HCL, PROPRANOLOL HCL ER, PROPRANOLOL-HYDROCHLOROTHIAZID |
The following contraindication information is available for SOVUNA (hydroxychloroquine sulfate):
Drug contraindication overview.
No enhanced Contraindications information available for this drug.
No enhanced Contraindications information available for this drug.
There are 3 contraindications.
Absolute contraindication.
Contraindication List |
---|
Congenital long QT syndrome |
Prolonged QT interval |
Torsades de pointes |
There are 9 severe contraindications.
Adequate patient monitoring is recommended for safer drug use.
Severe List |
---|
Chronic heart failure |
Hemolytic anemia from pyruvate kinase and g6PD deficiencies |
Hypokalemia |
Hypomagnesemia |
Maculopathy |
Porphyria |
Psoriasis |
Suicidal ideation |
Visual field defect |
There are 11 moderate contraindications.
Clinically significant contraindication, where the condition can be managed or treated before the drug may be given safely.
Moderate List |
---|
Alcohol use disorder |
Anemia |
Disease of liver |
Glucose-6-phosphate dehydrogenase (g6Pd) deficiency |
Hypoglycemic disorder |
Kidney disease with reduction in glomerular filtration rate (GFr) |
Myasthenia gravis |
Neutropenic disorder |
Psychiatric disorder |
Seizure disorder |
Thrombocytopenic disorder |
The following adverse reaction information is available for SOVUNA (hydroxychloroquine sulfate):
Adverse reaction overview.
No enhanced Common Adverse Effects information available for this drug.
No enhanced Common Adverse Effects information available for this drug.
There are 52 severe adverse reactions.
More Frequent | Less Frequent |
---|---|
None. |
Corneal opacity Retinal disorder |
Rare/Very Rare |
---|
Abnormal hepatic function tests Acquired dystonia Acute generalized exanthematous pustulosis Acute hepatic failure Agranulocytosis Anemia Angioedema Aplastic anemia Atrioventricular block Bronchospastic pulmonary disease Bundle branch block Cardiomyopathy Corneal deposits Corneal edema DRESS syndrome Drug-induced hepatitis Drug-induced phospholipidosis Drug-induced psychosis Dyskinesia Erythema multiforme Exfoliative dermatitis Extrapyramidal disease Hallucinations Hearing loss Heart failure Hepatocellular damage Hypoglycemic disorder Leukopenia Maculopathy Manic disorder Mood changes Muscle atrophy Muscle weakness Myopathy Peripheral motor neuropathy Pigmentary retinopathy Prolonged PR interval Prolonged QT interval Pulmonary hypertension Seizure disorder Skin photosensitivity Stevens-johnson syndrome Suicidal Thrombocytopenic disorder Torsades de pointes Toxic epidermal necrolysis Urticaria Ventricular arrhythmias Ventricular tachycardia Visual field defect |
There are 39 less severe adverse reactions.
More Frequent | Less Frequent |
---|---|
None. |
Accommodation disorder Alopecia Anorexia Blurred vision Diarrhea Dizziness Dyschromia Headache disorder Nausea Nervousness Pruritus of skin Skin rash Vomiting |
Rare/Very Rare |
---|
Acquired chromatopsia Acute abdominal pain Acute cognitive impairment Agitation Ataxia Delirium Delusional disorder Depression Drug-exacerbated psoriasis Fatigue Hair discoloration Hyporeflexia Irritability Night blindness Nightmares Nystagmus Photophobia Proteinuria Skin pigmentation enhancement Sleep disorder Symptoms of anxiety Tinnitus Tremor Vertigo Visual changes Weight loss |
The following precautions are available for SOVUNA (hydroxychloroquine sulfate):
No enhanced Pediatric Use information available for this drug.
Contraindicated
Severe Precaution
Management or Monitoring Precaution
Contraindicated
None |
Severe Precaution
None |
Management or Monitoring Precaution
None |
The manufacturer states that decades of clinical experience with hydroxychloroquine and data available from published epidemiologic and clinical studies of the drug in pregnant women have not identified a drug-associated risk of major birth defects, miscarriage, or adverse maternal or fetal outcomes. There are risks to the mother and fetus associated with untreated or increased disease activity from malaria, rheumatoid arthritis, and systemic lupus erythematosus during pregnancy. Malaria during pregnancy increases the risk for adverse pregnancy outcomes, including maternal anemia, prematurity, spontaneous abortion, and stillbirth.
Published data suggest that increased disease activity in pregnant women with rheumatoid arthritis is associated with a risk of adverse pregnancy outcomes, including preterm delivery (before 37 weeks of gestation), low birth weight infants (less than 2.5 kg), and small for gestational age at birth. Pregnant women with systemic lupus erythematosus, especially those with increased disease activity, are at increased risk of adverse pregnancy outcomes, including spontaneous abortion, fetal death, preeclampsia, preterm birth, and intrauterine growth restriction, and passage of maternal auto-antibodies across the placenta may result in neonatal illness, including neonatal lupus and congenital heart block. Hydroxychloroquine readily crosses the placenta with cord blood concentrations corresponding to maternal plasma concentrations.
The manufacturer states that, although epidemiologic and clinical studies have methodological limitations including small sample size and study design, no retinal toxicity, ototoxicity, cardiotoxicity, or growth and developmental abnormalities have been observed in children who were exposed to hydroxychloroquine in utero. CDC states that pregnancy is not a contraindication to use of hydroxychloroquine when the drug is indicated for prevention of malaria. In addition, CDC states that recommendations for use of hydroxychloroquine for the treatment of uncomplicated malaria in pregnant women are the same as those for other patients. There is a pregnancy registry to monitor pregnancy outcomes in women exposed to hydroxychloroquine during pregnancy, and patients should be encouraged to enroll in the registry by calling 877-311-8972.
Published data suggest that increased disease activity in pregnant women with rheumatoid arthritis is associated with a risk of adverse pregnancy outcomes, including preterm delivery (before 37 weeks of gestation), low birth weight infants (less than 2.5 kg), and small for gestational age at birth. Pregnant women with systemic lupus erythematosus, especially those with increased disease activity, are at increased risk of adverse pregnancy outcomes, including spontaneous abortion, fetal death, preeclampsia, preterm birth, and intrauterine growth restriction, and passage of maternal auto-antibodies across the placenta may result in neonatal illness, including neonatal lupus and congenital heart block. Hydroxychloroquine readily crosses the placenta with cord blood concentrations corresponding to maternal plasma concentrations.
The manufacturer states that, although epidemiologic and clinical studies have methodological limitations including small sample size and study design, no retinal toxicity, ototoxicity, cardiotoxicity, or growth and developmental abnormalities have been observed in children who were exposed to hydroxychloroquine in utero. CDC states that pregnancy is not a contraindication to use of hydroxychloroquine when the drug is indicated for prevention of malaria. In addition, CDC states that recommendations for use of hydroxychloroquine for the treatment of uncomplicated malaria in pregnant women are the same as those for other patients. There is a pregnancy registry to monitor pregnancy outcomes in women exposed to hydroxychloroquine during pregnancy, and patients should be encouraged to enroll in the registry by calling 877-311-8972.
Hydroxychloroquine is distributed into human milk in low concentrations. It is not known whether the drug has any effects on milk production. The manufacturer states that no adverse reactions have been reported in breast-fed infants of mothers who received hydroxychloroquine and no retinal toxicity, ototoxicity, cardiotoxicity, or growth and developmental abnormalities have been observed in children who were exposed to hydroxychloroquine through breast milk.
The developmental and health benefits of breast-feeding should be considered along with the mother's clinical need for hydroxychloroquine and any potential adverse effects on the breast-fed child from the drug or from the underlying maternal condition. CDC states that the amount of drug present in human milk is insufficient to provide adequate protection against malaria in breast-feeding infants. If prevention of malaria is necessary, such infants should receive recommended dosages of appropriate antimalarial agent(s).
The developmental and health benefits of breast-feeding should be considered along with the mother's clinical need for hydroxychloroquine and any potential adverse effects on the breast-fed child from the drug or from the underlying maternal condition. CDC states that the amount of drug present in human milk is insufficient to provide adequate protection against malaria in breast-feeding infants. If prevention of malaria is necessary, such infants should receive recommended dosages of appropriate antimalarial agent(s).
No enhanced Geriatric Use information available for this drug.
The following prioritized warning is available for SOVUNA (hydroxychloroquine sulfate):
No warning message for this drug.
No warning message for this drug.
The following icd codes are available for SOVUNA (hydroxychloroquine sulfate)'s list of indications:
Discoid lupus erythematosus | |
H01.12 | Discoid lupus erythematosus of eyelid |
H01.121 | Discoid lupus erythematosus of right upper eyelid |
H01.122 | Discoid lupus erythematosus of right lower eyelid |
H01.123 | Discoid lupus erythematosus of right eye, unspecified eyelid |
H01.124 | Discoid lupus erythematosus of left upper eyelid |
H01.125 | Discoid lupus erythematosus of left lower eyelid |
H01.126 | Discoid lupus erythematosus of left eye, unspecified eyelid |
H01.129 | Discoid lupus erythematosus of unspecified eye, unspecified eyelid |
L93.0 | Discoid lupus erythematosus |
Plasmodium falciparum malaria | |
B50 | Plasmodium falciparum malaria |
B50.0 | Plasmodium falciparum malaria with cerebral complications |
B50.8 | Other severe and complicated plasmodium falciparum malaria |
B50.9 | Plasmodium falciparum malaria, unspecified |
P37.3 | Congenital falciparum malaria |
Plasmodium malariae malaria | |
B52 | Plasmodium malariae malaria |
B52.0 | Plasmodium malariae malaria with nephropathy |
B52.8 | Plasmodium malariae malaria with other complications |
B52.9 | Plasmodium malariae malaria without complication |
Plasmodium ovale malaria | |
B53.0 | Plasmodium ovale malaria |
Plasmodium vivax malaria | |
B51 | Plasmodium vivax malaria |
B51.0 | Plasmodium vivax malaria with rupture of spleen |
B51.8 | Plasmodium vivax malaria with other complications |
B51.9 | Plasmodium vivax malaria without complication |
Rheumatoid arthritis | |
M05 | Rheumatoid arthritis with rheumatoid factor |
M05.0 | Felty's syndrome |
M05.00 | Felty's syndrome, unspecified site |
M05.01 | Felty's syndrome, shoulder |
M05.011 | Felty's syndrome, right shoulder |
M05.012 | Felty's syndrome, left shoulder |
M05.019 | Felty's syndrome, unspecified shoulder |
M05.02 | Felty's syndrome, elbow |
M05.021 | Felty's syndrome, right elbow |
M05.022 | Felty's syndrome, left elbow |
M05.029 | Felty's syndrome, unspecified elbow |
M05.03 | Felty's syndrome, wrist |
M05.031 | Felty's syndrome, right wrist |
M05.032 | Felty's syndrome, left wrist |
M05.039 | Felty's syndrome, unspecified wrist |
M05.04 | Felty's syndrome, hand |
M05.041 | Felty's syndrome, right hand |
M05.042 | Felty's syndrome, left hand |
M05.049 | Felty's syndrome, unspecified hand |
M05.05 | Felty's syndrome, hip |
M05.051 | Felty's syndrome, right hip |
M05.052 | Felty's syndrome, left hip |
M05.059 | Felty's syndrome, unspecified hip |
M05.06 | Felty's syndrome, knee |
M05.061 | Felty's syndrome, right knee |
M05.062 | Felty's syndrome, left knee |
M05.069 | Felty's syndrome, unspecified knee |
M05.07 | Felty's syndrome, ankle and foot |
M05.071 | Felty's syndrome, right ankle and foot |
M05.072 | Felty's syndrome, left ankle and foot |
M05.079 | Felty's syndrome, unspecified ankle and foot |
M05.09 | Felty's syndrome, multiple sites |
M05.1 | Rheumatoid lung disease with rheumatoid arthritis |
M05.10 | Rheumatoid lung disease with rheumatoid arthritis of unspecified site |
M05.11 | Rheumatoid lung disease with rheumatoid arthritis of shoulder |
M05.111 | Rheumatoid lung disease with rheumatoid arthritis of right shoulder |
M05.112 | Rheumatoid lung disease with rheumatoid arthritis of left shoulder |
M05.119 | Rheumatoid lung disease with rheumatoid arthritis of unspecified shoulder |
M05.12 | Rheumatoid lung disease with rheumatoid arthritis of elbow |
M05.121 | Rheumatoid lung disease with rheumatoid arthritis of right elbow |
M05.122 | Rheumatoid lung disease with rheumatoid arthritis of left elbow |
M05.129 | Rheumatoid lung disease with rheumatoid arthritis of unspecified elbow |
M05.13 | Rheumatoid lung disease with rheumatoid arthritis of wrist |
M05.131 | Rheumatoid lung disease with rheumatoid arthritis of right wrist |
M05.132 | Rheumatoid lung disease with rheumatoid arthritis of left wrist |
M05.139 | Rheumatoid lung disease with rheumatoid arthritis of unspecified wrist |
M05.14 | Rheumatoid lung disease with rheumatoid arthritis of hand |
M05.141 | Rheumatoid lung disease with rheumatoid arthritis of right hand |
M05.142 | Rheumatoid lung disease with rheumatoid arthritis of left hand |
M05.149 | Rheumatoid lung disease with rheumatoid arthritis of unspecified hand |
M05.15 | Rheumatoid lung disease with rheumatoid arthritis of hip |
M05.151 | Rheumatoid lung disease with rheumatoid arthritis of right hip |
M05.152 | Rheumatoid lung disease with rheumatoid arthritis of left hip |
M05.159 | Rheumatoid lung disease with rheumatoid arthritis of unspecified hip |
M05.16 | Rheumatoid lung disease with rheumatoid arthritis of knee |
M05.161 | Rheumatoid lung disease with rheumatoid arthritis of right knee |
M05.162 | Rheumatoid lung disease with rheumatoid arthritis of left knee |
M05.169 | Rheumatoid lung disease with rheumatoid arthritis of unspecified knee |
M05.17 | Rheumatoid lung disease with rheumatoid arthritis of ankle and foot |
M05.171 | Rheumatoid lung disease with rheumatoid arthritis of right ankle and foot |
M05.172 | Rheumatoid lung disease with rheumatoid arthritis of left ankle and foot |
M05.179 | Rheumatoid lung disease with rheumatoid arthritis of unspecified ankle and foot |
M05.19 | Rheumatoid lung disease with rheumatoid arthritis of multiple sites |
M05.2 | Rheumatoid vasculitis with rheumatoid arthritis |
M05.20 | Rheumatoid vasculitis with rheumatoid arthritis of unspecified site |
M05.21 | Rheumatoid vasculitis with rheumatoid arthritis of shoulder |
M05.211 | Rheumatoid vasculitis with rheumatoid arthritis of right shoulder |
M05.212 | Rheumatoid vasculitis with rheumatoid arthritis of left shoulder |
M05.219 | Rheumatoid vasculitis with rheumatoid arthritis of unspecified shoulder |
M05.22 | Rheumatoid vasculitis with rheumatoid arthritis of elbow |
M05.221 | Rheumatoid vasculitis with rheumatoid arthritis of right elbow |
M05.222 | Rheumatoid vasculitis with rheumatoid arthritis of left elbow |
M05.229 | Rheumatoid vasculitis with rheumatoid arthritis of unspecified elbow |
M05.23 | Rheumatoid vasculitis with rheumatoid arthritis of wrist |
M05.231 | Rheumatoid vasculitis with rheumatoid arthritis of right wrist |
M05.232 | Rheumatoid vasculitis with rheumatoid arthritis of left wrist |
M05.239 | Rheumatoid vasculitis with rheumatoid arthritis of unspecified wrist |
M05.24 | Rheumatoid vasculitis with rheumatoid arthritis of hand |
M05.241 | Rheumatoid vasculitis with rheumatoid arthritis of right hand |
M05.242 | Rheumatoid vasculitis with rheumatoid arthritis of left hand |
M05.249 | Rheumatoid vasculitis with rheumatoid arthritis of unspecified hand |
M05.25 | Rheumatoid vasculitis with rheumatoid arthritis of hip |
M05.251 | Rheumatoid vasculitis with rheumatoid arthritis of right hip |
M05.252 | Rheumatoid vasculitis with rheumatoid arthritis of left hip |
M05.259 | Rheumatoid vasculitis with rheumatoid arthritis of unspecified hip |
M05.26 | Rheumatoid vasculitis with rheumatoid arthritis of knee |
M05.261 | Rheumatoid vasculitis with rheumatoid arthritis of right knee |
M05.262 | Rheumatoid vasculitis with rheumatoid arthritis of left knee |
M05.269 | Rheumatoid vasculitis with rheumatoid arthritis of unspecified knee |
M05.27 | Rheumatoid vasculitis with rheumatoid arthritis of ankle and foot |
M05.271 | Rheumatoid vasculitis with rheumatoid arthritis of right ankle and foot |
M05.272 | Rheumatoid vasculitis with rheumatoid arthritis of left ankle and foot |
M05.279 | Rheumatoid vasculitis with rheumatoid arthritis of unspecified ankle and foot |
M05.29 | Rheumatoid vasculitis with rheumatoid arthritis of multiple sites |
M05.3 | Rheumatoid heart disease with rheumatoid arthritis |
M05.30 | Rheumatoid heart disease with rheumatoid arthritis of unspecified site |
M05.31 | Rheumatoid heart disease with rheumatoid arthritis of shoulder |
M05.311 | Rheumatoid heart disease with rheumatoid arthritis of right shoulder |
M05.312 | Rheumatoid heart disease with rheumatoid arthritis of left shoulder |
M05.319 | Rheumatoid heart disease with rheumatoid arthritis of unspecified shoulder |
M05.32 | Rheumatoid heart disease with rheumatoid arthritis of elbow |
M05.321 | Rheumatoid heart disease with rheumatoid arthritis of right elbow |
M05.322 | Rheumatoid heart disease with rheumatoid arthritis of left elbow |
M05.329 | Rheumatoid heart disease with rheumatoid arthritis of unspecified elbow |
M05.33 | Rheumatoid heart disease with rheumatoid arthritis of wrist |
M05.331 | Rheumatoid heart disease with rheumatoid arthritis of right wrist |
M05.332 | Rheumatoid heart disease with rheumatoid arthritis of left wrist |
M05.339 | Rheumatoid heart disease with rheumatoid arthritis of unspecified wrist |
M05.34 | Rheumatoid heart disease with rheumatoid arthritis of hand |
M05.341 | Rheumatoid heart disease with rheumatoid arthritis of right hand |
M05.342 | Rheumatoid heart disease with rheumatoid arthritis of left hand |
M05.349 | Rheumatoid heart disease with rheumatoid arthritis of unspecified hand |
M05.35 | Rheumatoid heart disease with rheumatoid arthritis of hip |
M05.351 | Rheumatoid heart disease with rheumatoid arthritis of right hip |
M05.352 | Rheumatoid heart disease with rheumatoid arthritis of left hip |
M05.359 | Rheumatoid heart disease with rheumatoid arthritis of unspecified hip |
M05.36 | Rheumatoid heart disease with rheumatoid arthritis of knee |
M05.361 | Rheumatoid heart disease with rheumatoid arthritis of right knee |
M05.362 | Rheumatoid heart disease with rheumatoid arthritis of left knee |
M05.369 | Rheumatoid heart disease with rheumatoid arthritis of unspecified knee |
M05.37 | Rheumatoid heart disease with rheumatoid arthritis of ankle and foot |
M05.371 | Rheumatoid heart disease with rheumatoid arthritis of right ankle and foot |
M05.372 | Rheumatoid heart disease with rheumatoid arthritis of left ankle and foot |
M05.379 | Rheumatoid heart disease with rheumatoid arthritis of unspecified ankle and foot |
M05.39 | Rheumatoid heart disease with rheumatoid arthritis of multiple sites |
M05.4 | Rheumatoid myopathy with rheumatoid arthritis |
M05.40 | Rheumatoid myopathy with rheumatoid arthritis of unspecified site |
M05.41 | Rheumatoid myopathy with rheumatoid arthritis of shoulder |
M05.411 | Rheumatoid myopathy with rheumatoid arthritis of right shoulder |
M05.412 | Rheumatoid myopathy with rheumatoid arthritis of left shoulder |
M05.419 | Rheumatoid myopathy with rheumatoid arthritis of unspecified shoulder |
M05.42 | Rheumatoid myopathy with rheumatoid arthritis of elbow |
M05.421 | Rheumatoid myopathy with rheumatoid arthritis of right elbow |
M05.422 | Rheumatoid myopathy with rheumatoid arthritis of left elbow |
M05.429 | Rheumatoid myopathy with rheumatoid arthritis of unspecified elbow |
M05.43 | Rheumatoid myopathy with rheumatoid arthritis of wrist |
M05.431 | Rheumatoid myopathy with rheumatoid arthritis of right wrist |
M05.432 | Rheumatoid myopathy with rheumatoid arthritis of left wrist |
M05.439 | Rheumatoid myopathy with rheumatoid arthritis of unspecified wrist |
M05.44 | Rheumatoid myopathy with rheumatoid arthritis of hand |
M05.441 | Rheumatoid myopathy with rheumatoid arthritis of right hand |
M05.442 | Rheumatoid myopathy with rheumatoid arthritis of left hand |
M05.449 | Rheumatoid myopathy with rheumatoid arthritis of unspecified hand |
M05.45 | Rheumatoid myopathy with rheumatoid arthritis of hip |
M05.451 | Rheumatoid myopathy with rheumatoid arthritis of right hip |
M05.452 | Rheumatoid myopathy with rheumatoid arthritis of left hip |
M05.459 | Rheumatoid myopathy with rheumatoid arthritis of unspecified hip |
M05.46 | Rheumatoid myopathy with rheumatoid arthritis of knee |
M05.461 | Rheumatoid myopathy with rheumatoid arthritis of right knee |
M05.462 | Rheumatoid myopathy with rheumatoid arthritis of left knee |
M05.469 | Rheumatoid myopathy with rheumatoid arthritis of unspecified knee |
M05.47 | Rheumatoid myopathy with rheumatoid arthritis of ankle and foot |
M05.471 | Rheumatoid myopathy with rheumatoid arthritis of right ankle and foot |
M05.472 | Rheumatoid myopathy with rheumatoid arthritis of left ankle and foot |
M05.479 | Rheumatoid myopathy with rheumatoid arthritis of unspecified ankle and foot |
M05.49 | Rheumatoid myopathy with rheumatoid arthritis of multiple sites |
M05.5 | Rheumatoid polyneuropathy with rheumatoid arthritis |
M05.50 | Rheumatoid polyneuropathy with rheumatoid arthritis of unspecified site |
M05.51 | Rheumatoid polyneuropathy with rheumatoid arthritis of shoulder |
M05.511 | Rheumatoid polyneuropathy with rheumatoid arthritis of right shoulder |
M05.512 | Rheumatoid polyneuropathy with rheumatoid arthritis of left shoulder |
M05.519 | Rheumatoid polyneuropathy with rheumatoid arthritis of unspecified shoulder |
M05.52 | Rheumatoid polyneuropathy with rheumatoid arthritis of elbow |
M05.521 | Rheumatoid polyneuropathy with rheumatoid arthritis of right elbow |
M05.522 | Rheumatoid polyneuropathy with rheumatoid arthritis of left elbow |
M05.529 | Rheumatoid polyneuropathy with rheumatoid arthritis of unspecified elbow |
M05.53 | Rheumatoid polyneuropathy with rheumatoid arthritis of wrist |
M05.531 | Rheumatoid polyneuropathy with rheumatoid arthritis of right wrist |
M05.532 | Rheumatoid polyneuropathy with rheumatoid arthritis of left wrist |
M05.539 | Rheumatoid polyneuropathy with rheumatoid arthritis of unspecified wrist |
M05.54 | Rheumatoid polyneuropathy with rheumatoid arthritis of hand |
M05.541 | Rheumatoid polyneuropathy with rheumatoid arthritis of right hand |
M05.542 | Rheumatoid polyneuropathy with rheumatoid arthritis of left hand |
M05.549 | Rheumatoid polyneuropathy with rheumatoid arthritis of unspecified hand |
M05.55 | Rheumatoid polyneuropathy with rheumatoid arthritis of hip |
M05.551 | Rheumatoid polyneuropathy with rheumatoid arthritis of right hip |
M05.552 | Rheumatoid polyneuropathy with rheumatoid arthritis of left hip |
M05.559 | Rheumatoid polyneuropathy with rheumatoid arthritis of unspecified hip |
M05.56 | Rheumatoid polyneuropathy with rheumatoid arthritis of knee |
M05.561 | Rheumatoid polyneuropathy with rheumatoid arthritis of right knee |
M05.562 | Rheumatoid polyneuropathy with rheumatoid arthritis of left knee |
M05.569 | Rheumatoid polyneuropathy with rheumatoid arthritis of unspecified knee |
M05.57 | Rheumatoid polyneuropathy with rheumatoid arthritis of ankle and foot |
M05.571 | Rheumatoid polyneuropathy with rheumatoid arthritis of right ankle and foot |
M05.572 | Rheumatoid polyneuropathy with rheumatoid arthritis of left ankle and foot |
M05.579 | Rheumatoid polyneuropathy with rheumatoid arthritis of unspecified ankle and foot |
M05.59 | Rheumatoid polyneuropathy with rheumatoid arthritis of multiple sites |
M05.6 | Rheumatoid arthritis with involvement of other organs and systems |
M05.60 | Rheumatoid arthritis of unspecified site with involvement of other organs and systems |
M05.61 | Rheumatoid arthritis of shoulder with involvement of other organs and systems |
M05.611 | Rheumatoid arthritis of right shoulder with involvement of other organs and systems |
M05.612 | Rheumatoid arthritis of left shoulder with involvement of other organs and systems |
M05.619 | Rheumatoid arthritis of unspecified shoulder with involvement of other organs and systems |
M05.62 | Rheumatoid arthritis of elbow with involvement of other organs and systems |
M05.621 | Rheumatoid arthritis of right elbow with involvement of other organs and systems |
M05.622 | Rheumatoid arthritis of left elbow with involvement of other organs and systems |
M05.629 | Rheumatoid arthritis of unspecified elbow with involvement of other organs and systems |
M05.63 | Rheumatoid arthritis of wrist with involvement of other organs and systems |
M05.631 | Rheumatoid arthritis of right wrist with involvement of other organs and systems |
M05.632 | Rheumatoid arthritis of left wrist with involvement of other organs and systems |
M05.639 | Rheumatoid arthritis of unspecified wrist with involvement of other organs and systems |
M05.64 | Rheumatoid arthritis of hand with involvement of other organs and systems |
M05.641 | Rheumatoid arthritis of right hand with involvement of other organs and systems |
M05.642 | Rheumatoid arthritis of left hand with involvement of other organs and systems |
M05.649 | Rheumatoid arthritis of unspecified hand with involvement of other organs and systems |
M05.65 | Rheumatoid arthritis of hip with involvement of other organs and systems |
M05.651 | Rheumatoid arthritis of right hip with involvement of other organs and systems |
M05.652 | Rheumatoid arthritis of left hip with involvement of other organs and systems |
M05.659 | Rheumatoid arthritis of unspecified hip with involvement of other organs and systems |
M05.66 | Rheumatoid arthritis of knee with involvement of other organs and systems |
M05.661 | Rheumatoid arthritis of right knee with involvement of other organs and systems |
M05.662 | Rheumatoid arthritis of left knee with involvement of other organs and systems |
M05.669 | Rheumatoid arthritis of unspecified knee with involvement of other organs and systems |
M05.67 | Rheumatoid arthritis of ankle and foot with involvement of other organs and systems |
M05.671 | Rheumatoid arthritis of right ankle and foot with involvement of other organs and systems |
M05.672 | Rheumatoid arthritis of left ankle and foot with involvement of other organs and systems |
M05.679 | Rheumatoid arthritis of unspecified ankle and foot with involvement of other organs and systems |
M05.69 | Rheumatoid arthritis of multiple sites with involvement of other organs and systems |
M05.7 | Rheumatoid arthritis with rheumatoid factor without organ or systems involvement |
M05.70 | Rheumatoid arthritis with rheumatoid factor of unspecified site without organ or systems involvement |
M05.71 | Rheumatoid arthritis with rheumatoid factor of shoulder without organ or systems involvement |
M05.711 | Rheumatoid arthritis with rheumatoid factor of right shoulder without organ or systems involvement |
M05.712 | Rheumatoid arthritis with rheumatoid factor of left shoulder without organ or systems involvement |
M05.719 | Rheumatoid arthritis with rheumatoid factor of unspecified shoulder without organ or systems involvement |
M05.72 | Rheumatoid arthritis with rheumatoid factor of elbow without organ or systems involvement |
M05.721 | Rheumatoid arthritis with rheumatoid factor of right elbow without organ or systems involvement |
M05.722 | Rheumatoid arthritis with rheumatoid factor of left elbow without organ or systems involvement |
M05.729 | Rheumatoid arthritis with rheumatoid factor of unspecified elbow without organ or systems involvement |
M05.73 | Rheumatoid arthritis with rheumatoid factor of wrist without organ or systems involvement |
M05.731 | Rheumatoid arthritis with rheumatoid factor of right wrist without organ or systems involvement |
M05.732 | Rheumatoid arthritis with rheumatoid factor of left wrist without organ or systems involvement |
M05.739 | Rheumatoid arthritis with rheumatoid factor of unspecified wrist without organ or systems involvement |
M05.74 | Rheumatoid arthritis with rheumatoid factor of hand without organ or systems involvement |
M05.741 | Rheumatoid arthritis with rheumatoid factor of right hand without organ or systems involvement |
M05.742 | Rheumatoid arthritis with rheumatoid factor of left hand without organ or systems involvement |
M05.749 | Rheumatoid arthritis with rheumatoid factor of unspecified hand without organ or systems involvement |
M05.75 | Rheumatoid arthritis with rheumatoid factor of hip without organ or systems involvement |
M05.751 | Rheumatoid arthritis with rheumatoid factor of right hip without organ or systems involvement |
M05.752 | Rheumatoid arthritis with rheumatoid factor of left hip without organ or systems involvement |
M05.759 | Rheumatoid arthritis with rheumatoid factor of unspecified hip without organ or systems involvement |
M05.76 | Rheumatoid arthritis with rheumatoid factor of knee without organ or systems involvement |
M05.761 | Rheumatoid arthritis with rheumatoid factor of right knee without organ or systems involvement |
M05.762 | Rheumatoid arthritis with rheumatoid factor of left knee without organ or systems involvement |
M05.769 | Rheumatoid arthritis with rheumatoid factor of unspecified knee without organ or systems involvement |
M05.77 | Rheumatoid arthritis with rheumatoid factor of ankle and foot without organ or systems involvement |
M05.771 | Rheumatoid arthritis with rheumatoid factor of right ankle and foot without organ or systems involvement |
M05.772 | Rheumatoid arthritis with rheumatoid factor of left ankle and foot without organ or systems involvement |
M05.779 | Rheumatoid arthritis with rheumatoid factor of unspecified ankle and foot without organ or systems involvement |
M05.79 | Rheumatoid arthritis with rheumatoid factor of multiple sites without organ or systems involvement |
M05.7A | Rheumatoid arthritis with rheumatoid factor of other specified site without organ or systems involvement |
M05.8 | Other rheumatoid arthritis with rheumatoid factor |
M05.80 | Other rheumatoid arthritis with rheumatoid factor of unspecified site |
M05.81 | Other rheumatoid arthritis with rheumatoid factor of shoulder |
M05.811 | Other rheumatoid arthritis with rheumatoid factor of right shoulder |
M05.812 | Other rheumatoid arthritis with rheumatoid factor of left shoulder |
M05.819 | Other rheumatoid arthritis with rheumatoid factor of unspecified shoulder |
M05.82 | Other rheumatoid arthritis with rheumatoid factor of elbow |
M05.821 | Other rheumatoid arthritis with rheumatoid factor of right elbow |
M05.822 | Other rheumatoid arthritis with rheumatoid factor of left elbow |
M05.829 | Other rheumatoid arthritis with rheumatoid factor of unspecified elbow |
M05.83 | Other rheumatoid arthritis with rheumatoid factor of wrist |
M05.831 | Other rheumatoid arthritis with rheumatoid factor of right wrist |
M05.832 | Other rheumatoid arthritis with rheumatoid factor of left wrist |
M05.839 | Other rheumatoid arthritis with rheumatoid factor of unspecified wrist |
M05.84 | Other rheumatoid arthritis with rheumatoid factor of hand |
M05.841 | Other rheumatoid arthritis with rheumatoid factor of right hand |
M05.842 | Other rheumatoid arthritis with rheumatoid factor of left hand |
M05.849 | Other rheumatoid arthritis with rheumatoid factor of unspecified hand |
M05.85 | Other rheumatoid arthritis with rheumatoid factor of hip |
M05.851 | Other rheumatoid arthritis with rheumatoid factor of right hip |
M05.852 | Other rheumatoid arthritis with rheumatoid factor of left hip |
M05.859 | Other rheumatoid arthritis with rheumatoid factor of unspecified hip |
M05.86 | Other rheumatoid arthritis with rheumatoid factor of knee |
M05.861 | Other rheumatoid arthritis with rheumatoid factor of right knee |
M05.862 | Other rheumatoid arthritis with rheumatoid factor of left knee |
M05.869 | Other rheumatoid arthritis with rheumatoid factor of unspecified knee |
M05.87 | Other rheumatoid arthritis with rheumatoid factor of ankle and foot |
M05.871 | Other rheumatoid arthritis with rheumatoid factor of right ankle and foot |
M05.872 | Other rheumatoid arthritis with rheumatoid factor of left ankle and foot |
M05.879 | Other rheumatoid arthritis with rheumatoid factor of unspecified ankle and foot |
M05.89 | Other rheumatoid arthritis with rheumatoid factor of multiple sites |
M05.8A | Other rheumatoid arthritis with rheumatoid factor of other specified site |
M05.9 | Rheumatoid arthritis with rheumatoid factor, unspecified |
M06 | Other rheumatoid arthritis |
M06.0 | Rheumatoid arthritis without rheumatoid factor |
M06.00 | Rheumatoid arthritis without rheumatoid factor, unspecified site |
M06.01 | Rheumatoid arthritis without rheumatoid factor, shoulder |
M06.011 | Rheumatoid arthritis without rheumatoid factor, right shoulder |
M06.012 | Rheumatoid arthritis without rheumatoid factor, left shoulder |
M06.019 | Rheumatoid arthritis without rheumatoid factor, unspecified shoulder |
M06.02 | Rheumatoid arthritis without rheumatoid factor, elbow |
M06.021 | Rheumatoid arthritis without rheumatoid factor, right elbow |
M06.022 | Rheumatoid arthritis without rheumatoid factor, left elbow |
M06.029 | Rheumatoid arthritis without rheumatoid factor, unspecified elbow |
M06.03 | Rheumatoid arthritis without rheumatoid factor, wrist |
M06.031 | Rheumatoid arthritis without rheumatoid factor, right wrist |
M06.032 | Rheumatoid arthritis without rheumatoid factor, left wrist |
M06.039 | Rheumatoid arthritis without rheumatoid factor, unspecified wrist |
M06.04 | Rheumatoid arthritis without rheumatoid factor, hand |
M06.041 | Rheumatoid arthritis without rheumatoid factor, right hand |
M06.042 | Rheumatoid arthritis without rheumatoid factor, left hand |
M06.049 | Rheumatoid arthritis without rheumatoid factor, unspecified hand |
M06.05 | Rheumatoid arthritis without rheumatoid factor, hip |
M06.051 | Rheumatoid arthritis without rheumatoid factor, right hip |
M06.052 | Rheumatoid arthritis without rheumatoid factor, left hip |
M06.059 | Rheumatoid arthritis without rheumatoid factor, unspecified hip |
M06.06 | Rheumatoid arthritis without rheumatoid factor, knee |
M06.061 | Rheumatoid arthritis without rheumatoid factor, right knee |
M06.062 | Rheumatoid arthritis without rheumatoid factor, left knee |
M06.069 | Rheumatoid arthritis without rheumatoid factor, unspecified knee |
M06.07 | Rheumatoid arthritis without rheumatoid factor, ankle and foot |
M06.071 | Rheumatoid arthritis without rheumatoid factor, right ankle and foot |
M06.072 | Rheumatoid arthritis without rheumatoid factor, left ankle and foot |
M06.079 | Rheumatoid arthritis without rheumatoid factor, unspecified ankle and foot |
M06.08 | Rheumatoid arthritis without rheumatoid factor, vertebrae |
M06.09 | Rheumatoid arthritis without rheumatoid factor, multiple sites |
M06.0A | Rheumatoid arthritis without rheumatoid factor, other specified site |
M06.8 | Other specified rheumatoid arthritis |
M06.80 | Other specified rheumatoid arthritis, unspecified site |
M06.81 | Other specified rheumatoid arthritis, shoulder |
M06.811 | Other specified rheumatoid arthritis, right shoulder |
M06.812 | Other specified rheumatoid arthritis, left shoulder |
M06.819 | Other specified rheumatoid arthritis, unspecified shoulder |
M06.82 | Other specified rheumatoid arthritis, elbow |
M06.821 | Other specified rheumatoid arthritis, right elbow |
M06.822 | Other specified rheumatoid arthritis, left elbow |
M06.829 | Other specified rheumatoid arthritis, unspecified elbow |
M06.83 | Other specified rheumatoid arthritis, wrist |
M06.831 | Other specified rheumatoid arthritis, right wrist |
M06.832 | Other specified rheumatoid arthritis, left wrist |
M06.839 | Other specified rheumatoid arthritis, unspecified wrist |
M06.84 | Other specified rheumatoid arthritis, hand |
M06.841 | Other specified rheumatoid arthritis, right hand |
M06.842 | Other specified rheumatoid arthritis, left hand |
M06.849 | Other specified rheumatoid arthritis, unspecified hand |
M06.85 | Other specified rheumatoid arthritis, hip |
M06.851 | Other specified rheumatoid arthritis, right hip |
M06.852 | Other specified rheumatoid arthritis, left hip |
M06.859 | Other specified rheumatoid arthritis, unspecified hip |
M06.86 | Other specified rheumatoid arthritis, knee |
M06.861 | Other specified rheumatoid arthritis, right knee |
M06.862 | Other specified rheumatoid arthritis, left knee |
M06.869 | Other specified rheumatoid arthritis, unspecified knee |
M06.87 | Other specified rheumatoid arthritis, ankle and foot |
M06.871 | Other specified rheumatoid arthritis, right ankle and foot |
M06.872 | Other specified rheumatoid arthritis, left ankle and foot |
M06.879 | Other specified rheumatoid arthritis, unspecified ankle and foot |
M06.88 | Other specified rheumatoid arthritis, vertebrae |
M06.89 | Other specified rheumatoid arthritis, multiple sites |
M06.8A | Other specified rheumatoid arthritis, other specified site |
M06.9 | Rheumatoid arthritis, unspecified |
Systemic lupus erythematosus | |
M32 | Systemic lupus erythematosus (SLe) |
M32.0 | Drug-induced systemic lupus erythematosus |
M32.1 | Systemic lupus erythematosus with organ or system involvement |
M32.10 | Systemic lupus erythematosus, organ or system involvement unspecified |
M32.11 | Endocarditis in systemic lupus erythematosus |
M32.12 | Pericarditis in systemic lupus erythematosus |
M32.13 | Lung involvement in systemic lupus erythematosus |
M32.14 | Glomerular disease in systemic lupus erythematosus |
M32.15 | Tubulo-interstitial nephropathy in systemic lupus erythematosus |
M32.19 | Other organ or system involvement in systemic lupus erythematosus |
M32.8 | Other forms of systemic lupus erythematosus |
M32.9 | Systemic lupus erythematosus, unspecified |
Formulary Reference Tool