Please wait while the formulary information is being retrieved.
Drug overview for NUPLAZID (pimavanserin tartrate):
Generic name: pimavanserin tartrate (PIM-a-VAN-ser-in)
Drug class: Antipsychotics
Therapeutic class: Central Nervous System Agents
Pimavanserin tartrate is an atypical antipsychotic agent.
No enhanced Uses information available for this drug.
Generic name: pimavanserin tartrate (PIM-a-VAN-ser-in)
Drug class: Antipsychotics
Therapeutic class: Central Nervous System Agents
Pimavanserin tartrate is an atypical antipsychotic agent.
No enhanced Uses information available for this drug.
DRUG IMAGES
- NUPLAZID 10 MG TABLET
- NUPLAZID 34 MG CAPSULE
The following indications for NUPLAZID (pimavanserin tartrate) have been approved by the FDA:
Indications:
Psychosis associated with Parkinson's disease
Professional Synonyms:
Parkinson's disease psychosis
PD psychosis
Indications:
Psychosis associated with Parkinson's disease
Professional Synonyms:
Parkinson's disease psychosis
PD psychosis
The following dosing information is available for NUPLAZID (pimavanserin tartrate):
Dosage of pimavanserin tartrate is expressed in terms of pimavanserin.
Pimavanserin is administered orally (as capsules or tablets) without regard to food. Pimavanserin capsules can be swallowed whole, or opened and sprinkled over 15 mL (1 tablespoon) of applesauce, yogurt, pudding, or liquid nutritional supplement. If the capsule is opened and a drug/food mixture is created, swallow the mixture immediately and do not save for future use. Store pimavanserin capsules and tablets at 20-25degreesC (excursions permitted to 15-30degreesC).
DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
---|---|---|
NUPLAZID 10 MG TABLET | Maintenance | Adults take 1 tablet (10 mg) by oral route once daily |
NUPLAZID 34 MG CAPSULE | Maintenance | Adults take 1 capsule (34 mg) by oral route once daily |
No generic dosing information available.
The following drug interaction information is available for NUPLAZID (pimavanserin tartrate):
There are 2 contraindications.
These drug combinations generally should not be dispensed or administered to the same patient. A manufacturer label warning that indicates the contraindication warrants inclusion of a drug combination in this category, regardless of clinical evidence or lack of clinical evidence to support the contraindication.
Drug Interaction | Drug Names |
---|---|
Pimavanserin (Greater Than 10 mg)/Strong CYP3A4 Inhibitors; Protease Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Agents which inhibit the CYP3A4 enzyme may inhibit the metabolism of pimavanserin.(1) CLINICAL EFFECTS: Concurrent use of strong CYP3A4 inhibitors or HIV protease inhibitors may increase systemic exposure and the risk for pimavanserin toxicities such as peripheral edema, confusion, or QT prolongation.(1,2) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: When concomitant use of pimavanserin and a strong CYP3A4 inhibitor or HIV protease inhibitor is needed, the pimavanserin dose should be reduced to 10 mg once daily.(1,2) With unboosted atazanavir, consider using alternative antipsychotic agents.(2) During concomitant therapy with a strong CYP3A4 inhibitor or HIV protease inhibitor, monitor patients closely for prolongation of the QT interval. Obtain serum calcium, magnesium, and potassium levels and monitor ECG at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a drug interaction study, ketoconazole increased pimavanserin maximum concentration (Cmax) 1.5-fold and area-under-curve(AUC) 3-fold. A thorough QTc study performed in 252 subjects found a mean maximum change from baseline of 13.5 msec (upper bound of the 90% confidence interval was 16.6 msec) at twice the therapeutic dose.(1) Thus, coadministration of pimavanserin and a QT prolonging agent, even at a reduced dose, may increase the risk for significant QT prolongation. CYP3A4 inhibitors linked to this monograph include: atazanavir, boceprevir, cobicistat, darunavir, fosamprenavir, idelalisib, indinavir, itraconazole, josamycin, ketoconazole, mibefradil, mifepristone, nefazodone, nelfinavir, nirmatrelvir/ritonavir, paritaprevir, telaprevir, tipranavir, troleandomycin, and tucatinib.(4) |
APTIVUS, ATAZANAVIR SULFATE, DARUNAVIR, EVOTAZ, FOSAMPRENAVIR CALCIUM, GENVOYA, ITRACONAZOLE, ITRACONAZOLE MICRONIZED, KETOCONAZOLE, KORLYM, MIFEPREX, MIFEPRISTONE, NEFAZODONE HCL, PAXLOVID, PREZCOBIX, PREZISTA, REYATAZ, SPORANOX, STRIBILD, SYMTUZA, TOLSURA, TUKYSA, TYBOST, VIRACEPT, ZYDELIG |
Pimavanserin (Greater Than 10 mg)/Strong CYP3A4 Inhibitors that Prolong QT SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Strong inhibitors of CYP3A4 that prolong the QTc interval may inhibit the metabolism of pimavanserin and result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: Concurrent use of strong CYP3A4 inhibitors that prolong the QTc interval may increase systemic exposure and the risk for pimavanserin toxicities such as peripheral edema, confusion, or additive QTc prolongation and life-threatening cardiac arrhythmias like torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of pimavanserin recommends avoiding use with agents that prolong the QTc interval.(1) The US Department of Health and Human Services HIV guidelines state that pimavanserin should not be coadministered with saquinavir or lopinavir due to the risk of QTc prolongation.(3) If concomitant use of pimavanserin and a strong CYP3A4 inhibitor is needed, the pimavanserin dose should be reduced to 10 mg once daily.(1) During concomitant therapy with a strong CYP3A4 inhibitor, monitor patients closely for prolongation of the QT interval. Obtain serum calcium, magnesium, and potassium levels and monitor ECG at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a drug interaction study, ketoconazole increased pimavanserin maximum concentration (Cmax) 1.5-fold and area-under-curve(AUC) 3-fold. A thorough QTc study performed in 252 subjects found a mean maximum change from baseline of 13.5 msec (upper bound of the 90% confidence interval was 16.6 msec) at twice the therapeutic dose.(1) Thus, coadministration of pimavanserin and a QT prolonging agent, even at a reduced dose, may increase the risk for significant QT prolongation. Strong CYP3A4 inhibitors linked to this monograph include: adagrasib, ceritinib, clarithromycin, levoketoconazole, lonafarnib, lopinavir, posaconazole, ribociclib, saquinavir, telithromycin, and voriconazole.(4) |
CLARITHROMYCIN, CLARITHROMYCIN ER, KALETRA, KISQALI, KRAZATI, LANSOPRAZOL-AMOXICIL-CLARITHRO, LOPINAVIR-RITONAVIR, NOXAFIL, OMECLAMOX-PAK, POSACONAZOLE, RECORLEV, VFEND, VFEND IV, VOQUEZNA TRIPLE PAK, VORICONAZOLE, ZOKINVY, ZYKADIA |
There are 8 severe interactions.
These drug interactions can produce serious consequences in most patients. Actions required for severe interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration scheduling, and providing additional patient monitoring. Review the full interaction monograph for more information.
Drug Interaction | Drug Names |
---|---|
Ziprasidone/Selected QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Ziprasidone has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of ziprasidone with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(1,3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The manufacturer of ziprasidone states under contraindications that ziprasidone should not be used with other drugs that prolong the QT interval such as dofetilide, sotalol, quinidine, other Class Ia and III anti-arrhythmics, mesoridazine, thioridazine, chlorpromazine, droperidol, pimozide, sparfloxacin, gatifloxacin, moxifloxacin, halofantrine, mefloquine, pentamidine, arsenic trioxide, levomethadyl acetate, dolasetron mesylate, probucol or tacrolimus.(1) It would be prudent to avoid the use of ziprasidone with medicines suspected of prolonging the QT interval. If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
GEODON, ZIPRASIDONE HCL, ZIPRASIDONE MESYLATE |
Pimavanserin/QT Prolonging Agents SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Pimavanserin prolongs the QTc interval.(1) Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(2,3) CLINICAL EFFECTS: The concurrent use of pimavanserin with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(2,3) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: Avoid the use of pimavanserin in patients receiving QT prolonging agents.(1) During concomitant therapy with another QT prolonging agent, monitor patients closely for prolongation of the QT interval.(1) Obtain serum calcium, magnesium, and potassium levels and monitoring ECG at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In thorough-QT study, pimavanserin (at twice the therapeutic dose) found that the maximum mean change was 13.5 (16.6) msec. In placebo-controlled effectiveness studies, mean increases of 5-8 msec were observed with normal dosages of 37 mg daily. Sporadic QTcF values of equal to or greater than 500 msec and change from baseline values equal to or greater than 60 msec were observed at this dose as well.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
ADLARITY, AGRYLIN, AMIODARONE HCL, AMIODARONE HCL-D5W, ANAGRELIDE HCL, ARICEPT, ARSENIC TRIOXIDE, AVELOX IV, AZITHROMYCIN, BETAPACE, BETAPACE AF, CAPRELSA, CELEXA, CESIUM CHLORIDE, CHLOROQUINE PHOSPHATE, CHLORPROMAZINE HCL, CILOSTAZOL, CIPRO, CIPROFLOXACIN, CIPROFLOXACIN HCL, CIPROFLOXACIN-D5W, CITALOPRAM HBR, CORVERT, DIFLUCAN, DIPRIVAN, DISOPYRAMIDE PHOSPHATE, DOFETILIDE, DONEPEZIL HCL, DONEPEZIL HCL ODT, DROPERIDOL, E.E.S. 200, E.E.S. 400, ERY-TAB, ERYPED 200, ERYPED 400, ERYTHROCIN LACTOBIONATE, ERYTHROCIN STEARATE, ERYTHROMYCIN, ERYTHROMYCIN ESTOLATE, ERYTHROMYCIN ETHYLSUCCINATE, ERYTHROMYCIN LACTOBIONATE, ESCITALOPRAM OXALATE, FLECAINIDE ACETATE, FLUCONAZOLE, FLUCONAZOLE-NACL, GATIFLOXACIN SESQUIHYDRATE, HALDOL DECANOATE 100, HALDOL DECANOATE 50, HALOPERIDOL, HALOPERIDOL DECANOATE, HALOPERIDOL DECANOATE 100, HALOPERIDOL LACTATE, HYDROXYCHLOROQUINE SULFATE, IBUTILIDE FUMARATE, LEVOFLOXACIN, LEVOFLOXACIN HEMIHYDRATE, LEVOFLOXACIN-D5W, LEXAPRO, MEMANTINE HCL-DONEPEZIL HCL ER, MOXIFLOXACIN, MOXIFLOXACIN HCL, MULTAQ, NAMZARIC, NEXTERONE, NORPACE, NORPACE CR, NUEDEXTA, PACERONE, PENTAM 300, PENTAMIDINE ISETHIONATE, PIMOZIDE, PLAQUENIL, PROCAINAMIDE HCL, PROPOFOL, QUINIDINE GLUCONATE, QUINIDINE SULFATE, REVUFORJ, SEVOFLURANE, SOTALOL, SOTALOL AF, SOTALOL HCL, SOTYLIZE, SOVUNA, TIKOSYN, TRISENOX, ULTANE, VANFLYTA, ZITHROMAX, ZITHROMAX TRI-PAK |
Pimavanserin/Strong and Moderate CYP3A4 Inducers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Strong or moderate inducers of CYP3A4 may induce the metabolism of pimavanserin.(1) CLINICAL EFFECTS: Concurrent use of a strong or moderate inducer of CYP3A4 may result in decreased levels and effectiveness of pimavanserin.(1) PREDISPOSING FACTORS: Induction effects may be more likely with regular use of the inducer for longer than 1-2 weeks. PATIENT MANAGEMENT: The US manufacturer of pimavanserin recommends avoiding concomitant use of strong or moderate CYP3A4 inducers.(1) DISCUSSION: Pimavanserin is primarily metabolized by CYP3A4 while other metabolic enzymes CYP2J2, CYP2D6 and FMO play a lesser role.(1) In a study of subjects pretreated with 7 days of rifampin (600 mg daily, a strong CYP3A4 inducer), a single dose of pimavanserin (34 mg) produced an area-under-curve (AUC) and maximum concentration (Cmax) that was 91 % and 71 % lower, respectively, than when pimavanserin is given without rifampin.(1) A physiology-based pharmacokinetic model predicted that efavirenz (a moderate CYP3A4 inducer) would decrease pimavanserin AUC and Cmax by 70 % and 60 %, respectively.(1) Strong inducers of CYP3A4 include: apalutamide, barbiturates, carbamazepine, enzalutamide, fosphenytoin, lumacaftor, mitotane, phenobarbital, phenytoin, primidone, rifampin, rifapentine, and St. John's wort.(3-4) Moderate inducers of CYP3A4 include: belzutifan, bosentan, cenobamate, dabrafenib, elagolix, etravirine, lesinurad, lorlatinib, mavacamten, mitapivat, modafinil, nafcillin, pexidartinib, repotrectinib, rifabutin, sotorasib, telotristat, and tovorafenib.(3-4) |
ASA-BUTALB-CAFFEINE-CODEINE, ASCOMP WITH CODEINE, AUGTYRO, BOSENTAN, BUTALB-ACETAMINOPH-CAFF-CODEIN, BUTALBITAL, BUTALBITAL-ACETAMINOPHEN, BUTALBITAL-ACETAMINOPHEN-CAFFE, BUTALBITAL-ASPIRIN-CAFFEINE, CAMZYOS, CARBAMAZEPINE, CARBAMAZEPINE ER, CARBATROL, CEREBYX, DILANTIN, DILANTIN-125, DONNATAL, DUZALLO, EPITOL, EQUETRO, ERLEADA, ETRAVIRINE, FIORICET, FIORICET WITH CODEINE, FOSPHENYTOIN SODIUM, INTELENCE, LORBRENA, LUMAKRAS, LYSODREN, MITOTANE, MODAFINIL, MYSOLINE, NAFCILLIN, NAFCILLIN SODIUM, OJEMDA, ORIAHNN, ORILISSA, ORKAMBI, PENTOBARBITAL SODIUM, PHENOBARBITAL, PHENOBARBITAL SODIUM, PHENOBARBITAL-BELLADONNA, PHENOBARBITAL-HYOSC-ATROP-SCOP, PHENOHYTRO, PHENYTEK, PHENYTOIN, PHENYTOIN SODIUM, PHENYTOIN SODIUM EXTENDED, PRIFTIN, PRIMIDONE, PROVIGIL, PYRUKYND, RIFABUTIN, RIFADIN, RIFAMPIN, SEZABY, TAFINLAR, TALICIA, TEGRETOL, TEGRETOL XR, TENCON, TRACLEER, TURALIO, WELIREG, XCOPRI, XERMELO, XTANDI |
Opioids (Cough and Cold)/Antipsychotics; Phenothiazines SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Concurrent use of opioids and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Avoid prescribing opioid-including cough medications for patients taking CNS depressants such as antipsychotics, including phenothiazine derivatives.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) If concurrent use is necessary, monitor patients for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
HYCODAN, HYDROCODONE-CHLORPHENIRAMNE ER, HYDROCODONE-HOMATROPINE MBR, HYDROMET, PROMETHAZINE-CODEINE, TUXARIN ER |
Methadone for MAT/Selected Antipsychotics that Prolong QT SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Methadone has been shown to prolong the QTc interval. Concurrent use with selected antipsychotics may result in additive effects on the QTc interval.(1-3) Concurrent use of methadone and antipsychotics may result in additive CNS depression.(1-3) CLINICAL EFFECTS: The concurrent use of methadone with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1,2) Concurrent use of opioids and other CNS depressants such as antipsychotics may result in profound sedation, respiratory depression, coma, and/or death.(1-3) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Concurrent use of methadone with other agents known to prolong the QT interval should be approached with extreme caution.(1,2) Limit prescribing methadone with CNS depressants such as antipsychotics to patients for whom alternatives are inadequate.(3) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. Medication assisted treatment (MAT) with methadone is not contraindicated in patients taking CNS depressants; however, gradual tapering or decreasing to the lowest effective dose of antipsychotics may be appropriate. Ensure that other health care providers prescribing other CNS depressants are aware of the patient's methadone treatment.(5) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(3) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(6) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(3) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(7) DISCUSSION: Most cases of methadone-induced QT prolongation are associated with, but not limited to, higher dose treatment (greater than 200 mg daily) and most involve patients being treated for pain with large, multiple daily doses. Cases have been reported in patients treated with doses commonly used for maintenance treatment of opioid addiction.(2) Levomethadone should be used with caution in patients with a history of QT prolongation, advanced heart disease, concomitant CYP3A4 inhibitors, or electrolyte abnormalities. Cases of QT prolongation and torsades de pointes have been reported, most commonly with high doses.(1) A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(8) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(9) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(10) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(11) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(12) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(13) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(14) Selected antipsychotics that prolong QT include: amsulpride, chlorpromazine, chlorprothixene, clozapine, haloperidol, iloperidone, mesoridazine, paliperidone, pimavanserin, pipamperone, promethazine, quetiapine, sulpiride, sultopride, thioridazine, ziprasidone, and zuclopenthixol. |
DISKETS, METHADONE HCL, METHADONE INTENSOL, METHADOSE |
Methadone (non MAT)/Selected Antipsychotics that Prolong QT SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Methadone has been shown to prolong the QTc interval. Concurrent use with selected antipsychotics may result in additive effects on the QTc interval. Concurrent use of methadone and antipsychotics may result in additive CNS depression.(1,2) CLINICAL EFFECTS: Concurrent use of methadone with antipsychotics may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) Concurrent use of methadone and other CNS depressants such as antipsychotics may result in profound sedation, respiratory depression, coma, and/or death.(1,2) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Concurrent use of methadone with agents known to prolong the QT interval should be approached with extreme caution.(1) Limit prescribing methadone with CNS depressants such as antipsychotics to patients for whom alternatives are inadequate.(2) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(2) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(4) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(5) DISCUSSION: Most cases of methadone-induced QT prolongation are associated with, but not limited to, higher dose treatment (greater than 200 mg daily) and most involve patients being treated for pain with large, multiple daily doses. Cases have been reported in patients treated with doses commonly used for maintenance treatment of opioid addiction.(1) A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(6) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(7) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(8) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(9) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(10) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(11) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(12) Selected antipsychotics linked include: amsulpride, chlorpromazine, chlorprothixene, clozapine, iloperidone, mesoridazine, paliperidone, perphenazine, pimavanserin, pipamperone, promethazine, quetiapine, sulpiride, sultopride, thioridazine, ziprasidone, and zuclopenthixol. |
METHADONE HCL, METHADONE HCL-0.9% NACL, METHADONE HCL-NACL |
Pimavanserin (Less Than or Equal To 10 mg)/Strong CYP3A4 Inhibitors that Prolong QT SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Strong inhibitors of CYP3A4 that prolong the QTc interval may inhibit the metabolism of pimavanserin and result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: Concurrent use of strong CYP3A4 inhibitors that prolong the QTc interval may increase systemic exposure and the risk for pimavanserin toxicities such as peripheral edema, confusion, or additive QTc prolongation and life-threatening cardiac arrhythmias like torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of pimavanserin recommends avoiding use with agents that prolong the QTc interval.(1) The US Department of Health and Human Services HIV guidelines state that pimavanserin should not be coadministered with saquinavir or lopinavir due to the risk of QTc prolongation.(3) If concomitant use of pimavanserin and a strong CYP3A4 inhibitor is needed, the pimavanserin dose should be reduced to 10 mg once daily.(1) During concomitant therapy with a strong CYP3A4 inhibitor, monitor patients closely for prolongation of the QT interval. Obtain serum calcium, magnesium, and potassium levels and monitor ECG at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a drug interaction study, ketoconazole increased pimavanserin maximum concentration (Cmax) 1.5-fold and area-under-curve(AUC) 3-fold. A thorough QTc study performed in 252 subjects found a mean maximum change from baseline of 13.5 msec (upper bound of the 90% confidence interval was 16.6 msec) at twice the therapeutic dose.(1) Thus, coadministration of pimavanserin and a QT prolonging agent, even at a reduced dose, may increase the risk for significant QT prolongation. Strong CYP3A4 inhibitors linked to this monograph include: adagrasib, ceritinib, clarithromycin, levoketoconazole, lonafarnib, lopinavir, posaconazole, ribociclib, saquinavir, telithromycin, and voriconazole.(4) |
CLARITHROMYCIN, CLARITHROMYCIN ER, KALETRA, KISQALI, KRAZATI, LANSOPRAZOL-AMOXICIL-CLARITHRO, LOPINAVIR-RITONAVIR, NOXAFIL, OMECLAMOX-PAK, POSACONAZOLE, RECORLEV, VFEND, VFEND IV, VOQUEZNA TRIPLE PAK, VORICONAZOLE, ZOKINVY, ZYKADIA |
Pimavanserin/Strong and Moderate CYP3A4 Inducers that Prolong QT SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Strong or moderate inducers of CYP3A4 that prolong the QTc interval may induce the metabolism of pimavanserin and result in additive risk of QT prolongation.(1,2) CLINICAL EFFECTS: Concurrent use of a strong or moderate inducer of CYP3A4 that prolongs the QTc interval may result in decreased levels and effectiveness of pimavanserin and may cause additive effects on the QTc interval, which may result in life-threatening cardiac arrhythmias including torsades de pointes.(1,2) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) Induction effects may be more likely with regular use of the inducer for longer than 1-2 weeks. PATIENT MANAGEMENT: The US manufacturer of pimavanserin recommends avoiding concomitant use of strong or moderate CYP3A4 inducers.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Pimavanserin is primarily metabolized by CYP3A4 while other metabolic enzymes CYP2J2, CYP2D6 and FMO play a lesser role.(1) In a study of subjects pretreated with 7 days of rifampin (600 mg daily, a strong CYP3A4 inducer), a single dose of pimavanserin (34 mg) produced an area-under-curve (AUC) and maximum concentration (Cmax) that was 91 % and 71 % lower, respectively, than when pimavanserin is given without rifampin.(1) A physiology-based pharmacokinetic model predicted that efavirenz (a moderate CYP3A4 inducer) would decrease pimavanserin AUC and Cmax by 70 % and 60 %, respectively.(1) Strong and moderate inducers of CYP3A4 that prolong QT include: efavirenz, encorafenib, ivosidenib, pacritinib, and thioridazine.(4,5) |
BRAFTOVI, EFAVIRENZ, EFAVIRENZ-EMTRIC-TENOFOV DISOP, EFAVIRENZ-LAMIVU-TENOFOV DISOP, SYMFI, SYMFI LO, THIORIDAZINE HCL, THIORIDAZINE HYDROCHLORIDE, TIBSOVO, VONJO |
There are 23 moderate interactions.
The clinician should assess the patient’s characteristics and take action as needed. Actions required for moderate interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration.
Drug Interaction | Drug Names |
---|---|
Quetiapine/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The use of quetiapine in patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The US manufacturer of quetiapine states that concurrent use with agents known to prolong the QT interval should be avoided.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Although quetiapine was not associated with QT or QTc changes in clinical trials, QT prolongation has been reported in post-marketing reports in conjunction with the use of other agents known to prolong the QT interval.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(2) |
QUETIAPINE FUMARATE, QUETIAPINE FUMARATE ER, SEROQUEL, SEROQUEL XR |
Fingolimod/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Fingolimod is a sphingosine 1-phosphate (S1P) receptor modulator. Initiation of fingolimod has a negative chronotropic effect leading to a mean decrease in heart rate of 13 beats per minute (bpm) after the first dose. The first dose has also been associated with heart block.(1-3) Fingolimod blocks the capacity of lymphocytes to egress from lymph nodes, reducing the number of lymphocytes in peripheral blood. The mechanism by which fingolimod exerts therapeutic effects in multiple sclerosis is unknown but may involve the reduction of lymphocyte migration into the central nervous system.(1-3) CLINICAL EFFECTS: The heart rate lowering effect of fingolimod is biphasic with an initial decrease usually within 6 hours, followed by a second decrease 12 to 24 hours after the first dose. Symptomatic bradycardia and heart block, including third degree block, have been observed. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes. There is no consistent signal of increased incidence of QTc outliers, either absolute or change from baseline, associated with fingolimod treatment.(1-3) PREDISPOSING FACTORS: Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to fingolimod initiation, factors associated with QTc prolongation (e.g. hypokalemia, hypomagnesemia), or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to fingolimod. The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(4) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(4) PATIENT MANAGEMENT: Patients with a baseline QTc interval greater than or equal to 500 milliseconds should not be started on fingolimod. Patients with pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, or a prolonged QTc interval prior to fingolimod initiation should receive cardiologist consultation to evaluate the risks of fingolimod therapy. In all patients, first dose monitoring is recommended to monitor for bradycardia for the first 6 hours. Check blood pressure and pulse hourly. ECG monitoring is recommended prior to dosing and at the end of the observation period. US monitoring recommendations include additional monitoring for the following patients:(1) If heart rate (HR) is less than 45 beats per minute (bpm), the heart rate 6 hours postdose is at the lowest value postdose, or if the ECG shows new onset of second degree or higher AV block at the end of the monitoring period, then monitoring should continue until the finding has resolved. Continuous overnight ECG monitoring is recommended in patients requiring pharmacologic intervention for symptomatic bradycardia, some preexisting heart and cerebrovascular conditions, prolonged QTc before dosing or during 6 hours observation, concurrent therapy with QT prolonging drugs, or concurrent therapy with drugs that slow heart rate or AV conduction. Consult the prescribing information for full monitoring recommendations. United Kingdom recommendations:(3) Obtain a 12-lead ECG prior to initiating fingolimod therapy. Consult a cardiologist for pretreatment risk-benefit assessment if patient has a resting heart rate less than 55 bpm, history of syncope, second degree or greater AV block, sick-sinus syndrome, concurrent therapy with beta-blockers, Class Ia, or Class III antiarrhythmics, heart failure or other significant cardiovascular disease. Perform continuous ECG monitoring, measure blood pressure and heart rate every hour, and perform a 12-lead ECG 6 hours after the first dose. Monitoring should be extended beyond 6 hours if symptomatic bradycardia or new onset of second degree AV block, Mobitz Type II or third degree AV block has occurred at any time during the monitoring period. If heart rate 6 hours after the first dose is less than 40 bpm, has decreased more than 20 bpm compared with baseline, or if a new onset second degree AV block, Mobitz Type I (Wenckebach) persists, then monitoring should also be continued. If fingolimod treatment is discontinued for more than two weeks, the effects on heart rate and conduction could recur. Thus, first dose monitoring precautions should be followed upon reintroduction of fingolimod. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: After the first dose of fingolimod, heart rate decrease may begin within an hour. Decline is usually maximal at approximately 6 hours followed by a second decrease 12 to 24 hours after the first dose. The second dose may further decrease heart rate, but the magnitude of change is smaller than the first dose. With continued, chronic dosing, heart rate gradually returns to baseline in about one month.(1,2) In a thorough QT interval study of doses of 1.25 or 2.5 mg fingolimod at steady-state, when a negative chronotropic effect of fingolimod was still present, fingolimod treatment resulted in a prolongation of QTc, with the upper boundary of the 90% confidence interval (CI) of 14.0 msec. The cause of death in a patient who died within 24 hour after taking the first dose of fingolimod was not conclusive; however a link to fingolimod or a drug interaction with fingolimod could not be ruled out.(1) |
FINGOLIMOD, GILENYA, TASCENSO ODT |
Pimavanserin/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Pimavanserin prolongs the QTc interval.(1) Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(2,3) CLINICAL EFFECTS: The concurrent use of pimavanserin with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(2,3) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: Avoid the use of pimavanserin in patients receiving QT prolonging agents.(1) During concomitant therapy with another QT prolonging agent, monitor patients closely for prolongation of the QT interval.(1) Obtain serum calcium, magnesium, and potassium levels and monitoring ECG at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In thorough-QT study, pimavanserin (at twice the therapeutic dose) found that the maximum mean change was 13.5 (16.6) msec. In placebo-controlled effectiveness studies, mean increases of 5-8 msec were observed with normal dosages of 37 mg daily. Sporadic QTcF values of equal to or greater than 500 msec and change from baseline values equal to or greater than 60 msec were observed at this dose as well.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
ALFUZOSIN HCL ER, APOKYN, APOMORPHINE HCL, ASPRUZYO SPRINKLE, ASTAGRAF XL, ATOMOXETINE HCL, CLOZAPINE, CLOZAPINE ODT, CLOZARIL, DANZITEN, DASATINIB, ELLENCE, ENVARSUS XR, EPIRUBICIN HCL, ERIBULIN MESYLATE, ERZOFRI, FANAPT, FARESTON, FARYDAK, GRANISETRON HCL, HALAVEN, INVEGA, INVEGA HAFYERA, INVEGA SUSTENNA, INVEGA TRINZA, ISRADIPINE, LAPATINIB, NEXAVAR, NILOTINIB HCL, OFLOXACIN, ONAPGO, ONDANSETRON HCL, ONDANSETRON HCL-0.9% NACL, PALIPERIDONE ER, PAZOPANIB HCL, PROGRAF, RANOLAZINE ER, RUBRACA, RYDAPT, SANCUSO, SIGNIFOR, SIGNIFOR LAR, SIRTURO, SORAFENIB, SPRYCEL, STRATTERA, SUNITINIB MALATE, SUSTOL, SUTENT, TACROLIMUS, TACROLIMUS XL, TASIGNA, TOLTERODINE TARTRATE, TOLTERODINE TARTRATE ER, TOREMIFENE CITRATE, TYKERB, UROXATRAL, VERSACLOZ, VIBATIV, VOTRIENT, XALKORI, ZELBORAF |
Pimavanserin (Less Than or Equal To 10 mg)/Strong CYP3A4 Inhibitors; Protease Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Agents which inhibit the CYP3A4 enzyme may inhibit the metabolism of pimavanserin.(1) CLINICAL EFFECTS: Concurrent use of strong CYP3A4 inhibitors or HIV protease inhibitors may increase systemic exposure and the risk for pimavanserin toxicities such as peripheral edema, confusion, or QT prolongation.(1,2) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: When concomitant use of pimavanserin and a strong CYP3A4 inhibitor or HIV protease inhibitor is needed, the pimavanserin dose should be reduced to 10 mg once daily.(1,2) With unboosted atazanavir, consider using alternative antipsychotic agents.(2) During concomitant therapy with a strong CYP3A4 inhibitor or HIV protease inhibitor, monitor patients closely for prolongation of the QT interval. Obtain serum calcium, magnesium, and potassium levels and monitor ECG at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a drug interaction study, ketoconazole increased pimavanserin maximum concentration (Cmax) 1.5-fold and area-under-curve(AUC) 3-fold. A thorough QTc study performed in 252 subjects found a mean maximum change from baseline of 13.5 msec (upper bound of the 90% confidence interval was 16.6 msec) at twice the therapeutic dose.(1) Thus, coadministration of pimavanserin and a QT prolonging agent, even at a reduced dose, may increase the risk for significant QT prolongation. CYP3A4 inhibitors linked to this monograph include: atazanavir, boceprevir, cobicistat, darunavir, fosamprenavir, idelalisib, indinavir, itraconazole, josamycin, ketoconazole, mibefradil, mifepristone, nefazodone, nelfinavir, nirmatrelvir/ritonavir, paritaprevir, telaprevir, tipranavir, troleandomycin, and tucatinib.(4) |
APTIVUS, ATAZANAVIR SULFATE, DARUNAVIR, EVOTAZ, FOSAMPRENAVIR CALCIUM, GENVOYA, ITRACONAZOLE, ITRACONAZOLE MICRONIZED, KETOCONAZOLE, KORLYM, MIFEPREX, MIFEPRISTONE, NEFAZODONE HCL, PAXLOVID, PREZCOBIX, PREZISTA, REYATAZ, SPORANOX, STRIBILD, SYMTUZA, TOLSURA, TUKYSA, TYBOST, VIRACEPT, ZYDELIG |
Opioids (Extended Release)/Antipsychotics; Phenothiazines SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics with CNS depressants such as antipsychotics, including phenothiazine derivatives, to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
BUPRENORPHINE, BUTRANS, CONZIP, FENTANYL, HYDROCODONE BITARTRATE ER, HYDROMORPHONE ER, HYSINGLA ER, MORPHINE SULFATE ER, MS CONTIN, NUCYNTA ER, OXYCODONE HCL ER, OXYCONTIN, OXYMORPHONE HCL ER, TRAMADOL HCL ER, XTAMPZA ER |
Slt Opioids (Immediate Release)/Antipsychotics;Phenothiazine SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics with CNS depressants such as antipsychotics, including phenothiazine derivatives, to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
APADAZ, BELBUCA, BELLADONNA-OPIUM, BENZHYDROCODONE-ACETAMINOPHEN, BUPRENORPHINE HCL, BUTORPHANOL TARTRATE, DILAUDID, DSUVIA, DURAMORPH, ENDOCET, FENTANYL CITRATE, FENTANYL CITRATE-0.9% NACL, FENTANYL CITRATE-D5W, FENTANYL CITRATE-STERILE WATER, FENTANYL CITRATE-WATER, FENTANYL-BUPIVACAINE-0.9% NACL, FENTANYL-BUPIVACAINE-NACL, FENTANYL-ROPIVACAINE-0.9% NACL, FENTANYL-ROPIVACAINE-NACL, HYDROCODONE BITARTRATE, HYDROCODONE-ACETAMINOPHEN, HYDROCODONE-IBUPROFEN, HYDROMORPHONE HCL, HYDROMORPHONE HCL-0.9% NACL, HYDROMORPHONE HCL-D5W, HYDROMORPHONE HCL-NACL, HYDROMORPHONE HCL-WATER, INFUMORPH, MITIGO, MORPHINE SULFATE, MORPHINE SULFATE-0.9% NACL, MORPHINE SULFATE-NACL, NALBUPHINE HCL, NALOCET, NUCYNTA, OLINVYK, OPIUM TINCTURE, OXYCODONE HCL, OXYCODONE HYDROCHLORIDE, OXYCODONE-ACETAMINOPHEN, OXYMORPHONE HCL, PENTAZOCINE-NALOXONE HCL, PERCOCET, PRIMLEV, PROLATE, REMIFENTANIL HCL, ROXICODONE, ROXYBOND, SUFENTANIL CITRATE, ULTIVA |
Meperidine (IR)/Selected Antipsychotics; Phenothiazines SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids such as meperidine and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids such as meperidine and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics such as meperidine with CNS depressants such as antipsychotics, including phenothiazine derivatives, to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
DEMEROL, MEPERIDINE HCL, MEPERIDINE HCL-0.9% NACL |
Codeine; Levorphanol (IR)/Slt Antipsychotics; Phenothiazines SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids such as codeine and levorphanol and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids such as codeine and levorphanol and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics such as codeine and levorphanol with CNS depressants such as antipsychotics, including phenothiazine derivatives, to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
ACETAMIN-CAFF-DIHYDROCODEINE, ACETAMINOPHEN-CODEINE, ASA-BUTALB-CAFFEINE-CODEINE, ASCOMP WITH CODEINE, BUTALB-ACETAMINOPH-CAFF-CODEIN, CARISOPRODOL-ASPIRIN-CODEINE, CODEINE PHOSPHATE, CODEINE SULFATE, DIHYDROCODEINE BITARTRATE, FIORICET WITH CODEINE, HYDROCODONE BITARTRATE, LEVORPHANOL TARTRATE, TREZIX |
Tramadol (IR)/Selected Antipsychotics; Phenothiazines SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of opioids such as tramadol and antipsychotics, including phenothiazine derivatives, may result in additive CNS depression.(1) CLINICAL EFFECTS: Concurrent use of opioids such as tramadol and other CNS depressants, such as antipsychotics, including phenothiazine derivatives, may result in profound sedation, respiratory depression, coma, and/or death.(1) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Limit prescribing opioid analgesics such as tramadol with CNS depressants such as antipsychotics, including phenothiazine derivatives, to patients for whom alternatives are inadequate.(1) If concurrent use is necessary, limit the dosages and duration of each drug to the minimum possible while achieving the desired clinical effect. If starting a CNS depressant (for an indication other than epilepsy) with an opioid analgesic, prescribe a lower initial dose of the CNS depressant than indicated in the absence of an opioid and titrate based upon clinical response. If an opioid analgesic is indicated in a patient already taking a CNS depressant, prescribe a lower dose of the opioid and titrate based upon clinical response.(1) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(2) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(3) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(4) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(5) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(6) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(7) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(8) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(9) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(10) |
QDOLO, TRAMADOL HCL, TRAMADOL HCL-ACETAMINOPHEN |
Selected Opioids for MAT/Selected Antipsychotics SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of buprenorphine or diacetylmorphine and antipsychotics may result in additive CNS depression.(1-3) CLINICAL EFFECTS: Concurrent use of buprenorphine or diacetylmorphine and antipsychotics may result in profound sedation, respiratory depression, coma, and/or death.(1-3) PREDISPOSING FACTORS: Concurrent use of alcohol or other CNS depressants may increase the risk of adverse effects. PATIENT MANAGEMENT: Medication assisted treatment (MAT) with buprenorphine or diacetylmorphine is not contraindicated in patients taking CNS depressants, such as antipsychotics; however, gradual tapering or decreasing to the lowest effective dose of the antipsychotic may be appropriate. Ensure that other health care providers prescribing other CNS depressants are aware of the patient's buprenorphine or diacetylmorphine treatment.(2) Respiratory depression can occur at any time during opioid therapy, especially during therapy initiation and following dosage increases. Consider this risk when using concurrently with other agents that may cause CNS depression.(4) Monitor patients receiving concurrent therapy for unusual dizziness or lightheadedness, extreme sleepiness, slowed or difficult breathing, or unresponsiveness.(1) Discuss naloxone with all patients when prescribing or renewing an opioid analgesic or medicine to treat opioid use disorder (OUD). Consider prescribing naloxone to patients prescribed medicines to treat OUD or opioid analgesics (such as those taking CNS depressants) who are at increased risk of opioid overdose and when a patient has household members/close contacts at risk for accidental overdose.(5) DISCUSSION: A nested case-control study looked at the relationship between antipsychotic use and risk of acute respiratory failure. Current use of antipsychotics was associated with a 2.33-fold increase in risk of respiratory failure compared to no use of antipsychotics. The risk was also significantly increased in patients with recent use of antipsychotics (within the past 15-30 days, OR = 1.79) and recent past use (within 31-90 days OR = 1.41). The risk increased with higher doses and longer duration of use.(6) Between 2002 and 2014, the number of patients receiving an opioid analgesic increased 8%, from 75 million to 81 million patients, and the number of patients receiving a benzodiazepine increased 31%, from 23 million to 30 million patients. During this time, the proportion of patients receiving concurrent therapy increased 31%, from 23 million to 30 million patients.(7) From 2004 to 2011, the rate of nonmedical use-related emergency room visits involving both opioids and benzodiazepines increased from 11 to 34.2 per 100,000 and drug overdose deaths involving both opioids and benzodiazepines increased from 0.6 to 1.7 per 100,000. The proportion of prescription opioid analgesic deaths which also involved benzodiazepines increased from 18% to 31% during this time.(8) A prospective observational cohort study in North Carolina found that the rates of overdose death among patients co-dispensed opioid analgesics and benzodiazepines were 10 times higher than patients receiving opioid analgesics alone.(9) A case-cohort study of VA data from 2004-2009 found that the risk of death from overdose increased with concomitant opioid analgesics and benzodiazepines. Compared to patients with no history of benzodiazepines, patients with a history of benzodiazepine use (hazard ratio [HR] = 2.33) and patients with a current benzodiazepine prescription (HR=3.86) had an increased risk of fatal overdose.(10) A study found that opioid analgesics contributed to 77% of deaths in which benzodiazepines were determined to be a cause of death and that benzodiazepines contributed to 30% of deaths in which opioid analgesics were determined to be a cause of death. This study also found that other CNS depressants (including barbiturates, antipsychotic and neuroleptic drugs, antiepileptic and antiparkinsonian drugs, anesthetics, autonomic nervous system drugs, and muscle relaxants) were contributory to death in many cases where opioid analgesics were also implicated.(11) A study found that alcohol was involved in 18.5% of opioid analgesic abuse-related ED visits and 22.1 percent of opioid analgesic-related deaths.(12) Selected antipsychotics linked include: amsulpride, chlorpromazine, chlorprothixene, clozapine, droperidol, haloperidol, iloperidone, mesoridazine, paliperidone, pimavanserin, pimozide, pipamperone, promethazine, quetiapine, sertindole, sulpiride, sultopride, thioridazine, ziprasidone, and zuclopenthixol. |
BRIXADI, BUPRENORPHINE HCL, BUPRENORPHINE-NALOXONE, SUBLOCADE, SUBOXONE, ZUBSOLV |
Amisulpride/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Amisulpride has been shown to prolong the QT interval. Concurrent use with QT prolonging agents may result in additive effects on the QT interval.(1) CLINICAL EFFECTS: The concurrent use of amisulpride with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Use caution when using amisulpride concurrently with other agents that can prolong the QT interval. Amisulpride may cause a dose and concentration dependent increase in the QTc interval. When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy. ECG monitoring is recommended in patients with pre-existing arrhythmias or cardiac conduction disorders; electrolyte abnormalities; congestive heart failure; or in patients taking medications or with other medical conditions known to prolong the QT interval. Correct any electrolyte abnormalities.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting.(2) DISCUSSION: QT prolongation and torsades de pointes have been reported with amisulpride. In a study in 40 patients with post operative nausea and vomiting, amisulpride increased baseline QTcF by 5 msec after a 2-minute intravenous infusion of 5 mg and by 23.4 msec after an 8-minute intravenous infusion of 40 mg. Based on an exposure-response relationship, it is expected that a 10 mg intravenous infusion over 1 minute may increase the QTcF by 13.4 msec.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
BARHEMSYS |
Osilodrostat/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Osilodrostat has been shown to prolong the QT interval. Concurrent use with QT prolonging agents may result in additive effects on the QT interval.(1) CLINICAL EFFECTS: The concurrent use of osilodrostat with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Use caution when using osilodrostat concurrently with other agents that can prolong the QT interval and consider more frequent ECG monitoring. A dose-dependent QT interval prolongation was noted in clinical studies. Prior to initiating therapy with osilodrostat, obtain a baseline ECG and monitor for QTc interval changes thereafter. Consider temporary discontinuation of therapy if the QTc interval increases > 480 msec. When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting.(2) DISCUSSION: QTc prolongation has been reported with osilodrostat. In a thorough QT study in 86 healthy patients, osilodrostat increased baseline QTcF by 1.73 msec at a 10 mg dose and 25.38 msec at a 150 mg dose (up to 2.5 times the maximum recommended dosage). The predicted mean placebo-corrected QTcF at the highest recommended dose in clinical practice (30 mg twice daily) was estimated as 5.3 msec.(1) In a clinical study, five patients (4%) were reported to have an event of QT prolongation, three patients (2%) had a QTcF increase of > 60 msec from baseline, and 18 patients (13%) had a new QTcF value of > 450 msec.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
ISTURISA |
Oxaliplatin/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Concurrent use of oxaliplatin with agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of oxaliplatin with agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Avoid the concurrent use of oxaliplatin in patients with congenital long QT syndrome. ECG monitoring is recommended if oxaliplatin therapy is initiated in patients with congestive heart failure, bradyarrhythmias, drugs known to prolong the QT interval, and electrolyte abnormalities.(1) When concurrent therapy cannot be avoided, obtain ECGs and electrolyte values (serum calcium, magnesium, and potassium) prior to the start of treatment, after initiation of any drug known to prolong the QT interval, and periodically monitor during therapy. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Prescribing information for oxaliplatin states post-marketing cases of QT prolongation and ventricular arrhythmias, including fatal Torsades de Pointes, have been reported.(1) Case reports have documented QT prolongation in patients with varying cancer indications for oxaliplatin.(3-6) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(7) |
OXALIPLATIN |
Selpercatinib/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Selpercatinib prolongs the QTc interval.(1) Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(2,3) CLINICAL EFFECTS: The concurrent use of selpercatinib with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(2,3) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: Selpercatinib prolongs the QT interval. An increase in QT interval to > 500 ms was measured in 6% of patients and increase in the QT interval of at least 60 ms over baseline was measured in 15% of patients. Monitor patients at significant risk of developing QT prolongation, including patients with known long QT syndromes, clinically significant bradyarrhythmias, and severe or uncontrolled heart failure. Assess QT interval, electrolytes, and TSH at baseline and periodically during treatment. Correct hypokalemia, hypomagnesemia, and hypocalcemia prior to initiation and during treatment. Dose adjustments (1): For grade 3 QT interval prolongation, withhold selpercatinib until recovery to baseline or grade 0 or 1. Resume at a reduced dose. -1st dose reduction: For patients weighing less than 50 kg: 80 mg twice daily. For patients weighing 50 kg or greater: 120 mg twice daily. -2nd dose reduction: For patients weighing less than 50 kg: 40 mg twice daily. For patients weighing 50 kg or greater: 80 mg twice daily. -3rd dose reduction: For patients weighing less than 50 kg: 40 mg once daily. For patients weighing 50 kg or greater: 40 mg twice daily. -For grade 4 QT prolongation, discontinue selpercatinib. DISCUSSION: The effect of selpercatinib on the QT interval was evaluated in a thorough QT study in healthy subjects. The largest mean increase in QT is predicted to be 10.6 ms (upper 90% confidence interval: 12.1 ms) at the mean steady state maximum concentration (Cmax) observed in patients after administration of 160 mg twice daily. The increase in QT was concentration-dependent. Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(2) |
RETEVMO |
Galantamine/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Galantamine may reduce heart rate by increasing acetylcholine in the heart and increasing vagal tone. Bradycardia has been associated with increased risk of QTc interval prolongation.(1) Concurrent use of galantamine with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(2) CLINICAL EFFECTS: The use of galantamine in patients maintained on agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(2) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, advanced age or when receiving concomitant treatment with an inhibitor of CYP3A4.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: The UK manufacturer of galantamine states that it should be used with caution in patients treated with drugs that affect the QTc interval.(2) If concurrent therapy is warranted, monitor ECG more frequently and consider obtaining serum calcium, magnesium, and potassium levels at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Therapeutic doses of galantamine have been reported to cause QTc prolongation in patients.(2) An 85 year old male with dementia was restarted on galantamine 8 mg daily after a 2-week treatment interruption due to a syncopal episode that occurred 3 months previously. During his prior syncopal episode, he was hypotensive and bradycardic, but QTc interval was normal. After restarting galantamine, he was found to be hypotension and bradycardiac again, and QTc interval was significantly prolonged to 503 msec, over 60 msec longer than when he was off galantamine. Galantamine was discontinued and his QTc interval returned to baseline.(4) A 47 year old schizophrenic male experienced prolongation of the QTc interval to 518 msec after galantamine was increased from 8 mg daily to 12 mg daily. Although he was also on quetiapine and metoprolol, he had been stable on his other medications. His QTc interval normalized after galantamine was stopped.(5) The European pharmacovigilance (Eudravigilance) database contains 14 reports of torsades de pointe in patients on galantamine as of October 2019.(1) A pharmacovigilance study based on the FDA Adverse Event Reporting System (FAERS) database found that, of a total of 33,626 cases of TdP/QT prolongation reported between January 2004 and September 2022, 54 cases occurred in patients on galantamine. The disproportionality analysis found a ROR = 5.12, 95% CI (3.92,6.68) and a PRR = 5.11, chi-square = 175.44.(6) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(7) |
GALANTAMINE ER, GALANTAMINE HBR, GALANTAMINE HYDROBROMIDE, ZUNVEYL |
Siponimod/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Siponimod is a sphingosine-1-phosphate (S1P) receptor modulator. Initiation of siponimod has a negative chronotropic effect. Siponimod blocks the capacity of lymphocytes to egress from lymph nodes, reducing the number of lymphocytes in peripheral blood. The mechanism by which siponimod exerts therapeutic effects in multiple sclerosis is unknown, but may involve reduction of lymphocyte migration into the central nervous system.(1,2) CLINICAL EFFECTS: The heart rate lowering effect of siponimod starts within an hour, and the Day 1 decline is maximal at approximately 3-4 hours. This leads to a mean decrease in heart rate of 5-6 beats per minute after the first dose. The first dose has also been associated with heart block. With continued up-titration, further heart rate decreases are seen on subsequent days, with maximal decrease from Day 1-baseline reached on Day 5-6. Symptomatic bradycardia has been observed. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes.(1) PREDISPOSING FACTORS: Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to siponimod initiation, factors associated with QTc prolongation (e.g. hypokalemia, hypomagnesemia), or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to siponimod. The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: Prior to initiation of siponimod, obtain an ECG to determine if preexisting conduction abnormalities are present.(1) Advice from a cardiologist is recommended in patients with preexisting heart and cerebrovascular conditions, prolonged QTc interval before or during the 6 hour observation, risk factors for QT prolongation, concurrent therapy with QT prolonging drugs or drugs that slow the heart rate or AV conduction.(1) In patients with heart rate (HR) less than 55 beats per minute (bpm), first- or second-degree AV block, or history of myocardial infarction or heart failure, first dose monitoring is recommended with hourly pulse and blood pressure to monitor for bradycardia for the first 6 hours. ECG monitoring is recommended prior to dosing and at the end of the observation period.(1) Additional US monitoring recommendations include: If HR is less than 45 bpm, the heart rate 6 hours postdose is at the lowest value postdose or if the ECG shows new onset of second degree or higher AV block at the end of the monitoring period, then monitoring should continue until the finding has resolved. If patient requires treatment for symptomatic bradycardia, second-degree or higher AV block, or QTc interval greater than or equal to 500 msec, perform continuous overnight ECG monitoring. Repeat the first dose monitoring strategy for the second dose of siponimod. If a titration dose is missed or if 4 or more consecutive daily doses are missed during maintenance treatment, reinitiate Day 1 of the dose titration and follow titration monitoring recommendations. Patient will need to be observed in the doctor's office or other facility for at least 6 hours after the first dose and after reinitiation if treatment is interrupted or discontinued for certain periods. Consult the prescribing information for full monitoring recommendations. United Kingdom recommendations:(3) In certain patients, it is recommended that an electrocardiogram (ECG) is obtained prior to dosing and at the end of the observation period. If post-dose bradyarrhythmia or conduction-related symptoms occur or if ECG 6 hours post-dose shows new onset second-degree or higher AV block or QTc > 500 msec, appropriate management should be initiated and observation continued until the symptoms/findings have resolved. If pharmacological treatment is required, monitoring should be continued overnight and 6-hour monitoring should be repeated after the second dose. During the first 6 days of treatment, if a titration dose is missed on one day, treatment needs to be re-initiated with a new titration pack. If there is a missed dose after day 6 the prescribed dose should be taken at the next scheduled time; the next dose should not be doubled. If maintenance treatment is interrupted for 4 or more consecutive daily doses, siponimod needs to be re-initiated with a new titration pack.(1,2) DISCUSSION: After the first dose of siponimod, heart rate decrease may begin within an hour. Decline is usually maximal at approximately 3-4 hours. With continued, chronic dosing, heart rate gradually returns to baseline in about 10 days.(1,2) A transient, dose-dependent decrease in heart rate was observed during the initial dosing phase of siponimod, which plateaued at doses greater than or equal to 5 mg, and bradyarrhythmic events (AV blocks and sinus pauses) were detected at a higher incidence under siponimod treatment than placebo. AV blocks and sinus pauses occurred above the recommended dose of 2 mg, with notably higher incidence under non-titrated conditions compared to dose titration conditions.(1) |
MAYZENT |
Ponesimod/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Ponesimod is a sphingosine 1-phosphate (S1P) receptor 1 modulator. Initiation of ponesimod has a negative chronotropic effect leading to a mean decrease in heart rate of 6 beats per minute (bpm) after the first dose. The first dose has also been associated with heart block.(1) CLINICAL EFFECTS: After a dose of ponesimod, a decrease in heart rate typically begins within an hour and reaches its nadir within 2-4 hours. The heart rate typically recovers to baseline levels 4-5 hours after administration. All patients recovered from bradycardia. The conduction abnormalities typically were transient, asymptomatic, and resolved within 24 hours. Second- and third-degree AV blocks were not reported. With up-titration after Day 1, the post-dose decrease in heart rate is less pronounced. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes.(1,2) PREDISPOSING FACTORS: Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to ponesimod initiation, factors associated with QTc prolongation, or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to ponesimod.(1) The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Prior to initiation of ponesimod, obtain an ECG to determine if preexisting conduction abnormalities are present. Ponesimod is generally not recommended in patients who are receiving concurrent treatment with a QT prolonging agent, anti-arrhythmic drugs, or drugs that may decrease heart rate. Consultation with a cardiologist is recommended.(1) In patients with heart rate (HR) less than 55 beats per minute (bpm), first- or second-degree AV block, or history of myocardial infarction or heart failure, monitor patients for 4 hours after the first dose for signs and symptoms of bradycardia with a minimum of hourly pulse and blood pressure measurements. Obtain an ECG in these patients prior to dosing and at the end of the 4-hour observation period.(1) Additional US monitoring recommendations include: If HR is less than 45 bpm, the heart rate 4 hours post-dose is at the lowest value post-dose or if the ECG shows new onset of second degree or higher AV block at the end of the monitoring period, then monitoring should continue until the finding has resolved. If patient requires treatment for symptomatic bradycardia, second-degree or higher AV block, or QTc interval greater than or equal to 500 msec, perform continuous overnight ECG monitoring and repeat the first dose monitoring strategy for the second dose of ponesimod. Consult the prescribing information for full monitoring recommendations. If fewer than 4 consecutive doses are missed during titration: resume treatment with the first missed titration dose and resume the titration schedule at that dose and titration day. If fewer than 4 consecutive doses are missed during maintenance: resume treatment with the maintenance dosage. If 4 or more consecutive daily doses are missed during treatment initiation or maintenance treatment, reinitiate Day 1 of the dose titration (new starter pack) and follow first-dose monitoring recommendations. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: After the first dose of ponesimod, heart rate decrease may begin within the first hour. Decline is usually maximal at approximately 4 hours. With continued, chronic dosing, post-dose decrease in heart rate is less pronounced. Heart rate gradually returns to baseline in about 4-5 hours.(1) |
PONVORY |
Ozanimod/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Ozanimod is a sphingosine 1-phosphate (S1P) receptor modulator. Initiation of ozanimod has a negative chronotropic effect leading to a mean decrease in heart rate of 13 beats per minute (bpm) after the first dose. The first dose has also been associated with heart block.(1,2) Ozanimod blocks the capacity of lymphocytes to egress from lymph nodes, reducing the number of lymphocytes in peripheral blood. The mechanism by which ozanimod exerts therapeutic effects in multiple sclerosis is unknown but may involve the reduction of lymphocyte migration into the central nervous system. CLINICAL EFFECTS: The initial heart rate lowering effect of ozanimod usually occurs within 5 hours. With continued up-titration, the maximal heart rate effect of ozanimod occurred on Day 8. Symptomatic bradycardia and heart block, including third degree block, have been observed. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes.(1,2) PREDISPOSING FACTORS: Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to ozanimod initiation, factors associated with QTc prolongation (e.g. hypokalemia, hypomagnesemia), or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to ozanimod.(1,2) The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: Prior to initiation of ozanimod, obtain an ECG to determine if preexisting conduction abnormalities are present. Patients with preexisting cardiac conditions, significant QT prolongation (QTc >450 msec in males, >470 msec in females), concurrent Class Ia or Class III antiarrhythmics, or receiving concurrent treatment with a QT prolonging agent at the time ozanimod is initiated or resumed should be referred to a cardiologist.(1) The US recommendations state: Dose titration is recommended with initiation of ozanimod due to transient decrease in heart rate and AV conduction delays.(1) United Kingdom recommendations:(2) Due to the risk of transient decreases in HR with the initiation of ozanimod, first dose, 6-hour monitoring for signs and symptoms of symptomatic bradycardia is recommended in patients with resting HR <55 bpm, second-degree [Mobitz type I] AV block or a history of myocardial infarction or heart failure. Patients should be monitored with hourly pulse and blood pressure measurement during this 6-hour period. An ECG prior to and at the end of this 6-hour period is recommended. Additional monitoring after 6 hours is recommended in patients with: heart rate less than 45 bpm, heart rate at the lowest value post-dose (suggesting that the maximum decrease in HR may not have occurred yet), evidence of a new onset second-degree or higher AV block at the 6-hour post dose ECG, or QTc interval greater than 500 msec. In these cases, appropriate management should be initiated and observation continued until the symptoms/findings have resolved. Instruct patients to report any irregular heartbeat, dizziness, or fainting.(2,3) DISCUSSION: After the first dose of ozanimod heart rate decline is usually maximal at approximately 5 hours, returning to baseline at 6 hours. With continued, chronic dosing, maximum heart rate effect occurred on day 8.(1,2) |
ZEPOSIA |
Triclabendazole/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Triclabendazole has been observed to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) Triclabendazole is partially metabolized by CYP1A2. Ciprofloxacin, propafenone, and vemurafenib are CYP1A2 inhibitors and may inhibit the CYP1A2 mediated metabolism of triclabendazole. CLINICAL EFFECTS: The concurrent use of triclabendazole with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsades de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsades de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) Hepatic impairment and concurrent use of CYP1A2 inhibitors may raise triclabendazole levels and increase the risk of QT prolongation.(1) PATIENT MANAGEMENT: The manufacturer of triclabendazole states concurrent use with agents known to prolong the QT interval should be used with caution. Monitor ECG in patients with a history of QTc prolongation, symptoms of long QT interval, electrolyte imbalances, concurrent CYP1A2 inhibitors, or hepatic impairment. If signs of a cardiac arrhythmia develop, stop treatment with triclabendazole and monitor ECG.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a thorough QT study, a dose-dependent prolongation in the QTc interval was observed with triclabendazole. The largest placebo-corrected mean increase in QTc was 9.2 msec (upper limit of confidence interval (UCI): 12.2 msec) following oral administration of 10 mg/kg triclabendazole twice daily (at the recommended dose), and the largest placebo-corrected mean increase in QTc was 21.7 msec (UCI: 24.7 msec) following oral administration of 10 mg/kg triclabendazole twice daily for 3 days (3 times the approved recommended dosing duration).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval but are generally accepted to have a risk of causing Torsades de Pointes. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or Torsades de Pointes in clinical trials and/or post-marketing reports.(3) |
EGATEN |
Etrasimod/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Etrasimod is a sphingosine-1-phosphate (S1P) receptor modulator. Initiation of etrasimod has a negative chronotropic effect, which may increase the risk of developing QT prolongation. CLINICAL EFFECTS: Initiation of etrasimod may result in a transient decrease in heart rate. A mean decrease in heart rate of 7.2 (8.98) beats per minute was seen 2 to 3 hours after the first dose. The first dose has also been associated with heart block. Symptomatic bradycardia has been observed. Bradycardia may be associated with an increase in the QTc interval, increasing the risk for torsades de pointes.(1) PREDISPOSING FACTORS: Pre-existing cardiovascular or cerebrovascular disease (e.g. heart failure, ischemic heart disease, history of myocardial infarction, stroke, or heart block), severe untreated sleep apnea, a prolonged QTc interval prior to etrasimod initiation, factors associated with QTc prolongation (e.g. hypokalemia, hypomagnesemia), or concomitant treatment with QT prolonging agents may increase risk for cardiovascular toxicity due to etrasimod. The risk of QT prolongation or torsades de pointes may also be increased in patients with a history of torsades de pointes, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of the QT prolonging drug are additional risk factors for torsades de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: Prior to initiation of etrasimod, obtain an ECG to determine if preexisting conduction abnormalities are present.(1) Advice from a cardiologist is recommended in patients with preexisting heart and cerebrovascular conditions, prolonged QTc interval, risk factors for QT prolongation, concurrent therapy with QT prolonging drugs or drugs that slow the heart rate or AV conduction.(1) Monitor blood pressure during treatment.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Initiation of etrasimod may result in a transient decrease in heart rate or transient AV conduction delays.(1) A transient decrease in heart rate was observed during the initial dosing phase of etrasimod and bradyarrhythmic events (AV blocks) were detected at a higher incidence under etrasimod treatment than placebo.(1) |
VELSIPITY |
Dexmedetomidine Sublingual/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Dexmedetomidine sublingual has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of dexmedetomidine sublingual with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of dexmedetomidine sublingual states that concurrent use should be avoided with other agents known to prolong the QTc interval.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a QT study, dexmedetomidine sublingual had a concentration dependent effect on the QT interval. The mean QTc (95% confidence interval) increased from baseline by 6 (7) msec with a 120 mcg single dose, 8 (9) msec with 120 mcg followed by 2 additional doses of 60 mcg (total 3 doses), 8 (11) msec with a single 180 mcg dose, and 11 (14) msec with 180 mcg followed by 2 additional doses of 90 mcg (total 3 doses), respectively.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
IGALMI |
Mavorixafor/QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Mavorixafor has been shown to prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of mavorixafor with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of mavorixafor states that concurrent use of mavorixafor with other agents known to prolong the QTc interval should be approached with caution. ECG monitoring is recommended prior to initiation, during concurrent therapy, and as clinically indicated with other agents known to prolong the QTc interval.(1) If QT prolongation occurs, a dose reduction or discontinuation of mavorixafor may be required.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a thorough QT study, a dose of mavorixafor 800 mg increased the mean QTc 15.6 msec (upper 90% CI = 19.9 msec). The dose of mavorixafor was 2 times the recommended maximum daily dose.(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
XOLREMDI |
Givinostat/Possible QT Prolonging Agents SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Givinostat may prolong the QTc interval. Concurrent use with other agents that prolong the QTc interval may result in additive effects on the QTc interval.(1) CLINICAL EFFECTS: The concurrent use of givinostat with other agents that prolong the QTc interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The manufacturer of givinostat states that the concurrent use of QT prolonging agents should be avoided. If concurrent use cannot be avoided, obtain ECGs prior to initiating givinostat, during concomitant use, and as clinically indicated.(1) If the QTc interval is greater than 500 ms or the change from baseline is greater than 60 ms, withhold givinostat therapy.(1) If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities.(1) Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: In a QT study, the largest mean increase in QTc interval of 13.6 ms (upper confidence interval of 17.1 ms) occurred 5 hours after administration of givinostat 265.8 mg (approximately 5 times the recommended 53.2 mg dose in patients weighing 60 kg or more).(1) Agents that are linked to this monograph may have varying degrees of potential to prolong the QTc interval. Agents linked to this monograph have been shown to prolong the QTc interval either through their mechanism of action, through studies on their effects on the QTc interval, or through reports of QTc prolongation and/or torsades de pointes in clinical trials and/or postmarketing reports.(3) |
DUVYZAT |
The following contraindication information is available for NUPLAZID (pimavanserin tartrate):
Drug contraindication overview.
*Known hypersensitivity to pimavanserin or any of its components.
*Known hypersensitivity to pimavanserin or any of its components.
There are 2 contraindications.
Absolute contraindication.
Contraindication List |
---|
Congenital long QT syndrome |
Senile dementia |
There are 4 severe contraindications.
Adequate patient monitoring is recommended for safer drug use.
Severe List |
---|
Bradycardia |
Hypokalemia |
Hypomagnesemia |
Pregnancy |
There are 3 moderate contraindications.
Clinically significant contraindication, where the condition can be managed or treated before the drug may be given safely.
Moderate List |
---|
Chronic kidney disease stage 4 (severe) GFR 15-29 ml/min |
Chronic kidney disease stage 5 (failure) GFr<15 ml/min |
Kidney disease with likely reduction in glomerular filtration rate (GFr) |
The following adverse reaction information is available for NUPLAZID (pimavanserin tartrate):
Adverse reaction overview.
Adverse effects reported in >=5% of patients receiving pimavanserin in clinical studies include peripheral edema and confusional state.
Adverse effects reported in >=5% of patients receiving pimavanserin in clinical studies include peripheral edema and confusional state.
There are 7 severe adverse reactions.
More Frequent | Less Frequent |
---|---|
None. | None. |
Rare/Very Rare |
---|
Accidental fall Angioedema Circumoral edema Prolonged QT interval Throat constriction Tongue swelling Urticaria |
There are 14 less severe adverse reactions.
More Frequent | Less Frequent |
---|---|
Acute cognitive impairment Peripheral edema |
Constipation Fatigue Gait abnormality Nausea Urinary tract infection |
Rare/Very Rare |
---|
Aggressive behavior Agitation Drowsy Dyspnea Fecal incontinence Hallucinations Skin rash |
The following precautions are available for NUPLAZID (pimavanserin tartrate):
Safety and efficacy of pimavanserin have not been established in pediatric patients.
Contraindicated
Severe Precaution
Management or Monitoring Precaution
Contraindicated
None |
Severe Precaution
None |
Management or Monitoring Precaution
None |
There are no available data on use of pimavanserin in pregnant women. Reproductive animal studies revealed no teratogenic effects when pimavanserin was administered orally during the period of organogenesis at doses up to 10 or 12 times the maximum recommended human dose. However, maternal toxicity and reduced pup survival and body weight were observed when the drug was administered to pregnant rats during pregnancy and lactation at doses 2 times the maximum recommended human dose.
It is not known whether pimavanserin is distributed into human milk or if the drug has any effect on milk production or the nursing infant. The known benefits of breast-feeding should be considered along with the importance of pimavanserin to the woman and any potential adverse effects on the breast-fed infant from either the drug or underlying maternal condition.
In placebo-controlled studies evaluating pimavanserin in patients with Parkinson's disease psychosis, 49% of patients were 65-75 years of age and 31% were older than 75 years of age. In the pooled population of patients enrolled in these studies, 27% had Mini-Mental State Examination (MMSE) scores of 21-24 and 73% of patients had scores of 25 or greater. No clinically important differences in safety or efficacy were noted between these 2 groups.
The following prioritized warning is available for NUPLAZID (pimavanserin tartrate):
WARNING: There may be a slightly increased risk of serious, possibly fatal side effects (such as stroke, heart failure, fast/irregular heartbeat, pneumonia) when this medication is used by older adults with dementia. This medication should only be used to treat a certain mental/mood disorder (psychosis) due to Parkinson's disease. Talk with the doctor about the risks and benefits of treatment with this medication.
WARNING: There may be a slightly increased risk of serious, possibly fatal side effects (such as stroke, heart failure, fast/irregular heartbeat, pneumonia) when this medication is used by older adults with dementia. This medication should only be used to treat a certain mental/mood disorder (psychosis) due to Parkinson's disease. Talk with the doctor about the risks and benefits of treatment with this medication.
The following icd codes are available for NUPLAZID (pimavanserin tartrate)'s list of indications:
Psychosis associated with parkinson's disease | |
F06.0 | Psychotic disorder with hallucinations due to known physiological condition |
F06.2 | Psychotic disorder with delusions due to known physiological condition |
G20 | Parkinson's disease |
Formulary Reference Tool