Please wait while the formulary information is being retrieved.
Drug overview for INLURIYO (imlunestrant tosylate):
Generic name: IMLUNESTRANT TOSYLATE (IM-loo-NES-trant)
Drug class: Antiestrogen
Therapeutic class: Antineoplastics
Imlunestrant is an estrogen receptor antagonist.
No enhanced Uses information available for this drug.
Generic name: IMLUNESTRANT TOSYLATE (IM-loo-NES-trant)
Drug class: Antiestrogen
Therapeutic class: Antineoplastics
Imlunestrant is an estrogen receptor antagonist.
No enhanced Uses information available for this drug.
DRUG IMAGES
No Image Available
The following indications for INLURIYO (imlunestrant tosylate) have been approved by the FDA:
Indications:
ER-positive, HER2-negative, ESR1-mutated breast cancer
Professional Synonyms:
None.
Indications:
ER-positive, HER2-negative, ESR1-mutated breast cancer
Professional Synonyms:
None.
The following dosing information is available for INLURIYO (imlunestrant tosylate):
*Select patients for treatment based on the presence of ESR1mutations.
*Administer orally on an empty stomach at least 2 hours before food, or 1 hour after food. Swallow the tablets whole. Do not split, crush, or chew thetablets.
*The recommended dosage is 400 mg orally once daily until disease progression or unacceptable toxicity.
*Reduce the dose in patients with moderate or severe hepaticimpairment.
*Dosage modifications may be required for adverse reactions and drug interactions. See Full Prescribing Information for additional information.
*Pre/perimenopausal women and men should receive a gonadotropin-releasing hormone agonist (GnRH) according tocurrent clinical practice standards.
*Administer orally on an empty stomach at least 2 hours before food, or 1 hour after food. Swallow the tablets whole. Do not split, crush, or chew thetablets.
*The recommended dosage is 400 mg orally once daily until disease progression or unacceptable toxicity.
*Reduce the dose in patients with moderate or severe hepaticimpairment.
*Dosage modifications may be required for adverse reactions and drug interactions. See Full Prescribing Information for additional information.
*Pre/perimenopausal women and men should receive a gonadotropin-releasing hormone agonist (GnRH) according tocurrent clinical practice standards.
No enhanced Administration information available for this drug.
| DRUG LABEL | DOSING TYPE | DOSING INSTRUCTIONS |
|---|---|---|
| INLURIYO 200 MG TABLET | Maintenance | Adults take 2 tablets (400 mg) by oral route once daily |
No generic dosing information available.
The following drug interaction information is available for INLURIYO (imlunestrant tosylate):
There are 2 contraindications.
These drug combinations generally should not be dispensed or administered to the same patient. A manufacturer label warning that indicates the contraindication warrants inclusion of a drug combination in this category, regardless of clinical evidence or lack of clinical evidence to support the contraindication.
| Drug Interaction | Drug Names |
|---|---|
| Colchicine (for Cardioprotection)/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: P-glycoprotein (P-gp) inhibitors may affect the transport of colchicine, a P-gp substrate.(1,2) CLINICAL EFFECTS: Concurrent use of a P-gp inhibitor may result in elevated levels of and toxicity from colchicine. Symptoms of colchicine toxicity include abdominal pain; nausea or vomiting; severe diarrhea; muscle weakness or pain; numbness or tingling in the fingers or toes; myelosuppression; feeling weak or tired; increased infections; and pale or gray color of the lips, tongue, or palms of hands.(1,2) PREDISPOSING FACTORS: This interaction is expected to be more severe in patients with renal or hepatic impairment.(1,2) PATIENT MANAGEMENT: The manufacturer of colchicine used for cardiovascular risk reduction states that concurrent use of colchicine with P-gp inhibitors is contraindicated.(1) DISCUSSION: There are several reports of colchicine toxicity(3-5) and death(6,7) following the addition of clarithromycin to therapy. In a retrospective review of 116 patients who received clarithromycin and colchicine during the same hospitalization, 10.2% (9/88) of patients who received simultaneous therapy died, compared to 3.6% (1/28) of patients who received sequential therapy.(8) An FDA review of 117 colchicine-related deaths that were not attributable to overdose found that 60 deaths (51%) involved concurrent use of clarithromycin.(2) There is one case report of colchicine toxicity with concurrent erythromycin.(9) In a study in 20 subjects, pretreatment with diltiazem (240 mg daily for 7 days) increased the maximum concentration (Cmax) and area-under-curve (AUC) of a single dose of colchicine (0.6 mg) by 44.2% (range -46.6% to 318.3%) and by 93.4% (range -30.2% to 338.6%), respectively.(1) In a study in 24 subjects, pretreatment with verapamil (240 mg twice daily for 7 days) increased the Cmax and AUC of a single dose of colchicine (0.6 mg) by 40.1% (range -47.1% to 149.5%) and by 103.3% (range -9.8% to 217.2%), respectively.(1) Colchicine toxicity has been reported with concurrent use of CYP3A4 and P-gp inhibitors such as clarithromycin, cyclosporine, diltiazem, erythromycin, and verapamil.(1,2) P-gp inhibitors include abrocitinib, amiodarone, asciminib, asunaprevir, azithromycin, belumosudil, capmatinib, carvedilol, cimetidine, cyclosporine, danicopan, daridorexant, deutivacaftor, diltiazem, diosmin, dronedarone, erythromycin, flibanserin, fluvoxamine, fostamatinib, glecaprevir/pibrentasvir, imlunestrant, ivacaftor, lapatinib, ledipasvir, mavorixafor, neratinib, osimertinib, pirtobrutinib, propafenone, quinidine, ranolazine, schisandra, selpercatinib, sotorasib, tepotinib, valbenazine, velpatasvir, vemurafenib, venetoclax, verapamil, vimseltinib, and voclosporin.(1,10,11) |
LODOCO |
| Ubrogepant (Greater Than 50 mg)/P-gp or BCRP Inhibitors SEVERITY LEVEL: 1-Contraindicated Drug Combination: This drug combination is contraindicated and generally should not be dispensed or administered to the same patient. MECHANISM OF ACTION: Inhibitors of P-glycoprotein (P-gp) or BCRP may increase the absorption of ubrogepant.(1) CLINICAL EFFECTS: The concurrent administration of ubrogepant with an inhibitor of P-glycoprotein or BCRP may result in elevated levels of ubrogepant.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer recommends a dosage adjustment of ubrogepant when coadministered with P-gp or BCRP inhibitors. The dose of ubrogepant should not exceed 50 mg for initial dose. If a second dose of ubrogepant is needed, the dose should not exceed 50 mg.(1) The manufacturer of vimseltinib states concurrent use with P-gp substrates should be avoided. If concurrent use cannot be avoided, take vimseltinib at least 4 hours prior to ubrogepant.(3) DISCUSSION: Ubrogepant is a substrate of P-gp and BCRP transporters. Use of P-gp or BCRP inhibitors may increase the exposure of ubrogepant. Clinical drug interaction studies with inhibitors of these transporters were not conducted. The US manufacturer of ubrogepant recommends dose adjustment if ubrogepant is coadministered with P-gp or BCRP inhibitors.(1) BCRP inhibitors linked to this monograph include: belumosudil, clopidogrel, curcumin, eltrombopag, febuxostat, fostemsavir, leniolisib, momelotinib, oteseconazole, pantoprazole, regorafenib, resmetirom, ritonavir, rolapitant, roxadustat, tafamidis, oral tedizolid, turmeric, vadadustat, and zongertinib.(2-5) P-glycoprotein inhibitors linked to this monograph include: asunaprevir, belumosudil, capmatinib, carvedilol, danicopan, daridorexant, imlunestrant, neratinib, osimertinib, propafenone, quinidine, selpercatinib, sofosbuvir/velpatasvir/voxilaprevir, tepotinib, valbenazine, vimseltinib, and voclosporin.(2-5) |
UBRELVY |
There are 11 severe interactions.
These drug interactions can produce serious consequences in most patients. Actions required for severe interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration scheduling, and providing additional patient monitoring. Review the full interaction monograph for more information.
| Drug Interaction | Drug Names |
|---|---|
| Dabigatran/Selected P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Dabigatran etexilate is a substrate for the P-glycoprotein (P-gp) system. Inhibition of intestinal P-gp leads to increased absorption of dabigatran.(1-3) CLINICAL EFFECTS: The concurrent use dabigatran with P-gp inhibitors may lead to elevated plasma levels of dabigatran, increasing the risk for bleeding. PREDISPOSING FACTORS: Factors associated with an increased risk for bleeding include renal impairment, concomitant use of P-gp inhibitors, patient age >74 years, coexisting conditions (e.g. recent trauma) or use of drugs (e.g. NSAIDs) associated with bleeding risk, and patient weight < 50 kg.(1-4) PATIENT MANAGEMENT: Assess renal function and evaluate patient for other pre-existing risk factors for bleeding prior to initiating concurrent therapy. The US manufacturer of dabigatran states that the concurrent use of dabigatran and P-gp inhibitors should be avoided in atrial fibrillation patients with severe renal impairment (CrCl less than 30 ml/min) and in patients with moderate renal impairment (CrCl less than 50 ml/min) being treated for or undergoing prophylaxis for deep vein thrombosis (DVT) or pulmonary embolism (PE). The interaction with P-gp inhibitors can be minimized by taking dabigatran several hours apart from the P-gp inhibitor dose.(1) The concomitant use of dabigatran with P-gp inhibitors has not been studied in pediatric patients but may increase exposure to dabigatran.(1) While the US manufacturer of dabigatran states that no dosage adjustment is necessary in other patients,(1) the Canadian manufacturer of dabigatran states that concomitant use of strong P-gp inhibitors (e.g., glecaprevir-pibrentasvir) is contraindicated. When dabigatran is used for the prevention of venous thromboembolism (VTE) after total hip or knee replacement concurrently with amiodarone, quinidine, or verapamil, the dose of dabigatran should be reduced from 110 mg twice daily to 150 mg once daily. For patients with CrCl less than 50 ml/min on verapamil, a further dabigatran dose reduction to 75 mg once daily should be considered. Verapamil should be given at least 2 hours after dabigatran to minimize the interaction.(2) The UK manufacturer of dabigatran also states the use of dabigatran with strong P-gp inhibitors (e.g., cyclosporine, glecaprevir-pibrentasvir or itraconazole) is contraindicated. Concurrent use of ritonavir is not recommended. When dabigatran is used in atrial fibrillation patients and for treatment of DVT and PE concurrently with verapamil, the UK manufacturer recommends reducing the dose of dabigatran from 150 mg twice daily to 110 mg twice daily, taken simultaneously with verapamil. When used for VTE prophylaxis after orthopedic surgery concurrently with amiodarone, quinidine, or verapamil, the dabigatran loading dose should be reduced from 110 mg to 75 mg, and the maintenance dose should be reduced from 220 mg daily to 150 mg daily, taken simultaneously with the P-gp inhibitor. For patients with CLcr 30-50 mL/min on concurrent verapamil, consider further lowering the dabigatran dose to 75 mg daily.(3) If concurrent therapy is warranted, monitor patients for signs of blood loss, including decreased hemoglobin and/or hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. Consider regular monitoring of hemoglobin, platelet levels, and/or activated partial thromboplastin time (aPTT) or ecarin clotting time (ECT). When applicable, perform agent-specific laboratory test (e.g. INR, aPTT) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. DISCUSSION: When dabigatran was co-administered with amiodarone, the extent and rate of absorption of amiodarone and its active metabolite DEA were essentially unchanged. The dabigatran area-under-curve (AUC) and maximum concentration (Cmax) were increased by about 60% and 50%, respectively;(1,2) however, dabigatran clearance was increased by 65%.(1) Pretreatment with quinidine (200 mg every 2 hours to a total dose of 1000 mg) increased the AUC and Cmax of dabigatran by 53% and 56%, respectively.(1,2) Chronic administration of immediate release verapamil one hour prior to dabigatran dose increased dabigatran AUC by 154%.(4) Administration of dabigatran two hours before verapamil results in a negligible increase in dabigatran AUC.(1) Administration of sofosbuvir-velpatasvir-voxilaprevir (400/100/200 mg daily) increased the Cmax and AUC of a single dose of dabigatran (75 mg) by 2.87-fold and 2.61-fold, respectively.(5) Simultaneous administration of glecaprevir-pibrentasvir (300/120 mg daily) with a single dose of dabigatran (150 mg) increased the Cmax and AUC by 2.05-fold and 2.38-fold, respectively.(6) A retrospective comparative effectiveness cohort study including data from 9,886 individuals evaluated adverse bleeding rates with standard doses of oral anticoagulants with concurrent verapamil or diltiazem in patients with nonvalvular atrial fibrillation and normal kidney function. The study compared rates of bleeding following co-administration of either dabigatran, rivaroxaban, or apixaban with verapamil or diltiazem, compared to co-administration with amlodipine or metoprolol. Results of the study found that concomitant dabigatran use with verapamil or diltiazem was associated with increased overall bleeding (hazard ratio (HR) 1.52; 95% confidence interval (CI), 1.05-2.20, p<0.05) and increased overall GI bleeding (HR 2.16; 95% CI, 1.30-3.60, p<0.05) when compared to amlodipine. When compared to metoprolol, concomitant dabigatran use with verapamil or diltiazem was also associated with increased overall bleeding (HR, 1.43; 95% CI, 1.02-2.00, p<0.05) and increased overall GI bleeding (HR, 2.32; 95% CI, 1.42-3.79, p<0.05). No association was found between increased bleeding of any kind and concurrent use of rivaroxaban or apixaban with verapamil or diltiazem.(7) A summary of pharmacokinetic interactions with dabigatran and amiodarone or verapamil concluded that concurrent use is considered safe if CrCl is greater than 50 ml/min but should be avoided if CrCl is less than 50 ml/min in VTE and less than 30 ml/min for NVAF. Concurrent use with diltiazem was considered safe.(9) P-gp inhibitors include amiodarone, asunaprevir, belumosudil, capmatinib, carvedilol, cimetidine, conivaptan, cyclosporine, daclatasvir, danicopan, daridorexant, diosmin, erythromycin, flibanserin, fostamatinib, ginseng, glecaprevir, imlunestrant, indinavir, itraconazole, ivacaftor, josamycin, lapatinib, ledipasvir, lonafarnib, mavorixafor, neratinib, osimertinib, pibrentasvir, propafenone, quinidine, ranolazine, ritonavir, selpercatinib, sotorasib, telaprevir, telithromycin, tepotinib, tezacaftor, tucatinib, valbenazine, velpatasvir, vemurafenib, verapamil, vimseltinib, voclosporin, and voxilaprevir.(1-9) |
DABIGATRAN ETEXILATE, PRADAXA |
| Topotecan/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of P-glycoprotein may increase the absorption of topotecan.(1) CLINICAL EFFECTS: The concurrent administration of topotecan with an inhibitor of P-glycoprotein may result in elevated levels of topotecan and signs of toxicity. These signs may include but are not limited to anemia, diarrhea, and thrombocytopenia.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of topotecan states that the use of topotecan and P-glycoprotein inhibitors should be avoided. If concurrent use is warranted, carefully monitor patients for adverse effects.(1) DISCUSSION: In clinical studies, the combined use of elacridar (100 mg to 1000 mg) increased the area-under-curve (AUC) of topotecan approximately 2.5-fold.(1) Oral cyclosporine (15 mg/kg) increased the AUC of topotecan lactone and total topotecan to 2-fold to 3-fold of the control group, respectively.(1) P-gp inhibitors linked to this monograph include: adagrasib, amiodarone, asciminib, asunaprevir, azithromycin, belumosudil, bosutinib, carvedilol, cimetidine, clarithromycin, cobicistat, conivaptan, daridorexant, deutivacaftor, diltiazem, diosmin, dronedarone, erythromycin, flibanserin, ginseng, hydroquinidine, imlunestrant, isavuconazonium, itraconazole, ivacaftor, josamycin, ketoconazole, ledipasvir, lonafarnib, mavorixafor, neratinib, osimertinib, pibrentasvir/glecaprevir, propafenone, quinidine, ranolazine, selpercatinib, sotorasib, tepotinib, tucatinib, valbenazine, velpatasvir, vemurafenib, verapamil, vimseltinib, and voclosporin.(2,3) |
HYCAMTIN |
| Pazopanib/Selected Inhibitors of P-gp or BCRP SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Inhibitors of P-glycoprotein (P-gp) or BCRP may increase the absorption of pazopanib.(1) CLINICAL EFFECTS: The concurrent administration of pazopanib with an inhibitor of P-glycoprotein or BCRP may result in elevated levels of pazopanib and signs of toxicity.(1) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(2) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(2) PATIENT MANAGEMENT: The US manufacturer of pazopanib states concurrent use of P-gp inhibitors or BCRP inhibitors should be avoided.(1) Monitor patients for increased side effects from pazopanib. If concurrent therapy is warranted, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Pazopanib is a substrate of P-gp and BCRP. Inhibitors of these transporters are expected to increase pazopanib levels.(1) BCRP inhibitors linked to this monograph include: asciminib, belumosudil, clopidogrel, cyclosporine, curcumin, darolutamide, eltrombopag, enasidenib, febuxostat, fostemsavir, grazoprevir, lazertinib, leflunomide, leniolisib, momelotinib, oteseconazole, pirtobrutinib, regorafenib, resmetirom, ritonavir, rolapitant, roxadustat, tafamidis, teriflunomide, tolvaptan, turmeric, vadadustat, and zongertinib.(1,3-5) P-glycoprotein inhibitors linked to this monograph include: asunaprevir, belumosudil, capmatinib, carvedilol, cyclosporine, danicopan, daridorexant, diltiazem, flibanserin, fostamatinib, ginseng, glecaprevir/pibrentasvir, imlunestrant, isavuconazonium, ivacaftor, ledipasvir, neratinib, sofosbuvir/velpatasvir/voxilaprevir, tepotinib, tezacaftor, ticagrelor, valbenazine, verapamil, vimseltinib, and voclosporin.(3,4) |
PAZOPANIB HCL, VOTRIENT |
| Colchicine (for Gout & FMF)/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: P-glycoprotein (P-gp) inhibitors may affect the transport of colchicine, a P-gp substrate.(1,2) CLINICAL EFFECTS: Concurrent use of a P-gp inhibitor may result in elevated levels of and toxicity from colchicine. Symptoms of colchicine toxicity include abdominal pain; nausea or vomiting; severe diarrhea; muscle weakness or pain; numbness or tingling in the fingers or toes; myelosuppression; feeling weak or tired; increased infections; and pale or gray color of the lips, tongue, or palms of hands.(1,2) PREDISPOSING FACTORS: This interaction is expected to be more severe in patients with renal and/or hepatic impairment(1,2) and in patients who receive concurrent therapy. PATIENT MANAGEMENT: The concurrent use of colchicine with P-gp inhibitors is contraindicated in patients with renal or hepatic impairment.(1-3) Avoid concurrent use in other patients, if possible.(3) In patients without renal or hepatic impairment who are currently taking or have taken a P-gp inhibitor in the previous 14 days, the dosage of colchicine should be reduced. For gout flares, the recommended dosage is 0.6 mg (1 tablet) for one dose. This dose should be repeated no earlier than in 3 days.(1,2) For gout prophylaxis, if the original dosage was 0.6 mg twice daily, use 0.3 mg daily. If the original dosage was 0.6 mg daily, use 0.3 mg every other day.(3-12) For Familial Mediterranean fever (FMF), the recommended maximum daily dose is 0.6 mg (may be given as 0.3 mg twice a day).(1,2) Patients should be instructed to immediately report any signs of colchicine toxicity, such as abdominal pain, nausea/significant diarrhea, vomiting; muscle weakness/pain; numbness/tingling in fingers/toes; unusual bleeding or bruising, infections, weakness/tiredness, or pale/gray color of the lips/tongue/palms of hands. DISCUSSION: There are several reports of colchicine toxicity(4-6) and death(7,8) following the addition of clarithromycin to therapy. In a retrospective review of 116 patients who received clarithromycin and colchicine during the same hospitalization, 10.2% (9/88) of patients who received simultaneous therapy died, compared to 3.6% (1/28) of patients who received sequential therapy.(9) An FDA review of 117 colchicine-related deaths that were not attributable to overdose found that 60 deaths (51%) involved concurrent use of clarithromycin.(2) There is one case report of colchicine toxicity with concurrent erythromycin.(10) In a study in 20 subjects, pretreatment with diltiazem (240 mg daily for 7 days) increased the maximum concentration (Cmax) and area-under-curve (AUC) of a single dose of colchicine (0.6 mg) by 44.2% (range -46.6% to 318.3%) and by 93.4% (range -30.2% to 338.6%), respectively.(1) In a study in 24 subjects, pretreatment with verapamil (240 mg twice daily for 7 days) increased the Cmax and AUC of a single dose of colchicine (0.6 mg) by 40.1% (range -47.1% to 149.5%) and by 103.3% (range -9.8% to 217.2%), respectively.(1) Colchicine toxicity has been reported with concurrent use of CYP3A4 and P-gp inhibitors such as clarithromycin, cyclosporine, diltiazem, erythromycin, and verapamil.(1,2) P-gp inhibitors include abrocitinib, amiodarone, asciminib, asunaprevir, azithromycin, belumosudil, capmatinib, carvedilol, cimetidine, danicopan, daridorexant, deutivacaftor, diltiazem, diosmin, dronedarone, erythromycin, flibanserin, fluvoxamine, fostamatinib, glecaprevir/pibrentasvir, imlunestrant, ivacaftor, lapatinib, ledipasvir, mavorixafor, neratinib, osimertinib, pirtobrutinib, propafenone, quinidine, ranolazine, schisandra, selpercatinib, sotorasib, tepotinib, valbenazine, velpatasvir, vemurafenib, venetoclax, verapamil, vimseltinib, and voclosporin.(1,11,12) |
COLCHICINE, COLCRYS, GLOPERBA, MITIGARE, PROBENECID-COLCHICINE |
| Venetoclax/Selected P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Venetoclax is a substrate for the P-glycoprotein (P-gp) system. P-gp inhibitors may lead to increased levels of venetoclax.(1) CLINICAL EFFECTS: Concurrent use of P-gp inhibitors may result in elevated levels of venetoclax, increasing the risk for tumor lysis syndrome and other toxicities.(1) PREDISPOSING FACTORS: Risk factors for tumor lysis syndrome include (1): - the ramp-up phase of venetoclax therapy when tumor burden is highest - initial magnitude of tumor burden - renal impairment The risk of venetoclax toxicities may be increased in patients with severe hepatic impairment.(1) PATIENT MANAGEMENT: Avoid P-gp inhibitors and consider alternative treatments when possible. If a P-gp inhibitor must be used, reduce venetoclax dose by at least 50%. Monitor more closely for signs of toxicity such as tumor lysis syndrome, hematologic and non-hematologic toxicities.(1) If the P-gp inhibitor is discontinued, the manufacturer of venetoclax recommends resuming the prior (i.e. pre-inhibitor) dose of venetoclax 2 to 3 days after discontinuation of the P-gp inhibitor.(1) DISCUSSION: In 11 healthy subjects, a single dose of rifampin (a P-gp inhibitor) increased venetoclax maximum concentration (Cmax) and area-under-curve (AUC) by 106% and 78%, respectively.(1) In 11 previously treated NHL subjects, ketoconazole (a strong CYP3A4 inhibitor which also inhibits P-gp and BCRP) 400 mg daily for 7 days increased the Cmax and AUC of venetoclax 2.3-fold and 6.4-fold respectively.(1) In 12 healthy subjects, coadministration of azithromycin (500 mg Day 1, 250 mg for Days 2-5) decreased venetoclax Cmax and AUC by 25% and 35%. No dosage adjustment is needed when venetoclax is coadministered with azithromycin.(1) P-gp inhibitors include: amiodarone, asunaprevir, belumosudil, capmatinib, carvedilol, cyclosporine, danicopan, daridorexant, diosmin, flibanserin, fostamatinib, ginseng, imlunestrant, ivacaftor, neratinib, osimertinib, pirtobrutinib, propafenone, quinidine, ranolazine, selpercatinib, sofosbuvir/velpatasvir/voxilaprevir, tezacaftor, tepotinib, valbenazine, vemurafenib, vimseltinib, and voclosporin.(2) |
VENCLEXTA, VENCLEXTA STARTING PACK |
| Doxorubicin/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: P-glycoprotein (P-gp) inhibition may increase doxorubicin cellular concentration, as well as decrease biliary or renal elimination.(1) CLINICAL EFFECTS: Increased cellular or systemic levels of doxorubicin may result in doxorubicin toxicity, including cardiomyopathy, myelosuppression, or hepatic impairment.(1) PREDISPOSING FACTORS: The interaction magnitude may be greater in patients with impaired renal or hepatic function. PATIENT MANAGEMENT: Avoid the concurrent use of P-gp inhibitors in patients undergoing therapy with doxorubicin.(1) Consider alternatives with no or minimal inhibition. If concurrent therapy is warranted, monitor the patient closely for signs and symptoms of doxorubicin toxicity. DISCUSSION: Doxorubicin is a substrate of P-gp.(1) Clinical studies have identified and evaluated the concurrent use of doxorubicin and P-gp inhibitors as a target to overcome P-gp mediated multidrug resistance.(2,3) P-gp inhibitors linked to this monograph include: amiodarone, asciminib, asunaprevir, azithromycin, belumosudil, capmatinib, cimetidine, cyclosporine, daclatasvir, danicopan, daridorexant, deutivacaftor, diltiazem, diosmin, dronedarone, eliglustat, erythromycin, flibanserin, fluvoxamine, fostamatinib, ginkgo, ginseng, glecaprevir/pibrentasvir, hydroquinidine, imlunestrant, istradefylline, ivacaftor, lapatinib, ledipasvir, mavorixafor, neratinib, osimertinib, paroxetine, pirtobrutinib, propafenone, quercetin, quinidine, quinine, ranolazine, sarecycline, schisandra, selpercatinib, simeprevir, sofosbuvir/velpatasvir/voxilaprevir, sotorasib, tepotinib, valbenazine, vemurafenib, verapamil, vimseltinib, and voclosporin.(4,5) |
ADRIAMYCIN, CAELYX, DOXIL, DOXORUBICIN HCL, DOXORUBICIN HCL LIPOSOME |
| Vincristine/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: P-glycoprotein (P-gp) inhibitors may inhibit cellular efflux of vincristine.(1) CLINICAL EFFECTS: Concurrent administration of a P-gp inhibitor may result in elevated levels of and toxicity from vincristine including myelosuppression, neurologic toxicity, tumor lysis syndrome, hepatotoxicity, constipation, or bowel obstruction.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Avoid the use of P-gp inhibitors in patients undergoing therapy with vincristine.(1) Consider alternatives with no or minimal P-gp inhibition. The manufacturer of vincristine states that concomitant use of P-gp inhibitors should be avoided.(1) The manufacturer of lopinavir/ritonavir states that patients who develop significant hematological or gastrointestinal toxicity on concomitant vincristine should temporarily hold lopinavir/ritonavir, or use alternative medications that do not inhibit CYP3A4 or P-gp.(2) DISCUSSION: Vincristine is a substrate of P-gp. Inhibitors of P-gp may increase toxicity of vincristine.(1) There are several case reports of neurotoxicity with concurrent administration of vincristine and itraconazole.(3-5) There is a case report of neurotoxicity with concurrent administration of lopinavir-ritonavir with vincristine.(6) In a prospective study in 22 children receiving various chemotherapy with prophylactic itraconazole oral solution (0.5 ml/kg per day), two children receiving vincristine developed non-alcoholic steatohepatitis (NASH) and one child developed syndrome of inappropriate anti-diuretic hormone secretion (SIADH).(7) Inhibitors of P-gp linked to this monograph include: abrocitinib, amiodarone, Asian ginseng (Panax ginseng), asunaprevir, azithromycin, belumosudil, capmatinib, carvedilol, cimetidine, cyclosporine, danicopan, daridorexant, deutivacaftor, diltiazem, diosmin, dronedarone, elagolix, eliglustat, erythromycin, flibanserin, fluvoxamine, fostamatinib, ginkgo biloba, glecaprevir and pibrentasvir, imlunestrant, isavuconazonium, ivacaftor, lapatinib, mavorixafor, milk thistle (Silybum marianum), neratinib, osimertinib, pirtobrutinib, propafenone, quercetin, quinidine, ranolazine, rolapitant, Schisandra chinensis, selpercatinib, sofosbuvir, sotorasib, tepotinib, valbenazine, velpatasvir, vemurafenib, venetoclax, verapamil, vilazodone, vimseltinib, and voclosporin.(8,9) |
VINCASAR PFS, VINCRISTINE SULFATE |
| Fluoroestradiol F-18/Estrogen Receptor Blockers (ERBs) SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Drugs that bind to the estrogen receptor (ER) may compete with the binding of radioactive diagnostic agent fluoroestradiol F-18.(1) CLINICAL EFFECTS: Concurrent use of estrogen receptor blockers such as selective estrogen receptor modulators (SERMs) and selective estrogen receptor down-regulators (SERDs) may reduce the detection of ER-positive lesions with fluoroestradiol F-18.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Before administering fluoroestradiol F-18, discontinue drugs that bind to the ER, such as SERMs and SERDs, for at least 5 biological half-lives.(1) The following washout periods apply when discontinuing ERBs, prior to fluoroestradiol F-18 administration: - Bazedoxifene = 7 days - Clomiphene = 25 days - Elacestrant = 11 days - Enclomiphene = 25 days - Fulvestrant = 28 weeks - Imlunestrant = 7 days - Ospemifene = 5 days - Raloxifene = 7 days - Tamoxifen = 8 weeks - Toremifene = 5 weeks DISCUSSION: The following ERBs are linked to this monograph: SERDs: elacestrant, imlunestrant, and fulvestrant. SERMs: bazedoxifene, clomiphene, enclomiphene, ospemifene, raloxifene, tamoxifen and toremifene. |
CERIANNA |
| Imlunestrant/Strong CYP3A4 Inducers SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Strong CYP3A4 inducers may induce the metabolism of imlunestrant.(1) CLINICAL EFFECTS: Concurrent or recent use of strong CYP3A4 inducers may alter the clinical effectiveness of imlunestrant.(1) PREDISPOSING FACTORS: Induction effects may be more likely with regular use of the inducer for longer than 1-2 weeks. PATIENT MANAGEMENT: Avoid the concurrent use of imlunestrant with strong CYP3A4 inducers.(1) If concurrent use cannot be avoided, increase the dosage of imlunestrant to 600 mg once daily.(1) Monitor patients receiving concurrent therapy for reduced efficacy. DISCUSSION: Imlunestrant is primarily metabolized by CYP3A4.(1) In an interaction study, imlunestrant area-under-curve (AUC) decreased by 42% and concentration maximum (Cmax) decreased by 29% following concomitant use of carbamazepine (strong CYP3A inducer) for multiple days.(1) Strong CYP3A4 inducers linked to this monograph include: apalutamide, barbiturates, carbamazepine, encorafenib, enzalutamide, fosphenytoin, ivosidenib, lumacaftor, mitotane, phenobarbital, phenytoin, primidone, rifampin, rifapentine and St John's Wort.(2,3) |
ASA-BUTALB-CAFFEINE-CODEINE, ASCOMP WITH CODEINE, BRAFTOVI, BUTALB-ACETAMINOPH-CAFF-CODEIN, BUTALBITAL, BUTALBITAL-ACETAMINOPHEN, BUTALBITAL-ACETAMINOPHEN-CAFFE, BUTALBITAL-ASPIRIN-CAFFEINE, CARBAMAZEPINE, CARBAMAZEPINE ER, CARBATROL, CEREBYX, DILANTIN, DILANTIN-125, DONNATAL, EQUETRO, ERLEADA, FIORICET, FOSPHENYTOIN SODIUM, LYSODREN, MITOTANE, MYSOLINE, ORKAMBI, PENTOBARBITAL SODIUM, PHENOBARBITAL, PHENOBARBITAL SODIUM, PHENOBARBITAL-BELLADONNA, PHENOBARBITAL-HYOSC-ATROP-SCOP, PHENOHYTRO, PHENYTEK, PHENYTOIN, PHENYTOIN SODIUM, PHENYTOIN SODIUM EXTENDED, PRIFTIN, PRIMIDONE, RIFADIN, RIFAMPIN, SEZABY, TEGRETOL, TEGRETOL XR, TENCON, TIBSOVO, XTANDI |
| Imlunestrant/Strong CYP3A4 Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: Agents that inhibit the CYP3A4 isoenzyme may inhibit the metabolism of imlunestrant.(1) CLINICAL EFFECTS: Concurrent use of strong CYP3A4 inhibitors may increase levels of and effects from imlunestrant, including hepatotoxicity, myelosuppression, interstitial lung disease, and gastrointestinal adverse effects.(1) PREDISPOSING FACTORS: This interaction is expected to be more severe in patients with hepatic impairment.(1) The recommended dosage of imlunestrant for patients with moderate (Child-Pugh B) or severe (Child-Pugh C) hepatic impairment is 200 mg once daily. See prescribing information for recommendations.(1) PATIENT MANAGEMENT: Avoid concomitant use of imlunestrant with strong CYP3A4 inhibitors. If concomitant use cannot be avoided, reduce the dose of imlunestrant to 200 mg once daily.(1) DISCUSSION: In a clinical study, imlunestrant area-under-curve (AUC) increased 2.1-fold and maximum concentration (Cmax) increased by 1.9-fold following concomitant use of itraconazole (strong CYP3A inhibitor) for multiple days.(1) Strong inhibitors of CYP3A4 include: adagrasib, boceprevir, ceritinib, clarithromycin, cobicistat, grapefruit (Citrus paradisi), idelalisib, indinavir, itraconazole, josamycin, ketoconazole, levoketoconazole, lonafarnib, lopinavir/ritonavir, mibefradil, mifepristone, nefazodone, nelfinavir, nirmatrelvir/ritonavir, paritaprevir, posaconazole, ribociclib, saquinavir, telaprevir, telithromycin, tipranavir, troleandomycin, tucatinib, or voriconazole.(2,3) |
APTIVUS, CLARITHROMYCIN, CLARITHROMYCIN ER, EVOTAZ, GENVOYA, ITRACONAZOLE, ITRACONAZOLE MICRONIZED, KALETRA, KETOCONAZOLE, KISQALI, KORLYM, KRAZATI, LANSOPRAZOL-AMOXICIL-CLARITHRO, LOPINAVIR-RITONAVIR, MIFEPREX, MIFEPRISTONE, NEFAZODONE HCL, NOXAFIL, OMECLAMOX-PAK, PAXLOVID, POSACONAZOLE, PREZCOBIX, RECORLEV, SPORANOX, STRIBILD, SYMTUZA, TOLSURA, TUKYSA, TYBOST, VFEND, VFEND IV, VIRACEPT, VOQUEZNA TRIPLE PAK, VORICONAZOLE, VORICONAZOLE (HPBCD), ZOKINVY, ZYDELIG, ZYKADIA |
| Quinidine/Selected P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 2-Severe Interaction: Action is required to reduce the risk of severe adverse interaction. MECHANISM OF ACTION: P-glycoprotein (P-gp) inhibitors may inhibit cellular efflux of quinidine.(1) CLINICAL EFFECTS: Concurrent administration of a P-gp inhibitor may result in elevated levels and toxicities of quinidine. Quinidine causes dose-dependent QT prolongation, which may lead to life-threatening ventricular arrhythmias, including torsades de pointes.(2) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. co-administration with an agent which inhibits its metabolism or elimination, genetic impairment in drug metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: Avoid concomitant use of P-gp inhibitors like imlunestrant with quinidine. Consider alternatives with lesser interaction potential with quinidine.(4) If concurrent use cannot be avoided, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Quinidine is a known substrate of P-gp. Inhibitors of P-gp may increase toxicity of quinidine.(1-2) In a physiologically-based pharmacokinetic model, itraconazole 200 mg daily and verapamil 120 mg 3 times daily were both predicted to increase quinidine AUC by 1.7-fold.(1) Inhibitors of P-gp linked to this monograph include: abrocitinib and imlunestrant. |
NUEDEXTA, QUINIDINE GLUCONATE, QUINIDINE SULFATE |
There are 11 moderate interactions.
The clinician should assess the patient’s characteristics and take action as needed. Actions required for moderate interactions include, but are not limited to, discontinuing one or both agents, adjusting dosage, altering administration.
| Drug Interaction | Drug Names |
|---|---|
| Etoposide/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: P-glycoprotein (P-gp) inhibition may increase etoposide cellular concentration, decrease biliary or renal elimination, and increase systemic absorption of oral etoposide.(1-4) CLINICAL EFFECTS: Increased cellular or systemic levels of etoposide may result in etoposide toxicity. PREDISPOSING FACTORS: The interaction magnitude may be greater in patients receiving oral etoposide, or with impaired renal or hepatic function. PATIENT MANAGEMENT: Anticipate and monitor for increased hematologic and gastrointestinal toxicities. Adjust or hold etoposide dose when needed. In patients receiving high-dose cyclosporine therapy, etoposide dosages should be reduced by 50%.(1) Monitor for signs of etoposide toxicity. Dosages may need further adjustment. The manufacturer of vimseltinib states concurrent use with P-gp substrates should be avoided. If concurrent use cannot be avoided, take vimseltinib at least 4 hours prior to etoposide.(5) DISCUSSION: In a study in 16 patients, the administration of etoposide plus cyclosporine increased etoposide area-under-curve (AUC) by 59% and half-life by 73%. Etoposide renal clearance was decreased by 38% and nonrenal clearance was decreased by 52%. White blood cell count nadir was significantly lower during concurrent therapy with cyclosporine and etoposide (1200 mm3) when compared to etoposide alone (2500 mm3). There was also a trend for higher dosages of cyclosporine to exert increased effects on etoposide, although this difference did not reach statistical significance.(1) P-gp inhibitors linked to this monograph are asciminib, asunaprevir, azithromycin, belumosudil, capmatinib, cimetidine, clarithromycin, cyclosporine, daridorexant, danicopan, deutivacaftor, diosmin, flibanserin, fostamatinib, glecaprevir/pibrentasvir, imlunestrant, itraconazole, ivacaftor, josamycin, ketoconazole, lonafarnib, mavorixafor, neratinib, osimertinib, pirtobrutinib, propafenone, quinidine, selpercatinib, sofosbuvir/velpatasvir/voxilaprevir, sotorasib, tepotinib, tucatinib, valbenazine, vemurafenib, verapamil, vimseltinib, and voclosporin. |
ETOPOPHOS, ETOPOSIDE |
| Loperamide/CYP3A4; CYP2C8; P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Inhibitors of CYP3A4, CYP2C8, and/or P-gp may increase loperamide systemic absorption and facilitate entry into central nervous system (CNS).(1) CLINICAL EFFECTS: Concurrent use of inhibitors of CYP3A4, CYP2C8, and/or P-gp may increase levels of loperamide, resulting in respiratory depression.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Use loperamide with caution in patients receiving inhibitors of CYP3A4, CYP2C8, and/or P-gp. Consider lower doses of loperamide in these patients and monitor for adverse effects. The manufacturer of lonafarnib recommends starting loperamide at a dose of 1 mg and slowly increasing the dose as needed.(2) DISCUSSION: In a randomized, cross-over study in 12 healthy subjects, itraconazole (100 mg twice daily for 5 days - first dose 200 mg), gemfibrozil (600 mg twice daily), and the combination of itraconazole and gemfibrozil (same dosages) increased the area-under-curve (AUC) of single doses of loperamide (4 mg) by 2.9-fold, 1.6-fold, and 4.2-fold, respectively.(3) In a study of healthy subjects, lonafarnib (100 mg twice daily for 5 days) increased the AUC and maximum concentration (Cmax) of single dose loperamide (2 mg) by 299% and 214%, respectively.(3) In a study in 18 healthy males, quinidine increased the AUC of a single dose of loperamide by 2.2-fold and markedly decreased pupil size.(4) In a study in 8 healthy subjects, subjects experienced respiratory depression when a single dose of loperamide (16 mg) was administered with a single dose of quinidine (600 mg) but not when loperamide was administered alone.(6) Loperamide plasma levels increased 2-fold to 3-fold.(5) |
LOPERAMIDE |
| Afatinib/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Inhibitors of P-glycoprotein (P-gp) may increase the absorption of afatinib.(1) CLINICAL EFFECTS: The concurrent administration of afatinib with an inhibitor of P-glycoprotein may result in elevated levels of afatinib and signs of toxicity. These signs may include but are not limited to worsening diarrhea, stomatitis, skin rash/exfoliation/bullae or paronychia.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of afatinib states the afatinib dose should be reduced by 10 mg if the addition of a P-glycoprotein inhibitor is not tolerated.(1) If afatinib dose was reduced due to addition of a P-gp inhibitor, resume the previous dose after the P-gp inhibitor is discontinued.(1) The manufacturer of vimseltinib states concurrent use with P-gp substrates should be avoided. If concurrent use cannot be avoided, take vimseltinib at least 4 hours prior to afatinib.(2) DISCUSSION: A drug interaction study evaluated the effects of ritonavir 200 mg twice daily on afatinib exposure. Administration of ritonavir 1 hour before afatinib administration increased systemic exposure by 48%. Afatinib exposure was not changed when ritonavir was administered simultaneously with or 6 hours after afatinib dose.(1) P-glycoprotein inhibitors linked to this monograph are: amiodarone, asunaprevir, azithromycin, belumosudil, capmatinib, carvedilol, cimetidine, clarithromycin, cobicistat, cyclosporine, danicopan, daridorexant, deutivacaftor, diosmin, dronedarone, erythromycin, flibanserin, fostamatinib, ginseng, glecaprevir/pibrentasvir, hydroquinidine, imlunestrant, isavuconazonium, itraconazole, ivacaftor, josamycin, ketoconazole, lapatinib, ledipasvir, lonafarnib, mavorixafor, neratinib, osimertinib, propafenone, quinidine, ranolazine, ritonavir, saquinavir, selpercatinib, sofosbuvir/velpatasvir/voxilaprevir, sotorasib, telaprevir, tepotinib, tucatinib, valbenazine, vemurafenib, verapamil, vimseltinib and voclosporin.(1-3) |
GILOTRIF |
| Edoxaban (Greater Than 30 mg)/Select P-gp Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Edoxaban is a substrate for P-glycoprotein (P-gp). Inhibitors of P-gp may increase intestinal absorption and decrease renal tubular elimination of edoxaban.(1,2) CLINICAL EFFECTS: Concurrent use with selected P-gp inhibitors may result in higher systemic concentrations of edoxaban which may increase the risk for bleeding.(1,2) PREDISPOSING FACTORS: Bleeding risk may be increased in patients with creatinine clearance below 50 mL per minute(1-4). Use of multiple agents which increase edoxaban exposure or affect hemostasis would be expected to increase the risk for bleeding. The risk for bleeding episodes may be greater in patients with disease-associated factors (e.g. thrombocytopenia). Drug associated risk factors include concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism and/or have an inherent risk for bleeding (e.g. NSAIDs). PATIENT MANAGEMENT: Management recommendations between approving regulatory agencies (FDA or European Medicines Agency, EMA) are conflicting. EMA approved prescribing information specifically states that dosage adjustments are not required solely for concomitant use with amiodarone, quinidine, or verapamil regardless of indication.(3,4) Potential interactions with azithromycin, clarithromycin, or oral itraconazole are not described.(3) FDA approved prescribing recommendations for edoxaban are indication specific:(2) - For prevention of stroke or embolic events due to nonvalvular atrial fibrillation, no edoxaban dose adjustments are recommended during concomitant therapy with P-glycoprotein inhibitors. - For treatment of deep vein thrombosis (DVT) or pulmonary embolism (PE), the edoxaban dose should be reduced to 30 mg daily during concomitant use with azithromycin, clarithromycin, oral itraconazole, quinidine or verapamil. The manufacturer of vimseltinib states concurrent use with P-gp substrates should be avoided. If concurrent use cannot be avoided, take vimseltinib at least 4 hours prior to edoxaban.(6) Monitor patients receiving anticoagulant therapy for signs of blood loss, including decreased hemoglobin and/or hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. When applicable, perform agent-specific laboratory test (e.g. anti Factor Xa inhibition) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. Discontinue edoxaban in patients with active bleeding. DISCUSSION: Edoxaban in vivo interaction studies have been performed for quinidine and verapamil. In vivo interaction studies have not been conducted for the remaining P-gp inhibitors linked to this monograph.(1,4) In an interaction study, the effect of repeat administration of quinidine (300 mg TID) on a single oral dose of edoxaban 60 mg was evaluated in healthy subjects. Both peak (Cmax) and total systemic exposure (AUC) to edoxaban and to the active M4 metabolite increased approximately 1.75-fold.(1) In an interaction study, the effect of repeat administration of verapamil (240 mg Verapamil SR Tablets (Calan SR) QD for 11 Days) on a single oral dose of edoxaban 60 mg on the morning of Day 10 was evaluated in healthy subjects. Total and peak systemic exposure to edoxaban increased 1.53-fold and 1.53-fold, respectively. Total and peak systemic exposure to the active M4 metabolite increased 1.31-fold and 1.28-fold, respectively.(1) Based upon the above results, patients in the DVT/PE trial had a 50% dose reduction (from 60 mg to 30 mg) during concomitant therapy with P-glycoprotein inhibitors. Approximately 0.5% of these patients required a dose reduction solely due to P-gp inhibitor use. This low rate of concurrent therapy was too small to allow for detailed statistical evaluation. Almost all of these patients were receiving quinidine or verapamil. In these patients, both trough edoxaban concentrations (Ctrough) used to evaluate bleeding risk, and total edoxaban exposure (AUC or area-under-curve) used to evaluate treatment efficacy, were lower than patients who did not require any edoxaban dose adjustment. In this DVT/PE comparator trial, subgroup analysis revealed that warfarin had numerically better efficacy than edoxaban in patients receiving P-gp inhibitors. Based upon the overall lower exposure to edoxaban in P-gp dose adjusted subjects, both EMA and FDA Office of Clinical Pharmacology (OCP) concluded that the edoxaban 50% dose reduction overcorrected for the difference in exposure.(1,4) Consequently, EMA recommended no edoxaban dose adjustments for patients receiving concomitant therapy with quinidine or verapamil.(3,4) A summary of pharmacokinetic interactions with edoxaban and verapamil concluded that if concurrent use is considered safe.(7) P-gp inhibitors linked to this interaction are: amiodarone, asunaprevir, azithromycin, belumosudil, capmatinib, carvedilol, cimetidine, clarithromycin, cobicistat, conivaptan, daclatasvir, danicopan, daridorexant, diltiazem, diosmin, flibanserin, fostamatinib, ginseng, glecaprevir/pibrentasvir, hydroquinidine, imlunestrant, indinavir, oral itraconazole, ivacaftor, josamycin, ledipasvir, lonafarnib, neratinib, osimertinib, pirtobrutinib, propafenone, quinidine, ranolazine, selpercatinib, sotorasib, telaprevir, telithromycin, tezacaftor, tepotinib, tucatinib, valbenazine, velpatasvir, vemurafenib, verapamil, vimseltinib, and voclosporin.(8) |
SAVAYSA |
| Edoxaban (Less Than or Equal To 30 mg)/Select P-gp Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Edoxaban is a substrate for P-glycoprotein (P-gp). Inhibitors of P-gp may increase intestinal absorption and decrease renal tubular elimination of edoxaban.(1,2) CLINICAL EFFECTS: Concurrent use with selected P-gp inhibitors may result in higher systemic concentrations of edoxaban which may increase the risk for bleeding.(1,2) PREDISPOSING FACTORS: Bleeding risk may be increased in patients with creatinine clearance below 50 mL per minute(1-4). Use of multiple agents which increase edoxaban exposure or affect hemostasis would be expected to increase the risk for bleeding. The risk for bleeding episodes may be greater in patients with disease-associated factors (e.g. thrombocytopenia). Drug associated risk factors include concurrent use of multiple drugs which inhibit anticoagulant/antiplatelet metabolism and/or have an inherent risk for bleeding (e.g. NSAIDs). PATIENT MANAGEMENT: Management recommendations between approving regulatory agencies (FDA or European Medicines Agency, EMA) are conflicting. EMA approved prescribing information specifically states that dosage adjustments are not required solely for concomitant use with amiodarone, quinidine, or verapamil regardless of indication.(3,4) Potential interactions with azithromycin, clarithromycin, or oral itraconazole are not described.(3) FDA approved prescribing recommendations for edoxaban are indication specific:(2) - For prevention of stroke or embolic events due to nonvalvular atrial fibrillation, no edoxaban dose adjustments are recommended during concomitant therapy with P-glycoprotein inhibitors. - For treatment of deep vein thrombosis (DVT) or pulmonary embolism (PE), the edoxaban dose should be reduced to 30 mg daily during concomitant use with azithromycin, clarithromycin, oral itraconazole, quinidine or verapamil. The manufacturer of vimseltinib states concurrent use with P-gp substrates should be avoided. If concurrent use cannot be avoided, take vimseltinib at least 4 hours prior to edoxaban.(6) Monitor patients receiving anticoagulant therapy for signs of blood loss, including decreased hemoglobin and/or hematocrit, fecal occult blood, and/or decreased blood pressure and promptly evaluate patients with any symptoms. When applicable, perform agent-specific laboratory test (e.g. anti Factor Xa inhibition) to monitor efficacy and safety of anticoagulation. Discontinue anticoagulation in patients with active pathologic bleeding. Instruct patients to report any signs and symptoms of bleeding, such as unusual bleeding from the gums or nose; unusual bruising; red or black, tarry stools; red, pink or dark brown urine; acute abdominal or joint pain and/or swelling. Discontinue edoxaban in patients with active bleeding. DISCUSSION: Edoxaban in vivo interaction studies have been performed for quinidine and verapamil. In vivo interaction studies have not been conducted for the remaining P-gp inhibitors linked to this monograph.(1,4) In an interaction study, the effect of repeat administration of quinidine (300 mg TID) on a single oral dose of edoxaban 60 mg was evaluated in healthy subjects. Both peak (Cmax) and total systemic exposure (AUC) to edoxaban and to the active M4 metabolite increased approximately 1.75-fold.(1) In an interaction study, the effect of repeat administration of verapamil (240 mg Verapamil SR Tablets (Calan SR) QD for 11 Days) on a single oral dose of edoxaban 60 mg on the morning of Day 10 was evaluated in healthy subjects. Total and peak systemic exposure to edoxaban increased 1.53-fold and 1.53-fold, respectively. Total and peak systemic exposure to the active M4 metabolite increased 1.31-fold and 1.28-fold, respectively.(1) Based upon the above results, patients in the DVT/PE trial had a 50% dose reduction (from 60 mg to 30 mg) during concomitant therapy with P-glycoprotein inhibitors. Approximately 0.5% of these patients required a dose reduction solely due to P-gp inhibitor use. This low rate of concurrent therapy was too small to allow for detailed statistical evaluation. Almost all of these patients were receiving quinidine or verapamil. In these patients, both trough edoxaban concentrations (Ctrough) used to evaluate bleeding risk, and total edoxaban exposure (AUC or area-under-curve) used to evaluate treatment efficacy, were lower than patients who did not require any edoxaban dose adjustment. In this DVT/PE comparator trial, subgroup analysis revealed that warfarin had numerically better efficacy than edoxaban in patients receiving P-gp inhibitors. Based upon the overall lower exposure to edoxaban in P-gp dose adjusted subjects, both EMA and FDA Office of Clinical Pharmacology (OCP) concluded that the edoxaban 50% dose reduction overcorrected for the difference in exposure.(1,4) Consequently, EMA recommended no edoxaban dose adjustments for patients receiving concomitant therapy with quinidine or verapamil.(3,4) A summary of pharmacokinetic interactions with edoxaban and verapamil concluded that if concurrent use is considered safe.(7) P-gp inhibitors linked to this interaction are: amiodarone, asunaprevir, azithromycin, belumosudil, capmatinib, carvedilol, cimetidine, clarithromycin, cobicistat, conivaptan, daclatasvir, danicopan, daridorexant, diltiazem, diosmin, flibanserin, fostamatinib, ginseng, glecaprevir/pibrentasvir, hydroquinidine, imlunestrant, indinavir, oral itraconazole, ivacaftor, josamycin, ledipasvir, lonafarnib, mavorixafor, neratinib, osimertinib, pirtobrutinib, propafenone, quinidine, ranolazine, selpercatinib, sotorasib, telaprevir, telithromycin, tezacaftor, tepotinib, tucatinib, valbenazine, velpatasvir, vemurafenib, verapamil, vimseltinib, and voclosporin.(8) |
SAVAYSA |
| Ubrogepant (Less Than or Equal To 50 mg)/P-gp or BCRP Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Inhibitors of P-glycoprotein (P-gp) or BCRP may increase the absorption of ubrogepant.(1) CLINICAL EFFECTS: The concurrent administration of ubrogepant with an inhibitor of P-glycoprotein or BCRP may result in elevated levels of ubrogepant.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The manufacturer recommends a dosage adjustment of ubrogepant when coadministered with P-gp or BCRP inhibitors. The dose of ubrogepant should not exceed 50 mg for initial dose. If a second dose of ubrogepant is needed, the dose should not exceed 50 mg.(1) The manufacturer of vimseltinib states concurrent use with P-gp substrates should be avoided. If concurrent use cannot be avoided, take vimseltinib at least 4 hours prior to ubrogepant.(3) DISCUSSION: Ubrogepant is a substrate of P-gp and BCRP transporters. Use of P-gp or BCRP inhibitors may increase the exposure of ubrogepant. Clinical drug interaction studies with inhibitors of these transporters were not conducted. The US manufacturer of ubrogepant recommends dose adjustment if ubrogepant is coadministered with P-gp or BCRP inhibitors.(1) BCRP inhibitors linked to this monograph include: belumosudil, clopidogrel, curcumin, eltrombopag, febuxostat, fostemsavir, leniolisib, momelotinib, oteseconazole, pantoprazole, regorafenib, resmetirom, ritonavir, rolapitant, roxadustat, tafamidis, oral tedizolid, turmeric, vadadustat, and zongertinib.(2-5) P-glycoprotein inhibitors linked to this monograph include: asunaprevir, belumosudil, capmatinib, carvedilol, danicopan, daridorexant, imlunestrant, neratinib, osimertinib, propafenone, quinidine, selpercatinib, sofosbuvir/velpatasvir/voxilaprevir, tepotinib, valbenazine, vimseltinib, and voclosporin.(2-5) |
UBRELVY |
| Rimegepant/P-gp Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: Rimegepant is a calcitonin gene-related peptide receptor antagonist. Rimegepant is a substrate of the P-glycoprotein (P-gp) transporter. P-gp inhibitors may significantly increase the absorption of rimegepant.(1) CLINICAL EFFECTS: The concurrent administration of rimegepant with an inhibitor of P-glycoprotein may result in elevated levels of rimegepant.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: The US manufacturer of rimegepant recommends avoiding a second dose of rimegepant within 48 hours of a first dose when used concomitantly with P-gp inhibitors.(1) DISCUSSION: Rimegepant is a substrate of P-gp. Use of P-gp inhibitors may increase the exposure of rimegepant. In a study, cyclosporine (a potent P-gp and BCRP inhibitor) increased rimegepant area-under curve (AUC) and maximum concentration (Cmax) by 1.6- and 1.4-fold, respectively. Quinidine (a potent P-gp inhibitor) similarly increased rimegepant AUC and Cmax by 1.6- and 1.7-fold, respectively. Therefore, the effect of these drug interactions were concluded to be due entirely to P-gp and not BCRP.(1) P-glycoprotein inhibitors linked to this monograph include: amiodarone, azithromycin, belumosudil, capmatinib, carvedilol, cyclosporine, danicopan, daridorexant, diosmin, flibanserin, fostamatinib, glecaprevir/pibrentasvir, imlunestrant, lapatinib, mavorixafor, osimertinib, pirtobrutinib, propafenone, quinidine, ranolazine, selpercatinib, sofosbuvir/velpatasvir/voxilaprevir, tepotinib, vemurafenib, vimseltinib, and verapamil.(1-3) |
NURTEC ODT |
| Digoxin/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: P-glycoprotein (P-gp) inhibitors may inhibit cellular efflux of digoxin at the levels of intestinal absorption, renal tubular secretion, and biliary-intestinal secretion.(1) CLINICAL EFFECTS: Concurrent administration of a P-gp inhibitor may result in elevated levels and toxicities of digoxin.(1) Symptoms of digoxin toxicity can include anorexia, nausea, vomiting, headache, fatigue, malaise, drowsiness, generalized muscle weakness, disorientation, hallucinations, visual disturbances, and arrhythmias. PREDISPOSING FACTORS: Low body weight, advanced age, impaired renal function, hypokalemia, hypercalcemia, and/or hypomagnesemia may increase the risk of digoxin toxicity. PATIENT MANAGEMENT: Monitor digoxin concentrations before initiating concomitant use with P-gp inhibitors and continue monitoring serum digoxin concentrations as recommended in the prescribing information for digoxin.(1) When digoxin levels are expected to be increased by over 50%, the manufacturer of digoxin recommends decreasing the dose of digoxin by approximately 30-50% or by modifying the dosing frequency to reduce digoxin concentrations.(1) When digoxin levels are expected to be increased by less than 50%, the manufacturer of digoxin recommends decreasing the dose of digoxin by approximately 15-30% or by modifying the dosing frequency to reduce digoxin concentrations.(1) DISCUSSION: Digoxin is a known substrate of P-gp. Inhibitors of P-gp may increase toxicity of digoxin.(1) In a clinical study, imlunestrant increased the area-under-curve (AUC) and maximum concentration (Cmax) of digoxin by 1.4-fold and 1.6-fold, respectively.(2) Inhibitors of P-gp linked to this monograph include: abrocitinib, capmatinib, imlunestrant, selpercatinib, and sotorasib.(2) |
DIGITEK, DIGOXIN, DIGOXIN MICRONIZED, LANOXIN, LANOXIN PEDIATRIC |
| Sirolimus/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: P-glycoprotein (P-gp) inhibitors may inhibit cellular efflux of sirolimus.(1) CLINICAL EFFECTS: Concurrent administration of a P-gp inhibitor may result in elevated levels and toxicities of sirolimus.(1) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Use caution during coadministration of P-gp inhibitors with sirolimus. Sirolimus blood levels and the patient's condition should be closely monitored. Sirolimus dosage adjustment may be required.(1) DISCUSSION: Sirolimus is a known substrate of P-gp. Inhibitors of P-gp may increase toxicity of sirolimus.(1) In a study of 24 healthy volunteers, cyclosporine 300 mg (a CYP3A4 and P-gp inhibitor) increased the area-under-curve (AUC) and maximum concentration (Cmax) of single-dose sirolimus 10 mg given simultaneously by 148% and 512%, respectively, compared to sirolimus alone. When sirolimus was given 4 hours after cyclosporine, sirolimus AUC and Cmax both increased by only 33%.(1) In a cross-over study with 33 healthy volunteers, cyclosporine 300 mg increased the AUC and Cmax of sirolimus 5 mg given 2 hours after cyclosporine by 141% and 126%, respectively, compared to sirolimus alone. When sirolimus was given 2 hours before cyclosporine, there was no effect on AUC and Cmax.(1) Inhibitors of P-gp linked to this monograph include: abrocitinib, capmatinib, imlunestrant, and selpercatinib.(2-3) |
FYARRO, SIROLIMUS |
| Cyclosporine/P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: P-glycoprotein (P-gp) inhibitors may inhibit cellular efflux of cyclosporine.(1,2) CLINICAL EFFECTS: Concurrent administration of a P-gp inhibitor may result in elevated levels and toxicities of cyclosporine, including serious infections, nephrotoxicity, and hepatotoxicity.(1,2) PREDISPOSING FACTORS: None determined. PATIENT MANAGEMENT: Closely monitor cyclosporine levels during concurrent use with P-gp inhibitors. Cyclosporine dose adjustment may be needed to achieve desired concentrations.(1,2) DISCUSSION: Cyclosporine is a known substrate of P-gp. Inhibitors of P-gp may increase toxicity of cyclosporine.(1,2) Inhibitors of P-gp linked to this monograph include: abrocitinib, imlunestrant. |
CYCLOSPORINE, CYCLOSPORINE MODIFIED, GENGRAF, NEORAL, SANDIMMUNE |
| Tacrolimus/Selected P-glycoprotein (P-gp) Inhibitors SEVERITY LEVEL: 3-Moderate Interaction: Assess the risk to the patient and take action as needed. MECHANISM OF ACTION: P-glycoprotein (P-gp) inhibitors may inhibit cellular efflux of tacrolimus. CLINICAL EFFECTS: Concurrent administration of a P-gp inhibitor may result in elevated levels and toxicities of tacrolimus including nephrotoxicity, neurotoxicity, and prolongation of the QTc interval and life-threatening cardiac arrhythmias, including torsades de pointes.(1-2) PREDISPOSING FACTORS: The risk of QT prolongation or torsade de pointes may be increased in patients with cardiovascular disease (e.g. heart failure, myocardial infarction, history of torsade de pointes, congenital long QT syndrome), hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, female gender, or advanced age.(3) Concurrent use of more than one drug known to cause QT prolongation or higher systemic concentrations of either QT prolonging drug are additional risk factors for torsade de pointes. Factors which may increase systemic drug concentrations include rapid infusion of an intravenous dose or impaired metabolism or elimination of the drug (e.g. coadministration with an agent which inhibits its metabolism or elimination, and/or renal/hepatic dysfunction).(3) PATIENT MANAGEMENT: Use caution during coadministration of P-gp inhibitors with tacrolimus. Tacrolimus blood levels and the patient's condition should be monitored closely. Tacrolimus dosage adjustment may be required.(2) If concurrent use cannot be avoided, consider obtaining serum calcium, magnesium, and potassium levels and monitoring ECG at baseline and at regular intervals. Correct any electrolyte abnormalities. Instruct patients to report any irregular heartbeat, dizziness, or fainting. DISCUSSION: Tacrolimus is a known substrate of P-gp. Inhibitors of P-gp may increase toxicity of tacrolimus.(1) Inhibitors of P-gp linked to this monograph include: abrocitinib and imlunestrant.(4) |
ASTAGRAF XL, ENVARSUS XR, PROGRAF, TACROLIMUS, TACROLIMUS XL |
The following contraindication information is available for INLURIYO (imlunestrant tosylate):
Drug contraindication overview.
None.
None.
There are 1 contraindications.
Absolute contraindication.
| Contraindication List |
|---|
| Lactation |
There are 4 severe contraindications.
Adequate patient monitoring is recommended for safer drug use.
| Severe List |
|---|
| Child-pugh class B hepatic impairment |
| Child-pugh class C hepatic impairment |
| Disease of liver |
| Pregnancy |
There are 0 moderate contraindications.
The following adverse reaction information is available for INLURIYO (imlunestrant tosylate):
Adverse reaction overview.
The most common (incidence >=10%) adverse reactions, includinglaboratory abnormalities were hemoglobin decreased, musculoskeletalpain, calcium decreased, neutrophils decreased, AST increased,fatigue, diarrhea, ALT increased, triglycerides increased, nausea,platelets decreased, constipation, cholesterol increased, andabdominal pain.
The most common (incidence >=10%) adverse reactions, includinglaboratory abnormalities were hemoglobin decreased, musculoskeletalpain, calcium decreased, neutrophils decreased, AST increased,fatigue, diarrhea, ALT increased, triglycerides increased, nausea,platelets decreased, constipation, cholesterol increased, andabdominal pain.
There are 4 severe adverse reactions.
| More Frequent | Less Frequent |
|---|---|
| None. | None. |
| Rare/Very Rare |
|---|
|
Acute myocardial infarction Hypovolemic shock Pleural effusions Upper GI bleed |
There are 21 less severe adverse reactions.
| More Frequent | Less Frequent |
|---|---|
|
Abnormal hepatic function tests Acute abdominal pain Anemia Constipation Diarrhea Fatigue Hypercholesterolemia Hypertriglyceridemia Hypocalcemia Musculoskeletal pain Nausea Neutropenic disorder Thrombocytopenic disorder |
Anorexia Cough Drug-induced hot flash Dyspepsia Headache disorder Pruritus of skin Stomatitis Vomiting |
| Rare/Very Rare |
|---|
| None. |
The following precautions are available for INLURIYO (imlunestrant tosylate):
The safety and effectiveness of imlunestrant have not been established in pediatric patients.
Contraindicated
Severe Precaution
Management or Monitoring Precaution
Contraindicated
| None |
Severe Precaution
| None |
Management or Monitoring Precaution
| None |
Based on findings in animals and its mechanism of action, imlunestrant can cause fetal harm when administered to a pregnant woman. There are no available human data on imlunestrant use in pregnant women to inform a drug-associated risk. In an animal reproduction study, oral administration of imlunestrant to pregnant rats during the period of organogenesis led to embryo-fetal mortality and structural abnormalities at maternal exposures below the human exposure at the recommended dose based on AUC.
Advise pregnant women and females of reproductive potential of the potential risk to a fetus. The background risk of major birth defects and miscarriage for the indicated population is unknown. However, the background risk in the U.S. general population of major birth defects is 2 to 4% and of miscarriage is 15 to 20% of clinically recognized pregnancies.
Advise pregnant women and females of reproductive potential of the potential risk to a fetus. The background risk of major birth defects and miscarriage for the indicated population is unknown. However, the background risk in the U.S. general population of major birth defects is 2 to 4% and of miscarriage is 15 to 20% of clinically recognized pregnancies.
There are no data on the presence of imlunestrant or its metabolites in human milk, its effects on the breastfed child, or on milk production. Because of the potential for serious adverse reactions in the breastfed child, advise lactating women to not breastfeed during treatment with imlunestrant and for 1 week after the last dose.
Of 327 patients who received imlunestrant in the EMBER-3 study, 118 patients were >= 65 years of age and 37 patients were >= 75 years of age. No overall differences in safety or effectiveness of imlunestrant have been observed between patients 65 years of age and older and younger adult patients.
The following prioritized warning is available for INLURIYO (imlunestrant tosylate):
No warning message for this drug.
No warning message for this drug.
The following icd codes are available for INLURIYO (imlunestrant tosylate)'s list of indications:
| Er-positive, HEr2-negative, ESr1-mutated breast cancer | |
| C50.011 | Malignant neoplasm of nipple and areola, right female breast |
| C50.012 | Malignant neoplasm of nipple and areola, left female breast |
| C50.019 | Malignant neoplasm of nipple and areola, unspecified female breast |
| C50.021 | Malignant neoplasm of nipple and areola, right male breast |
| C50.022 | Malignant neoplasm of nipple and areola, left male breast |
| C50.029 | Malignant neoplasm of nipple and areola, unspecified male breast |
| C50.111 | Malignant neoplasm of central portion of right female breast |
| C50.112 | Malignant neoplasm of central portion of left female breast |
| C50.119 | Malignant neoplasm of central portion of unspecified female breast |
| C50.121 | Malignant neoplasm of central portion of right male breast |
| C50.122 | Malignant neoplasm of central portion of left male breast |
| C50.129 | Malignant neoplasm of central portion of unspecified male breast |
| C50.211 | Malignant neoplasm of upper-inner quadrant of right female breast |
| C50.212 | Malignant neoplasm of upper-inner quadrant of left female breast |
| C50.219 | Malignant neoplasm of upper-inner quadrant of unspecified female breast |
| C50.221 | Malignant neoplasm of upper-inner quadrant of right male breast |
| C50.222 | Malignant neoplasm of upper-inner quadrant of left male breast |
| C50.229 | Malignant neoplasm of upper-inner quadrant of unspecified male breast |
| C50.311 | Malignant neoplasm of lower-inner quadrant of right female breast |
| C50.312 | Malignant neoplasm of lower-inner quadrant of left female breast |
| C50.319 | Malignant neoplasm of lower-inner quadrant of unspecified female breast |
| C50.321 | Malignant neoplasm of lower-inner quadrant of right male breast |
| C50.322 | Malignant neoplasm of lower-inner quadrant of left male breast |
| C50.329 | Malignant neoplasm of lower-inner quadrant of unspecified male breast |
| C50.411 | Malignant neoplasm of upper-outer quadrant of right female breast |
| C50.412 | Malignant neoplasm of upper-outer quadrant of left female breast |
| C50.419 | Malignant neoplasm of upper-outer quadrant of unspecified female breast |
| C50.421 | Malignant neoplasm of upper-outer quadrant of right male breast |
| C50.422 | Malignant neoplasm of upper-outer quadrant of left male breast |
| C50.429 | Malignant neoplasm of upper-outer quadrant of unspecified male breast |
| C50.511 | Malignant neoplasm of lower-outer quadrant of right female breast |
| C50.512 | Malignant neoplasm of lower-outer quadrant of left female breast |
| C50.519 | Malignant neoplasm of lower-outer quadrant of unspecified female breast |
| C50.521 | Malignant neoplasm of lower-outer quadrant of right male breast |
| C50.522 | Malignant neoplasm of lower-outer quadrant of left male breast |
| C50.529 | Malignant neoplasm of lower-outer quadrant of unspecified male breast |
| C50.611 | Malignant neoplasm of axillary tail of right female breast |
| C50.612 | Malignant neoplasm of axillary tail of left female breast |
| C50.619 | Malignant neoplasm of axillary tail of unspecified female breast |
| C50.621 | Malignant neoplasm of axillary tail of right male breast |
| C50.622 | Malignant neoplasm of axillary tail of left male breast |
| C50.629 | Malignant neoplasm of axillary tail of unspecified male breast |
| C50.811 | Malignant neoplasm of overlapping sites of right female breast |
| C50.812 | Malignant neoplasm of overlapping sites of left female breast |
| C50.819 | Malignant neoplasm of overlapping sites of unspecified female breast |
| C50.821 | Malignant neoplasm of overlapping sites of right male breast |
| C50.822 | Malignant neoplasm of overlapping sites of left male breast |
| C50.829 | Malignant neoplasm of overlapping sites of unspecified male breast |
| C50.911 | Malignant neoplasm of unspecified site of right female breast |
| C50.912 | Malignant neoplasm of unspecified site of left female breast |
| C50.919 | Malignant neoplasm of unspecified site of unspecified female breast |
| C50.921 | Malignant neoplasm of unspecified site of right male breast |
| C50.922 | Malignant neoplasm of unspecified site of left male breast |
| C50.929 | Malignant neoplasm of unspecified site of unspecified male breast |
Formulary Reference Tool